Supporting Learning Analytics Adoption
Evaluating the Learning Analytics Capability Model in a Real-World SettingWij hanteren het label Open Access voor onderzoek met een Creative Commons licentie. Door een CC-licentie toe te kennen, geeft de auteur toestemming aan anderen om zijn of haar werk te verspreiden, te delen of te bewerken. Voor meer informatie over wat de verschillende CC-licenties inhouden, klik op het CC-icoon. Alle rechten voorbehouden wordt gebruikt voor publicaties waar enkel de auteurswet op van toepassing is.
Supporting Learning Analytics Adoption
Evaluating the Learning Analytics Capability Model in a Real-World SettingWij hanteren het label Open Access voor onderzoek met een Creative Commons licentie. Door een CC-licentie toe te kennen, geeft de auteur toestemming aan anderen om zijn of haar werk te verspreiden, te delen of te bewerken. Voor meer informatie over wat de verschillende CC-licenties inhouden, klik op het CC-icoon. Alle rechten voorbehouden wordt gebruikt voor publicaties waar enkel de auteurswet op van toepassing is.
Samenvatting
Although learning analytics benefit learning, its uptake by higher educational institutions remains low. Adopting learning analytics is a complex undertaking, and higher educational institutions lack insight into how to build organizational capabilities to successfully adopt learning analytics at scale. This paper describes the ex-post evaluation of a capability model for learning analytics via a mixed-method approach. The model intends to help practitioners such as program managers, policymakers, and senior management by providing them a comprehensive overview of necessary capabilities and their operationalization. Qualitative data were collected during pluralistic walk-throughs with 26 participants at five educational institutions and a group discussion with seven learning analytics experts. Quantitative data about the model’s perceived usefulness and ease-of-use was collected via a survey (n = 23). The study’s outcomes show that the model helps practitioners to plan learning analytics adoption at their higher educational institutions. The study also shows the applicability of pluralistic walk-throughs as a method for ex-post evaluation of Design Science Research artefacts.
Organisatie | Hogeschool Utrecht |
Afdeling | Kenniscentrum Leren en Innoveren |
Lectoraat | Betekenisvol Digitaal Innoveren |
Gepubliceerd in | Applied Sciences MDPI, Vol. 13, Uitgave: 5, Pagina: 3236 |
Jaar | 2023 |
Type | Artikel |
DOI | 10.3390/app13053236 |
Taal | Engels |