June 2016

Final thesis

Janse, B.J.

OPERATIONAL APPLICABILITY OF CERAMIC NANO- AND MICROFILTRATION FOR MUNICIPAL WASTEWATER REUSE.

Final Thesis

Operational applicability of ceramic nano- and microfiltration for municipal wastewater reuse.

Janse, B. J.

Graduate student (00049056) Final thesis Water Management Aquatic Eco Technology (AET) Delta Academy

HZ University of Applied Sciences

Graduation period

Study year 2015-2016 Semester 8

Company

Evides Industriewater

Graduate internship location

Marconistraat 39 3029 AG, Rotterdam, the Netherlands

Supervisors

Dr. Ir. J. Racyte Process Engineer, Evides Industriewater

Dr. Ir. H.J. Cappon Researcher Water Technology, HZ University of Applied Sciences

> June, 2016 Version 1.0

Abstract

The Rotterdam Innovative Nutrients, Energy & Water management (RINEW) project aims to realize an innovative and sustainable closed circulation of (waste-)water, nutrients and energy (NEWater) within the Port of Rotterdam, researching alternative wastewater treatment techniques. During experimental research for the RINEW project at the pilot location in Rotterdam, the utilization of tubular ceramic nano- and microfiltration (cNF; cMF) membranes in a municipal wastewater treatment system was analyzed with regard to specific aspects of membrane technology. These specific aspects include the characteristics, applicability and economic feasibility of the membranes.

During membrane characterization analyses, the retention behavior of the cNF membranes was observed to be lower in March 2016 compared to earlier measurements in 2014 and 2015, indicating the occurrence of membrane degradation. Additionally, the average pore size of the cMF membranes was observed to be 0.06 μ m in April 2016, disagreeing with the supplier's given pore size for the membranes of 0.15-0.20 μ m. While operating the filtration system at set fluxes for the cNF and cMF membranes of 30 and 150 $\frac{1}{h*m^2}$, the average duration of a filtration cycle was observed to be 28 and 5 hours, respectively. Per filtration cycle, average volumes of 6.5 and 3.7 m³ feed water and 3.7 and 3.1 m³ of permeate water were processed and produced while utilizing the cNF and cMF membranes, respectively.

Due to the occurrence of membrane fouling, specific cleaning procedures were employed in order to restore the membrane's permeability. The cleaning procedures were observed to consume similar amounts of chemical solutions during the employment of both the cNF and cMF membranes. However, the total chemical consumption was observed to be higher while employing the cMF membranes, due to the higher frequency of required membrane cleaning procedures in comparison with the employment of cNF membranes. The total electrical consumption of the filtration unit while employing either cNF or cMF membranes was estimated at 36300 and 24462 kWh per year, resulting in 32 and 14 kWh/m³ produced permeate product, respectively.

Further analysis on the utilization of cMF membranes should be conducted in order to make a clear comparison with the operational specifications of cNF membranes. The filtration unit should be tested at a recovery rate of 50% while utilizing cMF membranes, potentially increasing the duration of a filtration cycle due to relatively lower membrane fouling rates, thus increasing permeate production rates. Furthermore, chemically enhanced backwashes should be further investigated as a suitable membrane cleaning procedure and compared to other membrane cleaning techniques in order to more effectively restore the initial permeability of the cMF membranes.

Table of contents

1. I	ntroduction	1
1.1	Background	1
1.2	Problem analysis	3
1.3	Problem definition	4
1.4	Research objective	5
2. 1	Theoretical Framework	6
2.1	Membrane filtration	6
2.2	Membrane fouling	12
2.3	Membrane cleaning procedures	13
3. 1	Materials and Methods	14
3.1	Research facility	14
3.2	Experimental setup	14
3.3	Operational specifications	15
3.3	8.1 Wastewater treatment system specifications	15
3.3	<i>B.2 Filtration unit specifications</i>	16
3.4	Operational performance analysis	17
3.5	Experimental data	18
4. F	Results	22
4.1	Membrane characterization	22
4.1	1.1 Experimental conditions	22
4.1		23
4.1	.3 cNF retention behavior and MWCO determination	24
4.2	cMF membrane clean water permeability	26
4.3	Operational filtration cycle analysis	27
4.3	8.1 Energy consumption	27
4.3	8.2 Chemical consumption	27
4.3	3.3 Operational analysis (2016)	28
4.3	8.4 Filtration cycle analyses	29
4.3	8.5 Operational production analyses	30
4.3	8.6 VRO unit	31
5. [Discussion	32
6. (Conclusion	34
6.1	Characterization, comparison of cNF and cMF	34

6.2	2	35	
6.3	6	Economic feasibility	36
7.	Re	commendation	37
Refe	renc	ces	38
Appe	endix	x I – Water composition	40
1.		Water composition parameters	40
2.		Interrelationships of solids in (waste-)water samples	41
Арре	endix	x II – Filtration unit	42
1.		Piping and instrumentation diagram	42
2.		Measurement instruments	44
3.		Filtration unit data summary	45
C	1.	Operational data summary 2016	45
Ł).	Operational data summary 2015	46
Арре	endix	x III – Membrane characterization	47
1.		cMF membrane retention behavior	47
1	1.1	PES 100	47
1	1.2	PES 200	47
1	1.3	Particle counter analysis	48
2.		cNF membrane retention behavior	50
2	2.1	<i>K</i> ₃ <i>PO</i> ₄	50
2	2.2	PEG 400	51
2	2.3	PEG 600	52
2	2.4	PEG 1000	53
Арре	endix	x IV – Operational filtration cycle analysis	54
1.		Chemical analyses	54
2.		Energy consumption	55
3.		Chemical consumption	56
4.		Filtration cycle analysis	57
Арре	endix	x V – Visual observations	59
1.		Membrane degradation	59
2.		Membrane unit	60

List of Figures

Figure	Description
1	The RINEW project; focusing on the development and implementation of wastewater treatment processes and
	water circulation techniques in the Port of Rotterdam (Evides, 2014).
2	Simplified model of the closed water loops that will be tested during the RINEW project.
3	Tubular membrane configuration (Koch, 2013).
4	MWCO values of several specific separating processes (Koch, 2016).
5	Specific membrane filtration technique limitations (Koch, 2016).
6	Membrane fouling, including cake layer formation, pore blocking and adsorption (Howe, 2002).
7	Illustration of the CIP and CEB chemical membrane cleaning procedures.
8	Retention behavior of the cMF membrane regarding particle size during batch test experiments, including a
	logarithmic trend line.
9	Figure 10: Retention behavior of the cNF membrane regarding PEG particles at varied pH conditions during batch test experiments.
10	Retention behavior of the cNF membrane regarding PEG particles at varied pH conditions during batch test
	experiments, including a logarithmic trend line.
11	Retention behavior of the cNF membrane regarding phosphate particles at varied pH conditions during batch
	test experiments.
12	Measured flux and membrane permeability during continuous municipal wastewater filtration procedures from
	the 20 th of April to the 7 th of May 2016 while utilizing cMF membranes.
13	Measured flux and TMP during continuous municipal wastewater filtration procedures from the 28 th of July to
	the 2 nd of May 2015 while utilizing cNF membranes.
14	Measured flux and TMP during continuous municipal wastewater filtration procedures from the 20 th of April to
	the 22th of April 2016 while utilizing cMF membranes.
15	Operational production of the filtration unit per filtration cycle regarding processed feed and produced
	permeate water in between two membrane cleaning procedures during continuous municipal wastewater
	Tiltration procedures from the 29 of January to the 14 of August 2015 while utilizing CNF membranes.
16	Operational production of the filtration unit per filtration cycle regarding processed feed and produced
	permeate water in between two membrane cleaning procedures during continuous municipal wastewater
	filtration procedures from the 20 th of April to the 7 th of May 2016 while utilizing cMF membranes.
17	Operational analysis measurements of the VRO unit the employment of the cMF membranes (2016).
18	The interrelationships of solids found in (waste-)water samples, including analysis procedures (Tchobanoglous,
	1985).
19	Piping and instrumentation diagram (P&ID) of the experimental filtration unit setup.
20	Energy consumption per filtration cycle while utilizing cMF membranes (kWh).
21	Measured flux and TMP during continuous municipal wastewater filtration procedures from the 29 th of January
	to the 14 ⁴⁴ of August 2015 while utilizing cNF membranes.
22	Measured flux and TMP during continuous municipal wastewater filtration procedures from the 20 ¹¹ of April to
	the 7 th of May 2016 while utilizing cMF membranes.
23	Measured flux and membrane permeability during continuous municipal wastewater filtration procedures from
	the 29 of January to the 14° of August 2015 while utilizing cNF membranes.
24	Damaged top and support layers of a cNF membrane utilized in operational municipal wastewater treatment
	procedures (2016).
25	The membrane unit containing the cNF membranes before replacing them with the cMF membranes (2016).
26	The membrane unit containing the new cMF membranes (2016).

List of Tables

Table	Description
1	Operational performance parameters.
2	Operational conditions membrane characterization batch test experiments.
3	Clean water permeability during different stages of the filtration unit analyses.
4	Water composition parameters.
5	Specifications measurement instruments.
6	Summary of the processed operational filtration unit data (2016).
7	Summary of the processed operational filtration unit data (2015).
8	Operational data during the PES 100 retention test (2016).
9	Operational data during the PES 200 retention test (2016).
10	Raw data particle counter analysis (2016).
11	Processed data particle counter analysis (2016).
12	Processed data phosphate retention tests (2014-2016).
13	Processed data PEG 400 retention tests (2014-2015).
14	Processed data PEG 600 retention tests (2014-2016).
15	Processed data PEG 1000 retention test (2016).
16	Nutrient concentrations at specific sample locations during continuous operational procedures (2016).
17	Measured chemical consumption of the CIP procedures during the utilization of the cNF and cMF membranes.

List of Abbreviations

Abbreviation	Definition	Specification
cNF	Ceramic Nanofiltration	Membrane technology
cMF	Ceramic Microfiltration	Membrane technology
vRO	Vertical Reverse Osmosis	Membrane technology
MWCO	Molecular Weight Cut Off	Lowest (90%) retention weight
CIP	Clean-in-Place	Chemical membrane cleaning procedure
PEG	Polyethylene glycol	Synthetic ethylene oxide polymer
PES	Polystyrene	Synthetic aromatic styrene polymer
тмр	Transmembrane Pressure	Membrane pressure gradient
CF	Cross Flow	Feed water flow recirculation
Da	Dalton	Mass unit
H2020	Horizon 2020	Development program
COD	Chemical Oxygen Demand	Measure for oxidizable organic compounds
BOD	Biochemical Oxygen Demand	Required oxygen to stabilize present organic compounds
СР	Concentration Polarization	Concentration overpotential
RINEW	Rotterdam Innovative Nutrients, Energy and Water management	Development program
DAF	Dissolved Air Flotation	Suspended matter removal
P&ID	Piping and Instrumentation Diagram	Technical schematic drawing of a process installation
CWF	Clean Water Flux	Membrane performance test
TSS	Total Suspended Solids	Portion of the TS retained on a filter with a specified pore size, after being dried at a specific temperature (TS – TDS)
TDS	Total Dissolved Solids Electrical Conductivity (EC)	Organic and inorganic colloidal or ionized substances contained in a liquid (TS – TSS)
TS	Total Solids	TSS + TDS
EC	Electrical Conductivity	A substance's ability to conduct an electric current
тос	Total Organic Carbon	Total amount of carbon in an organic compound
SS	Settleable Solids	Suspended solids settling out of a stagnant fluid
Total-N	Total Nitrogen	Sum of NO_3 -N, NO_2 -N, NH_3 -N and organically bonded nitrogen
Total-P	Total Phosphorus	Sum of dissolved (ortho-), inorganic and organically bound phosphates
СЕВ	Chemically Enhanced Backwash	Chemical membrane cleaning procedure
FB	Filter Backwash	Membrane cleaning procedure

1. Introduction

1.1 Background

Evides Waterbedrijf N.V. is a water supply company, supplying safe and clean drinking water to 2.5 million customers and companies in Zeeland, the south-western parts of Zuid-Holland and the area of the Brabantse Wal (Evides, 2016). As a specific branch within the company of Evides Waterbedrijf N.V., Evides Industriewater B.V. specializes in process water production and wastewater treatment for several industrial companies in the Netherlands, Belgium and Germany, including customized water services for companies like Dow Chemical, Exxon and Akzo Nobel (Evides, 2016).

Multiple changing factors, such as climate change, soil pollution and the presence of contaminants, influence the quantity and quality of the water source (Evides, 2016). Because of this, water treatment techniques and distribution methods that are currently being used by Evides Industriewater will require innovation in order to be applicable in the future for water treatment processes. Evides Industriewater started the research project 'H2020' in 2014, specifically looking at the possibilities and challenges in the future regarding water treatment and distribution.

The H2020 project is divided into several coherent research projects (Evides, 2014). One of these projects, named Rotterdam Innovative Nutrients, Energy & Water management (RINEW), aims to realize an innovative and durable closed circulation of (waste-)water, nutrients and energy (NEWater) within the Port of Rotterdam, as shown in figure 1.

Figure 1: The RINEW project; focusing on the development and implementation of wastewater treatment processes and water circulation techniques in the Port of Rotterdam (Evides, 2014).

Within the RINEW project, alternative suitable wastewater treatment techniques are investigated meeting the project's requirements, regarding the reclamation of water, nutrients and energy. During experimental research for the RINEW project at the pilot location in Rotterdam, the utilization of tubular ceramic nano- and microfiltration (cNF; cMF) membranes in a municipal wastewater treatment system is analyzed with regard to specific aspects of membrane technology. These specific aspects include the characteristics, applicability and economic feasibility of the membranes.

In the coming decades the Municipality of Rotterdam will be transforming old harbor areas of the Port of Rotterdam into modern living and working areas (Evides, 2014). Phased redevelopment will take place in the Port of Rotterdam, near Delfshaven, due to the migration of port activities to the western part of the port. During this development, it is possible to implement the recently developed water treatment and circulation techniques in these areas. Centralized and decentralized wastewater treatment solutions both have their own benefits, depending on the location. Knowledge of and experience with the different centralized and decentralized treatment methods offer the possibility to make well informed choices during the development of specific areas, based on the situation. Furthermore, the knowledge and experience gained in the Netherlands can be exported to other countries with water and sanitation issues regarding wastewater treatment processes. The development of suitable alternative forms of wastewater treatment techniques will ultimately improve sustainable and conscious use of chemicals, such as phosphates, and the availability of safe and clean water sources.

The parties primarily involved within the RINEW project are the Municipality of Rotterdam (responsible for the collection of Rotterdam's urban wastewater and the redevelopment of the Port of Rotterdam), Hoogheemraadschap van Delfland (HHD; responsible for the wastewater treatment in the Delfland area), Hoogheemraadschap van Schieland en de Krimpenerwaard (HHSK; responsible for the wastewater treatment in the area of Schieland and the Krimpenerwaard), Waterschap Hollandse Delta (WHD; executor of the wastewater treatment at Dokhaven) and Delft University of Technology in association with the Stichting voor de Technische Wetenschappen (TU Delft, STW; responsible for content related research projects and subsidizing the RINEW project) (Evides, 2014). In 2012 and 2015, partnership agreements were signed by the aforementioned parties and Evides Waterbedrijf N.V., subsequently involving HHSK in 2015.

1.2 Problem analysis

The RINEW project mainly focuses on the municipal wastewater stream (Evides, 2014). The research project aims to investigate alternative wastewater treatment techniques to make it possible to reclaim specific nutrients and biogas from municipal wastewater, while producing demineralized water. Traditional wastewater treatment plants are not designed to reclaim the aforementioned products, while on the other hand the development of alternative wastewater treatment techniques could potentially result in new methods on how specific products from the municipal wastewater can be reclaimed. However, the practical full scale applicability and economic feasibility of alternative wastewater treatment processes still need to be optimized. Experimental research gives essential feedback for potential optimization in order to increase the operational efficiency of the alternative wastewater treatment process.

The aim of the RINEW project is to determine the opportunities for efficient resource reclamation by implementing membrane filtration. Increasing the efficiency of the wastewater treatment technique includes comparing the results of the research conducted on ceramic nanofiltration with those of ceramic microfiltration (cNF and cMF, respectively), while taking into account the applicability and economic feasibility of both wastewater treatment techniques. The use of ceramic material (Al_2O_3) results in a higher chemical, thermal and mechanical stability of the cNF and cMF membranes as opposed to polyamide based membranes. A simplified model of the closed water loops that will be used for the experiments during the RINEW project is shown in figure 2.

Figure 2: Simplified model of the closed water loops that will be tested during the RINEW project, including Dissolved Air Flotation (DAF), Vertical Reverse Osmosis (VRO) and Ultraviolet disinfection (UV).

1.3 Problem definition

Evides Waterbedrijf N.V. has set up the H2020 project in order to determine the applicability and economic feasibility of treating municipal wastewater while reclaiming the resources it contains (Evides, 2016). One of the several coherent research projects within H2020 is the RINEW project, located in the Port of Rotterdam, aiming to realize an innovative and sustainable water recirculation system. The main goal of the RINEW project is to investigate developments in alternative wastewater treatment technology in order to efficiently reclaim cellulose, demineralized water, specific nutrients and energy from municipal wastewater streams.

During the RINEW project, research will be conducted on the applicability and economic feasibility of the cNF and cMF membranes within the RINEW project. This research will include a cost-benefit analysis, membrane characterization tests and the operational specifications regarding permeate production and nutrient/organism recovery.

The results of this research will provide a comparison between the utilization of cNF and cMF membrane filtration techniques as a pretreatment method for the VRO step in the RINEW project's pilot condition municipal wastewater treatment process.

1.4 Research objective

The objective of this research is to compare the operational performance of cNF and cMF membranes with regard to the applicability and economic feasibility of these specific membrane filtration techniques as a pretreatment method for the VRO step in the current process of municipal wastewater treatment at the RINEW project.

Research questions

According to the aforementioned research objective, the following primary research question has been derived.

How do cNF and cMF membrane filtration techniques compare with regard to applicability and economic feasibility as a pretreatment method for the VRO step in the current municipal wastewater treatment process?

With the following secondary research questions.

Characterization, comparison of cNF and cMF

- 1. What are the MWCO values of the cNF and cMF membranes?
- 2. What is the fresh water permeability of the cNF and cMF membranes?

Applicability

- 1. What is the chemical and biological composition of the feed water, cross, permeate and concentrate flows during municipal wastewater treatment at the RINEW project during the cNF and cMF membrane filtration processes?
- 2. What is the average permeate production rate of the municipal wastewater treatment process at the RINEW project while employing the cNF or cMF membranes?
- 3. What is the average run time of the municipal wastewater membrane filtration process cycle at the RINEW project, in between two CIP procedures, while employing the cNF or cMF membranes?

Economic feasibility

- 1. How do cNF and cMF membranes compare with regard to variable and fixed operational costs of the municipal wastewater treatment process?
- 2. What is the potential yearly revenue of the municipal wastewater treatment process, regarding the produced permeate, while employing the cNF or cMF membranes?

2. Theoretical Framework

2.1 Membrane filtration

Selective separation

Membrane processes are based on the principle of dividing the feed flow into two streams, the concentrate stream and the permeate stream (Mulder, 1996). Membrane filtration is used as a wastewater treatment technique by driving the feed flow of the wastewater stream through a thin layer of semi-permeable material, separating specific substances, as shown in figure 3 (Mallevialle et al., 1996). Selective separation of specific substances from liquids or gasses makes it possible to purify, concentrate and fractionate the feed flow. After selective separation, the concentrate flow contains the residue of the filtration process, while the permeate flow contains the filtrate. Both the concentrate and permeate flow will be the product stream of the water treatment process if the goal is to reclaim nutrients, energy and demineralized water from the municipal wastewater stream.

Figure 3: Tubular membrane configuration (Koch, 2013).

The selective separation of membrane filters is based on the permeability or mass transfer coefficient of the membrane (MTC). The MTC correlates to the pressure difference between the feed flow and permeate flow, also known as the trans-membrane pressure (TMP) and specific correction factors for velocity and temperature, which are installation specific. In other words, the performance and efficiency of a specific membrane is determined by its selectivity and flow through the membrane. The logarithmic trend in the retention behavior of the tubular membranes relates to the occurrence of particle retention and elution in a cross flow filtration system, correlating to particle size distribution. Hereby, particles are eluted from the membrane's channels in order of increasing mass.

Molecular weight cut off

Membrane filtration can be used in order to remove specific organic and inorganic material from the feed flow, such as particulates, microorganisms, viruses and chemical compounds (Jacangelo, 1997). The specific atomic mass of the molecular weight cut off (MWCO), measured by the amount of Dalton, is related to the retention behavior of a membrane and determined at a compound retention rate of 90%

Figure 4: MWCO values of several specific separating processes (Koch, 2016).

Reverse osmosis has the lowest MWCO, followed by nanofiltration, ultrafiltration, microfiltration and particle filtration, as described in figure 4. The different types of filtration can be set up in series during the treatment process, using the selective membrane pore size and charge to increase the efficiency at which organic and inorganic compounds are removed or reclaimed from the feed flow during the wastewater treatment (Koch, 2016).

The specific MWCO for each type of membrane filtration makes it possible to precisely determine the characteristics of the permeate product, as is shown in figure 5 (Koch, 2016).

Figure 5: Specific membrane filtration technique limitations (Koch, 2016).

