De grootste kennisbank van het HBO

Inspiratie op jouw vakgebied

Vrij toegankelijk

Terug naar zoekresultatenDeel deze publicatie

Demonstration of the Feasibility of Real Time Application of Machine Learning to Production Scheduling

Closed access

Demonstration of the Feasibility of Real Time Application of Machine Learning to Production Scheduling

Closed access

Samenvatting

Industry 4.0 has placed an emphasis on real-time decision making in the execution of systems, such as semiconductor manufacturing. This article will evaluate a scheduling methodology called Evolutionary Learning Based Simulation Optimization (ELBSO) using data generated by a Manufacturing Execution System (MES) for scheduling a Stochastic Job Shop Scheduling Problem (SJSSP). ELBSO is embedded within Ordinal Optimization (OO), where in the first phase it uses a meta model, which previously was trained by a Discrete Event Simulation model of a SJSSP. The meta model used within ELBSO uses Genetic Programming (GP)-based Machine Learning (ML). Therefore, instead of using the DES model to train and test the meta model, this article uses historical data from a front-end fab to train and test. The results were statistically evaluated for the quality of the fit generated by the meta-model.

OrganisatieHogeschool van Amsterdam
Gepubliceerd inWinter Simulation Conference 2022 Singapore, Singapore, SGP
Datum2023-03-02
TypeConferentiebijdrage
DOI10.1109/WSC57314.2022.10015436
TaalEngels

Op de HBO Kennisbank vind je publicaties van 26 hogescholen

De grootste kennisbank van het HBO

Inspiratie op jouw vakgebied

Vrij toegankelijk