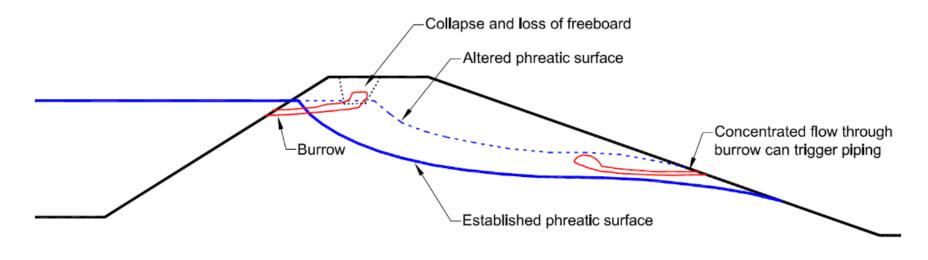


Animal burrows in your levees

What does it take to keep your levees safe from animals?

Vana Tsimopoulou & André Koelewijn

Polder2C's final conference, Antwerp 7-9 March 2023



The problem

Levee design and safety assessment

No explicit consideration of animal-induced anomalies

(Source: Cobos Roa, 2015)

The problem

Levee managers' perspective

- Levees attract burrowing animals
- Many of them are protected (e.g. beavers)
- No straightforward approach for dealing with them

ropean Regional Development Fur

Scientists' perspective

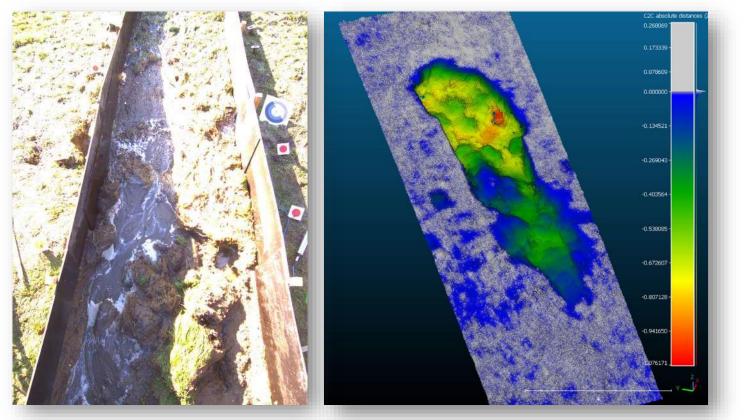
- Much tacit knowledge among levee guards (NL, B, UK, F)
- Limited reports with relevant information and studies
- Formal knowledge on the topic is limited and fragmented