Because of the multidisciplinary character of membrane filtration technology, it is applicable in a wide variety of separation processes (Mulder, 1996). The main advantages of using membrane filtration in separation processes include the possibility for continuous water treatment, upscaling and hybrid processing, making it possible to combine membrane filtration with other separation processes.

Compound retention

Compound retention caused by steric separation is based on steric interactions between uncharged compounds and the membrane's surface. The membrane's performance regarding steric separation processes is defined by the membrane's pore size or MWCO. Steric separation is limited by the permeability of the membrane for a specific compound size, either rejecting or allowing a compound to pass through the pores of the membrane.

The production of the ceramic membranes is physically limited to MF pore size ranges, requiring special coating in order to be able to achieve a lower MWCO than the MWCO values of cMF membranes (Evides, 2016). This special coating is applied to the membrane using TiO₂, giving the membrane surface a specific charge, which is related to the pH of the feed flow (Van Gestel, 2002). Depending on the charge of the membrane's surface layer, electrolytes will either be rejected or attracted, also known as the Gibbs-Donan effect. Electrostatic compound rejection is caused by the repulsion of co-ions, whereby the charge of the specific compound is the same as the charge of the membrane's TiO₂-layer. In contrast, electrostatic compound retention or adsorption of counter-ions occurs due to the difference in the charge of the ions present in the feed flow compared to the membrane's TiO₂- layer in order to maintain electron-neutrality.

The selectivity of a membrane is defined by either the retention (R) or the separation factor (α), relating to the membrane's effectiveness in retaining a specific organic or inorganic compound, calculated by using formula 1 and 2, respectively (Mulder, 1996).

$$R = \left(1 - \frac{c_p}{c_f}\right) * 100 \tag{1}$$

withR=Retention of the membrane(%) c_p =Compound concentration in the permeate flow(mg/l) c_f =Compound concentration in the feed flow(mg/l)

$$\alpha_{A/B} = \frac{(y_A/y_B)}{(x_A/x_B)}$$
(2)

with

(mg/l)
(mg/l)
(mg/l)
(mg/l)

Another essential aspect of a membrane's selectivity is defined by the recovery rate of the filtration process. The concentration of certain compounds in the feed flow differ from the concentrate flow, relating to the recovery (S). The recovery is defined as the fraction of a specific compound which has passed through a membrane, calculated by using formula 3.

$$S = \left(\frac{q_p}{q_f}\right) * 100 \tag{3}$$

with

S	=	Recovery of the membrane filtration process	(%)
q_p	=	Permeate flow rate	(m³/h)
q_f	=	Feed flow rate	(m³/h)

The flow through a membrane is often defined by the flux rate, relating to the permeate flow per hour per square meter of the membrane's surface, calculated by using formula 4 (Mulder, 1996).

$$Flux = \left(\frac{Q_{\nu,p}}{A_m}\right) * 1000 \tag{4}$$

with

Flux	=	Membrane flux rate	$\left(\frac{l}{h}/m^2\right)$
$Q_{v,p}$	=	Permeate flow per hour in cubic meters	(m³/h)
A_m	=	Total membrane surface	(m²)

Calculating a membrane's flux rate makes it possible to calculate the permeability of the membrane during the filtration process by using formula 5, relating to the pressure difference between the feed and permeate flow (TMP) which can be calculated by using formula 6.

$$TMP = \left(\frac{P_f + P_c}{2}\right) - P_p \tag{5}$$

=	Transmembrane Pressure	(bar)
=	Feed flow pressure	(bar)
=	Concentrate flow pressure	(bar)
=	Permeate flow pressure	(bar)
	= = =	 Transmembrane Pressure Feed flow pressure Concentrate flow pressure Permeate flow pressure

$$Permeability = \left(\frac{Flux}{TMP}\right) * C_{T20}$$
(6)

withPermeability =Membrane permeate passage per area per time $\left(\frac{l}{h*m^2*bar}\right)$ Flux =Membrane flux rate $\left(\frac{l}{h}/m^2\right)$ TMP =Transmembrane Pressure(bar) C_{T20} =Correction factor temperature (T = 20°C)(1.02)

2.2 Membrane fouling

Organic and inorganic membrane fouling

The Gibbs-Donan effect also causes charged compounds with a molecular weight lower than the MWCO of the specific membrane to be retained. Due to charged compound retention, membrane fouling of inorganic compounds can occur during the filtration process, also known as concentration polarization (CP) (Moitsheki, 2003). Besides the CP of inorganic compounds, biological fouling can occur on a membrane's surface due to the presence of colloidal biological particles. These membrane fouling phenomena eventually cause the formation of a cake layer on the membrane's surface consisting of specific organic and inorganic compounds, as shown in figure 6, depending on the MWCO value of the membrane (Howe, 2002). Specific wastewater characteristics, regarding organic and inorganic compounds, make it more difficult to concentrate the raw waste water (Heijman, 2014). The presence and load of certain organic and inorganic compounds cause an increased amount of cake layer formation.

Figure 6: Membrane fouling, including cake layer formation, pore blocking and adsorption (Howe, 2002).

Decreased permeate passage

The formation of a cake layer on the membrane's surface, consisting of either organic or inorganic colloidal particles, affects the membrane's performance by lowering the permeability of the membrane, causing decreased levels of permeate passage (Moitsheki, 2003). The permeate passage can be restored by increasing the feed pressure of the filtration process, resulting in a higher TMP value. However, increasing the TMP of a filtration system causes increased membrane fouling rates, ultimately resulting in a continuous rise of the TMP requirement throughout the filtration process. At a certain TMP value a break-even point is reached, where further increasing the value for TMP would result in lower economic feasibility of the installation's operational use.

2.3 Membrane cleaning procedures

In order to remove reversible fouling from the membrane's surface, specific cleaning procedures are employed, as explained below and shown in figure 7.

Clean-in-place

The wastewater filtration process will be interrupted in order to remove the fouling layer from the membrane's surface. The membrane's surface is cleaned by making use of a chemical cleaning protocol named 'clean-in-place' (CIP) (Evides, 2016). The first step of the CIP protocol consists of a caustic cleaning process, employing sodium hypochlorite (NaOCI) and caustic soda (NaOH) solutions. In this process, the alkaline chemical solutions are added to a closed system including the membrane filter for a specific amount of time in order to soak into the fouling layer. The addition of the chemical solution causes the pH in the system to raise to 12, removing reversible biological and organic fouling. Subsequently, in the second step, the system is rinsed from alkaline chemicals by adding tap or demineralized water, consequently lowering the pH in the system to 9. The third step of the CIP protocol consists of a caustic cleaning process, employing a hydrochloric acid (HCI) solution. In this process, the acidic chemical solution is added to a closed system including the membrane filter, lowering the pH in the system to a value lower than 2, for which the protocol is comparable to the alkaline procedure, in order to remove reversible inorganic fouling.

Chemically enhanced backwash

During this membrane cleaning procedure, the filtration process will be interrupted as well in order to remove the fouling layer from the membrane's surface. During the chemically enhanced backwash (CEB) cleaning protocol, chemicals are added to a separate permeate tank filled with either tap or demineralized water, either raising the pH of the mixture to 12 with a caustic soda (NaOH) solution or lowering the pH to 2-4 with a hydrochloric acid (HCl) or citric acid ($C_6H_8O_7$) solution. The permeate flow is then reversed and the liquid from the separate permeate tank will be pumped through the membrane in order to remove either reversible biological and organic, or reversible inorganic fouling, depending on the chemicals that have been used in the cleaning procedure.

Monitoring membrane permeability

The efficiency of the CIP and backwash procedures, regarding the permeability, is monitored by fresh water permeability tests. During a fresh water permeability test, specific measurements will be taken with regard to pressure, flow rate, temperature and pH, while operating the filtration unit with tap or demineralized water and a set value for the flux in the system. Ultimately, the observed measured values in the system will determine the permeability of the membrane.

Figure 7: Illustration of the CIP and CEB chemical membrane cleaning procedures.

3. Materials and Methods

3.1 Research facility

Experiments will be conducted in the RINEW project's research facility provided by Evides Industriewater in Rotterdam (Evides, 2014). The research facility provides the possibility to combine theoretical and practical aspects of multiple research projects by exploring custom wastewater treatment installations.

3.2 Experimental setup

The cNF and cMF membranes are tested at the RINEW research hall in Rotterdam. A tubular module is fitted in the pilot installation, containing 37 membranes with a length of 1200 mm each. The cNF membranes contain 19 channels per membrane, with an internal channel diameter of 3.5 mm. The cMF membranes contain 4 channels per membrane, with an internal channel diameter of 7.8 mm.

The filtration unit is designed to operate in continuous mode. During continuous mode operation, the filtration unit's operational system operates filtration and CIP processes automatically according to set parameters in the operational system's matrix. While the filtration unit is operating in continuous mode, influent filtration experiments are performed automatically.

In order to be able to conduct batch tests regarding membrane characterization and specific operational performance, the initial continuous mode of the pilot installation can be modified to operate in batch mode. Hereby, the filtration system is operated with tap or demineralized water, as opposed to the continuous mode, whereby the DAF unit's effluent is utilized instead. While operating in batch mode it is possible to recirculate the concentrate and permeate flows.

The piping and instrumentation diagram (P&ID) of the experimental setup that will be used during the practical research is given in appendix II 'Filtration unit'. The pilot installation's settings can be modified via its operating system. The pilot installation's operation system is based on the P&ID of the experimental setup and can be subdivided into three specifications; the influent line, filtration line and backwash line.

3.3 Operational specifications

3.3.1 Wastewater treatment system specifications

During the process of purifying municipal wastewater specific types of installations are utilized in order to efficiently treat the influent stream. The specifications of these installations are described below.

Drum sieve

The first step in purifying the municipal wastewater influent entering this closed water loop is filtering the feed flow by using a drum sieve in order to remove particles >250 μ m (Evides, 2016). The drum sieve works with a constant flow of 4 m³/h.

Belt sieve

In the following step, the permeate flow of the drum sieve is directed through the belt sieve, removing particles >120 μ m (Evides, 2016). The belt sieve works with a constant flow of 3 m³/h.

DAF unit

The permeate flow of the belt sieve then enters the Dissolved Air Flotation (DAF) unit (Evides, 2016). The DAF unit is located in between the belt sieve and the cNF and cMF unit in order to reduce the amount of remaining suspended and colloidal particles. By dosing $FeCl_3$ (40%), flocculation occurs with iron. The exact dose will be determined experimentally with the COD and phosphate mass balance. After the formation of flocks, the particles and colloidal organics then float towards the surface by injecting pressurized air into the tank, forming air bubbles.

cNF/cMF

The permeate flow of the DAF unit is then pumped through either the cNF or cMF membranes, depending on the experimental stage of the research project (Evides, 2016).

The cNF membranes have a pore size of 0.9 nm with a MWCO (Molecular Weight Cut Off) of 450 Dalton (Da) (Inopor, 2016). The cNF membranes are used to filter organic and inorganic material from the feed flow, ranging from bacteria and viruses to certain chemical compounds.

According to the manufacturer Philips, the cMF membranes have a pore size ranging from 150 to 200 nm with MWCO values greater than 1.000.000 Da. The cMF membranes are used to filter particles from the feed flow, including sand, silt, clay, algae and specific bacterial species. It is, however, not possible to filtrate viruses from the feed flow by using cMF membranes.

The concentrate flow from the membrane filtration is then recycled to the DAF unit in order to increase the efficiency of the total nutrient reclamation during the treatment process (Evides, 2016).

VRO

The permeate flow of the membrane filtration is then purified by using Vertical Reverse Osmosis (VRO) (Evides, 2016). The pore size of the membrane is 0.1-1.0 nm, making it possible to remove nearly all remaining inorganic compounds. The first results of practical research during the RINEW project have shown a salt retention within the expected range of 10%. The VRO unit effectively removes all organic compounds from the feed flow, including bacteria and viruses.

3.3.2 Filtration unit specifications

The Inopor cNF membrane elements are fitted in the pressure vessel, in which a cross flow velocity of 1.5 to 3.5 m/s is applied. Hereby the cross flow velocity is related to an 80% recovery rate during the filtration process, which is based on 190 and 150 l/h feed and permeate flows, respectively (Evides, 2016). This generates a flux through the membrane, ranging from 15 to 30 $l * h^{-1} * m^{-2}$. According to the manufacturer Philips, the flux capacity of the cMF membranes ranges from 150 to 200 $l * h^{-1} * m^{-2}$. Furthermore, the permeability of the membranes correlates to the pressure at which the filtration process is operating and a specific correction factor for temperature. During experimental batch test procedures, while employing cNF or cMF membranes, the applied pressure in the filtration system amounted to ~1.5 bar, with temperature correction factors ranging from 1.02 to 1.19.

Decreasing the amount of fouling on the membrane's surface is related to lowering the costs for the chemical cleaning process, also known as clean-in-place (CIP). The CIP cleaning protocol uses acidic and alkaline chemicals in order to remove the layer of colloidal particles and precipitate from the membrane's surface. These chemicals include hydrochloric acid (HCl, 10%), citric acid ($C_6H_8O_7$, 50%), sodium hydroxide (NaOH, 32%) and sodium hypochlorite (NaOCl, 15%) solutions. The chemicals NaOCl and NaOH are part of an alkaline cleaning process, which is then followed by an acidic cleaning process including the chemical compound HCl, reducing the amount of organic and inorganic fouling present on the membrane's surface, respectively. Further specifications of the CIP process' procedures will be described in paragraph 2.3, 'Chemical cleaning'.

Initially, the wastewater treatment process installation at the RINEW project's pilot plant also included an additional backwash installation besides the CIP procedure in order to prevent the buildup of fouling on the membrane's surface by reversing the permeate stream (Hoek, 2016). However, experiments conducted during the RINEW project regarding the cNF membrane's permeability have shown no significant improvement in permeate production rate while employing the backwash installation (Santos, 2014). In order to save permeate product and operational time, the backwash process is no longer applied in the municipal wastewater treatment process at the RINEW project's pilot location. However, if a decreased permeability of the cMF membranes is observed while CIPs are employed during membrane cleaning procedures, the use of CEBs should be tested, utilizing the same chemical solutions.

Furthermore, besides a robust ceramic aluminum oxide (Al₂O₃) layer, a coated titanium dioxide (TiO₂) layer is included in the cNF membrane's support structure, resulting in a higher chemical, thermal and mechanical stability of the cNF membranes as opposed to polyamide based membranes (Urbanowska, 2014). The characteristics of these layers increase the cNF membrane's resistance to aggressive chemicals, high temperatures and organic solvents during operational use.

3.4 Operational performance analysis

The research project will focus mainly on the operational performance of the filtration unit during continuous municipal wastewater filtration processes. The operational performance of the filtration unit will be analyzed with regard to the following aspects of the filtration process, summarized in table 1.

Aspect	Specifics	Unit
Filtration cycle	Flux (set value)	$\frac{l}{h*m^2}$
	Recovery (set value)	%
	Permeability/TMP progress over time during filtration process	$\frac{l}{h*m^2*bar}$
	Time in between two CIP procedures	h
	Processed feed	m ³
	Produced permeate	m ³
Operational costs	Electricity	kWh/m ³
	HCI	kg
	NaOH	kg
	NaOCI	kg
Product revenue	Processed feed	m ³
	Produced permeate	m ³

Table 1: Operational performance parameters.

Water composition

Due to stringent 'not-to-exceed' discharge requirements for wastewater treatment installations, substance analyses regarding the water composition are essential to the treatment process of municipal wastewater flows (Tchobanoglous et al., 2003). The parameters that have been measured during the continuous municipal wastewater filtration processes, as listed in appendix I 'Water composition', are indicators of organic and inorganic substances present in the water and can be used to determine the substance removal rate of the filtration unit. Appendix I "interrelationships of solids in (waste-)water samples" shows a more detailed description of solid compounds in wastewater.

Membrane performance

The performance of a specific membrane, regarding compound retention, is based on steric and electrostatic separation processes (Klemm, 2015). Due to the presence of both charged and uncharged compounds in the filtration unit's feed flow, a combination of these interactions influences the performance of the membrane. Compound retention caused by steric and electrostatic interactions depends on the concentration of both charged and uncharged compounds in the liquid, the temperature and electrical potential of the feed flow and the applied pressure in the filtration unit (Mulder, 1996).

During practical research, data is gathered by analyzing specific parameters, which are indicated by the corresponding measurement instruments that have been installed in the pilot installation, as listed in appendix II 'Filtration unit'. The values for each of these parameters will be processed in Excel.

3.5 Experimental data

In order to answer the research questions of this project, practical research will be conducted by utilizing the experimental setup of the pilot installation. During this practical research, the main focus of experimental activities lies on the subjects of characterization, applicability and economic feasibility of the cNF and cMF membrane filtration processes.

Characterization, comparison of cNF and cMF

Characterization tests will be carried out to determine the MCWO of the cNF and cMF membranes. During the characterization tests specific organic and inorganic compounds are added to the filtration system in order to determine the MWCO of the membranes by measuring the rejection behavior of the membranes for these specific compounds.

1. What are the MWCO values of the cNF and cMF membranes?

Characterization tests for the cNF membranes include the chemical compounds potassium phosphate (K₃PO₄), polyethylene glycol 400, 600 and 1000 (PEG 400, PEG 600 and PEG 1000, respectively), with molecular weights ranging from 400 to 1000 Da. These chemical compounds will be added and recirculated in the filtration unit in separate experiments. During each experiment, samples will be taken from the feed, permeate, cross and concentrate flows at 0, 15, 30 and 45 minutes during the first measurement and at 0 and 30 minutes during the second, third and fourth measurements. After the first measurement, the pH level in the system will be lowered stepwise from 7-8 to 2.5-3 by dosing HCl solution to tank (T-01), influencing the amount of electrostatic particle interactions. Due to the organic nature of PEG compounds, measuring the COD of a sample indicates the change in the PEG concentration at a specific sampling point during the experiments. The PEG concentrations are therefore related to the COD content, which will be measured by utilizing spectrophotometry (DR-2800), in combination with specific testing kits (HACH LANGE). By making use of a calibration curve, it is possible to calculate the actual PEG concentration in the samples, ultimately resulting in the rejection behavior of the cNF membranes for these specific compounds.

Characterization tests for the cMF membranes include polystyrene particle solutions, with specific molecule sizes of 100 and 200 nm (PES 100; PES 200). These inorganic chemical compounds will be added and recirculated in the filtration unit in separate experiments. During each experiment, duplo samples will be taken from the feed, permeate, cross and concentrate flows at 0 and 60 minutes during the first measurement and at 0, 60, 90 and 120 minutes during the second measurement after adding one of the specific PES compounds. The first measurement in each experiment will be a blanco measurement, indicating the amount of particles present in the system before the addition of the specific PES solution. The pH level of the system will not be altered, due to the absence of a coating layer, limiting the cMF membrane to steric particle interactions. The concentration of the particles in each specific sample will be determined by a particle counter analysis (NanoCount 50+, Lighthouse Worldwide Solutions).

2. What is the fresh water permeability of the cNF and cMF membranes?

During different stages of the experiment, the clean water permeability of the cMF membranes will be tested. The results of the clean water flux permeability tests indicate the effect of specific actions that have been taken on the permeability of the membranes and the potential need for adjustments during experimental procedures. After the system has been chemically cleaned by the CIP process, a clean water flux test (CWF) will be carried out by using tap or demineralized water to check reversibility. Hereby the system is operated in batch mode for half an hour, while the permeate recovery is measured over time in order to determine the reference state of the membrane regarding its permeability, before starting the next filtration cycle.

Applicability

1. What is the chemical and biological composition of the feed water, cross, permeate and concentrate flows during municipal wastewater treatment at the RINEW project during the cNF and cMF membrane filtration processes?

Determining the chemical and biological composition of the feed, cross, permeate and concentrate flows includes taking samples of these streams and analyzing the samples by utilizing specific testing kits (HACH&LANGE) in combination with spectrophotometry (DR-2800).

2. What is the average permeate production rate of the municipal wastewater treatment process at the RINEW project while employing the cNF or cMF membranes?

The average permeate production rate of the municipal wastewater filtration process can be determined by measuring the produced permeate stream over a specific amount of time.

3. What is the average run time of the municipal wastewater membrane filtration process cycle at the RINEW project, in between two CIP procedures, while employing the cNF or cMF membranes?

The average run time of the filtration process cycle, in between two CIP procedures, will also be measured. The average run time of the filtration process cycle depends on the time it takes until chemical cleaning processes are required in order to continue efficient operation of the filtration process. This ultimately depends on the membrane fouling rate of the cNF and cMF membranes, which is related to the chemical and biological composition of the influent. In addition to that, the chemical cleaning processes of the cNF and cMF membranes may differ from each other with regard to the required procedures, potentially causing a difference in the duration or frequency of the chemical cleaning procedures. The permeability, or TMP, will be measured over time during multiple filtration cycles. During the filtration process, the flux and recovery of the filtration unit will be set to specific values, while the duration of the filtration cycles in between two CIP procedures will be monitored. Furthermore, the duration and number of CIP procedures will be analyzed as well.

Economic feasibility

1. How do cNF and cMF membranes compare with regard to variable and fixed operational costs of the municipal wastewater treatment process?

The total consumption of energy and chemicals during the continuous municipal wastewater filtration processes will be monitored and converted to the total operational costs of the filtration unit and the total costs per cubic meter produced permeate product.

2. What is the potential yearly revenue of the municipal wastewater treatment process, regarding the produced permeate, while employing the cNF or cMF membranes?

