De grootste kennisbank van het HBO

Inspiratie op jouw vakgebied

Vrij toegankelijk

Terug naar zoekresultatenDeel deze publicatie

Closed access

Closed access

Samenvatting

Employee burnout is an increasing global problem. Some countries, such as The Netherlands, diagnose and treat burnout as a medical condition. While deficient sleep has been implicated as the primary risk factor for burnout, the longest current sleep measurement of burnout individuals is 4 weeks; and no studies have measured sleep throughout the burnout process (i.e.: pre-burnout, burnout diagnosis, recovery time, and returning to work). During a 7 month longitudinal study on wearable technology use, 4 participants were diagnosed with (pre)burnout by their company doctor using the Maslach’s Burnout Inventory (MBI). Our study captured the participants’ sleep data including: sleep quality, number of awakenings, sleep duration, time awake, and amount of light sleep during the burnout and recovery process. One participant experienced a burnout diagnosis, recovery at home, and returning to work within the 7 months providing the first look at sleep trends during the entire burnout process. Our results show that the burnout participants experienced decreased sleep quality (n = 2), sleep duration (n = 2), and light sleep (n = 3). In contrast, a sample of 3 non-burnout participants sleep remained stable on all measures except for time awake for one participant. The results of this study answer past calls for longer analysis of sleep’s influence on burnout and highlight the vast opportunity to extend burnout research using the millions of active devices currently in use.

Toon meer
OrganisatieHogeschool van Amsterdam
Gepubliceerd in14th EAI International Conference on Body Area Networks, BodyNets 2019 Florence, Italy, ITA
Datum2019-11-16
TypeConferentiebijdrage
DOI10.1007/978-3-030-34833-5_24
TaalEngels

Op de HBO Kennisbank vind je publicaties van 26 hogescholen

De grootste kennisbank van het HBO

Inspiratie op jouw vakgebied

Vrij toegankelijk