Evidence of animal activity on the levee

European Regional Development Fun

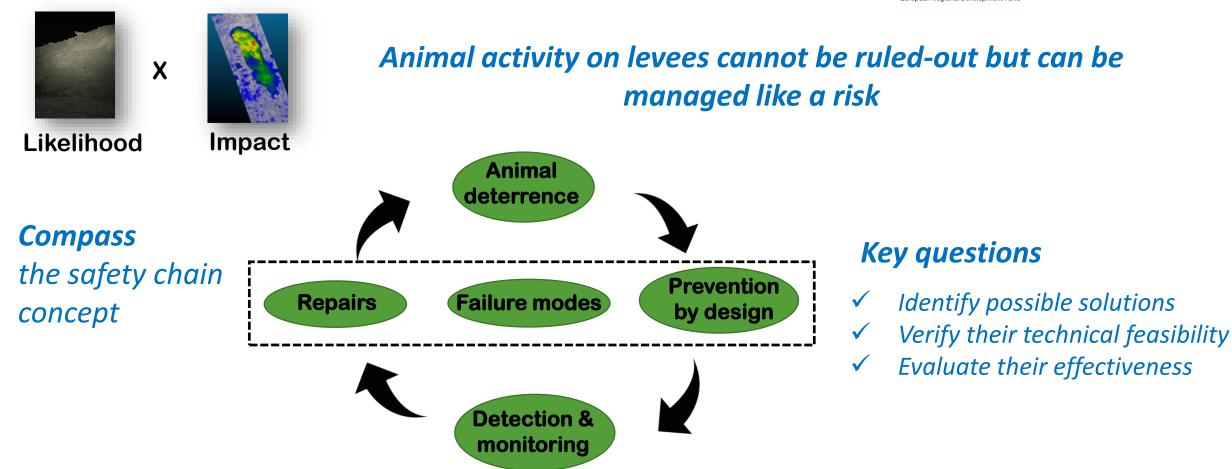
Fox during night inspection

Burrow on landward slope, diameter approx. 25cm



Sand deposit under foxhole

Evidence of serious impact on the levee


European Regional Development Fund

Overflow on section with a large burrow

Defining topics of interest

Defining study objectives

Boundary conditions

- 1. Develop knowledge that **improves professional practice**
- 2. Provide formal evidence that **supports scientific research**
- 3. Fit in the context of the living lab

Critical literature review

Definition of knowledge gaps

Research questions

Shortlist of knowledge gaps to

European Regional Development Fund

Failure modes

Which animal burrows are dangerous for your levee?

Overflow test on a fox/rabbit hole (1 h 13 min)

European Regional Development Fund

Overflow test with mole burrows (1 h 7 min)

Influence of mole burrows

- Another test with a tree failed by mole burrows after 13 hours of flow
- Tests where no failure occurred, had no mole burrows
- Elsewhere, wave overtopping tests showed a remarkable influence of the presence/absence of mole burrows (MSc thesis Peter van Dijk, TU Delft, 31 August 2021)
- Yet, how to quantify this influence, in general or in specific cases...?

Beavers in embankments

• A beaver hole through a regional dike (Zijkade near Vianen, Netherlands)

Did this dike fail or not?

A spin-off of Polder2C's: a Table of Influence

European Regional Development Fund

Animal species – location in dike	Landward stability	Uplift of cover layer	Erosion of cover	Piping through hole in cover	Backward erosion piping
Beaver - landside slope - waterside slope - both slopes	0.01 – 1 1 – 1000 0.1 – 100	0.000 1 – 1 1 – 1000 0.001 – 100	* 1 – 100 1 – 1000	1 – 100 000 1 – 100 10 – 1 000 000	1 – 10 000 1 – 100 000 1 – 10 000 000
Badger - landside slope - waterside slope - both slopes	0.01 – 1 1 – 10 000 0.1 – 1000	0.001 – 1 1 – 10 000 0.001 – 10 000	3 – 1000 3 – 1000 3 – 10 000	1 – 100 000 1 – 1000 3 – 10 000 000	* *
Mole - landside slope - waterside slope - both slopes	0.1 – 1 1 – 30 1 – 10	0.01 – 1 1 – 10 0.01 – 10	1 – 100 1 – 100 1 – 1000	1 – 1000 1 – 100 1 – 10 000	* * *
Fox and rabbit - near creast - low, landside - low, waterside	0.1 – 3 0.01 – 1 *	0.3 – 10 0.001 – 1 *	3 – 1000 3 – 1000 *	1 – 100 1 – 1000 *	* * *
Vole and mouse - landside slope - waterside slope - both slopes	0.1 – 1 1 – 3 0.1 – 3	0.1 – 1 1 – 3 0.1 – 3	1 – 3 1 – 3 1 – 3	1 – 10 1 – 3 1 – 30	* * *

Remarks on the table

- Values indicate the increase of the probability of failure (>1 = more risk)
- All values are part of a range the extreme values will rarely be reached
- The values are derived for the primary flood defences of the Netherlands, for other dikes and levees, the size and other characteristics should be taken into account
- Probabilities of failure tend to be in orders of magnitude, so a factor of 10 or 100 may be reached easily
- Most of the more extreme numbers have been derived by a combination of field observations and numerical analyses
- Many entries are still based on proportionality and reasoning