Experimental data regarding the amount of processed influent water and produced permeate water will determine the potential revenue of the municipal wastewater treatment process. The processed feed and produced permeate flows during the filtration cycles will be quantified and formalized as the specific revenue of these production values per year.

4. Results

4.1 Membrane characterization

4.1.1 Experimental conditions

During the characterization of the membranes, operational conditions of the filtration unit, including the recovery, feed pressure, flux, TMP, permeability and temperature, have been kept as constant as possible in order to accurately determine the MWCO of the specific membrane. In order to do so, the pump capacity of the pumps (P-02/07) and the manual permeate valve were adjusted accordingly. The operational conditions of the filtration unit during the conducted batch test experiments are included in appendix III 'Membrane characterization' and listed in table 2.

		cMF		cNF			
Parameter	Unit	PES 100	PES 200	PEG 400	PEG 600	PEG 1000	PO ₄ -P
Bacayany	[%]	50.0	50.0	45.5	53.4	52.5	53.3
Recovery	± St. Dev.	± 0.0	± 0.0	± 2.0	± 2.5	± 2.2	± 2.3
Food processo	[bar]	1.47	1.47	1.11	1.55	1.57	2.02
Feed pressure	± St. Dev.	± 0.0	± 0.01	± 0.08	± 0.01	± 0.01	± 0.01
F huu	$\left[\frac{l}{h}/m^2\right]$	114.80	114.37	26.94	18.10	19.40	30.76
Flux	± St. Dev.	± 0.0	± 0.99	± 0.88	± 0.99	± 1.24	± 0.88
TNAD	[bar]	0.92	0.90	1.01	0.93	0.99	1.54
TIVIP	± St. Dev.	± 0.01	± 0.03	± 0.11	± 0.06	± 0.06	± 0.07
Dennesekiliter	$\left[\frac{l}{h*m^2*bar}\right]$	149.89	152.01	32.20	23.3	23.40	23.83
Permeability	± St. Dev.	± 2.02	± 6.54	± 4.31	± 2.48	± 2.81	± 1.53
Temperatura	[°C]	20.5	20.7	19.1	15.7	18.1	18.0
Temperature	± St. Dev.	± 1.0	± 2.3	± 2.6	± 2.5	± 1.8	± 1.5

Table 2: Operational conditions membrane characterization batch test experiments.

4.1.2 cMF retention behavior and MWCO determination

The retention behavior of the cMF membranes has been analyzed by utilizing a Nanocount 50+ liquid particle counter. Hereby, the cumulative amount of particles present in the batch test samples (n = 8) was measured continuously over a period of 10 minutes up to 0.05, 0.10, 0.15 and 0.20 μ m. This analysis resulted in a logarithmic retention curve for the cMF membrane, as shown in figure 8.

The average retention behavior of the cMF membrane regarding the PES 100 and PES 200 particles amounts to 94.02 \pm 3.55% and 99.25 \pm 0.58%, respectively. According to the literature research, the pore size of the membrane is determined at a specific compound retention rate of 90%, resulting from the following logarithmic trend line equation relating to the experimental data, as shown in figure 9. Hereby, the average pore size of the cMF membrane unit amounts to 0.06 μ m.

Pore size = $e^{\left(\frac{90-111.4}{7.5464}\right)} = 0.06 \,\mu\text{m}$

cMF retention behavior

Figure 8: Retention behavior of the cMF membrane regarding particle size during batch test experiments, including a logarithmic trend line.

4.1.3 cNF retention behavior and MWCO determination

The retention behavior of the cNF membranes has been analyzed during the specific retention batch test experiments by measuring the COD concentration in the batch test samples and converting the specific values to the PEG concentration by making use of a calibration curve. This resulted in a retention curve for the cNF membrane, as shown in figure 9. Additionally, the membrane characterization results from previously conducted batch test experiments are included as well in order to indicate the occurrence of membrane degradation.

cNF membrane retention behavior

Figure 9: Retention behavior of the cNF membrane regarding PEG particles at varied pH conditions during batch test experiments.

The combined average retention behavior of the cNF membrane unit at different pH levels in March 2016, regarding the PEG 600 and PEG 1000 particles, amounts to $20.01 \pm 6.44\%$ and $32.13 \pm 6.15\%$, respectively. According to the literature research, paragraph 2.1 'Membrane filtration', the MWCO of the membrane is determined at a specific compound retention rate of 90%, resulting from the following logarithmic trend line equation relating to the experimental data, as shown in figure 10. Hereby, the average MWCO of the cNF membrane unit was roughly estimated to be 1×10^4 g/mol.

MWCO =
$$e^{\left(\frac{90+131.77}{23.726}\right)} = 1 \times 10^4 \text{ g/mol}$$

cNF retention behavior

Figure 10: Retention behavior of the cNF membrane regarding PEG particles at varied pH conditions during batch test experiments, including a logarithmic trend line.

The retention behavior of the cNF membranes regarding phosphate ($PO_4^{3^2}$ -P) has been analyzed during specific batch test experiments as well. Hereby, the retention of phosphates is observed to proportionally decrease depending on the acidity of the feed flow, ranging from 13.81 ± 9.91% at a pH of 6.7 to 1.04 ± 0.43% at a pH of 2.9, as shown in figure 11. Additionally, the results from previously conducted phosphate retention tests are included as well in order to further analyze the occurrence of membrane degradation. These results, however, do not include error margins due to the lack of duplicate experiments.

Figure 11: Retention behavior of the cNF membrane regarding phosphate particles at varied pH conditions during batch test experiments.

4.2 cMF membrane clean water permeability

During different stages of the experiment, the clean water permeability of the cMF membranes was tested with tap (TW) and demineralized water (DW) while operating the filtration system at low feed pressure conditions of ~1.5 bar with recovery rates of ~50 or ~80% . The results of the clean water permeability tests indicate the effect of specific actions that have been taken on the permeability of the cMF membranes and the potential need for adjustments during experimental procedures, as shown in table 3.

			cMF	
Date (2016)	Liquid (TW/DW)	Recovery [%] ± St. Dev.	Permeability $\left[rac{l}{h*m^2*bar} ight]$ ± St. Dev.	Notes
31-03	TW	85.99 ± 4.97 50.90	1302.27 ± 35.19 1304.65	
07.04	DW	80.00 ± 1.66 52.64 ± 7.57	1120.61 ± 151.23 1310.74 ± 72.28	Broken membrane
07-04	TW	78.68	1155.20 1295.22	
19-04	DW	83.19 ± 2.42 50.00	124.29 ± 2.61 127.33	Before PES 200 retention test
19-04	DW	82.28 ± 1.88 52.13	127.50 ± 0.65 123.44	After PES 200 retention test
02-05	TW	55.48	31.80	Permeability not recovered after multiple CIP cycles
04-05	TW	77.68 ± 7.32 46.88	56.91 ± 1.45 58.14	After filtrate backwash (FB) (demineralized water)
04-05	DW	83.16	88.56	After acidic CEB
	TW	78.35 ± 2.25 48.42 ± 1.54	68.12 ± 10.51 70.56 ± 10.30	(citric acid)
04-05	тw	52.17	108.01	After basic CEB (sodium hydroxide)

Table 3: Clean water permeability during different stages of the filtration unit analyses.

4.3 Operational filtration cycle analysis

The period of operational filtration analyses ranged from the 29th of January until the 14th of August 2015 for the cNF membranes and from the 20th of April until the 7th of May 2016 for the cMF membranes.

cNF

During the employment of the cNF membranes, the filtration system was analyzed for a period 197 days 5 hours and 31 minutes, while the total filtration time amounted to 83 days 8 hours and 49 minutes. The average run time of a filtration cycle in between two cleaning procedures was observed to be 27 hours and 56 minutes. The initial permeability of the cNF membranes could be restored by the CIP procedures, as is shown in appendix IV 'Operational filtration cycle analysis', by utilizing NaOH, HCl and NaOCl solutions.

сMF

During the employment of the cMF membranes, the filtration system was analyzed for a period of 16 days 11 hours and 21 minutes, while the total filtration time amounted to 5 days 9 hours and 38 minutes. The average run time of a filtration cycle in between two cleaning procedures was observed to be 5 hours and 11 minutes. The initial permeability of the cMF membranes could not be fully restored by employing standard protocol CIP procedures. Additionally, to little or no avail, alternative CIP procedures have been tested, including the utilization of a citric acid ($C_6H_8O_7$) solution instead of a hydrochloric acid (HCl) solution. The employment of CEB procedures in order to restore the cMF membrane's initial permeability showed promising results.

4.3.1 Energy consumption

While utilizing the cNF and cMF membranes, the average energy consumption per filtration cycle amounted to 14 and 9 kWh, respectively, while the total energy consumption of the filtration unit, including membrane cleaning procedures, was estimated at 36300 and 24462 kWh per year, respectively. The energy consumption during filtration cycles was observed to progress linearly, as described in appendix IV 'Operational filtration cycle analysis'.

4.3.2 Chemical consumption

The measured chemical consumption of specific compound solutions during the automatically conducted CIP procedures, while employing the cNF and cMF membranes for municipal wastewater filtration procedures, is listed in appendix IV 'Operational filtration cycle analysis'.

It was observed that the amount of chemicals used per CIP procedure is not specifically related to the type of membrane which is being employed in the filtration unit. This is due to the fact that the amount of chemicals required to alter the pH in the filtration system remains equal while employing either type of membrane. The total amount of chemicals used over time during the operational analyses was, however, related to the frequency of membrane cleaning procedures, which was higher during the utilization of cMF membranes.

4.3.3 Operational analysis (2016)

An increased drop in the permeability of the cMF membranes was observed during the operational analysis, as is shown in figure 12, even though CIP procedures with NaOH, HCl and NaOCl solutions were conducted after completed filtration cycles. The run time of a filtration cycle was not specifically related to the permeability of the membrane, but rather mainly to the composition of the influent, as described in appendix IV "Chemical analysis". In order to restore the permeability of the cMF membranes, CEB's have been used as a membrane cleaning procedure. During consecutive CEB procedures, chemical compound solutions containing NaOH, HCl and C₆H₈O₇ have been utilized in order to remove reversible membrane fouling. The permeability was measured by clean water flux tests after each CEB, showing an increase in membrane permeability after each CEB procedure. As shown in figure 12, the permeability was restored after the CEB's, however decreasing rapidly during the first filtration cycle. The standard protocol CIP procedures that followed were not able to fully restore the membrane's initial permeability.

Figure 12: Measured flux and membrane permeability during continuous municipal wastewater filtration procedures from the 20th of April to the 7th of May 2016 while utilizing cMF membranes.

4.3.4 Filtration cycle analyses

Further analysis regarding the filtration cycles during municipal wastewater filtration procedures while utilizing the cNF and cMF membranes shows a different TMP progression trend over time for both membranes, as illustrated in figure 13 and 14. However, this trend could only be observed when the permeability of the membranes was restored, as is shown in appendix IV 'Operational filtration cycle analysis'. The membrane fouling rate of the cMF membranes showed an increase throughout the operational analysis whenever the TMP reached a certain value, ranging from 3-5 bar, as opposed to the more linear TMP progression of the cNF membranes, as is shown in appendix IV 'Operational filtration cycle analysis'.

Figure 13: Measured flux and TMP during continuous municipal wastewater filtration procedures from the 28th of July to the 2nd of May 2015 while utilizing cNF membranes.

Flux-TMP (20 - 22 apr 2016)

Figure 14: Measured flux and TMP during continuous municipal wastewater filtration procedures from the 20th of April to the 22th of April 2016 while utilizing cMF membranes.

4.3.5 Operational production analyses

While utilizing cNF membranes in wastewater filtration procedures with a set flux of $30 \frac{1}{h*m^2}$, the values for processed feed water and the produced permeate water amounted to 6.5 and 3.7 m³ per filtration cycle in between two chemical cleaning procedures, respectively, as is shown in figure 15.

Figure 15: Operational production of the filtration unit per filtration cycle regarding processed feed and produced permeate water in between two membrane cleaning procedures during continuous municipal wastewater filtration procedures from the 29th of January to the 14th of August 2015 while utilizing cNF membranes.

While utilizing cMF membranes in wastewater filtration procedures with a set flux of $150 \frac{1}{h*m^2}$, the values for processed feed water and the produced permeate water amounted to 3.7 and 3.1 m³ per filtration cycle in between two chemical cleaning procedures, respectively, as is shown in figure 16. Operational production filtration unit (20 apr - 7 may 2016)

Figure 16: Operational production of the filtration unit per filtration cycle regarding processed feed and produced permeate water in between two membrane cleaning procedures during continuous municipal wastewater filtration procedures from the 20th of April to the 7th of May 2016 while utilizing cMF membranes.

4.3.6 VRO unit

During the employment of the cMF membranes an increased drop was observed in the diffusive mass transfer coefficient (MTC) of the VRO unit's membranes, as shown in figure 17.

Figure 17: Operational analysis measurements of the VRO unit the employment of the cMF membranes (2016).

5. Discussion

Membrane characterization

The retention behavior of the cNF membranes in March 2016 decreased in comparison with earlier membrane characterization tests in 2014 and 2015, indicating the occurrence of membrane degradation. Further analysis during visual inspection of the cNF membranes while replacing them with the cMF membranes in March 2016 indicated damage to the top and support layers, as shown in appendix V 'Visual observations'.

Literature research suggested that in order to characterize the cMF membranes with regard to retention behavior and subsequently determining the average pore size, a particle counter analysis would be a suitable method compared to alternative membrane characterization techniques. The first batch tests experiments, however, showed unanticipated results. During the particle counter analysis, nearly equal values for the concentrations of particles ranging from 0.05 to 0.20 μ m were observed in concentrate and permeate samples. After further investigation, the results of clean water permeability tests regarding the membrane's permeability indicated damage to the cMF membrane. By opening the membrane unit and reversing the permeate flow, it was possible to determine which specific membrane was broken. The batch test experiment was repeated after the broken membrane was replaced, subsequently showing results in the expected range. The cMF membrane characterization test results indicated an average membrane pore size of 0.06 μ m, disagreeing with the supplier's given pore size of 0.15-0.20 μ m. However, the results of the cMF membrane characterization tests have also shown that these type of retention tests suffice and should be utilized in consecutive batch test experiments regarding the cMF membrane retention behavior.

Operational analyses

Analyses of continuous operational wastewater filtration, while employing the cNF and cMF membranes, showed meaningful results regarding the performance of the membranes and what type of adjustments should be made in order to improve the permeate production rate of the membranes.

The most notable observation during the employment of the cNF and cMF membranes is the average run time of a filtration cycle and the amount of wastewater being processed during these filtration cycles. While operating the filtration system during the cNF and cMF membrane analyses, set fluxes of 30 and $150 \frac{l}{h*m^2}$ have been applied, respectively. The difference in set flux values was mainly caused by the difference in total membrane surface area, amounting to 9.28 m² and 3.92 m² for the cNF and cMF membranes, respectively. Even though the average permeability of the cNF membranes was lower than that of the cMF membranes at the start of the filtration cycles during the operational analyses, amounting to ~20 and ~125 $\frac{l}{h*m^2*bar}$, respectively, at a recovery rate of ~80%, the average duration of the filtration cycles while employing cMF membranes was observed to be shorter at higher flux rates compared to the cNF membrane analysis. The average duration of a filtration cycle while employing cNF and cMF membranes amounted to ~28 and ~5 hours, with almost equal permeate production rates of 3.7 and 3.1 m³ per filtration cycle, respectively. Furthermore, increased membrane fouling rates were observed whenever the TMP reached a certain value. This observation could potentially confirm the findings of the membrane characterization tests regarding the actual pore size of the cMF membranes and suggests that the cMF membranes should be operated at a lower, more suitable flux rate.

Retention behavior

Even though the production rate per filtration cycle of the cNF and cMF membrane units is comparable with regard to volume, the quality of the produced permeate water differentiates. The decreased quality of the permeate water ultimately caused the TMP in the VRO unit to increase more rapidly due to increased membrane fouling rates while utilizing the cMF membranes as opposed to the cNF membranes. The root cause for this increased membrane fouling rate could be the increased presence of Fe²⁺ ions in the feed flow of the filtration unit due to inconsistencies in operating the DAF unit. Higher retention rates of the cNF membrane for Fe²⁺ ions compared to cMF membranes could explain the increase in membrane fouling rates for the VRO unit. However, the amount of solids present in the filtration unit's wastewater samples was not measured and has been excluded from this specific research due to inaccurate working methods, leading to inconsistent results.

Membrane performance

Improving the efficiency of all corresponding procedures, while utilizing the cMF membranes for municipal wastewater filtration procedures will improve permeate production rates of the filtration system. The shorter average duration of filtration cycles while employing cMF membranes causes the amount of feed and permeate water being processed and produced per day to be lower compared to when cNF membranes are employed, caused by the increased frequency of membrane cleaning procedures during the employment of cMF membranes. Furthermore, these membrane cleaning procedures use almost equal amounts of chemicals, subsequently increasing the total chemical consumption over time while utilizing cMF membranes for municipal wastewater filtration procedures.

Alternative membrane cleaning procedures

Thus far, alternative membrane cleaning procedures in the form of CEBs showed more promising results regarding the restoration of the cMF membrane's initial permeability than the conducted CIP procedures and should be further investigated. The difference in efficiency of these membrane cleaning procedures with regard to restoring the initial permeability of the membranes could be explained due to the fact that particles which have been absorbed in the membrane are not released during CIP membrane cleaning procedures, instead solely removing the constructed layer of contaminants on the membrane's surface. By utilizing CEBs as a membrane cleaning procedure it is, however, possible to remove these type of particles as opposed to CIPs.

However, further analysis of the operational performance of the cMF membranes should be conducted in order to confirm the aforementioned arguments based on a sufficient amount of data. As of yet, it is not possible to make a clear comparison between the cNF and cMF membranes regarding their performance in the operational procedures of municipal wastewater filtration.

6. Conclusion

Based on the conducted research it can be concluded that:

6.1 Characterization, comparison of cNF and cMF

1. What are the MWCO values of the cNF and cMF membranes?

The MWCO of the cNF membranes was observed to be 1×10^4 g/mol in March 2016, indicating the occurrence of membrane degradation since previously conducted membrane characterization tests in 2014 and 2015. The occurrence of membrane degradation was later confirmed by visual inspection of the cNF membranes.

The average pore size of the cMF membranes was observed to be 0.06 μ m in April 2016, disagreeing with the supplier's given pore size for the membranes of 0.15-0.20 μ m.

2. What is the fresh water permeability of the cNF and cMF membranes?

The fresh water permeability of the cNF membranes in March 2016 was determined to be 19.67 ± $0.51 \frac{l}{h_{s}m^{2}shar}$ at a recovery of 80.59 ± 0.54% regarding demineralized water.

The fresh water permeability of the unemployed cMF membranes in April 2016 was determined to be 124.29 \pm 2.61 $\frac{l}{h*m^2*bar}$ at a recovery of 83.19 \pm 2.42% regarding demineralized water.

6.2 Applicability

1. What is the chemical and biological composition of the feed water, cross, permeate and concentrate flows during municipal wastewater treatment at the RINEW project during the cNF and cMF membrane filtration processes?

During specific batch test experiments in March 2016, the phosphate retention behavior of the cNF membranes was observed to proportionally decrease depending on the acidity of the feed flow, ranging from $13.81 \pm 9.91\%$ at a pH of 6.7 to $1.04 \pm 0.43\%$ at a pH of 2.9.

The chemical composition of the feed, permeate, cross and concentrate flows regarding the concentration of specific nutrients in the filtration system during the employment of the cMF membranes can be found in appendix IV "Chemical analysis data".

2. What is the average permeate production rate of the municipal wastewater treatment process at the RINEW project while employing the cNF or cMF membranes?

While utilizing cNF membranes in wastewater filtration procedures with a set flux of $30 \frac{l}{h*m^2}$, the values for processed feed water and the produced permeate water amounted to 6.5 and 3.7 m³ per filtration cycle in between two chemical cleaning procedures, respectively.

With cMF membranes with a set flux of $150 \frac{l}{h*m^2}$, the values for processed feed water and the produced permeate water amounted to 3.7 and 3.1 m³ per filtration cycle in between two chemical cleaning procedures, respectively.

3. What is the average run time of the municipal wastewater membrane filtration process cycle at the RINEW project, in between two CIP procedures, while employing the cNF or cMF membranes?

The average run time of a filtration cycle during operational wastewater filtration procedures with the cNF membranes amounted to 27 hours and 56 minutes.

With the cMF membranes this amounted to 5 hours and 11 minutes.

6.3 Economic feasibility

1. How do cNF and cMF membranes compare with regard to variable and fixed operational costs of the municipal wastewater treatment process?

The operational costs of the filtration system while utilizing cNF and cMF membranes for municipal wastewater treatment mainly differ with regard to chemical use. The chemical cleaning procedures were observed to use similar amounts of chemicals during employment of cNF and cMF membranes. However, while utilizing the cMF membranes for municipal wastewater treatment, shorter filtration cycles were observed in comparison with the cNF membranes, ultimately resulting in an increase of chemical cleaning procedures.

The total energy consumption of the cNF filtration unit, including membrane cleaning procedures, was estimated at 36300 kWh per year, resulting in 32 kWh/m³ produced permeate product.

The total energy consumption of the cMF filtration unit, including membrane cleaning procedures, was estimated at 24462 kWh per year, resulting in 14 kWh/ m^3 produced permeate product.

2. What is the potential yearly revenue of the municipal wastewater treatment process, regarding the produced permeate, while employing the cNF or cMF membranes?

