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Introduction

In the past decade, activity trackers have been used more 
frequently by a relatively young and physically active popu-
lation (Macridis et al., 2018). In addition to this population, 
activity trackers can also be beneficial for older adults 
(65+). In 2018, only 37% of the older adults in the 
Netherlands were sufficiently physically active according to 
Dutch guidelines (National Institute for Public Health and 
the Environment, 2015). Activity trackers can contribute to 
overcome this by giving insight into the amount of physical 
activity, increasing awareness and motivating older adults to 
be more physically active (Maher et al., 2017; Mercer et al., 
2016; O’Brien et al., 2015; Preusse et al., 2017; Sullivan & 
Lachman, 2016; Ummels et al., 2019)

Several studies have shown that older adults are most 
interested in step count and amount of physical behavior 
as outcome variables for physical activity (Maher et al., 
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2017; Rosenberg et al., 2016; Schlomann, 2017; Ummels 
et al., 2019). Recent studies have shown that step count 
and physical behavior are not validly measured by con-
sumer-grade activity trackers during low walking 
speeds, which often occur during activities of daily liv-
ing (ADL) such as household activities (Alharbi et al., 
2016; Beevi et al., 2016; Cyarto et al., 2004; Evenson 
et al., 2015; Ferguson et al., 2015; Floegel et al., 2016; 
Martin et al.,2012; Straiton et al., 2018; Tedesco et al., 
2019; Ummels et al., 2018; Van Blarigan et al., 2017). 
This lower validity can partly be explained by the fact 
that the majority of consumer-grade activity trackers 
don’t have older adults as a target group and don’t adjust 
their algorithms accordingly.

Recently, an adjustable classification algorithm was 
published to optimize algorithm performance (Bijnens 
et al., 2019). Through easily adjustable algorithm param-
eters it is possible to optimize the performance of this 
algorithm for different target and tracker wear locations. 
A recent qualitative study showed that older adults 
would prefer to wear an activity tracker in their trouser 
pocket (Ummels et al., 2019). Consequently, the adjust-
able algorithm was optimized to estimate step count and 
dynamic, standing, and sedentary time for older adults 
and a pocket worn activity tracker according to the pro-
posed method by Bijnens et al. (2019).

The first purpose of this study was to validate these 
optimized algorithm parameter settings for step count 
and physical behavior expressed as dynamic, standing, 
and sedentary time in older adults with a normal pattern 
wearing an activity tracker in their trouser pocket during 
simulated ADL. Secondly, to have a more relevant inter-
pretation of the validation results, the performance of 
the optimized algorithm parameter settings for older 
adults was compared to the algorithm where the adjust-
able classification algorithm originates from and two 
frequently used activity trackers.

Methods

Study Design

A cross-sectional validation study was performed in 
which the optimized algorithm parameter settings were 
validated and compared to the algorithm where the 
adjustable classification algorithm originates from and 
two activity trackers.

Participants

Twenty older adults were recruited from several local 
associations for older adults (e.g., bridge club or church 
association) in the South of the Netherlands. Participants 
were included if they were older than 65 years and didn’t 
meet the Dutch physical activity guidelines (a minimum 
of 150 min of moderate-intensity per week (Health 
Council of the Netherlands, 2017)). Exclusion criteria 
were insufficient understanding of the Dutch language, 
use of a walking aid, and a pathological gait during  

the 10-metre walk test (10MWT) observed by a physio-
therapist (Collen et al., 1990). All participants provided 
written informed consent prior to inclusion.

Activity Protocol

A participant-determined sequence activity protocol was 
developed based on ADL. To simulate free-living, par-
ticipants were free to choose the order and duration of a 
series of daily activities. The activity protocol, shown in 
Table 1, was based on earlier activity protocols with 
ADL in people with chronic diseases and older adults 
(Cavalheri et al., 2011; Erasmus MC University Medical 
Center Rotterdam, 2013; Langer et al., 2009; Sant’Anna 
et al., 2012; Ummels et al., 2018).