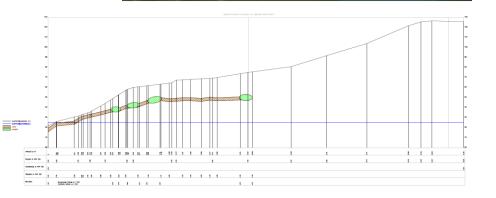
Derivation of entries

European Regional Development Fund

Animal species – location in dike	Landward stability	Uplift of cover layer	Erosion of cover	Piping through hole in cover	Backward erosion piping
Beaver - landside slope - waterside slope - both slopes	0.01 – 1 1 – 1000 0.1 – 100	0.000 1 – 1 1 – 1000 0.001 – 100	* 1 – 100 1 – 1000	1 – 100 000 1 – 100 10 – 1 000 000	1 – 10 000 1 – 100 000 1 – 10 000 000
Badger - landside slope - waterside slope - both slopes	0.01 – 1 1 – 10 000 0.1 – 1000	0.001 – 1 1 – 10 000 0.001 – 10 000	3 – 1000 3 – 1000 3 – 10 000	1 – 100 000 1 – 1000 3 – 10 000 000	• • •
Mole - landside slope - waterside slope - both slopes	0.1 – 1 1 – 30 1 – 10	0.01 – 1 1 – 10 0.01 – 10	1 – 100 1 – 100 1 – 1000	1 – 1000 1 – 100 1 – 10 000	
Fox and rabbit - near creast - low, landside - low, waterside	0.1 – 3 0.01 – 1 *	0.3 – 10 0.001 – 1 *	3 – 1000 3 – 1000 *	1 – 100 1 – 1000 *	
Vole and mouse - landside slope - waterside slope - both slopes	0.1 – 1 1 – 3 0.1 – 3	0.1 – 1 1 – 3 0.1 – 3	1 – 3 1 – 3 1 – 3	1 – 10 1 – 3 1 – 30	• • •

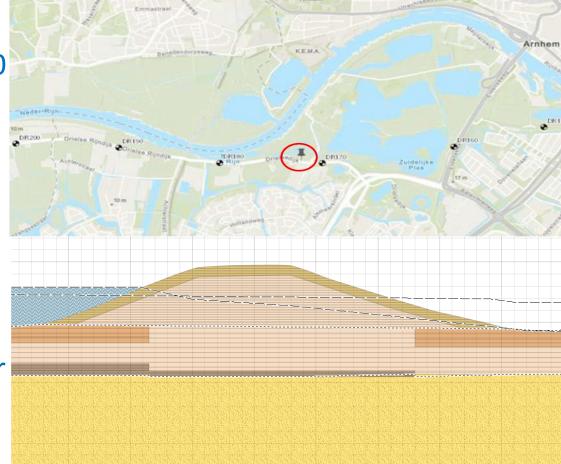
- Observations and calculations
- Observations and reasoning
- Calculations only
- Reasoning only
- Proportionality with other species

Case: beaver causing piping through a hole in the cover


Beaver burrow system at Wamel (NL), Summer 2022 Scenario at highwater conditions:

- 1. Burrows attract more water than drainage system 0.5-0.8
- 2. Fluidisation of lower landside toe probability of 0.1-0.5
- 3. Instability of entire slope probability of failure 1.48x10⁻⁴ per year with burrows + step 1,2 | 3.55x10⁻⁹ per year for completely intact situation
- 4. Further failure of remaining profile prob. 0.5-0.9
- 5. Emergency measures fail *probability of 0.1-0.9*

Altogether 100 – 14 000 higher failure prob.