While utilizing cNF membranes in wastewater filtration procedures with a set flux of $30 \frac{l}{h*m^2}$, the yearly revenue of the produced permeate water ranged from 1040 to 1150 m³, depending on recovery rates ranging from ~80 to ~50%, respectively (Hoek, 2016).

While utilizing cMF membranes in wastewater filtration procedures with a set flux of $150 \frac{l}{h*m^2}$, the yearly revenue of the produced permeate water was estimated at 1716 m³ at a recovery rate of ~80%.

7. Recommendation

The findings in the conducted research recommend that:

- The filtration system should be tested at a recovery rate of 50% while utilizing cMF for municipal wastewater filtration procedures. Lowering the recovery rate could potentially lower the membrane fouling rate and increase the average run time of the filtration cycles in between two chemical cleaning procedures. This could ultimately result in a higher average permeate production rate of the cMF membranes due to a relatively higher total uptime of the filtration system compared to operating the system at a higher recovery rate.
- Further research should be conducted on the use of CEB's as a membrane cleaning procedures during employment of cMF membranes for municipal wastewater treatment. The use of CEB's as a membrane cleaning procedure should be analyzed with regard to their ability to restore membrane permeability. The results of this practical analysis should be compared to other membrane cleaning procedures in order to determine a suitable membrane cleaning procedure for the cMF membranes.

References

Cho, R. (2013). 'Phosphorus: Essential to Life – Are We Running Out?'. State of the Planet. http://blogs.ei.columbia.edu/2013/04/01/phosphorus-essential-to-life-are-we-running-out/

Evides (2014). 'Projectplan RINEW'. Evides Waterbedrijf.

Evides (2016). 'Onderzoeksprogramma rond zuiveringstechnologie en distributie'. Evides Waterbedrijf.

https://www.evides.nl/over-evides/paginas/onderzoek-en-innovatie-.aspx

Evides (2016). 'Over Evides Waterbedrijf'. Evides Waterbedrijf. https://www.evides.nl/over-evides/Paginas/default.aspx

Evides (2016). 'Research committee RINEW – UJES Meeting'. Evides Waterbedrijf.

FAO (2016). 'How to Feed the World in 2050'. Food and Agriculture Organization of the United Nations.

http://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_ 2050.pdf

Heijman, B. (2014). 'Ceramic nanofiltration as the key step for sustainable wastewater treatment with reuse of water, energy and nutrients. Delft University of Technology. <u>http://www.citg.tudelft.nl/nl/over-faculteit/afdelingen/watermanagement/secties/sanitary-engineering/research/new-projectsgrants/ceramic-nanofiltration-as-the-key-step-for-sustainable-wastewater-treatment-with-reuse-of-water-energy-and-nutrients/</u>

Hoek, T. (2016). 'Upscaling cNF – Research report'. Evides Industriewater, Den Hoorn, the Netherlands.

Howe, K., Clark, M. (2002). 'Fouling of Microfiltration and Ultrafiltration Membranes by Natural Waters'. Environmental Science Technology, vol. 36, pp. 3571 – 3576.

Jacangelo, J.G., et al. (1997). 'Membrane Filtration for Microbial Removal'. American Water Works Association Research Foundation and American Water Works Association, Denver.

Klemm, B. (2015). 'Ceramic nanofiltration for municipal wastewater reuse'. Evides Industriewater, Den Hoorn, the Netherlands.

Koch (2013). 'Membrane Filtration Technology: Meeting Today's Water Treatment Challenges'. Koch Membrane Systems, Massachusetts, United States of America. <u>http://www.kochmembrane.com/PDFs/Other-Documents/Membrane-Filtration-Technology---</u> <u>Koch-Membrane-Sys.aspx</u>

Koch (2016). 'Membrane Technologies'. Koch Membrane Systems, Massachusetts, United States of America.

http://www.kochmembrane.com/Learning-Center/Technologies.aspx

Mallevialle, J., et al. (1996). 'Water Treatment Membrane Processes'. McGraw-Hill Companies, New York, United States of America.

Moitsheki (2003). 'Nanofiltration: Fouling and chemical cleaning'. University for Christian Higher Education.

Mulder, M. (1996). 'Basic Principles of Membrane Technology'. Center for Membrane Science and Technology, University of Twente, Enschede, the Netherlands.

Santos, H. (2014). 'Afvalwaterzuivering met directe keramische nanofiltratie'. Evides Industriewater, Den Hoorn, the Netherlands.

Schindler, D., Schindler, V., John, R. (2004). 'Over fertilization of the World's Freshwaters and Estuaries'. University of Alberta Press, p. 1.

Swaminathan, M., et al. (2013). 'Advanced Oxidation Processes for Wastewater Treatment'. Department of Chemistry, Annamalai University, India.

Tchobanoglous, G., et al. (1985). 'Water quality: characteristics, modeling, modification'. Pearson Education, United States.

Tchobanoglous, G., et al. (2003). 'Wastewater Engineering, Treatment and Reuse'. McGraw-Hill Companies, New York, United States of America.

Tilley, E., et al. (2014). 'Compendium of Sanitation Systems and Technologies – (2nd Revised Edition). Swiss Federal Institute of Aquatic Science and Technology (Eawag), Duebendorf, Switzerland. p. 175. ISBN 978-3-906484-57-0.

Urbanowska, A., et al. (2014). 'Influence of operating conditions on performance of ceramic membrane used for water treatment'. Chemical Papers, p. 190-196.

Van Gestel, T., et al. (2002). 'Salt retention in nanofiltration with multilayer ceramic TiO_2 membranes'. Journal of Membrane Science, p. 379-389.

Appendix I – Water composition

1. Water composition parameters

Parameters indicating specific constituents present in wastewater samples, as listed in table 4.

Parameter	Substance	Method	Measurement
Chemical Oxygen Demand (COD)	Organic matter	Chemical oxidation	HACH LANGE; DR-2800 LCK 114; LCK 414
Total Solids (TS)	Organic + inorganic matter	The residue remaining after a wastewater sample has been evaporated and dried at a specified temperature (103 to 105°C).	TS = TSS + TDS
Total Suspended Solids (TSS)		Portion of the TS retained on a filter with a specified pore size, measured after being dried at a specified temperature (105°C).	
Total Dissolved Solids (TDS)		Those solids that pass through the filter, and are then evaporated and dried at specified temperature.	TS – TSS Electrical conductivity (EC)
Settleable Solids (SS)		Suspended solids that accumulate in the bottom of the cone after 60 min, reported as ml/l	Imhoff cone
Nitrogen (Total-N)	Total-N	Kjeldahl	HACH LANGE; DR-2800 LCK 138
	Free ammonia	NH4 ⁺	HACH LANGE; DR-2800 LCK 304
Phosphorus (Total-P)	Organic + inorganic P		HACH LANGE; DR-2800 LCK 350; LCK 349
	Inorganic P	Orthophosphate (PO ₄ ^{3—} P)	
Metallic constituents	AnionsCations $HCO_3^ Ca^{2+}$ CO_3^{2-} Mg^{2+} $CI^ Fe^{2+}$ SO_4^{2-} SO_4^{2-}		

Table 4: Water composition parameters.

2. Interrelationships of solids in (waste-)water samples

Constituents of solids present in wastewater, including the methods in order to analyze each specific constituent with regard to weight per volume wastewater sample, as shown in figure 18 (Tchobanoglous, 1985).

Figure 18: The interrelationships of solids found in (waste-)water samples, including analysis procedures (Tchobanoglous, 1985).

Appendix II – Filtration unit

1. Piping and instrumentation diagram

Figure 19: Piping and instrumentation diagram (P&ID) of the experimental filtration unit setup.

The pilot installation's operation system is based on the P&ID, shown in figure 20, of the experimental setup and can be subdivided into three specifications; the influent line, filtration line and backwash line.

Influent line

Both tap and demineralized water sources are connected to tank (T-01), also referred to as the 'CIP tank', in order to be able to complete specific steps during batch test experiments. During these procedures, tap or demineralized water is directed to tank (T-01) by opening valve (V-305) or by opening the manual valve after redirecting the demineralized water tube to tank (T-01). Operating heater (H-01) enables temperature regulation in tank (T-01). Furthermore, the chemical tanks (T-05/06/08), operated by pumps (P-04/05/06), contain the chemical compounds that are used during the CIP process and certain experimental procedures.

Filtration line

In the filtration line, the feed flow is directed through the membrane unit (F-02). The first step in operating the filtration line is opening the valves (V-203/205/206/207/217). Valve (V-217) can be modified to operate at a specific capacity, allowing only a certain percentage of the concentrate flow to pass through the pipe.

Backwash line

Before operating pumps (P-02/07) in the filtration line, valve (V-209) must be opened in the backwash line. Pumps (P-02/07) may only be operated once all of the aforementioned valves are opened. Furthermore, pump (P-07) may only be operated once pump (P-02) has been turned on. Pumps (P-02/07) can be modified to operate at a specific working capacity, making it possible to control the flow rate in the system in combination with the operational modifications of valve (V-217).

Batch mode

During batch mode operation, the concentrate and permeate streams are redirected towards the CIP tank by opening the valves (V-207/209). When stopping batch mode, it is crucial pumps (P-02/07) are turned off before closing the valves (V-203/205/206/207/209/217). During this procedure it is important that pump (P-07) is turned off first, followed by pump (P-02). Operating valve (V-213) allows the system to discharge its contents via the CIP tank into Sewer 1.

2. Measurement instruments

Instruments employed in the filtration unit, indicating values for specific parameters, as listed in table 5.

Instrument	Stream	Туре	Unit
FQIT-01	Feed	Flow	m³/h
FQIT-02	Permeate	Flow	m³/h
FQIT-03	Concentrate	Flow	l/h
PT-04	Concentrate	Pressure	bar
PT-05	Feed	Pressure	bar
PT-06	Permeate	Pressure	bar
TT-01	Feed	Temperature	°C
TT-02	T-01/CIP tank	Temperature	°C
PT-09	T-01/CIP tank	Height	m
P-02 (set)	Pump	Frequency	Hz
P-07 (set)	Pump	Frequency	Hz
QIA-01	Feed	рН	-
Manual	T-01/CIP tank	рН	-
LC-01	Chemical tank	Weight	g
LC-02	Chemical tank	Weight	g
LC-03	Chemical tank	Weight	g

Table 5: Specifications measurement instruments.

The flow rates in the system, measured by the flow meters (FQIT-01/02/03), are related to the feed, permeate and concentrate flows, respectively. Pressure indicators (PT-04/05/06) indicate the feed, concentrate and permeate site pressures, respectively. The feed flow temperature in the filtration line is measured by a heat sensor (TT-01), whereas the temperature of the contents present in tank (T-01), or CIP tank, is measured by heat sensor (TT-02). Additionally, the water level of the CIP tank is indicated by sensor (PT-09). The set frequencies of the pumps (P-02/07) indicate the rate at which the pumps are operating.

Chemical modifications to the filtration system are indicated by a pH sensor (QIA-01), measuring the pH of the feed flow, and manual pH measurements in the CIP tank. The amount of chemical compounds present in the chemical tanks (T-05/06/08) is indicated by the scales (LC-01/02/03).

3. Filtration unit data summary

a. Operational data summary 2016

					Breto		Permea	bilitei		ТМР	Vol filtr. cyclus	Per	cyclus
Cycl				Tijdsduur	Flux	Recovery	Begin	Eind	1 /	bereik	t afgerond	Teeding verwerkt P	ermonat gopraducoord
	Begin tijd	Eind t	ijd	[44:88]	[]/=2"6	1 [2]	[1/=2'	"b"bar]		[bar]	jainee	n°/cycle	m ² /cycle
1	20-04-16 12:50	21-04-1	6 1:24	12:34	82	81	69,05	8,80	BWA	9,35	ja	7,52	8,07
2	21-04-16 18:00	22-04-16	16:06	22:06	79	80	56,70	8,68	BWA	9,25	ja	14,74	12,18
3	22-04-16 21:53	23-04-1	6 0:21	2:22	79	80	39,53	8,90	BWA	9,22	ja	1,71	1,38
4	23-04-16 6:06	23-04-1	6 7:20	1:14	79	79	26,05	9,02	BWA	9,20	ja	0,91	0,73
5	25-04-16 11:58	25-04-16	6 13:51	1:53	79	80	27,01	9,13	BWA	9,12	ja	1,39	1,13
6	25-04-16 19:23	25-04-16	5 19:27	0:04	76	64	12,20	10,17	BWA	9,11	ja	0,06	0,03
7	26-04-16 1:22	27-04-16	6 2:29	25:07	79	80	36,46	9,55	BWA	9,27	ja	18,42	15,22
8	27-04-16 8:34	27-04-16	5 10:21	1:47	79	80	14,05	10,16	BWA	9,22	ja	1,32	1,11
9	23-04-16 10:36	29-04-16	10:44	0:08	76	71	7,57	9,89	BWA	9,08	ja	0,10	0,08
10	23-04-16 16:35	23-04-16	5 17:30	0:55	79	80	12,66	9,36	BWA	9,21	ja	0,68	0,55
11	28-04-16 23:17	30-04-1	6 0:16	0:59	78	78	16,88	9,24	BWA	9,22	ja	0,63	0,56
12	30-04-16 6:00	30-04-16	20:49	14:49	79	80	18,95	8,80	BWA	9,24	ja	10,89	8,90
13	1-05-16 2:23	1-05-1	6 6:57	4:28	79	80	19,56	9,20	BWA	9,22	ja	3,28	2,68
14	1-05-16 11:45	1-05-16	20:20	8:35	79	80	18,32	8,65	BWA	9,24	ja	6,31	5,08
15	2-05-16 0:57	2-05-1	16 3:16	2:13	79	80	13,91	8,63	BWA	9,22	ja	1,71	1,40
16	2-05-16 8:00	2-05-16	5 12:10	4:10	79	80	15,12	8,46	BWA	9,23	ja	3,07	2,54
17	2-05-16 17:11	2-05-16	5 17:32	0:21	75	79	18,57	10,59	BWA	6,43	nee	0,16	0,11
18	3-05-16 2:20	3-05-10	6 2:25	0:05	71	62	14,07	3,45	BWA	8,79	ja	0,07	0,04
19	3-05-16 8:16	3-05-16	515:42	7:26	79	80	13,46	8,95	BWA	9,23	ja	5,47	4,61
20	4-05-16 20:00	4-05-16	20:45	0:45	78	80	58,73	9,34	BWA	8,78	ja	0,56	0,44
21	5-05-16 2:34	5-05-16	6 2:39	0:05	69	66	11,86	9,22	BWA	8,70	ja	0,06	0,05
22	5-05-16 14:12	5-05-16	14:44	0:32	79	80	12,40	8,55	BWA	8,99	ja	0,40	0,33
23	5-05-16 20:03	5-05-16	22:28	2:13	79	80	14,38	8,45	BWA	8,99	ja	1,71	1,38
24	6-05-16 4:12	6-05-16	13:28	9:16	79	80	15,25	8,07	BWA	8,99	ja	6,81	5,48
25	6-05-16 18:52	7-05-1	16 0:11	5:13	79	80	19,68	15,47	BWA	4,70	nee	3,88	3,11
		Total			1								
Yoedi	i otal seding verwerkt Permeaat ge			at geprod	ceerd								
	•												
	91,93			77,19									
per dag)	Р	oer dag										
		5,6			4,7								
per cyc	le	P	oer cyclo	2									
	3,7			3,1									
			1							_		Taxal	
	april					D		_	mei Ole alle ann			I Otaal	Dura was away down ad

	aprii		mei		Totaal	
	Voeding verwerkt	Permesst geproduceerd	Voeding verwerkt	Permeaat geproduceerd	Voeding verwerkt	Permeaat geproduceerd
Total volume (m3)	58,43	49,94	33,50	27,25	91,93	77,19
Volume per day	5,65	4,83	5,67	4,62	5,58	4,69
Volume per cycle	5,31	4,54	2,79	2,27	3,68	3,09
Total days analysis		10,33		5,90		16,24
Total natural days operational		9		7		16
Total duration filtration cycles		83:58		45:40		129:38
Average duration filtration cycle		7:38		3:48		5:11

Table 6: Summary of the processed operational filtration unit data (2016).