Activity Trackers

The MOX Activity Logger (MOX; Maastricht 
Instruments, Maastricht, NL) (Maastricht Instruments 
BVa, 2020) contains a tri-axial accelerometer (ADXL362, 
Analog Devices, Norwood, MA, US). This small, light-
weight, waterproof device (35 mm × 35 mm × 10 mm, 
11 g) measures raw acceleration data (±8 g) in three 
orthogonal sensor axes (X, Y, and Z) at a 25 Hz sampling 
rate. The raw data is stored directly on the internal mem-
ory. The MOX has storage capacity and battery life for 
continuous measurements up to 7 days. Device configu-
ration, data transfer and charging of the device are pos-
sible via an USB connection. Data analysis is performed 
offline. The MOX was worn in the front trouser pocket, 
attached with a clip, to secure a fixed orientation of the 
device with respect to axial mobility of the upper leg. 
This wear location is shown in Figure 1.

Table 1.  The Participant-Determined Sequence Activity 
Protocol with Activities of Daily Living for Older adults.

Activity type
Defined for the 
gold standard as

Squata Marks start of 
the protocol

Organising a cabinet with 
cutlery, plates, and cups

Standing

Reading the newspaper 
while seated at a table

Sedentary

Ironing and folding laundry Standing

Sitting and talking Sedentary

Washing the dishes Standing

Sweeping the floor Dynamic

Changing linens on a bed Dynamic

Setting the table with 
cutlery, plates, and cups

Dynamic

Squata Marks end of 
the protocol

Note. aSquat was mandatory at the beginning and at the end of the 
activity protocol and was not used for analysis.
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Two commonly used activity trackers, the activPAL 
(activPAL3, PAL Technologies Ltd, Glasgow, Scotland, 
UK) and the Fitbit Alta HR (Fitbit; Fitbit Inc., San 
Fransisco, CA, US) were used as reference for a more 
relevant interpretation of the validation results. Based 
on the recommendations of the manufactures the activ-
PAL is worn on the dominant leg ten centimetres above 
the patella (activPAL) and the Fitbit is worn on the non-
dominant wrist (Fitbit, 2020a).

Data Collection and Procedure

Participants were measured at the Human Performance 
Laboratory of Maastricht University (Maastricht, NL) or 
at Zuyd University of Applied Science (Heerlen, NL). 
Both laboratories are comparable in size (about 120 m2) 
and facilities. Demographic data were collected (gender, 
age, body weight, and body length) by two researchers, 
either DU (physiotherapist) or WB (application engi-
neer). Thereafter, the participants performed the 
10 MWT to calculate their average walking speed. After 
the 10 MWT, participants were fitted with the MOX, the 
activPAL, and the Fitbit. The same MOX, activPAL, and 
Fitbit were used for all participants.

The activity protocol was recorded on video and 
observed to use as a gold standard to determine the 
actual step count, dynamic, standing, and sedentary time 
in seconds performed by the participants. Step count 
was counted manually by two independent observers 
using the counter application Counter+ (Seedform, 
2020). A step was defined as: “when the entire foot is 
lifted from the floor and when the participants replaced 
their foot (forward, backward, sideways or upwards)” 
(Beekman et  al., 2017). After manually counting the 
step count, the video was re-observed and the time that 
the participants performed dynamic (walking and walk-
ing during household activities), standing or sedentary 
(sitting, lying) time was noted. Physical behavior was 

assessed by two independent observers (Table 1) using 
the EasyTag app (Dartfish Ltd, 2020).