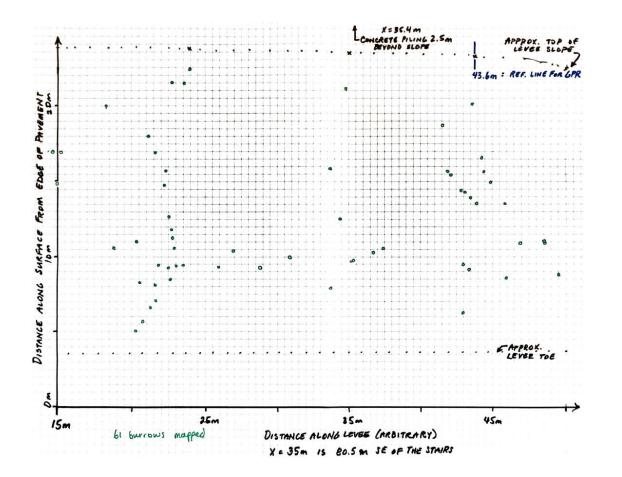


Case: beaver causing backward erosion piping

- Area to the West of Arnhem
- Currently, seepage length is around 180 m, several beaver families residing on both sides of the river (Nederrijn)
- In case of a beaver connecting to the sand layer close to the levee, e.g. during a (very) dry period, seepage length reduces to 85 m
- Probability of failure changes from 1:22 000 000 per year to 1:264 per year – nearly 100 000 times higher

Detection & Monitoring

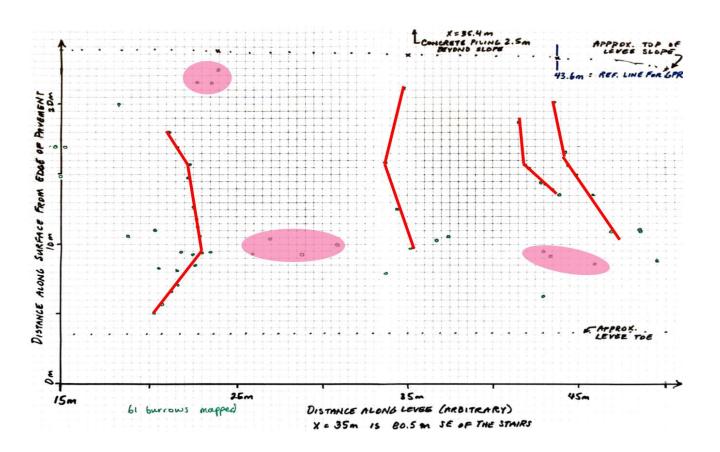
Q1: How can we spot burrows during visual inspections?



European Regional Development Fund

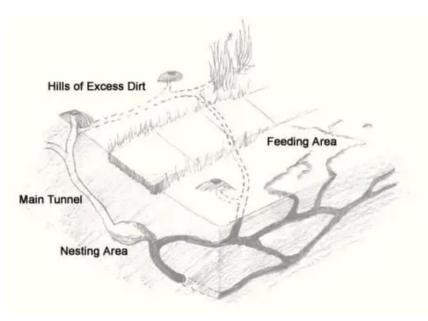
Interreg 2 Seas Mers Zeeën POLDER2C'S

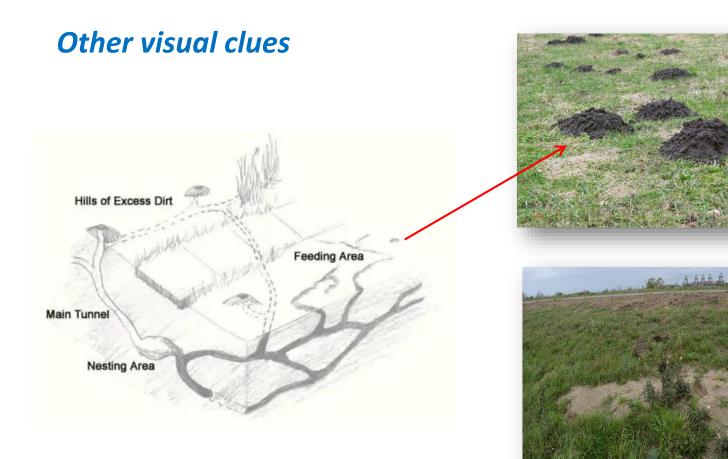
Hedwigepolder, September 2021



European Regional Development Fund

- Burrows of small rodents
- 100 m of levee surveyed
- 90 burrows detected
- Depths < 25 cm
- Diameters: 1 12 cm

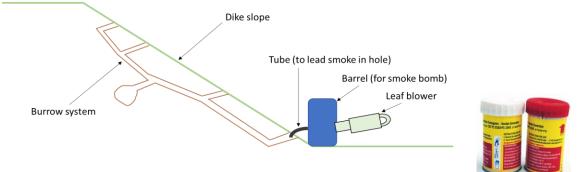

Spatial distribution patterns


• Clusters (mice & moles)

• Lines (moles)

European Regional Development Fund

- Clay mounds (moles)
- Patches of sand (larger animals)



Detection & Monitoring

Q2: How can we detect the extent of burrows?