b. Operational data summary 2015

'15					Brato		Permea	biliteit	-RVA	TMP	Vol filtr.	Per	cyclus		Tot	a
juni	Cycl			Tijdsdaar	Flux	Recovers	Begin	Eind	1	bereikt	afgerond	anding veryer	meaat gepraduce	erd	Voeding verv	Permeaat geproduc
cyclus		Begin tijd	Eind tijd	[44:mm]	[/=2*)	[2]	[1/=2'	"b"bar]	DVA.	[bar]	ja/nee	m ² /cycle	"/cycle			
	1	29-01-15 10:21	23-01-15 14:17	3:56	20	25	6,10	2,90	RVA	9,30	ja	2,86	0,77		470,64	266,14
	2	31-01-15 0:02	1-02-15 12:48	36:46	10	24	1,64	1,12	RVA	10,15	ja	13,58	3,31		per dag	per dag
	3	4-02-15 14:28	5-02-15 13:41	23:13	15	25	6,36	1,63	BWA	10,15	ja	12,76	3,25		7,9	4,5
	4	5-02-15 20:42	6-02-15 8:31	11:49	15	25	5,09	1,82	rwa	10,09	ja	6,49	1,65		per cycle	per cycle
	5	6-02-15 13:28	7-02-15 4:14	14:46	11	25	2,82	1,06	rwa	9,94	ia l	5,95	1,46		6,5	3,7
	6	7-02-15 10:06	8-02-15 10:18	24:12	10	24	5,18	1.12	rwa	10.07	ia	8.95	2.18			
	7	8-02-15 14:40	3-02-15 15:27	24-47	10	24	4.92	1.10	dwa	10.10	ia	3.16	2.23			
	8	3-02-15 13:48	10-02-15 13-16	17:28	20	51	4.33	2.36	dwa	3.81	- ia	6.46	3.31			
		10-02-15 21-52	11-02-15 14-00	16:08	20	51	6.93	2.19	dwo	10.06	10	5.97	3.06			
	10	13-02-15 14-32	13-02-15 18:10	3-38	20	51	14.78	A 16	dwo	5.33		135	0,00			
	11	16-02-15 16-24	17-02-15 1-04	8:40	20	51	6.55	2.32	duo	10.08	in	3.20	164			
	10	17-02-15 14-07	17-02-10 1.04	1.20	20	51	10,05	2,02	dwa	4.91	14	0,20	0.04			
	16	19.00.45.9.07	49.00.45.49.00	9.05	20	50	0,25	0,61	dwa	4,01	nee to	0,50	0,20			
	10	10-02-15 3:21	10-02-15 10:32	5.05	20	50	5.06	2,00	dwa	0,10	4	3,31	0,40			
	14	13-02-15 11:10	13-02-15 16:21	5:11	20	50	5,06	2,30	dwa	3,04	nee	1,31	2,55			
	15	19-02-15 20:46	19-02-15 21:02	0:16	ſ	19	2,20	1,63	dwa	10,20	nee	0,08	0,02			
	16	20-02-15 9:18	20-02-15 9:36	0:18	<u> </u>	13	1,82	1,08	RWA	8,12	nee	0,12	0,02			
	17	20-02-15 13:59	20-02-15 19:54	5:55	11	27	7,21	2,15	RWA	5,85	nee	2,19	1,10			
	18	23-02-15 9:47	23-02-15 19:54	10:07	12	39	5,14	3,14	RWA	4,81	nee	2,78	1,85			
	19	24-02-15 10:48	24-02-15 12:02	1:14	9	5	2,99	0,92	rwa	9,67	nee	0,28	0,15			
	20	25-02-15 10:01	25-02-15 10:56	0:55	26	49	9,84	3,57	rwa	9,08	nee	0,46	0,31			
	21	25-02-15 12:09	25-02-15 12:37	0:28	25	46	17,39	3,02	rwa	8,80	nee	0,23	0,15			
	22	25-02-15 18:39	25-02-15 19:01	0:22	26	49	7,31	6,02	rwa	5,22	nee	0,19	0,10			
	23	26-02-15 14:40	27-02-15 5:58	15:18	15	50	7,38	3,88	RVA	3,60	nee	4,28	3,28		9,228156732	
	24	27-02-15 9:01	27-02-15 12:39	3:38	15	50	6,23	3,71	BWA	4,66	nee	1,03	0,71		cross flow pomp	was not working
	25	27-02-15 12:50	27-02-15 13:14	0:24	14	49	3,76	1,79	BWA	8,30	ja	0,11	0,07		cross flow pomp	was not working
	26	27-02-15 18:52	27-02-15 20:04	1:12	14	48	0,00	1,91	BWA	8,97	ja	0,33	0,19		cross flow pomp	was not working
	27	28-02-15 2:05	28-02-15 2:56	0:51	14	47	0,00	1,91	rwa	8,97	ja	0,23	0,12		cross flow pomp	was not working
-	28	28-02-15 8:54	28-02-15 9:56	1:02	14	47	0.00	1.05	rwa	8,15	ia	0,28	0,15		cross flow pomp	was not working
	29	28-02-15 15:45	28-02-15 16:48	1:03	14	48	0.00	1,75	rwa	8,84	ia	0,29	0,16		cross flow pomp	was not working
	30	28-02-15 22:15	28-02-15 22:59	0:44	14	47	0.00	1,79	rwa	8,68	ia	0,20	0.11		cross flow pomp	was not working
	31	1-03-15 3:28	1-03-15 3:58	0:30	14	47	0.00	1.88	RVA	8.36	ia	0.14	0.07		cross flow pomp	was not working
	32	1-03-15 8:22	1-03-15 8:54	0:32	13	46	0.00	1.73	RVA	8.83	ia	0.15	0.07		cross flow pomp	was not working
	33	1-03-15 13:07	1-03-15 13-46	0:33	13	46	0.00	140	BWA	8.65	in	0.17	0.08		cross flow pomp	was not working
	34	1-03-15 17:54	1-03-15 18:24	0:30	13	46	0.00	1.61	DWA	8.95	in	0.14	0.06		cross flow pomp	was not working
	20	1.03.45.00.31	1-03-15 22-59	0.00	10	44	0,00	176	DVA	8.89	- 14	0.13	0,00		cross flow pomp	was not working
	26	2.02.45.2.01	2.02.45 2.25	0.20	14	44	9.95	1,10	DVI	0,00	19	0,10	0,05		cross flow pomp	was not working
	00	2-00-15 0.10	2-00-15 0.05	0.20	42	41	0,00	4.72	DUI	9.05	N	0,12	0,05		cross now politip	was not working
	00	2-03-15 1:43	2-03-15 0:13	0:30	10	40	0,00	1,11	RTA DUI	3,05	9	0,14	0,06			
- 3	38	2-03-15 11:14	5-03-15 16:54	1:40	15	50	3,11	2,35	RWA	6,35	nee	15,5	11,0			
	39	6-03-15 14:21	6-03-15 15:14	0:53	12	41	0,00	3,43	RWA	4,53	nee	0,23	0,11			
	40	9-03-15 11:39	10-03-15 10:43	23:04	15	50	6,55	3,25	RWA	5,31	nee	6,02	3,84			
1	41	31-03-15 15:15	3-04-15 7:00	63:45	19	60	16,10	4,21	BWA	3,60	nee	11,53	5,18	415,4		
2	42	2-04-15 14:28	6-04-15 10:05	91:37	20	64	18,46	3,82	BWA	4,27	nee	26,54	12,67			
3	43	8-04-15 15:04	9-04-15 11:19	20:15	15	50	7,76	4,08	BWA	2,84	nee	5,68	2,86			
4	44	3-04-15 15:28	10-04-15 15:41	24:13	15	50	4,00	3,13	BWA	4,39	nee	6,75	3,55			
5	45	13-04-15 8:39	13-04-15 23:59	15:20	14	48	2,80	2,90	BWA	4,74	nee	4,16	2,03			
6	46	15-04-15 3:17	15-04-15 14:08	4:51	17	52	6,41	2,76	BWA	5,52	nee	1,43	0,75			
7	47	16-04-15 12:55	16-04-15 13:40	0:45	40	63	11,89	3,46	BWA	4,22	nee	0,28	0,18			
8	48	17-04-15 16:27	17-04-15 23:22	6:55	15	50	8,74	5,53	BWA	2,55	nee	1,94	1,07			
9	49	20-04-15 13:09	25-04-15 7:20	114:11	15	50	11,58	1,41	BWA	9,44	ja	31,85	15,94			
10	50	25-04-15 11:06	28-04-15 14:14	75:08	15	50	6,45	1,52	BWA	9,30	ja	20,44	10,25			
1	51	23-04-15 14:00	7-05-15 8:29	186:29	15	50	5,15	2,00	DWA	7,38	nee	48,27	23,22	logiticon vi	sit	
2	52	11-05-15 14:02	18-05-15 10:38	164:36	15	50	5,87	1,74	BWA	8,41	ja	45,90	22,96			
3	53	20-05-15 11:54	22-05-15 11:36	47:42	15	79	3,52	1,67	DWA	7,94	nee	10,32	8,18	gebrek aanv	oer	
4	54	26-05-15 16:42	26-05-15 19:01	2:19	15	78	5,15	3,33	DWA	3.72	nee	0.41	0,32			
4	55	28-05-15 14:52	30-05-15 12-50	45:58	17	80	4.34	1.51	DWA	3.42	ja	10.13	6,34			
5	56	30-05-15 16-23	31-05-15 A-53	12:30	15	80	4.93	2.44	DVA	6.09	nee	2.16	1.73			
1	57	5-06-15 11-07	5-06-15 22-25	11:18	15	79	5.58	3.57	BWA	3.74	nee	1.36	1.62			
	58	8-06-15 9-34	10-06-15 16-26	54-50	16	78	8.43	170	DW4	7.77	000	9.46	7.37			
	50	11-06-15 15-05	12-06-15 12-06	21-01	15	79	4.98	3.14	DWA	3.05	is	3.79	2.97			
	60	22-06-15 12-44	24-06-15 5:42	40-59	14	79	7.60	3.64	DWA DWA	3.77	0.00	6.91	5.07	1		
4	64	25-06-15 12:44	1-07-15 10-05	14,0.00	14	80	3.80	2.04	DWA	5.98	nee	0,01	16.20	1		
-	60	14-07-15 2:03	17-07-15 10:25	76-02	15	76	150	0.96	DWA	9.20	inec	40.91	10,20			
	62	14-01-15 3(43	90-07-45 14:00	2.54	10	70	1,52	0,36		3,24	1	0.95	0.50	1		
- 2	63	20-01-15 10:43	20-01-15 14:33	0000	13	10	5,21	3,02	DWA DW	3,02	19	0,65	10,01			
- 3	64	20-01-15 16:08	21-07-15 15:18	21:10	10	14	5,54	3,07	DWA DWA	3,32	9	4,21	3,00			
4	65	22-01-15 8:42	24-01-15 18:59	56:17	14	10	6,30	1,34	DWA DWA	6,13	nee	3,57	2,64			
5	66	27-07-15 9:25	28-07-15 17:35	32:10	14	17	2,13	1,36	BWA	3,23	6	5,35	3,36			
6	67	28-07-15 21:06	31-07-15 17:08	68:02	15	75	7,01	3,29	BWA	3,56	nee	12,13	8,63	1		
7	68	31-07-15 20:37	2-08-15 17:01	44:24	14	75	5,87	1,28	DWA	9,23	ja –	7,54	5,48			
8	69	2-08-15 20:26	3-08-15 12:10	15:44	14	77	4,42	2,46	DWA	5,40	nee	2,68	2,05			
9	70	5-08-15 16:02	6-08-15 15:19	23:17	14	77	3,11	1,32	DWA	9,30	ja –	3,96	2,91	B05,afvoer	pomp broken	
10	71	6-08-15 18:44	10-08-15 2:45	80:01	14	77	5,16	0,85	DWA	8,85	ja	13,52	10,76			
11	72	10-08-15 14:08	14-08-15 15:46	97:38	14	77	3,42	4,08	BWA	4,30	nee	13,94	10,42			

maart		april		mci		juni		juli		august	15		juli-aug			
Yoedia	Permea	Yoeding	Permea	Yoedin	Permea	Voeding te	Permeaat	Yoedia	Permea	Yoedia	Permea	at gepr	Yoedin	Permea	at gepre	oduceerd
• *	• *		1				•	• • •	• • •	• •			• •	• *	netto	cips
22,03	15,03	110_58	54,48	117,19	62,73	43,83	33,43	46,61	35,35	34,10	26,13		80,71	61,48	43,48	9
per dag	per dag	per dag	pier dag	per dag	per dag	per dag	per dag	per dag	per dag	per dag	per dag		per dag	per dag		
3,1	2,1	3,3	1,3	4,7	2,5	2,4	1,9	2,7	2,1	2,6	2,0		2,7	2,0	1,4494	
per cycle	per cycle	per cycle	pler cycle	per cycle	per cycle	per cycle	per cycle	per cycle	per cycle	per cycle	per cycle		per cycle	per cycle		
4,4	3,0	12,3	6,1	23,4	12,5	14,6	11,1	7,8	5,9	11,4	8,7		8,1	6,1		
				dagen	dagen	dagen	dagen	dagen	17	dagen	13		dagen	30		
				25	25	18	18	uren	304	uren	216		uren	522		
								net dage	12,667	net dage	: 3		net dage	21,75		
													netto p er	meaat pro	oductie	9 cips
													18			
													1,4494			
										17,4						

Table 7: Summary of the processed operational filtration unit data (2015).

Appendix III – Membrane characterization

1. cMF membrane retention behavior

1.1 I	PES 1	00													
Experiment name			PES 100	retention											
Installation			RINEW - C	eramic mi	crofiltrati	on									
Date			19 april 2	016									O	<i>ides</i>	5
Researchers			Ractvte, J	Janse, B.	J.								<u> </u>	industr	iewater
Test #			1 (I)	1 (11)	2(1)	2 (11)	3	4	5 (1)	5 (11)	6(1)	6 (11)	7 (1)	7 (11)	
Time			18:38	18:38	19:38	19:38	19:50	20:20	21:20	21:20	21:50	21:50	22:20	22:20	
						Proc	es altera	tions							
PES100 supplement		[mL]	0	0	0	0	1	0	0	0	0	0	0	0	
pH ceramic filter	-	n	6.06	6.06	6.09	6.09	6.07	6.08			-			-	
			,		,	Me	easureme	nts	1			1			
Sample time		[min]	0	0	60	60		0	60	60	90	90	120	120	
	Particles	[n/l]	L .	-							50		120	110	
Feed	Conc	[mg/I]					-	-							
	рH	1						-							
	Particles	[n/l]					-	-							
Cross	Conc.	[mg/l]					-	-							
	рН	0					-	-							
	Particles	[n/l]					-	-							
Permeate	Conc.	[mg/l]					-	-							
	pН	0					-	-							
	Particles	[n/l]					-	-							
Concentrate	Conc.	[mg/I]					-								
	рН	0					-	-							
Plant data			1 (I)	1 (II)	2 (I)	2 (II)	3	4	5 (I)	5 (II)	6 (I)	6 (II)	7 (I)	7 (II)	
Sample time		[min]	0	0	60	60	-	0	60	60	90	90	120	120	
Supply flow	FQ1	[m³/h]	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	
Permetaat flow	FQ2	[m³/h]	0,45	0,45	0,45	0,45	0,45	0,45	0,45	0,45	0,45	0,45	0,45	0,45	
Concentrate flow	FQ3	[m³/h]	0,45	0,45	0,45	0,45	0,45	0,45	0,45	0,45	0,45	0,45	0,45	0,45	
Pres. after filter	pT-04	[bar]	1,51	1,51	1,5	1,5	1,5	1,5							
Pres. before filter	pT-05	[bar]	1,47	1,47	1,47	1,47	1,47	1,46							
Permetaat pres.	pT-06	[bar]	0,56	0,56	0,57	0,57	0,58	0,58							
Temp. Before filter	TT-01	[°C]	19,3	19,3	20,9	20,9	21,1	21,6							
Temp. CIP tank	TT-02	[°C]	18,4	18,4	20	20	20,2	20,7							
Level CIP tank	pT-09	[m]	0,5	0,5	0,48	0,48	0,46	0,46							
Feed pump	P-02	[Hz]	15	15	15	15	15	15	15	15	15	15	15	15	
Cross-flow pump	P-07	[Hz]	20	20	20	20	20	20	20	20	20	20	20	20	
pH ceramic filter	QIA-01	[pH]	6,06	6,06	6,09	6,09	6,07	6,08							
							Notes								
(1); (11)	Duplo me	asureme	nt indicati	on											
1	Blanco de	minerali	zed water	0-min											
2	Blanco de	minerali	zed water	50-min											
5	Addition	OT 1 mL PE	5100												
4	After 30 m	in of mix	ing (0-min												
5	PES200/de	eminerali	zea water	60-min											
	PES200/de	minerali	zed water	su-min											
1	JPE5200/de	eminerali	zed water	120-min											

Table 8: Operational data during the PES 100 retention test (2016).

1.2 PES 200

Experiment name			PES 200 n	etention											
Installation			RINEW - ce	eramic m	icrofiltrati	on							- 関		
Date			19 april 20	16									0	rides	
Researchers			Ractyte 1	lanse B	1									industr	iewater
Test #			1.00	1 (11)	2 (1)	2 (11)	2	4	E (II)	E (II)	6 (II)	6 (III)	7 (1)	7 (11)	
Time			12,04	12:04	2(1)	2 (11)	14.16	14/45	15,46	15,46	16:16	16:16	16,46	16,46	
Time			15.04	15.04	14.04	14.04	14.10	14.40	15.40	15.40	10.10	10.10	10.40	10.40	1
				-		Proc	es altera	dons						-	
PES200 supplement	t	[mL]	0	0	0	0	1	0	0	0	0	0	0	0	
pH ceramic filter		0	6,3	6,3	6,28	6,28	6,29	6,31	6,2	6,2	6,2	6,2	6,2	6,2	
						Me	easureme	nts							
Sample time		[min]	0	0	60	60	-	0	60	60	90	90	120	120	
	Particles	[n/l]						-							
Feed	Particles Feed Conc. [pH Particles Conc. [Cross Conc. [pH Permeate Conc. [[pH Particles Conc. [pH Particles Conc. [pH Particles Conc. [Concentrate Conc. [PH						1.1								
	pН	0													
	Particles	[n/l]						-							
Cross	Conc.	[mg/I]						-							
	pН	0													
	Particles	[n/l]					-	-							
Permeate	Conc.	[mg/I]					-	-							
	рН	0					-	-							
	Particles	[n/l]					-	-							
Concentrate	Conc.	[mg/I]					-	-							
	pН	0					-	-							
Plant data			1 (I)	1 (II)	2 (I)	2 (11)	3	4	5 (I)	5 (II)	6 (I)	6 (II)	7 (I)	7 (II)	
Sample time		[min]	0	0	60	60	-	0	60	60	90	90	120	120	
Supply flow	Drift Drift <t< td=""><td>0,9</td><td>0,9</td><td></td></t<>												0,9	0,9	
Permetaat flow	FQ2	[m³/h]	0,44	0,44	0,45	0,45	0,45	0,45	0,45	0,45	0,45	0,45	0,45	0,45	
Concentrate flow	FQ3	[m³/h]	0,44	0,44	0,45	0,45	0,45	0,45	0,45	0,45	0,45	0,45	0,45	0,45	
Pres. after filter	pT-04	[bar]	1,51	1,51	1,51	1,51	1,5	1,5	1,49	1,49	1,49	1,49	1,49	1,49	
Pres. before filter	pT-05	[bar]	1,48	1,48	1,48	1,48	1,47	1,47	1,46	1,46	1,46	1,46	1,45	1,45	
Permetaat pres.	pT-06	[bar]	0,55	0,55	0,57	0,57	0,57	0,58	0,6	0,6	0,61	0,61	0,61	0,61	
Temp. Before filter	TT-01	[°C]	17,1	17,1	19,1	19,1	19	20,6	22	22	22,8	22,8	23,4	23,4	
Temp. CIP tank	TT-02	[°C]	16,3	16,3	18,1	18,1	18,7	19,7	21,1	21,1	21,7	21,7	22,4	22,4	
Level CIP tank	pT-09	[m]	0,51	0,51	0,49	0,49	0,47	0,47	0,47	0,47	0,45	0,45	0,44	0,44	
Feed pump	P-02	[Hz]	15	15	15	15	15	15	15	15	15	15	15	15	
Cross-flow pump	P-07	[Hz]	20	20	20	20	20	20	20	20	20	20	20	20	
pH ceramic filter	QIA-01	[pH]	6,3	6,3	6,28	6,28	6,29	6,31	6,2	6,2	6,2	6,2	6,2	6,2	
							Notes								
(D); (ID)	Duplo me	asureme	nt indicatio	n											
1	Blanco de	minerali	zed water 0	-min											
2	Blanco de	minerali	zed water 6	0-min											
3	Addition	of 1 mL PE	S200												
4	After 30 m	in of mix	ing (0-min)												
5	PES200/de	minerali	zed water 6	i0-min											
6	PES200/de	minerali	zed water 9	0-min											
7	PES200/de	minerali	zed water 1	20-min											
*	1 20200/08	eidi	see water a	IIIIII Va											

Table 9: Operational data during the PES 200 retention test (2016).

1.3 Particle counter analysis

PES 100																			
0-min (Blanco) Perm I PES 10	0				60-min Perm I PES 100					120-min Perm I PES 100	•				120-min Conc I PES 10	0			
. ,	0.05	0.1	0.15	0.2		0.05	0.1	0.15	0.2		0.05	0.1	0.15	0.2		0.05	0.1	0.15	0.2
5-9-2016 14:46:04	4694	259	17	5	5-9-2016 15:48:04	3301	391	50	25	5-9-2016 14:23:04	18876	691	46	19	5-9-2016 13:59:04	692760	49641	1343	501
5-9-2016 14:47:04	5231	299	22	14	5-9-2016 15:49:04	3468	446	74	33	5-9-2016 14:24:04	15655	773	52	17	5-9-2016 14:00:04	575686	34081	1005	411
5-9-2016 14:48:04	6061	394	37	18	5-9-2016 15:50:04	2897	473	97	49	5-9-2016 14:25:04	10141	713	56	25	5-9-2016 14:01:04	561159	31336	896	359
5-9-2016 14:49:04	4983	373	50	24	5-9-2016 15:51:04	2110	418	98	38	5-9-2016 14:26:04	6707	574	74	28	5-9-2016 14:02:04	633060	37252	1147	474
5-9-2016 14:50:04	2805	290	49	23	5-9-2016 15:52:04	1394	347	61	27	5-9-2016 14:27:04	5408	598	81	34	5-9-2016 14:03:04	710705	50651	1476	542
5-9-2016 14:51:04	2320	289	45	21	5-9-2016 15:53:04	1324	371	80	36	5-9-2016 14:28:04	5155	717	107	39	5-9-2016 14:04:04	733235	49114	1389	544
5-9-2016 14:52:04	1941	278	49	25	5-9-2016 15:54:04	1258	398	83	33	5-9-2016 14:29:04	3619	597	98	39	5-9-2016 14:05:04	797719	74476	1690	650
5-9-2016 14:53:04	2089	394	70	38	5-9-2016 15:55:04	1495	474	103	50	5-9-2016 14:30:04	3056	523	85	39	5-9-2016 14:06:04	689598	52668	1354	530
5-9-2016 14:54:04	1607	310	60	28	5-9-2016 15:56:04	1230	406	83	36	5-9-2016 14:31:04	2907	607	100	41	5-9-2016 14:07:04	728735	62613	1484	579
5-9-2016 14:55:04	1173	290	57	25	5-9-2016 15:57:04	1314	404	93	46	5-9-2016 14:32:04	4080	804	114	57	5-9-2016 14:08:04	615701	40649	1071	398
					60 -1- 0 LDE0 400														
U-MIN (DISNCO) CONCIPES I	0.05		0.45	0.0	SU-MIN CONCIPES 100	0.05	0.1	0.45		120-Min Perm II PES 10	0.05	0.1	0.45	0.0	120-BIB CORCIT PES IN	0.05		0.15	0.2
5.0.2016 (5.22.01	0.05	0.1	0.15	0.2	5.0.2016.46.42.04	0.05	0.1	0.15	0.2	5 0 2016 16 50 01	0.05	0.1	0.15	0.2	E 0 2016 46 20 04	0.05	0.1	0.15	0.2
5-9-2010 15:22:04	5725	2//1		205	5-9-2010 10:13:04	774205	7/752	1103		5-9-2010 10:39:04	19042	1107		20	5-5-2016 16:36:04	510/51	22204	//1	207
5-9-2010 15:23:04	4505	3224	410	157	5-9-2010 10:14:04	//~000	/1/ 11	1400	212	5-9-2016 17:00:04	19/30	1103	/9		5-9-2016 16:39:04	550650	23090	046	240
5-9-2010 15:24:04	5001	2011	542	103	5-9-2010 10:15:04	676092	57662	1136	420	5-9-2016 17:01:04	11041	950	113	30	5-9-2010 10:40:04	550000	22303	010	220
5-9-2010 15:25:04	5433	2040	575	217	5 0 2016 16:10:04	202082	32303	1105	505	5 9 2010 17:02:04	11041	600	123		5-5-2016 16-41-04	505025	24000	919	330
5 0 2016 15:20.04	6500	2422	500	245	5 0 2016 16:17:04	79/085	60927	1007	467	5-9-2010 17:03:04	5700	200	101	71	5-5-2010 10-42-04	504000	21502	010	2010
5-9-2010 15:27:04	8302	2059	000	247	5-9-2016 16:18:04	042002	90272	1201	40/	5-9-2016 17:04:04	5/60	709	100	35	5-5-2010 10:43:04	505110	25/14	020	271
5-9-2010 15:28:04	7670	3500	607	207	5-9-2010 10:19:04	711610	65372	1799	476	5-9-2010 17:05:04	5309	720	111	57	5-9-2016 16:45:04	605717	49767	1779	490
5-9-2010 15:25:04	6407	3184	600	285	5-9-2010 10:20:04	7212020	57495	1360	406	5.9.2016 17:07:04	4100	690		34	5-9-2016 16:45:04	610268	32056	088	361
5-9-2016 15:30:04	4325	2087	383	145	5-9-2010 10-22-04	755847	62135	1365	450	5.9.2016 17:09:04	6086	970	147	67	5-9-2016 16:40:04	587714	20136	970	347
3-3-2010 23-32-04	-020	2007			5 5 2020 20.22.01	733012	02135	1000		5-5-2010 17-00-04		570			552010 10.17.01	201121	20120		24
PES 200																			
0-min (Blanco) CIP I PES 200					0-min (Blanco) Perm I	PES 200				120-min Perm I PES 200	D				120-min Conc I PES 20	0			
	0.05	0.1	0.15	0.2		0.05	0.1	0.15	0.2		0.05	0.1	0.15	0.2		0.05	0.1	0.15	0.2
5-9-2016 10:07:04	1663	611	138	67	5-9-2016 12:30:04	679	333	50	15	5-9-2016 11:41:04	944	544	46	12	5-9-2016 10:52:04	169920	103419	11619	1740
5-9-2016 10:08:04	1378	531	120	43	5-9-2016 12:31:04	652	295	44	14	5-9-2016 11:42:04	1148	620	71	15	5-9-2016 10:53:04	181663	113985	9920	1525
5-9-2016 10:09:04	1273	461	120	68	5-9-2016 12:32:04	898	386	71	28	5-9-2016 11:43:04	1158	621	42	9	5-9-2016 10:54:04	221532	140157	18213	2857
5-9-2016 10:10:04	1641	539	122	55	5-9-2016 12:33:04	569	275	47	21	5-9-2016 11:44:04	1293	589	81	15	5-9-2016 10:55:04	209405	135921	11992	1618
5-9-2016 10:11:04	1391	469	113	47	5-9-2016 12:34:04	613	277	51	30	5-9-2016 11:45:04	1200	555	64	18	5-9-2016 10:56:04	202423	131948	10659	1373
5-9-2016 10:12:04	1422	519	114	48	5-9-2016 12:35:04	596	284	61	29	5-9-2016 11:46:04	1067	455	54	15	5-9-2016 10:57:04	224418	148126	13696	1798
5-9-2016 10:13:04	1348	477	108	62	5-9-2016 12:36:04	565	261	58	28	5-9-2016 11:47:04	1063	433	58	20	5-9-2016 10:58:04	201637	129124	15135	2335
5-9-2016 10:14:04	1572	599	125	60	5-9-2016 12:37:04	569	269	55	21	5-9-2016 11:48:04	818	326	41	18	5-9-2016 10:59:04	202575	127332	14150	2086
5-9-2016 10:15:04	1374	519	119	56	5-9-2016 12:38:04	589	283	64	34	5-9-2016 11:49:04	800	309	52	26	5-9-2016 11:00:04	193346	122051	11716	1751
5-9-2016 10:16:04	1298	515	138	74	5-9-2016 12:39:04	636	303	78	35	5-9-2016 11:50:04	1149	393	62	27	5-9-2016 11:01:04	214789	142688	11697	1554
					0-min (Blanco) Perm II	PES 200				120-min Perm II PES 20	0				120-min Conc II PES 2	00			
						0.05	0.1	0.15	0.2		0.05	0.1	0.15	0.2		0.05	0.1	0.15	0.2
					5-9-2016 13:06:04	571	257	65	42	5-9-2016 12:06:04	1333	634	75	26	5-9-2016 11:17:04	182962	113700	10430	1404
					5-9-2016 13:07:04	651	312	105	61	5-9-2016 12:07:04	1294	559	76	28	5-9-2016 11:18:04	203920	131136	10925	1248
					5-9-2016 13:08:04	759	328	112	69	5-9-2016 12:08:04	1401	557	92	38	5-9-2016 11:19:04	204560	133385	10311	1112
					5-9-2016 13:09:04	743	359	116	59	5-9-2016 12:09:04	1158	431	84	34	5-9-2016 11:20:04	212909	138722	12612	1610
					5-9-2016 13:10:04	661	314	94	38	5-9-2016 12:10:04	1276	407	71	31	5-9-2016 11:21:04	222158	144420	12245	1475
					5-9-2016 13:11:04	650	304	77	43	5-9-2016 12:11:04	1270	435	77	35	5-9-2016 11:22:04	225361	145841	14629	2043
					5-9-2016 13:12:04	629	301	84	51	5-9-2016 12:12:04	1079	383	60	37	5-9-2016 11:23:04	215201	140707	10737	1238
					5-9-2016 13:13:04	643	299	91	45	5-9-2016 12:13:04	1038	349	66	42	5-9-2016 11:24:04	220318	146584	10669	1058
					5-9-2016 13:14:04	674	335	97	46	5-9-2016 12:14:04	958	328	54	23	5-9-2016 11:25:04	225378	148528	14263	1780
					5-9-2016 13:15:04	574	288	86	53	5-9-2016 12:15:04	893	286	54	26	5-9-2016 11:26:04	253263	168819	19501	2943