The data from the activity trackers were collected 
directly after the activity protocol. Analysis of the raw 
acceleration data of the MOX took place on a PC after 
the measurements (off-line) using Matlab (R2018b, The 
MathWorks Inc., Natick, MA, US) with two algorithms. 
The first one is the activity classification algorithm pre-
sented and validated by Annegarn et  al. (2011) for 
healthy adults (MOXAnnegarn), where the adjustable clas-
sification algorithm originates from. The second one is 
the classification algorithm with application specific 
adjustable parameters itself (Bijnens et al., (2019). For 
application in an older adult target group wearing an 
activity tracker in their trouser pocket the optimized 
parameter settings are: a data segmentation window size 
of 2 s, an amount of physical activity threshold of five 
counts per second (cps) and an orientation threshold of 
0.8 g. This application is referred to as Miss Activity, the 
parameter settings as MOXMissActivity. For MOXAnnegarn 
dynamic, standing, and sedentary time spent in seconds 
were retrieved. In addition to these three variables, for 
MOXMissActivity step count was also retrieved. For the 
activPAL, step count and dynamic, standing, and seden-
tary time spent in seconds were retrieved from the PAL 
Software Suite (v7.2.32; PAL Technologies Ltd., 
Glasgow, Scotland, UK). For the Fitbit, step count and 
active minutes (by definition: ten continuous minutes 
long bouts of moderate-to intense activity >3 metabolic 
equivalent of task [MET]) (Fitbit Inc, 2020b), were 
retrieved from the corresponding Fitbit app (Fitbit Inc., 
San Fransisco, CA, US). From this point, we refer to the 
active minutes of the Fitbit as dynamic time.

Data Analysis

Data analysis was performed using SPSS Statistics (ver-
sion 23.0; IBM Corp, Armonk, NY, US) and Prism 
(GraphPad Prism 8.2.1(441); GraphPad Software, San 
Diego, CA, USA).

Descriptive statistics of the participant characteristics 
were presented as a number (percentage) for the cate-
gorical variable gender and as a mean (95% confidence 
interval [CI]) for the continuous variables age, body 
length, body weight, and average walk speed.

Inter-observer reliability of the video observations.  The dif-
ferences in step count, dynamic, standing, and sedentary 
time was calculated between two observers. If there was 
more than a 5% difference between the two observers, a 
third observer assessed the video. The inter-observer 
reliability of the two observers with the smallest differ-
ence was assessed by an Intraclass Correlation Coeffi-
cient (absolute agreement, two-way random) and 
Bland-Altman plots with limits of agreement. It was 
hypothesized that there was a strong correlation between 
observers (r ≥ .90) in order to guarantee a robust gold 
standard (De Vet et al., 2011).

Figure 1.  MOX wear location.
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Validation.  To check for outliers in the data of MOXMiss-

Activity, MOXAnnegarn, activPAL, Fitbit versus the video 
observations regarding the variables step count, 
dynamic, standing, and sedentary time the data were 
transformed to z-scores and Bland-Altman plots were 
visually inspected. In case of outliers, pairwise deletion 
was applied.

For step count, dynamic, standing, and sedentary 
time the mean (95% CI), mean difference, the percent-
age error (PE), the absolute percentage error (APE), and 
the smallest detectable change (SDC) were used to gain 
insight into the algorithm’s and activity trackers’ perfor-
mance compared to video observations.
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Formula 1 and 2 show the calculation of PE and APE for 
each variable. A PE or APE of less than 10% was con-
sidered acceptable (Sasaki et  al., 2016). Formula 3 
shows the calculation of SDC.

The level of agreement between step count, dynamic, 
standing, and sedentary time and the video observations 
were examined by a Bland-Altman plot with their limits 
of agreement (Bland & Altman, 1986 ). Pearson correla-
tion coefficients were calculated to gain insight into the 
relationship between the MOXMissActivity, MOXAnnegarn, 
activPAL, Fitbit versus the video observations regarding 
the variables step count, dynamic, standing, and seden-
tary time. It was hypothesised that there would be at 
least a substantial correlation (r ≥ .60) (De Vet et al., 
2011). A paired sample t-test was used to determine 
large systematic differences between the MOXMissActivity, 
MOXAnnegarn, activPAL, Fitbit versus the video observa-
tions regarding the variables step count, dynamic, stand-
ing, and sedentary time. A p-value below .05 was 
considered to be statistically significant. Additionally 
the sensitivity, specificity and accuracy are calculated.

Results

Participant Characteristics

Twenty older adults were recruited for this study. The 
participant characteristics are displayed in Table 2.