1. The smoke test

Tested and improved in LLHPP

Version 1: Hedwigepolder (09-21)

Version 2: Prosperpolder (10-21)

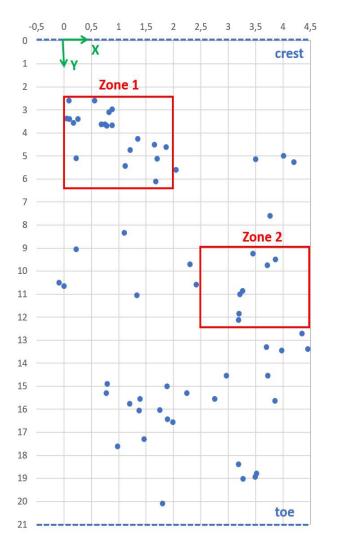
European Regional Development Fund

Version 3 Hedwigepolder (12-21)

1. The smoke test

Evaluation

Feasibility

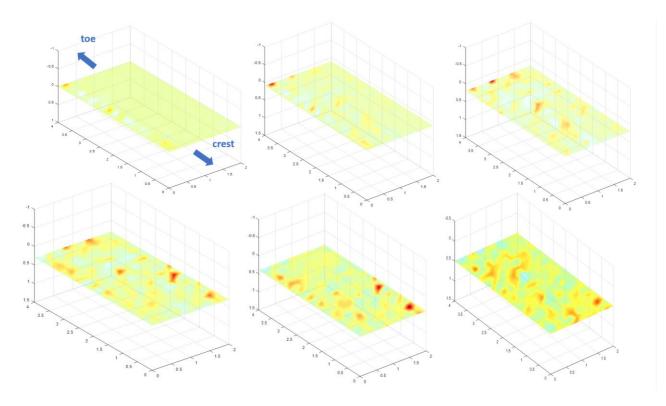

- (+) Easy to apply
- (+) Complementary to visual inspections
- (-) Effect on health and safety of animals unknown

Effectiveness

- (+) Immediate results
- (+) Effective in most trials

2. Ground penetrating radar

Non-destructive technique


European Regional Development Fund

2. Ground penetrating radar

Sample of results & preliminary findings

Feasibility

- (+) Possible on a slope!
- (-) Weather conditions influence accuracy
- (-) Results not readily available in the field

Effectiveness

(-) Scans with 2GHz provide a satisfactory picture of the first 50cm, less suitable for large burrows

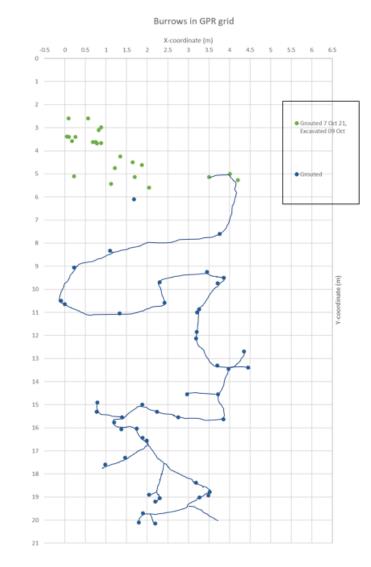
(+) More accurate than inspection with a probe (depth and geometry)