Table 10: Raw data particle counter analysis (2016).

PES 100																				
0-min (Blan	co) Perm I	PES 100			60-min Pe	rm I PES 10	0			120-min F	Perm I PES 1	100			120-min Ca	nc I PES 10	0			
	0.05	0.1	0.15	0.2		0.05	0.1	0.15	0.2		0.05	0.1	0.15	0.2		0.05	0.1	0.15	0.2	
Avg.	3290	318	46	22	Avg.	1979	413	82	37	Avg.	7560	660	81	34	Avg.	673836	48248	1285	499	
St. dev.	1765	50	16	9	St. dev.	904	41	17	9	St. dev.	5587	93	24	12	St. dev.	75445	13282	246	90	
0-min (Blan	co) Conc I	PES 100			60-min Co	nc I PES 10	0			120-min F	Perm II PES	100			120-min Co	nc II PES 1	00			
	0.05	0.1	0.15	0.2		0.05	0.1	0.15	0.2		0.05	0.1	0.15	0.2		0.05	0.1	0.15	0.2	
Avg.	6163	2995	575	229	Avg.	735310	62502	1360	497	Avg.	9856	806	106	43	Avg.	582297	27802	924	354	
St. dev.	1281	563	131	55	St. dev.	56950	12299	214	84	St. dev.	6083	148	27	14	St. dev.	44498	7977	127	52	
										120-min F	Perm PES 10	0			120-min Co	nc PES 100)			
											0.05	0.1	0.15	0.2		0.05	0.1	0.15	0.2	
										Avg.	8708	733	93	38	Avg.	628067	38025	1104	426	
										St. dev.	5835	120	25	13	St. dev.	59971	10630	187	71	
	0.05	0.1	0.15	0.2		0.05	0.1	0.15	0.2							0.05	0,10	0,15	0,20	0,1
Retention	65.19274	90,41265	92.65227	91.19522	Retentio	99.73157	99.34356	94.29919	93.02282						Retention	98.63247	98.10927	92.20172	91,74559	94,018861
								- ,								0.05	0,10	0,15	0,20	0,1
PES 200															Retention	98.63247	98,10927	92,20172	91,74559	95,172262
120200															increase in a second se	50,00211	50,20521	52,20272	52,1 1555	
<mark>0-min (Blan</mark>	co) CIP I P	ES 200								120-min F	erm I PES 2	200			120-min Co	nc I PES 2	00			
	0.05	0.1	0.15	0.2							0.05	0.1	0.15	0.2		0.05	0.1	0.15	0.2	
Ave	1436	524	122	58						Ave	1064	485	57	18	Ave	202171	129475	12880	1864	
St. dev	139	50	10	10						St. dev	163	117	13	6	St. dev	17063	13593	2464	447	
										120-min F	Perm II PES	200			120-min Co	nc II PES 2	:00			
0-min (Blan	co) Perm I	PES 200									0.05	0.1	0.15	0.2		0.05	0.1	0.15	0.2	
	0.05	0.1	0.15	0.2						Ave.	1170	437	71	32	Avg.	216603	141184	12632	1591	
Ave	637	297	58	26						St. dev	171	113	13	6	St. dev	18244	14152	2879	565	
St. dev	100	37	11	7						120-min F	Perm PES 20)0			120-min Co	nc PES 20	0	2011		
0-min (Blan	co) Perm II	PES 200									0.05	0.1	0.15	0.2		0.05	0.1	0.15	0.2	
	0.05	0.1	0.15	0.2						Ave.	1117	461	64	25	Avg.	209387	135330	12756	1727	
Avg.	656	310	93	51						St. dev.	167	115	13	6	St. dev.	17654	13872	2671	506	
St dev	61	28	16	10										_						
0-min (Blan	co) Perm P	ES 200														0.05	0,10	0,15	0,20	0,2
-	0.05	0.1	0.15	0.2											Retention	99 46937	99 66073	99 50078	98 58745	99,249652
Aur	646	303	75	28											Recention	0.05	0,10	0,15	0.20	0.2
St. dev	90	303	12	30											Retention	99 46937	99 66073	99 50078	98 58745	99,304581
oc dev.	00		15	3											Recention	35,40537	35,00075	33,30076	50,50745	
	0.05	0.1	0.15	0.2																
Petention	00 51161	00 80876	88 42072	85 73024																
Recention	1 30,31101	30,000/0	00,42073	03,73034																

Table 11: Processed data particle counter analysis (2016).

2. cNF membrane retention behavior

2.1 K₃PO₄

Experiment name			K3PO4	retention							_		
Installation			RINEW	- ceramic na	anofiltratio	n					-	vidos	
Date			9 maar	t 2016								viues	wator
Researchers			Ractyte	, J; Janse, B.	J.							industrie	water
Test #				0		1	1	i	2		3	1	
Time			10:28	10:43	10:58	11:12	11:42	12:12	12:42	13:31	14:01	14:33	15:03
					Pro	es altera	ations						
K3PO4 supplement		[g]		5		(0	 	0	_	0	()
HCI supplement		[ml]		0	į	3	0	į	75	- <u>i</u>	150	<u> </u>	5
pH ceramic filter		L		6,7	D/L	b) DOCUTORN	,1 onte	!	5,0		3,6	2,	9
Sample time		fminl	0	15	30	23501em	30	15	30	15	30	15	30
	PO4	[mg/L]	5.5	1 5.16	5.07	4.80	5.32	5.4	1 5.	53 5.6	56 5.51	5.45	5.20
Feed	pH	[]	6,7	7 6,86	6,86	6,19	6,31	4,9	9 5,	31 3,5	55 3,56	2,81	2,85
Cross-flow	PO4	[mg/L]	6,1	.9 5,48	5,39	5,18	5,57	5,7	75 5,	72 5,7	73 5,71	5,66	5,38
CIOSS-IIOW	pН	0	6,8	6,80	6,85	6,29	6,31	5,1	1 5,	30 3,5	54 3,54	2,85	2,85
Permeate	PO4	[mg/L]	4,1	.4 4,60	4,78	4,74	4,92	5,8	80 5,	11 5,4	43 5,38	5,41	5,13
	pH	[]	6,8	5 6,85	6,74	6,68	6,30	5,8	81 5,	31 3,6	51 3,58	3,03	2,86
Concentrate	PU4	[mg/L]	6,1	.5 5,63	5,43	5,47	5,03	5,5	7 5,	54 5,8	51 5,72	2 3,85	2,30
	PO4	Img/L1	5.4	9 5.22	5.17	5.05	5.36	5.6	i 5,	55 5.6	56 5.58	5.59	5.25
Average	pH	[]	6,8	4 6,85	6,83	6,37	6,32	5,2	27 5,	31 3,5	56 3,56	2,89	2,85
						Plant dai	ta		-				
Level CIP tank	pT-9	[m]	0),8 0,79	0,79	0,78	0,77	0,	75 0	76 0,	76 0,7	5 0,74	0,74
Temp. CIP tank	TT-02	[°C]	14	,8 15,1	15,3	15,6	16,2	16	5,6 I	7,3 17	7,7 18,	2 18,6	18,8
Feed pump	P-02	[Hz]		17 17	17	17	17	' :	17	17	17 1	7 17	17
Cross-flow pump	P-07	[Hz]		22 22	22	22	22	2 3	22	22	22 2	2 22	22
Concentrate valve	V-217	1901		41 41	16.6	16.0	41	17	41	41	41 4	1 41	20.1
Pres after filter	pT-04	[bar]	1	95 1 95	10,0	10,5	17,4	1	94 1	94 1	94 19	4 194	1 94
Pres. before filter	pT-05	[bar]	2,	03 2.02	2,02	2,02	2,02	2,	02 2	01 2.	01 2,0	1 2.01	2,01
Permetaat pres.	рТ-06	[bar]	0,	37 0,37	0,38	0,39	0,4	0,	43 0	44 (),5 O,	5 0,53	0,53
Suply flow	FQ1	[m³/h]	0),5 0,51	0,51	0,51	0,53	0,	53 0	55 0,	56 0,5	6 0,57	0,57
Permetaat flow	FQ2	[m³/h]	0,	28 0,28	0,28	0,28	0,3	0,	28 0	28 0,	28 0,2	9 0,3	0,29
Concentrate flow	FQ3	[m³/h]	0,	26 0,26	0,26	0,26	0,26	i 0,	26 0	26 0,	26 0,2	6 0,26	0,26
pH CIP tank	T-01	0	6	6,8 6,83	6,8	5,95	6,33	4,	68 5	14 3,	51 3,4	9 2,77	2,85
ph before membrane	QIA-01	u	0,	05 0,04	0,04	0,12	0,12	.),	01	o,z o,	00 3,0	9 5,06	3,05
						Notes							
11:01 HCI	16612 ->	> 16556	-> pH 5.9	95 (at 11:11.	16607) = 5g	HCI suppl	ement						
11:53 III HCI	16584 ->	> 16483	-> pH 4,6	58 (at 12:12,	16550) = 34	HCI sup	lement						
12:59 IV HCI	16550 ->	> 16455	-> pH 3,9	51 (at 13:26,	16483) = 67	HCI supp	lement						
14:07 V HCI	16500 ->	> 16421	-> pH 3,(00 (at 14:15,	16449) = 51	g HCI supp	olement						
14:16 V HCI	16449 ->	> 16404	-> pH 2,9	90 (at 14:23,	16434) = 15	g HCI supp	olement						
14:24 V HCI	16434 ->	> 16376	-> pH 2,7	77 (at 14:33,	16370) = 64	g HCI supp	olement (51 + 15 +	64 = 130g	HCI suppl	ement)		
K3PO4 retention													
09-03-2016													
		Data	pick-up							Retenti	on calculatio	on	
	N	leasurer	nent grap	h pH					ρ	04 retentio	n related to fe	ed [%]	
test # 0	:	1	2	3	4	Culum		test #	0	1	2	3	4
Titel Run 0 pH 6,7 Ru	in 1 pH 6,1	Run 2 p	DH 5 R	un 3 pH 3,6	Run 4 pH 2,9	-		Titel Ru	n 0 pH 6,7 I	tun 1 pH 6,1	Run 2 pH 5	Run 3 pH 3,6	Run 4 pH 2,9
0 6.84	0,10	,	5,00	3,00	2,90	11		0	24,86	6,1 #DEEL/0!	5,0 #DEEL/0!	3,6 #DEEL/0!	2,9 #DEEL/0!
15 6,85	6,37	7	5,27	3,56	2,89			15	10,85	1,25	-7,21	4,06	0,73
30 6,83	6,32	2	5,31	3,56	2,85			30	5,72	7,52	7,59	2,36	1,35
test # 0	M	easuren	ent graph	1 PO4		Culum		Ava.	13,81 PO4	4,38 retention re	0,19	3,21 s-flow [%]	1,04
0 5,49		-		3		Curum		test #	0	1	2	3	4
15 5,22	5,05	5	5,63	5,66	5,59	10		0	33,12	#DEEL/0!	#DEEL/0!	#DEEL/0!	#DEEL/0!
30 5,17	5,36	5 DOA Law	5,55	5,58	5,25			15	16,06	8,49	-0,87	5,24	4,42
test # 0		1	2 2	aat 3	4	Culum		Ava.	20.16	11,67	4,90	5,78	4,65
0 4,14									,10	First expe	riment (sept.	'14)	-,00
15 4,60	4,74	1	5,80	5,43	5,41	7		test #	0	1	2	3	4
30 4,78	4,92	2	5,11	5,38	5,13	-		pH	7,19	6,69	5,97	5,35	4,63
Avd. 4,51	4,83	PO4 le	o,40 evels feed	5,41 I	5,27	1		test #	54,72	40,33	12,48	8,58	4,92
test # 0		1	2	3	4	Culum		рН	4,26	3,74	3,49	3,26	
0 5,51								Ava.	2,63	4,25	7,77	8,75	
15 5,16	4,80)	5,41	5,66	5,45	3		test #	0	Second exp	eriment (sept	t. '15)	
Ava. 5,25	5,06	5	5,35	5,59	5,33	1		pH	8,50	7,20	6,50	5,10	3,30
		PO4 leve	els crossfl	ow				Ava.	55,54	5,06	4,86	3,35	1,32
test # 0		1	2	3	4	Culum		DO4	tion and i	d to f = 1/-	16) [9/]		
0 6,19 15 5.48	5 19	3	5.75	5 72	5.66	-		pH	nuon relate	u to feed (20	5.0	3.6	29
30 5,39	5,57	7	5,72	5,71	5,38	5		St. dev 9,9	909168881	4,432708863	10,46787385	1,205092104	0,432897059
Ava. 5.69	5 38	3	5.74	5,72	5 52								

Table 12: Processed data phosphate retention tests (2014-2016).