Inter-Observer Reliability of the Video 
Observations

The inter-observer reliability of the video observations 
calculated for step count was high (ICCagreement 0.98, 

P < .001 95% CI 0.95–0.99). The inter-observer reli-
ability of dynamic, standing, and sedentary time were 
also high (ICCagreement 0.98, P < .001, 95% CI 0.95–
0.99), (ICCagreement 0.99, P < .001 95% CI 0.98–
0.99), (ICCagreement, 1.0, P < .001, 95% CI 0.99–1.0) 
respectively. The limits of agreement for step count (−58 
to 62 steps), dynamic (−49 to 41 s), standing (−49 to 
40 s) and sedentary time (−26 to 28 s) showed no sys-
tematic differences. A third observer had to be included 
in two cases.

Step Count

Descriptive statistics for each activity tracker are shown 
in Table 3. The mean step count during the activity pro-
tocol counted by the video observation was 615 (566–
664) steps. The MOXMissActivity had a mean step count of 
602 (537–667) steps, the activPAL had a mean step 
count of 385 (336–433) steps and the Fitbit had a mean 
step count of 731 (590–873) steps. The values of the per-
centage error and the absolute percentage error are pre-
sented in Figure 2. The Bland-Altman plots (Figure 3) 
show a slight overestimation of the number of steps in 
the MOXMissActivity, an overestimation in the activPAL 
and underestimation in the Fitbit. If the limits of agree-
ment for the activPAL and Fitbit Alta HR are corrected 
for their respective bias they are −141 to 140 and −183 
to 183, respectively.

Physical behavior

The mean dynamic, standing, and sedentary time during 
the activity protocol counted by the video observations 
were 422 (387–457), 668 (579–757), and 1716 (1452–
1981) seconds, respectively. On average the total proto-
col lasted 45 (40–51) min. For the MOXMissActivity and 
MOXAnnegarn, two outliers were detected for standing 
time, both outliers were visible in the Bland-Altman 
plots. The video recordings were re-watched and, in 
both participants, the MOX was incorrectly worn. One 
of these outliers was also statistically detected with the 
z-score (5% with a z-score of >2.58). One outlier for the 
activPAL was detected for dynamic time, the outlier was 

Table 2.  Participant Characteristics.

Characteristic Participants (n = 20)

Gender, male, n (%) 10 (50%)

Age, years, mean (95% CI) 74.5 (70.9–77.6)

Body weight, kilograms, 
mean (95% CI)a

86.1 (73.7–98.5)

Body length, centimetres, 
mean (95% CI)

172.5 (167.6–176.9)

Average walk speed, mean 
(95% CI)

1.1 (1.0–1.2)

Note. aThere was one (5%) missing value for body weight.



Ummels et al.	 5

Table 3.  Descriptive Statistics, Pearson Correlation Coefficient and Paired Sample t-Test of Step Count by the MOXMissActivity 
Compared to the Video Observations in Comparison with Reference Applications.

Activity 
tracker

Difference in step 
counta, mean  

(95% CI)
Percentage error, 
mean (95% CI)

Absolute 
percentage error, 
mean (95% CI)

Limits of agreement 
(lower bound–
upper bound)

Pearson 
correlation 
coefficient p-value

Smallest 
detectable 

change (steps)

MOXMissActivity
b 13 (−19 to 45) 2.6 (−2.6 to 7.4) 9.3 (7.3 to 11.3) −116 to 142 0.88 .40 129

activPALc 238 (198 to 277) 38.1 (33.0 to 43.1) 38.1 (33.0 to 43.1) 97 to 378 0.75 >.001 485

Fitbitc −160 (−287 to −35) −20.0 (−38.3 to −1.9) 31.3 (19.6 to 43.0) −556 to 290 0.77 .16 522

Note. aVideo observation minus activity tracker.
bOne missing value for step count in the MOXMissActivity (1/20, 5%).
cFive missing values for step count in the activPAL and Fitbit (5/20, 25%).

Figure 2.  (a) Percentage error and (b) absolute percentage error for step count. Step count for the MOXMissActivity is 
presented in blue, for activPAL in black and for Fitbit in brown.

Figure 3.  Bland-Altman plots of the (a) MOXMissActivity, (b) activPAL, and (c) the Fitbit versus the video observation.
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visible in the Bland-Altman plot and was detected with 
the z-score (5% with a z-score of >3.29).