3. Grouting and excavation

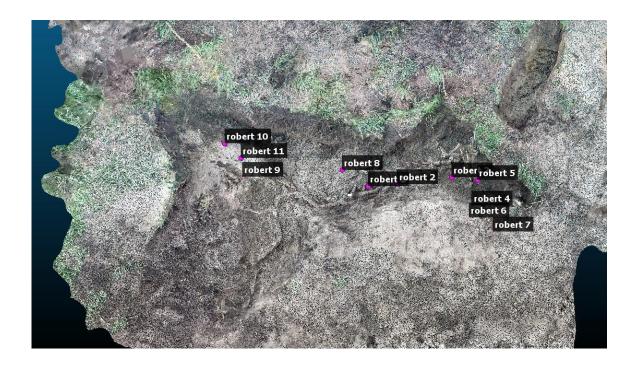
Destructive monitoring technique

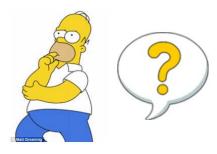
Cluster of mice burrows

European Regional Development Fund



Linear mole system

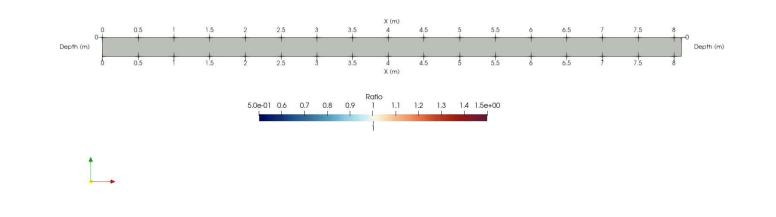

3. Grouting and excavation



European Regional Development Fund

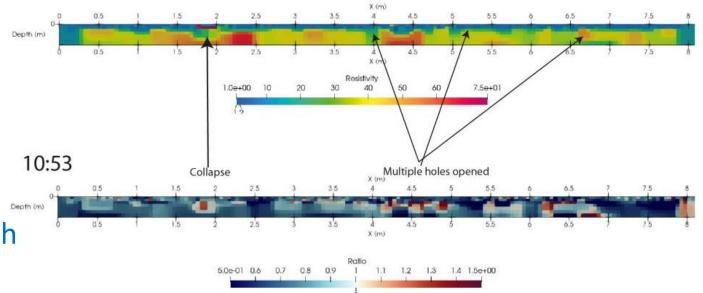
.... Burrows by small rodents seem to go much deeper in the levee than we thought before...

Detection & Monitoring


Q3: Can we monitor what happens to animal burrows when there is overflow?

Electric Resistivity Tomography monitoring

Timeseries of electric resistivity in the subsoil during an overflow test



Electric Resistivity Tomography monitoring

Recorded phenomena

- 1. Cavities being filled with water
- 2. Creation of new cavities (filled with air or water)
- 3. Collapsing of existing cavities
- 4. Cavities staring to connect with each other

Promising results for modelling of internal erosion processes.

This project has received funding from the Interreg 2 Seas programme 2014-2020 co-funded by the European Regional Development Fund under subsidy contract No [2S07-023]

Basis 10:04 Flow of 5.8m3/min

Can we protect a section with burrows with road plates when we expect high water?

Low-cost repair with road plates

Overflow experiment, November 2021

Feasibility

(+) Very easy installation(+) Low-cost(-) Configuration is site-specific

Effectiveness

(+) Solution remained intact after 10hrs & 18min of testing

(+) Similar approaches worked in other LLHPP activities

(0) Sandbags did not play a role

Further testing is needed for benchmarking

Summary

- 1. Topics of interest were defined following a risk-based approach
- 2. Study priorities were set based on knowledge gaps in current practices, but they were conditioned by pragmatic limitations.
- 3. Focus topics: failure modes, detection and monitoring and repairs techniques.
- 4. Serious failures can occur in sections with large burrows (e.g. fox and beaver holes), but also in sections with mole burrows. *Research in progress*
- 5. Detection and monitoring techniques were developed and tested in the living lab, but results are site-specific. Further testing is needed for benchmarking.
- 6. A low-cost repair technique was developed and evaluated.

Proposition 1

Beavers and badgers should be kept away from your levee at all costs

Proposition 2

Burrows of small rodents that penetrate to the sand core are dangerous for your levee

Proposition 3

Clusters of small burrows constitute weak spots on your levee