2.2 PEG 400

Date To declose 703 Sections 703	Experi	iment name			PEG 400 r	etention	ration						đ			
Participant Definition of the second se	Data	ation			29 oktobor	2015	ration						O vi	de	S	
Description Description 2 3 2 3 4 Time 12.00 12.20 12.45 13.00 13.15 14.20 15.30 15.50 16.30 H3 supplement [1] 7,47 7,47 5,33 4,17 2,74 Precent Rifter [1] 0 0 5 0	Rosoa	rchors			Ractyte I	2015 Hoek T								indus	triewater	
Description Description 3 2 3 4 5 Three 120 120 124 125 1250 1550 1550 1550 1550 Three mark lifter [F] 0 0 0 80 100 200 1200	Nesea	ICHEIS			nactyte, J,	noek, i								maas	incruter	
Time 1200 1230 1310 <t< td=""><td>Test #</td><td>ł</td><td></td><td></td><td>0</td><td></td><td>1</td><td></td><td></td><td>2</td><td></td><td>3</td><td>3</td><td></td><td>4</td></t<>	Test #	ł			0		1			2		3	3		4	
Process alterations Vertex not set of the set	Time				12:00	12:30 12	2:45	13:00	13:15	14:00	14:20	15:30	15:50	16:30	16:55	
HCI supplement [pr] 0 0							Pro	ces alter	ations							
pH carame filter [1] 7,47 7,47 7,47 6,33 4,17 2,74 8,73 Somple filter (min) 0 0 0.5 80 45 0 80 0 80 0 80 0 80 0 80 0 80 0 80 0 80 0 80 0 80 0 80 0 80 0 80 0 80 0 80	HCl su	pplement		[gr]	0		0			80)	10	0		200	
Somple time Impair 1 Somple time Somple	pH cer	amic filter		[]	7,47		7,47	7		6,3	3	4,1	17		2,74	
Sample met [mm] 0 0 20 0 30 0 0 30 0 <th0< th=""> <th0< th=""> 0 <th0<< td=""><td></td><td></td><td></td><td></td><td>1</td><td></td><td>M</td><td>easurem</td><td>ents</td><td></td><td></td><td>1</td><td></td><td></td><td></td></th0<<></th0<></th0<>					1		M	easurem	ents			1				
Feed COD (mgC)/1 1166 663 6	Sampl	e time		[min]	0	0	15	30	45	0	30	0	30	0	30	
Feed Conc, Img/I 1113 630 633 633 633 623 630 613 623 620 610 610 610 610 623 620 <			COD	[mgO/l]	1166	663	667	661	663	668	655	652	648	6	50 644	
Br L 1/L		Feed	Conc.	[mg/I]	1113	630	634	628	630	635	623	620	616	6	18 612	
Cross-flow Cross-flow Cross-flow PH Conc. (mg/l) PH Product (mg/l) PH Product PE			рн	[] [m=0/1]	/,1/	7,71	7,72	7,7	7,/1	6,//	6,75	4,31	4,31	2,	63 2,62	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0	oss-flow	Conc.	[mg/l]	{ }	737	755	730	730	737	721 696	705	662	6	50 078 52 645	
Date Disc Disc <thdisc< th=""> Disc Disc <thd< td=""><td>CI</td><td>033-11010</td><td>nH</td><td>[1118/1] [1</td><td></td><td>7 75</td><td>7.68</td><td>7.69</td><td>7 72</td><td>6 71</td><td>6 74</td><td>4 30</td><td>4 42</td><td>2.6</td><td>5 2 64</td></thd<></thdisc<>	CI	033-11010	nH	[1118/1] [1		7 75	7.68	7.69	7 72	6 71	6 74	4 30	4 42	2.6	5 2 64	
Permete Conc. Impl (I) (I) (I) Conc. Impl (I) (I) (I) Conc. Impl (I) (I) (I) (I) (I) (I) (I) (I) (I) (I)			Conc.	ImgO/II	1	536	559	556	565	565	564	602	594	6	10 605	
pit 1 7,74 7,71 7,72 7,71 7,	Р	ermeate	Conc.	[mg/l]	1	508	530	528	536	536	535	572	564	5	79 575	
Concentrate Conc. [rmg/l] pH Typ Typ <td></td> <td></td> <td>pH</td> <td>0</td> <td>1 1</td> <td>7,74</td> <td>7,71</td> <td>7,71</td> <td>7,76</td> <td>6,84</td> <td>6,75</td> <td>4,67</td> <td>4,34</td> <td>2,6</td> <td>53 2,63</td>			pH	0	1 1	7,74	7,71	7,71	7,76	6,84	6,75	4,67	4,34	2,6	53 2,63	
Concentrate			Conc.	[mgO/I]	1	757	752	741	741	728	724	702	697	6	88 688	
pH I 7,81 7,71 7,72 7,75 6,76 6,70 4,22 4,37 2,63 2,67 Suply flow FQ1 [m ³ /h] 0,3	Co	ncentrate	Conc.	[mg/l]	1 1	720	716	705	705	693	689	668	663	6	54 654	
Plant data Permetast flow FQ2 (m/h) 0.5 0.58 0.57 Permetast flow FQ2 (m/h) 0.3 0.3 0.3 0.3 0.3 Pers. ster filter p1-04 [Lar] 1.55 1.56 1.57 1.57			рН	Ū	1 [7,81	7,71	7,67	7,75	6,76	6,70	4,22	4,37	2,6	53 2,67	
Suply frow F02 [m ² /h] 0.5 0.55 0.58 0.57 Permetaat flow F02 [m ² /h] 0.3 0.3 0.3 0.3 Pers. after filter pF-04 [bar] 1.59 1.56 1.56 1.56 1.56 Pers. before filter pF-05 [bar] 0.45 0.5 0.62 0.65 Perme. before filter pF-06 [bar] 0.45 0.5 0.62 0.65 Perme. before filter pF-01 [bar] 0.45 0.5 0.62 0.65 Feed pump P-02 [H2] 15.6 18.6 20.6 21.5 PEG 400 test P 12 2 3 4 P 7.6 8.64 2.6 1.5								Plant da	ta							
Permetat flowFQ2[m/h]0.240.250.250.26Concentrate flowF03[m/h]0.30.30.3Pres. effore filterpT-06[ad1.561.561.561.56Pres. before filterpT-06[ad0.450.50.620.56Temp. before filterTT-01[C]1.550.620.550.620.56Temp. before filterTT-01[C]1.550.620.550.620.55Temp. before filterTT-01[C]1.550.620.550.620.55Cross-flow pumpP-02[H2]Image filter1.561.560.660.56PEG 400 testEstimationFEG 400 testFEG 400 test1.661.660.660.66TTEEImage filterFEG 400 testFEG 40Image filter1.660.66	Suply t	flow	FQ1	[m³/h]		(),5			0,5	5	0,5	58		0,57	
Concentrate flow FQ3 0,13 0,13	Perme	taat flow	FQ2	[m³/h]		0	,24			0,2	5	0,2	25		0,26	
Pres. shere filter pT-o6 barl 1.56 1.56 1.56 1.56 Pers. shere filter pT-06 [bar] 0.45 0.5 0.62 0.65 Permetat pres. pT-06 [bar] 0.45 0.5 0.62 0.65 Pers. shere filter [T-01] ['C] 1.56 18.6 20.6 21.5 Feed pump P-02 [Hz] - 20 20 20.5 PEG 400 test - 23 4 Row Retention celsulation PEG 400 - Titel Run 1- pH 7, Run 2- pH 62, Run 3- pH 42, Run 4- pH 32, 2 Run 3- pH 42, Run 4- pH 32, 2 Run 4	Conce	ntrate flow	FQ3	[m³/h]		(),3			0,3	3	0,	3		0,3	
Pres. before filter II.57 I.55 I.56 Permetatar pres. pT-66 Barl 0.45 0.5 0.62 0.65 Temp. Before filter Tr-01 [°C] 15.6 18,6 20.6 21.5 Feed pump P-02 [H1] 15 700 0.65 0.62 0.65 Corss-flow pump P-07 [H1] 20 15 700 15.7 1.57 1.57 0.62 0.65 PEGE 400 test 20 10.7 <td>Pres. a</td> <td>fter filter</td> <td>pT-04</td> <td>[bar]</td> <td></td> <td>1</td> <td>,56</td> <td></td> <td></td> <td>1,50</td> <td>6</td> <td>1,5</td> <td>56</td> <td></td> <td>1,54</td>	Pres. a	fter filter	pT-04	[bar]		1	,56			1,50	6	1,5	56		1,54	
Permetat pres. p = 106 bar Temp. Before Hile TT-00. CQ Temp. Before Hile TT-00. CQ Feed pump P-02 Hz PEG 400 test 29 10-2015 PEG 400 test # 1 2 3 4 Row PEG 400 Feed 400 Fe	Pres. b	oefore filter	pT-05	[bar]		1	,59			1,5	7	1,5	55		1,56	
Temp. Before filter ITAD [°C] 15,6 20,6 21,5 Feed pump P-02 [Hz] 20 20 PEG 400 test 20 PEG 400 test 20 PEG 400 test 20 PEG 400 test 20 PEG 400 retention releated to feed [%] test # 1 2 3 4 Retention releated to feed [%] Title Run 1- pH 7 Run 2- pH 6,2 Run 4- PH 3,2 prize with reteation releated to feed [%] Title Run 1- pH 7 Run 2- pH 6,2 Run 4- PH 3,2 pH 7,7 6,8 4,4 PEG 400 test # 1 2 3 4 Run 2- pH 6,2 Run 4- PH 3,2 Title Run 1- pH 7,7 6,8 4 5 5 <th colspan<="" td=""><td>Perme</td><td>taat pres.</td><td>pT-06</td><td>[bar]</td><td></td><td>0</td><td>,45</td><td></td><td></td><td>0,5</td><td>5</td><td>0,6</td><td>52</td><td></td><td>0,65</td></th>	<td>Perme</td> <td>taat pres.</td> <td>pT-06</td> <td>[bar]</td> <td></td> <td>0</td> <td>,45</td> <td></td> <td></td> <td>0,5</td> <td>5</td> <td>0,6</td> <td>52</td> <td></td> <td>0,65</td>	Perme	taat pres.	pT-06	[bar]		0	,45			0,5	5	0,6	52		0,65
Piece pump P-02 [H2] 15 Cross-flow pump P-02 [H2] 20 PEG 400 test 29-10-2015 Retartion calculation PEG 400 PEG 401 test PEG 400 test 29-10-2015 Retartion calculation PEG 400 Titel Run 1 - pH 7, Run 2 - pH 6,2 Run 3 - pH 4,2 Run 4 - pH 3,2 Peg concentration feed (mg/l) test # 1 2 3 4 Ope concentration feed (mg/l) test # 1 2 3 4 Tite! Run 1 - pH 7 Run 2 - pH 6,2 Run 3 - pH 4,2 Run 4 - pH 3,2 Ope concentration feed (mg/l) test # 1 2 3 4 Ope concentration crossflow [mg/l] Titest # 1 2 3 4 Ope concentration crossflow [mg/l] Titest # 1 2 3 4 Ope concentration crossflow [mg/l	Temp.	Before filter	Π-01	[°C]		1	5,6			18,0	6	20	,6		21,5	
Data pick-up PEG 400 Retention calculation PEG 400 Data pick-up PEG 400 Retention calculation PEG 400 Est # 1 2 3 4 Row Titel Run 1- pH 7 Run 2- pH 6,2 Run 3- pH 4,2 Run 4- pH 3,2 Titel Run 1- pH 7 Run 2- pH 6,2 Run 3- pH 4,2 Run 4- pH 3,2 Dye concentration feed [mg/l] pH 7,7 6,8 4,4 2,6 Uses # 1 2 3 4 Row 0 19,37 15,59 7,74 6,8 4,4 2,6 Uses # 1 2 3 4 Row 0 19,37 15,59 7,74 6,81 30 628 623 616 612 3 44 6,05 45 630 1 1 2 3 4 40,0 9 0,19 Dye concentration cosoflow (mg/l) Eest # 1 2 3 4 40 2,27 1,4,3 4,4 4,50	Feed p	oump	P-02	[Hz]						15						
PEG 400 test Data pick-up PEG 400 Ret_=nition = PEG 400 The nu = p-H 2 Run 2 = pH 3 Z Ret=nition related to feed [%] Type concentration feed [mg/l] Eest # 1 Concentration feed [mg/l] Upe concentration feed [mg/l] Eest # 1 Concentration feed [mg/l] Upe concentration feed [mg/l] Eest # 1 Concentration feed [mg/l] Eest # 1 Concentration feed [mg/l] Upe concentration freed [mg/l] Eest # 1 Concentration freed [mg/l] Upe concentration constition [mg/l] Eest # 1 Concentration constition [mg/l] Eest # 1 Concentration constitie [mg/l] UPE concentration concentrate [mg/l] Eest # 1 Concentration concentrate [mg/l] UPE concentration concentrate [mg/l] Eest # 1	CIOSS-	now pump	P-07	[[[12]						20						
Performant of the set of the s	PEG	400 test														
Retention calculation PEG 400 Retention calculation PEG 400 Titel Run 1 - pH 7 Run 2 - pH 6,2 Run 3 - pH 4,2 Run 4 - pH 3,2 preconcentration freed [mg/l] test # I Colspan="2">Colspan="2" Retention calculation PEG 400 Ope concentration freed [mg/l] test # I Colspan="2" Retention calculation PEG 400 Ope concentration freed [mg/l] test # I Colspan="2" Retention calculation PEG 400 Colspan="2" Retention calculation colspan="2" Retention calculation colspan="2" Tope concentration consetion [mg/l] test # I Concentration consetion [mg/l] Tope concentration consetion [mg/l] test # I Colspan="2" Tope concentration concentrate [mg/l] test # I I I Tope concentratio meremate [mg/l]	29-10-	2015														
<th bit="" bit<="" black="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td></td>															
test # 1 2 3 4 Row PEG 400 relation related to feed [%] $>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>$			Dat	a pick-u	p PEG 400	1				5	Retentio	n calculati	on PEG 400			
Infer Kun 1 - pH / Run 2 - pH A,2 Kun 3 - pH 4,2 Kun 4 - pH 3,2 Kun 3 - pH 4,2 Kun 4 - pH 3,2 Kun 3 - pH 4,2 Kun 4 - pH 3,2 Kun 3 - pH 4,2 Kun 4 - pH 3,2 Kun 3 - pH 4,2 Kun 4 - pH 3,2 Ku	test #	1		2	3	4	Row			PEO	G 400 ret	ention relat	ed to feed [5	6]		
µr 1 0 4,4 2,6 Infer Rull 2: Pi 0,2 Rull 3: Pi 1,2 Rull 3: Pi 1,3 Rull 3: Pi	litel	Run 1 - pH / H	(un 2 - p	6,2 R	in 3 - pH 4,2	Run 4 - pH 3,2			test #	Due 1 a	1	2	Dum 2 mill/	3	4	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	рн	1,1		0,8 centrati	4,4 on feed (ma	2,0			nter	Kun I - p	77 Kur	6 PH 0,2	Kun 3 - pH 4	1.4 K	un 4 - pH 3,2	
Carl I I </td <td>tost #</td> <td>1</td> <td>bye coi</td> <td>2</td> <td>on reeu (ing ג</td> <td></td> <td>Row</td> <td></td> <td>рп</td> <td>1</td> <td>9.37</td> <td>15 59</td> <td>7</td> <td>+,4 7/</td> <td>2,0 6 31</td>	tost #	1	bye coi	2	on reeu (ing ג		Row		рп	1	9.37	15 59	7	+,4 7/	2,0 6 31	
15 16 16 16 16 16 16 16 16 16 16 16 16 16 17 16 17 16 17 17 16 17 16 17 18 11 2 3 4 18 11 2 3 4 11 11 11 11 11 11	0	630		635	620	618			19	5 1	6.40	13,35			0,51	
30 628 623 616 612 3 44 14,92 1	15	634					1		30) 1	5,92	14,13	8	44	6,05	
45 630 Image: constraint or constitue (mg/l) Ava. 17,23 14,86 8,09 6,18 Ava. 631 629 618 615 St. Div. 1,86 1,04 0,49 0,19 test # 1 2 3 4 Culum test # 1 2 3 4 0 720 701 671 652 0 29,44 23,54 14,75 11,20 30 700 686 663 6645 66 30 24,57 22,01 14,93 10,85 45 700 Image: constration concentrate (mg/l) Image: constration concentrate (mg/l) Kas. 26,70 22,77 14,84 11,02 0 720 663 6654 Culum Kest # 1 2 3 4 1 2 3 4 Culum Fest # 1 2 3 4 15 716 Image: Constration concentrate (mg/l) Fe	30	628		623	616	612	3		4	5 14	4,92	,			-,	
Ava.663162961861551. Div.1.861.040.090.19U concentration crossflow [ng/]test #1234Culumtest #123407006706706653 <th< td=""><td>45</td><td>630</td><td></td><td></td><td></td><td></td><td>1</td><td></td><td>Ava.</td><td>1</td><td>7,23</td><td>14,86</td><td>8</td><td>09</td><td>6,18</td></th<>	45	630					1		Ava.	1	7,23	14,86	8	09	6,18	
Vectoreditation (Vector) (Vec	Ava.	631		629	618	615			St. Div.	:	1,86	1,04	0	49	0,19	
test #1234Culumtest #12340700671652029,4423,5414,7511,201571706636636451526,080003070066666636644523,430000Ava.7096696676494523,430000Vy concentration concentrate (my/l)5t. Dev.2,491,080,130,24107206696666541412341412341412341412341412341412341412341412341412341412341412341412341412341412341313,5013,5		Dy	e conce	ntration	crossflow [I	ng/l]				PEG 4	00 retent	ion related	to cross-flov	/ [%]		
072070167165270029,4423,5414,7511,2015717 <td< td=""><td>test #</td><td>1</td><td></td><td>2</td><td>3</td><td>4</td><td>Culum</td><td></td><td>test #</td><td></td><td>1</td><td>2</td><td></td><td>3</td><td>4</td></td<>	test #	1		2	3	4	Culum		test #		1	2		3	4	
15 717 Image: constraint of the section of the se	0	720		701	671	652	-		(2	9,44	23,54	14	75	11,20	
su ruu bbb bbb bbb bbb bbb 30 24,57 22,01 14,93 10,85 45 700 0 0 0 0 645 030 24,57 22,01 14,93 10,85 4va. 709 694 667 649 Ava. 26,70 22,77 14,84 11,02 test # 1 2 3 4 Culum St. Dev. 2,49 0,13 0,13 0,24 0 720 693 666 6654 Fest # 1 2 3 4 0 705 669 6654 12 Old ava. 83,28 86,49 86,64 86,01 45 705 1 666 654 12 Old ava. 83,28 86,49 86,64 86,01 45 705 1 666 654 12 New ava. 16,72 13,51 13,36 13,99	15	717							19	2	6,08					
4-3700694667649474.23,43666674Ava.709694667669Ava.26,7022,7714,8411,02test #1234Culun5t. Dev.2,491,080,130,2407206936686654 4 1234661571600666654 765 148,128,1230705669663654120ld ava.83,2888,64986,6488,014570500666654140ld ava.83,2888,493,4173,06345705006666541416,7213,5113,3613,99Ava.7126916666541416,7213,5113,3613,99test #1234Culun0ld ava.87,5387,4588,2983,060508536577579 79 74 901,1510,4814,461553600666654121211,1510,4814,46165365765769900111217133554556577 79 74 $86,60$ $88,54$ $89,40$ 1853600 74 74 <t< td=""><td>30</td><td>700</td><td></td><td>686</td><td>663</td><td>645</td><td>- °</td><td></td><td>30</td><td>24</td><td>4,57</td><td>22,01</td><td>14</td><td>93</td><td>10,85</td></t<>	30	700		686	663	645	- °		30	24	4,57	22,01	14	93	10,85	
Ava. State Ava. Ava. <td>45</td> <td>700</td> <td></td> <td>694</td> <td>667</td> <td>640</td> <td>-</td> <td></td> <td>4</td> <td>2</td> <td>5,43 6 70</td> <td>22 22</td> <td>1.4</td> <td>21</td> <td>11.02</td>	45	700		694	667	640	-		4	2	5,43 6 70	22 22	1.4	21	11.02	
Image: construction of the prime of the prima of the prime of the prime of the prime of the prime o	Avd.	703 Dve	concer	tration	oncentrate	049 [mø/]	1		St. Dev		2.49	1 09	14	12	0.24	
0 720 693 668 654 15 716 30 705 689 663 654	test #	1		2	3	4	Culum	1	ou bevi		First ex	periment (sept. '14)		0,24	
15 716 mpl 8,093 8,11 8,12 8,12 30 705 669 663 654 12 Old ava. 83,28 86,49 86,64 86,01 45 705 New ava. 16,72 13,51 13,36 13,99 Ava. 712 691 666 654 pH 8,14 4,334 3,417 3,063 test # 1 2 3 4 Culum Old ava. 87,53 87,45 88,29 83,06 0 508 536 572 579 New ava. 12,47 11,15 10,48 14,46 15 530 757 88,54 89,40 12 30 528 535 564 575 9 New ava. 12,47 11,15 10,48 14,40 45 536 0ld ava. 86,60 88,54 89,40 12,40 <td>0</td> <td>720</td> <td></td> <td>693</td> <td>668</td> <td>654</td> <td></td> <td>1</td> <td>test #</td> <td></td> <td>1</td> <td>2</td> <td> ,</td> <td>3</td> <td>4</td>	0	720		693	668	654		1	test #		1	2	,	3	4	
30 705 689 663 654 12 Old ava. 83,28 86,49 86,64 86,01 45 705 New ava. 16,72 13,51 13,36 13,99 Ava. 712 691 666 654 test # 5 6 7 8 test # 1 2 3 4 Culum Old ava. 87,53 87,45 88,29 83,06 0 508 536 572 579 New ava. 12,47 11,15 10,48 14,46 15 530 12 12 12 12 12 12 12 12 13 14,46 <t< td=""><td>15</td><td>716</td><td></td><td></td><td></td><td></td><td>1</td><td></td><td>рН</td><td>8</td><td>3,093</td><td>8,11</td><td>8</td><td>,12</td><td>8,12</td></t<>	15	716					1		рН	8	3,093	8,11	8	,12	8,12	
45 705 Image: Marcine	30	705		689	663	654	12		Old ava.	8	3,28	86,49	86	64	86,01	
Ava. 712 691 666 654 test # 5 6 7 88 UP concentration permeate [mg/l] pH 8,14 4,334 3,417 3,063 test # 1 2 3 4 Culum Old ava. 87,53 887,45 88,29 83,063 0 508 536 572 579 New ava. 12,47 11,15 10,48 14,46 15 530 0 0 665 9 PH 8,99 0.11 10,48 14,46 15 530 0 0 0 10 11,2 11,15 10,48 14,46 16 536 556 557 9 PH 3,9 4,067 4,14 17 7 7 7 7 11,15 10,48 14,46 16 7 9 PH 3,9 4,067 4,14 11,25 11,25 11,25 11,25	45	705							New ava.	1	6,72	13,51	13	36	13,99	
by concentration pH 8,14 4,334 3,467 3,663 test # 1 2 3 4 01 010 ava. 87,53 87,45 88,29 88,20 10,20	Ava.	712	712 691			654			test #		5	6		7	8	
test # 1 2 3 4 Old ava. 87,53 87,45 88,29 83,06 0 508 536 572 579 New ava. 12,47 11,15 10,48 14,46 15 530 <i>test #</i> 9 01 11 10,48 14,46 30 528 535 564 575 9 PH 3,9 4,067 4,14 0 45 536 01d ava. 86,60 88,54 89,40 Ava. 526 536 568 577 New ava. 13,40 11,46 10,60		Dy	e conce	ntration	permeate [mg/l]	_		рН		8,14	4,334	3,	417	3,063	
0 508 536 572 579 15 530 11,15 10,48 14,46 30 528 535 564 575 9 PH 3,9 4,067 4,14 45 536 01 dava. 86,60 88,54 89,40 Ava. 526 536 568 577 New ava. 13,40 11,46 10,60	test #	1		2	3	4	Culum		Old ava.	8	7,53	87,45	88	29	83,06	
15 530 1 11 12 30 528 535 564 575 9 pH 3,9 4,067 4,14 12 45 536 0 0 0 0 0 0 0 11 12 Ava. 526 536 568 577 9 pH 3,9 4,067 4,14 0	0	508		536	572	579	4		New ava.	1:	2,47	11,15	10	48	14,46	
30 320 330 304 373 9 PH 3,9 4,007 4,14 45 536 Old ava. 86,60 88,54 89,40 Ava. 526 536 568 577 New ava. 13,40 11,46 10,60	15	530		525	564	575	- <u> </u>		test #		20	10		11	12	
Ava. 526 536 568 577 New ava. 13,40 11,46 10,60	30	526		555	504	5/5			Old ava	0	5,9 6.60	4,00/	4 20	40		
	Ava.	526		536	568	577	1		New ava.	1	3,40	11,46	10	60		

Table 13: Processed data PEG 400 retention tests (2014-2015).