The mean dynamic, standing, and sedentary time for 
the MOXMissActivity without outliers was 405 (338–473), 
696 (504–889), and 1692 (1383–2001) seconds, respec-
tively. For the MOXAnnegarn the mean dynamic, standing, 
and sedentary time was 152 (131–174), 927 (712–1141), 
and 1715 (1392–2038), respectively. For the activPAL, 
the mean dynamic, standing, and sedentary time was 
309 (255–364), 1256 (859–1645), and 1234 (946–1522) 
seconds respectively. The mean dynamic time for the 
Fitbit was 1 (0–3) minutes.

Descriptive statistics without outliers for each activ-
ity tracker are shown in Table 4 and the descriptive sta-
tistics with outliers for each activity tracker are shown in 
supplementary file 1. The PE and APE for physical 
behavior are shown in Figure 4. To gain more insight in 
validity, not only based on total time but also on win-
dow-to-window basis, additional analyzes in terms of 
specificity, sensitivity, and accuracy were performed 
(supplementary file 2).

The Bland-Altman plots of the MOXMissActivity with-
out outliers (Figure 5) show a slight overestimation for 
dynamic and sedentary time and a slight underestima-
tion for standing time. When the limits of agreement for 
the activPAL are corrected for their bias for dynamic, 
standing, and sedentary time, they are −141 to 147, −538 
to 527 and −1234 to 1130 respectively.

Discussion

Principal Findings

This study showed that the optimized algorithm param-
eter settings (MOXMissActivity) can more validly measure 
step count and physical behavior expressed as dynamic, 
standing, and sedentary time in older adults wearing an 
activity tracker in their trouser pocket during ADL based 
on a test combination of PE, APE, correlation coeffi-
cients, and paired sample t-test compared to the 
MOXAnnegarn, activPAL, and Fitbit.

The variables step count and sedentary time showed 
good validity in comparison with the gold standard. It was 
hypothesised that all variables of the MOXMissActivity 
would have at least a substantial correlation (r ≥ .60) and 
an APE of <10%. Only the variable dynamic time had a 
slightly lower correlation coefficient of 0.55 and the vari-
ables dynamic and standing time had a mean APE of 
15.9% and 19.9%. These results are supported with addi-
tional analyzes of the specificity, sensitivity, and accuracy 
(supplementary file 2). This can be explained by the fact 
that the activities in the activity protocol were classified 
into dynamic, standing, and sedentary behavior as a 
whole. For example, by definition, the video observations 
classified changing linens as dynamic behavior, however 
during this activity it is possible that the participant per-
formed a sequence of standing and dynamic behavior 
(e.g., standing still to put the cushion on the bed).

In the current study, MOXAnnegarn, activPAL, and 
Fitbit showed lower validity compared to the gold stan-
dard and the MOXMissActivity. It is clear that these target 
group and wear location specific classification algo-
rithms cannot be applied outside of their specific con-
text. The results for the activPAL are in line with a recent 
study showing a low validity during short stepping bouts 
and activities with low walking speeds, such as shuf-
fling, picking, transitions, and kneeling in older adults 
(Bourke et al., 2019; Feehan et al., 2018). The underes-
timation for dynamic time of the Fitbit can be explained 
by the definition Fitbit uses for active minutes: 10 con-
tinuous minutes long bouts of moderate-to intense activ-
ity >3 MET. It is reasonable to assume that activities of 
daily living weren’t performed with such intensity and/
or for that long during this protocol.

Limitations and strengths.  This study had some limita-
tions, the first one being the relatively low sample size 
(n = 20). Future work could include a larger sample 
size, although several validity studies have been per-
formed with a sample size of 20 (Evenson et al., 2015). 
Second, that due to some technical errors, there were 
five missing values for both the Fitbit and the activPAL. 
However, since these activity trackers were only used as 
reference this should not have affected the main purpose 
of the current study. Third, the varying MOX wear loca-
tion relative to the body. To secure the validity of the 
algorithm the MOX should always be correctly placed 
in the trouser pocket below the waist, this should be 
addressed in a manual. By re-observing the video 
recordings, it was noted that the MOX was placed above 
the participants’ hip in two cases. Since the algorithm 
assumes a wear location on the upper leg, the MOX was 
not able to correctly measure within these two partici-
pants due to this misplacement. Therefore, it was chosen 
to handle these two cases as outliers, since the misplace-
ment, and not the algorithm, compromised the validity. 
Fourth, this study was performed in a lab setting and is 
therefore not directly generalizable to daily life. How-
ever, with the ADL protocol, daily life was simulated as 
close as possible to daily life. This is in line with the 
proposed standardization methods of Welk et al. (2019).

