De grootste kennisbank van het HBO

Inspiratie op jouw vakgebied

Vrij toegankelijk

Terug naar zoekresultatenDeel deze publicatie

Samenvatting

It is crucial that ASR systems can handle the wide range of variations in speech of speakers from different demographic groups, with different speaking styles, and of speakers with (dis)abilities. A potential quality-of-service harm arises when ASR systems do not perform equally well for everyone. ASR systems may exhibit bias against certain types of speech, such as non-native accents, different age groups and gender. In this study, we evaluate two widely-used neural network-based architectures: Wav2vec2 and Whisper on potential biases for Dutch speakers. We used the Dutch speech corpus JASMIN as a test set containing read and conversational speech in a human-machine interaction setting. The results reveal a significant bias against non-natives, children and elderly and some regional dialects. The ASR systems generally perform slightly better for women than for men.

OrganisatieHogeschool van Amsterdam
Gepubliceerd in2023 International Conference on Speech Technology and Human-Computer Dialogue (SpeD) Bucharest, Romania, ROM
Jaar2023
TypeConferentiebijdrage
TaalEngels

Op de HBO Kennisbank vind je publicaties van 26 hogescholen

De grootste kennisbank van het HBO

Inspiratie op jouw vakgebied

Vrij toegankelijk