2.3 PEG 600

Experiment name		PEG 600	retention	*										
Installation			RINEW - c	eramic na		Juidoc								
Date			1 maart 20	016		willes								
Researchers			Ractyte, J;	Janse, B.J.		1						industrie	ewater	
Th #			0											_
Test #			0	12.05	12,25	12:40	42.40	12,40	14:20	14.50	16.00	4	5	
Time			11:50	12:05	12:25 Dr	12:40	13:10	15:40	14:20	14:50	16:00	10:50		
HCL supplement	•	[gr]	0	0	0	oces alte	124	0	62	0	57	0		0
nH ceramic filter		161	7 79	·		- V	64	63	14.20	16:00	2.91	3.14		-
priceronnenneen		u	1,15			Measurer	nents	0,0	11.20	10.00	2,51	0,21		
Sample time		[min]	0	15	30	45	0	30	0	30	0	30		0
	COD	[mgO/I]	1458	796	687	700	662	663	657	703	673	730		_
Feed	Conc.	[mg/l]												\neg
	pН	0	7,85	7,89	7,92	7,80	6,70	6,51	3,77	5,45	3,05	3,18		
	COD	[mgO/I]	459	770	785	795	758	766	761	785	758	808		
Cross-flow	Conc.	[mg/l]												
	pН	0	7,89	7,87	7,86	7,85	6,65	6,50	5,23	5,28	3,26	3,15		
	COD	[mgO/I]	0	247	479	547	554	545	566	588	590	634		
Permeate	Conc.	[mg/l]												
	pH	[]	7,83	7,73	7,92	7,88	6,77	6,50	6,1	5,56	4,68	3,26		
Concentration	COD	[mgO/I]	351	781	786	794	762	783	758	784	757	821		
Concentrate	Conc.	[mg/I]	7.01	7.00	7.00	7.04	6.57	6.50	5.00	5.04	2.20	2.10		
	pn	u	7,91	7,00	7,90	Plant d	0,57 ata	0,50	5,25	5,24	5,20	5,18		
Suply flow	EO1	[m³/h]	0.3	0.3	0.3	0.31	0.31	0.32	0.33	0.32	0.33	0.33		
Permetaat flow	FO2	[m³/h]	0.15	0.16	0.17	0.16	0.18	0.17	0.17	0.17	0.18	0.17		\neg
Concentrate flow	FQ3	[m³/h]	0,15	0,10	0,162	0,162	0,162	0,161	0,161	0,161	0.161	0,161		\neg
Pres. after filter	pT-04	[bar]	1,58	1,53	1,53	1,53	1,56	1,56	1,52	1,53	1,52	1,52		\neg
Pres. before filter	pT-05	[bar]	1,55	1,55	1,56	1,56	1,53	1,53	1,55	1,55	1,55	1,55		
Permetaat pres.	pT-06	[bar]	0,5	0,57	0,59	0,6	0,62	0,62	0,65	0,64	0,67	0,67		
Temp. Before filter	TT-01	[°C]	9,1	14,1	15,8	16,2	16,6	16,8	17	17,1	17,2	17,4		
Level CIP tank		[m]												
Feed pump	P-02	[Hz]	15	15	15	15	15	15	15	15	15	15	15	
Cross-flow pump	P-07	[Hz]	20	20	20	20	20	20	20	20	20	20	<u> </u>	
pH CIP tank	T-01	[pH]	7,79				6,4	6,3	14:20	16:00	2,91	3,14		
														_
						Note	S							
1. II 13:00 HCI	13899	-> 13775 -	+ NaOH (II	= 124 gr) ((possibly 1	3899 - 136	28 = 271 gr)						_
2. 111 14:00 HCI	13628	2 13500 + NAUH (III = 62 gr) (possibly 13628 - 13505 = 123 gr) > 13448 (IV = 57 gr) > look back in sustem measurement files for later HCl tank weight												-
5. IV 15:14 HCI	13505	-> 13448	(iv = 57 gi) =2 100k back in system measurement files for later null tank weight											-
I Permeate	Conc.	Under rar	e -> 1 m u	114 -> Conv	Under r	-> 725 mg/	r - 1450 mg	g/ 1						\neg
PEC 600 test	conc.	onacirai	ige > tek-	114 2 0010	onder n	ange – o n	·6/ ·	-						_
07-03-2016														
	Data pick-u	p PEG 600				Rete	ntion calculatio	n PEG 600		29-10-2 PEG 60	016 0 retention rela	ated to feed [%]		
test # 1 Titel Run 1 - nH 7.7	l Pup 2 - pH	2 6 3 Rup 3 - pH 5	3 4	Row	tect #	PEG 60	0 retention related	I to feed [%]	4	test #	1 Rup 1 - pk	2 Rup 2 - ph Rup 2 - u	3 4	120
pH 7,8	(5,4 5,	1 3,0		Titel R	tun 1 - pH 7,79	Run 2 - pH 6,3	Run 3 - pH 5,1	Run 4 - pH 3,0	pH	7,4	6,3 5,	1 3	,0
test #		2	3 4	Row	pin 15	/,8	6,4 16,31	5,1 13,85	3,0 12,33		15 32,63359 30 30,45977	24,23077 20,2783	3 12,60331	
15 796 30 687	6	62 65 63 70	673 3 730	3	30 45	30,28 21,86	17,80	16,36	13,15	Ava.	45 28,84615 30,6465	25,5049 18,9506	4 13,97098	
45 700 Ava. 728	6	63 68	0 702		Ava. St. Div.	26,07	17,06	15,10 1.77	12,74	St. Div. PEG 40	1,900609 Diretention rela	1,80189 1,87763 ated to cross-flow	7 1,934177 [%]	
PEG 600) concentratio	on crossflow [mg	3 4	Culum	test #	PEG 600	retention related to	cross-flow [%]		test #	15 45 01559	2 37 23917 28 9757	3 4	
15 770	7	58 76	1 758		15		26,91	25,62	22,16		30 42,74448	37,95276 30,2608	7 22,95082	
45 795		78	808	6	45	38,98 31,19	28,85	25,10	21,53	Ava.	45 41,26984 43,00997	37,59596 29,6180	7 23,04865	
Ava. 783 PEG 600	7 concentration	62 77 n concentrate [m	s 783 g/l]		Ava. St. Dev.	35,09 5,51	27,88 1,37	25,36 0,37	21,85 0,44	St. Dev	1,886927	0,504585 0,9090	6 0,138348	
test # 15 781	7	2 62 75	3 4 8 757	Culum	test #	Fi 1	rst experiment (se 2	pt. '14) 3	4		7,4 6.3	5,1	3	
30 786 45 704	7	83 78	4 821	12	pH Old ava	8,2	8,2	8,1	8,1	30,646	504 25,5049	18,95064 13,9709	8	
Ava. 787	7	73 77	1 789		New. Ava.	3,41	4,48	4,62	4,17	28,356	679 21,28047	17,02765 13,3563	7	
PEG 600 test #	concentratio	2 2	3 4	Culum	pH	5 8,1	6 3,2	7 3,5	8 3,6	3	6,24 5,97	2,72 0,8	<u> </u>	
15 247 30 479	5	54 56 45 58	6 590 8 634		Old ava. New. Ava.	93,58 6,42	95,40 4,60	94,04 5,96	92,72 7,28					
45 547 Ava. 424	5	50 57	7 612		test # pH	9 3,6	10	11	12					
					Old ava.	94,95								
					pH R	etention								
					8,2	96,06 94,93	0,76 1,19							
					3,5	94,28	1,18							

Table 14: Processed data PEG 600 retention tests (2014-2016).

2.4 PEG 1000

Experiment name			PEG 1000 retention										
Installation			RINEW - o	eramic na	- 5								
Date			3 maart 2	016	Ovides								
Researchers			Ractyte, J; Janse, B.J. industriewater										
Test #			0		1		2	2	3		4		5
Time	_		10:55	11:10	11:25	11:42	12:10	12:42	13:48	14:18	14:56	15:26	
					Pr	oces alter	ations						
HCI supplement		[ar]	0	0	0	0	110	0	185	0	119	0	0
pH ceramic filter		1		-	-	-	6.47	6.47	4.67	4.81	3.25	3.27	
					N	Neasurem	ents					- /	
Sample time		[min]	0	15	30	45	0	30	đ	30	0	30	0
Feed	COD	[maO/I]	726	624	620	680	667	631	824	673	692	675	
	Conc.	[ma/l]											
	pН	0	7,46	7,49	7,53	7,48	6,52	6,69	4,53	4,92	3,15	3,16	
	COD	[ma0/I]	855	866	844	865	841	853	902	862	864	885	
Cross-flow	Conc.	[ma/l]											
	pН	0	7,48	7,52	7,54	7,54	6,65	6,68	4,73	4,89	3,15	3,17	
	COD	[mg0/l]	203	326	369	414	448	407	627	449	508	504	1 1
Permeate	Conc.	[mg/l]											
	pН	[]	7,49	7,45	7,55	7,52	7,02	6,72	5,56	5,01	3,26	3,17	
	COD	[mg0/l]	848	859	843	862	877	843	878	870	868	889	1 1
Concentrate	Conc.	[mg/l]											1 1
	pН	[]	7,51	7,53	7,55	7,84	6,75	6,69	4,79	4,89	3,15	3,15	1
Plant data			1				Ш		Ш		IV		
			0	15	30	45	0	30	Ō	30	0	30	0
Suply flow	FQ1	[m³/h]	0,33	0,33	0,33	0,33	0,33	0,35	0,36	0,35	0,36	0,36	
Permetaat flow	FQ2	[m²/h]	0,17	0,18	0,17	0,17	0,17	0,17	0,19	0,2	0,19	0,19	
Concentrate flow	FQ3	[m²/h]	0,163	0,163	0,162	0,162	0,162	0,162	0,162	0,163	0,163	0,165	
Pres. after filter	pT-04	[bar]	1,55	1,55	1,54	1,55	1,55	1,54	1,54	1,53	1,53	1,53	
Pres. before filter	pT-05	[bar]	1,59	1,58	1,58	1,58	1,58	1,57	1,57	1,57	1,56	1,56	
Permetaat pres.	pT-06	[bar]	0,51	0,52	0,52	0,53	0,54	0,55	0,6	0,6	0,64	0,64	
Temp. Before filter	TT-01	[°C]	15,7	16,2	16,5	16,8	17,4	18,1	19,3	19,7	20,3	20,7	
Level CIP tank		[m]	0,8	0,79	0,79	0,78	0,78	0,77	0,76	0,76	0,76	0,75	
Feed pump	P-02	[Hz]	15	15	15	15	15	15	15	15	15	15	
Cross-flow pump	P-07	[Hz]	20	20	20	20	20	20	20	20	20	20	
pHCIP tank	T-01	(_P H)	7,43	7,38	7,42	7,4	6,4	6,59	4,38	4,84	3,1	3,13	
pH ceramic filter	QIA-01	(pH)					6,47	6,47	4,67	4,81	3,25	3,27	
						Notes							
1. II HCI 11:47	10890	- 10830											
2. II HCI 11:58	10830	- 10780		(= 1	110 gr) (po:	ssibly 1089	90 - 10796	= 94 gr)					
3. III HCI 12:49	10796 - 10684 -> pH 5,45												
4. III HCI 12:58	10723	- 10644 -	-> pH 5,21	(10695)									
	10701 - 10611 -> pH 4,38 (10656) (III = 185 gr) (possibly 10796 - 10656 = 140 gr)												
5. III HCI 13:24	10701-	- 10611 ->	<u>pH4,38(</u>	10656) (III :	= 185 gr) (p	ossibly 10	796 - 1065	56 = 140 g	r)				
5. III HCI 13:24 6. IV HCI 14:22	10701 - 10656 -	- 10611 -> - 10554 -	- pH 4,38 (-> pH 2,94	10656) (III : (10588)	= 185 gr) (p	ossibly 10	796 - 1065	56=14Ug	r)				
5. III HCI 13:24 6. IV HCI 14:22 7. IV HCI 14:30	10701 - 10656 10588	· 10611 -> - 10554 - - 10537	рН4,38(-> рН2,94	10656) (III : (10588) (IV =	= 185 gr) (p 119 gr) -> l	ossibly 10 look back	796 - 106: in system	neasuren	r) nent files fo	or later HC	l tank weig	iht	

							_				
PEG 1000 t	est										
07-03-	2016										
07 00											
		Data pick-up Pl	EG 1000					Ret	Retention calculation	Retention calculation PEG 1000	Retention calculation PEG 1000
test #		1 2	2 3	4	Row			PEG 1	PEG 1000 retention rela	PEG 1000 retention related to feed [%]	PEG 1000 retention related to feed [%]
Titel	Run 1 - pH 7,	4 Run 2 - pH 6,5	Run 3 - pH 4,7	Run 4 - pH 3,3		test #		1	1 2	1 2 3	1 2 3
рН	7	,4 6,5	4,7	3,3		Titel	F	Run 1 - pH 7,4	Run 1 - pH 7,4 Run 2 - pH 6,5	Run 1 - pH 7,4 Run 2 - pH 6,5 Run 3 - pH 4,7	Run 1 - pH 7,4 Run 2 - pH 6,5 Run 3 - pH 4,7 Run 4 - p
	PEG 1	000 concentratio	on feed [mg/l]			рН		7,4	7,4 6,5	7,4 6,5 4,7	7,4 6,5 4,7
test #		1 2	2 3	4	Row	1	5		32,83	32,83 23,91	32,83 23,91
	15 6	24 667	824	692		3	0	40,48	40,48 35,50	40,48 35,50 33,28	40,48 35,50 33,28
	30 6	20 631	673	675	3	4	5	39,12	39,12	39,12	39,12
	45 6	30			Ĭ	Ava.		39,80	39,80 34,17	39,80 34,17 28,60	39,80 34,17 28,60
Ava.	6	1 649	749	684		St. Div.	0,	97	97 1,88	97 1,88 6,63	97 1,88 6,63
	PEG 100	0 concentration	crossflow [mg/	1			PEG 10	00	00 retention related	00 retention related to cross-flow [%]	00 retention related to cross-flow [%]
test #		1 2	2 3	4	Culum	test #		1	1 2	1 2 3	1 2 3
	15 8	56 841	902	864		1	5		46,73	46,73 30,49	46,73 30,49
	30 8	14 853	862	885	6	3	0 56,2	8	8 52,29	8 52,29 47,91	B 52,29 47,91
	45 8	55			_	4	5 52,14	4	4	4	4
Ava.	8	58 847	882	875		Ava.	54,2	1	1 49,51	1 49,51 39,20	1 49,51 39,20
	PEG 1000	concentration o	oncentrate [m	[/I]		St. Dev.	2,93	8	3,93	3 3,93 12,32	3 3,93 12,32
test #		1 2	2 3	4	Culum						
	15 8	59 877	878	868							
-	30 8	13 843	870	889	12						
	45 8	52									
Ava.	8	5 860	874	879							
	PEG 100	0 concentration	permeate [mg/	1]							
test #		1 2	2 3	4	Culum						
	15 3	26 448	627	508	-						
	30 3	59 407	449	504	9						
	45 4	14	-		-						
Ava.	3	70 428	538	506							

Table 15: Processed data PEG 1000 retention test (2016).

Appendix IV – Operational filtration cycle analysis

1. Chemical analyses

Data sheet regarding the measured concentrations of specific chemical compounds present in wastewater samples.

				20-apr			22-apr			25-apr						26-apr	
				15:00			13:30			12:20							
			1		Avg.	1	-	Avg.	1		Avg.	1		Avg.	1		Avg.
	Influent	[mg/l]	71,8	60,6	66,2	40,2	42,5	41,35	81,3	81,6	81,45						
COD	Permeate	[mg/l]	51,5	48,5	50,0	36,6	36	36,3	65,2	67,9	66,55						
COD	CF	[mg/l]	96,9	99,9	98,4	59,4	66,4	62,9	139	137	138						
	Concentrate	[mg/l]	112,0	97,7	104,85	67,9	64,3	66,1	133	133	133						
		_	1		Avg.	1	-	Avg.	1	-	Avg.	1		Avg.	1	1	Avg.
	Influent	[mg/l]	1	0,971	0,986	0,268	0,3	0,284									
T . I D	Permeate	[mg/l]	0,398	0,253	0,326	0,013	0,015	0,014									
Total-P	CF	[mg/l]	3,210	3,230	3,220	1,36	1,39	1,375									
	Concentrate	[mg/l]	3,550	3,340	3,445	1,45	1,38	1,415									
			I		Avg.	1	I	Avg.	1		Avg.	1		Avg.	1		Avg.
	Influent	[mg/l]	11,4	10,8	11,1	10,1	10,1	10,1									
T-s-I N	Permeate	[mg/l]	11,1	10,4	10,8	10,8	10,3	10,6									
TULAITI	CF	[mg/l]	13,2	13,4	13,3	11,8	12,0	11,9									
	Concentrate	[mg/l]	12,6	12,4	12,5	12,4	12,3	12,4									
					Avg.		=	Avg.	1	-	Avg.			Avg.	1		Avg.
	Influent	[mg/l]	1,660		1,660				1,83	1,78	1,805						
Fo	Permeate	[mg/l]	0,297		0,297				0,732	0,702	0,717						
re	CF	[mg/l]							3,87	3,84	3,855						
	Concentrate	[mg/l]							4,02	3,96	3,99						
				=	Avg.	-	=	Avg.		=	Avg.		=	Avg.		=	Avg.
	Influent	[mg/l]	109	104	106,5	73,5	69,6	71,55									
504	Permeate	[mg/l]	104	103	103,5	69,3	68,6	68,95									
504	CF	[mg/l]	118	121	119,5	92	85,2	88,6									
	Concentrate	[mg/l]	129	123	126,0	90,7	88,6	89,65									
			1		Avg.	1	-	Avg.	1	- 1	Avg.	1	- 1	Avg.	1	-	Avg.
	Influent	[mg/l]	0,079	0,091	0,085	0,05	0,046	0,048	0,462	0,422	0,442						
PO4-P	Permeate	[mg/l]	0,015	0,017	0,016	0,018	0,015	0,017	0	0	0						
1041	CF	[mg/l]	0,329	0,355	0,342	0,191	0,195	0,193	1,77	1,77	1,77						
	Concentrate	[mg/l]	0,356	0,366	0,361	0,2	0,193	0,197	1,76	1,74	1,75						
					Avg.	- 1	I	Avg.		I	Avg.			Avg.	1		Avg.
	Influent	[mg/l]															
Ma	Permeate	[mg/l]	5,18	5,18	5,18	5,12	5,28	5,2									
	CF	[mg/l]	5,18	5,18	5,18	5,27	5,09	5,18									
	Concentrate	[mg/l]															
					Avg.			Avg.			Avg.			Avg.	1		Avg.
	Influent	[mg/l]	12,7	12,4	12,6	11,0	11,3	11,2	19,6	19,7	19,65						
NH4	Permeate	[mg/l]	12,4	13,0	12,7	11,8	11,5	11,7	19,8	20	19,9						
	CF	[mg/l]	12,3	12,5	12,4	12,1	11,9	12,0	21,4	21,8	21,6						
	Concentrate	[mg/l]	12,4	12,6	12,5	11,8	11,7	11,8	21	20,8	20,9						
					Avg.			Avg.			Avg.			Avg.			Avg.
	Influent	[mg/l]	9,58	9,64	9,61	8,55	8,81	8,68	15,2	15,3	15,25						
NH4-N	Permeate	[mg/l]	9,62	10,10	9,86	9,13	8,93	9,03	15,4	15,6	15,5						
	CF	[mg/l]	9,55	9,68	9,62	9,44	9,24	9,34	16,6	17	16,8						
	Concentrate	[mg/l]	9,61	9,80	9,71	9,2	9,09	9,15	16,3	16,2	16,25						

Table 16: Nutrient concentrations at specific sample locations during continuous operational procedures (2016).

2. Energy consumption

Energy consumption measured (t = 1 minute) during each filtration cycle while utilizing cMF membranes for municipal wastewater filtration procedures, as shown in figure 20. The consumption of energy during operational filtration cycles was mainly related to automatic pump frequency adjustments.

Energy consumption per filtration cycle (kWh)

Figure 20: Energy consumption per filtration cycle while utilizing cMF membranes (kWh).

3. Chemical consumption

Chemical consumption measured during the operational filtration cycle analyses, including previously conducted measurements during the employment of the cNF membranes (Hoek, 2016).

	cN	ЛF		cNF						
Date	NaOH (g)	HCI (g)	NaOCI (g)	Date	NaOH (g)	HCI (g)	NaOCI (g)			
21-04-2016	3576	2759	117	17-07-2015	3243	2340	145			
25-04-2016	3292	2517	156	21-07-2015	3131	1532	145			
25-04-2016	3203	2516	101	30-07-2015	2604	1548	111			
29-04-2016	3212	2505	151	02-08-2015	3830	2096	100			
Average	3321 ± 175	2574 ± 123	131 ± 27	Average	3202 ± 436	1879 ± 350	125 ± 20			

Table 17: Measured chemical consumption of the CIP procedures during the utilization of the cNF and cMF membranes.

4. Filtration cycle analysis

Flux and TMP values measured during the employment of cNF and cMF membranes during specific periods of experimental operational research regarding the filtration of municipal wastewater, as shown in figure 21 and 22.

Figure 21: Measured flux and TMP during continuous municipal wastewater filtration procedures from the 29th of January to the 14th of August 2015 while utilizing cNF membranes.

Flux-TMP (20 apr -7 may 2016)

Figure 22: Measured flux and TMP during continuous municipal wastewater filtration procedures from the 20th of April to the 7th of May 2016 while utilizing cMF membranes.

cNF membrane permeability during a specific period of experimental operational research regarding the filtration of municipal wastewater, as shown in figure 23.

Figure 23: Measured flux and membrane permeability during continuous municipal wastewater filtration procedures from the 29th of January to the 14th of August 2015 while utilizing cNF membranes.

Appendix V – Visual observations

1. Membrane degradation

Figure 24: Damaged top and support layers of a cNF membrane utilized in operational municipal wastewater treatment procedures (2016).

2. Membrane unit

Figure 25: The membrane unit containing the cNF membranes before replacing them with the cMF membranes (2016).

Figure 26: The membrane unit containing the new cMF membranes (2016).