A strength of this study is the use of the participant-
determined sequence activity protocol to validate the 
algorithm. This activity protocol simulates free-living 
since participants were free to choose the order and 
duration of the activities they performed. To simulate 
the free-living situation as best as possible activities that 
are frequently performed by older adults are included in 
the activity protocol. Furthermore, this study follows the 
recommendations made by Welk et al. (2019) for valida-
tion studies in wearables: use a diverse sample, appro-
priate sampling of daily behavior, an appropriate 
criterion measure, standardised protocols and wear loca-
tions, and inclusion of reference applications. To stan-
dardise the analyzes they recommend to use relevant 
metrics, documenting the error and the direction of the 
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error and to focus on equivalence (Welk et  al., 2019). 
Another strength of this study is the high inter-observer 
reliability resulting in a robust gold standard (range r = 
.96–1.0).

Clinical implications.  From previous research it is known 
that consumer-grade activity trackers can’t measure step 
count and physical behavior validly during low walking 
speeds, which often occurs in older adults and during 
ADL (Alharbi et  al., 2016; Beevi et  al., 2016; Cyarto 
et al., 2004; Evenson et al., 2015; Ferguson et al., 2015; 

Floegel et al., 2016; Martin et al., 2012; Straiton et al., 
2018; Ummels et al., 2018; Van Blarigan et al., 2017). 
Apparently, daily life of older adults differs that much 
from the target group of these consumer-grade activity 
trackers that their algorithms are not sufficient for older 
adults. Therefore, it is important to have an algorithm 
optimized for the target group, wear location and their 
specific activities. If a consumer-grade activity tracker is 
used for this target group, the algorithm should ideally 
be personalised to the specific target group or at least 
bias corrections to the outcomes of the algorithm should 

Figure 5.  (a) Bland- Altman plots of dynamic, (b) standing, and (c) sedentary time of the MOXMissActivity without outliers versus 
the video observations.

Figure 4.  (a) Percentage Error and (b) Absolute Percentage Error for dynamic, standing, and sedentary time. PE and APE for 
dynamic time are presented in blue, for standing time in black and for sedentary time in brown. The Fitbit Alta HR measures 
dynamic time only, therefore no data for standing and sedentary time are presented.
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be applied. The validity of the optimized algorithm is 
limited to older adults with a normal gait pattern. This 
study shows that an optimized algorithm is indeed more 
valid than general purpose activity trackers. As is shown 
by the smallest detectable change the optimized algo-
rithm could also detect change in patient’s physical 
activity level sooner. However, this study is performed 
on a group level and not on an individual level. There-
fore, the interpretation on an individual level must be 
performed carefully since the optimized algorithm can 
both over- and underestimate step count and physical 
behavior depending on the number of steps or seconds

For an activity tracker to be useful in daily life, valid-
ity is important, but feasibility is equally important. In a 
future feasibility study, development of a user-friendly 
user-interface of the MISS Activity will be addressed. 
The validated algorithm together with the user-interface 
will be called the Measure It Super Simple (MISS) 
Activity (Maastricht Instruments BVb, 2020).

Conclusion

This study showed that the optimized algorithm param-
eter settings can more validly estimate step count, 
dynamic, standing, and sedentary time in older adults 
with a normal gait pattern wearing an activity tracker in 
their trouser pocket during a participant-determined 
sequence activity protocol with activities of daily living 
compared to reference applications with generic activity 
tracker algorithms. For future studies and clinical prac-
tice an algorithm should ideally be optimized to the tar-
get population. Future work will include the development 
of a target group-specific user-friendly application.
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