NEXT GENERATION SEQUENCING ON BACTERIAL 16S GENE

1. Extract DNA

UltraClean Microbial DNA Isolation Kit

Reagents	Storage	Volume/sample
MicroBead tubes	room	-
MicroBead solution	room	300µL
MD1	room	50µL
MD2	room	100µL
MD3	room	450µL
MD4	room	300µL
MD5	room	35µL

- 1. 300µL MicroBead solution is added to the MicroBead tubes.
- 2. Bacteria samples are collceted:

Gram negatives: half of a 10µL loop Gram positives: a full 10µL loop

- 3. Bacteria samples are suspended in the MicroBead tubes.
- 4. 50µL MD1 is added to the samples.
 5. Samples are vortexed on a Vortex Adaptor at 5000Hz for 3x 30sec and spinned at max. rpm for 30 sec.
- → 5. Collection tubes are prepared with 100µL MD2.
 - 6. Supernatant (~200uL) is transferred from the MicroBead tubes to the new collection tubes with the MD2 solution.

 - Samples are mixed gently.
 Samples are put at 4 oC for 15-30 min.
 Samples are spinned at max. rpm for 1 min.
- → 10. Collection tubes are prepared with 450µL MD3.
- 11. 200µL supernatant is transferred to the new collection tubes with the MD3 solution.
- 12. Samples are mixed gently.
- → 13. 650µL supernatant is transferred into the spin filters.
- 14. Samples are spinned at max. rpm for 30sec.
- → 15 Filters are transferred into a new collection tube
- 16. 300µL **MD4** is dispensed on the filters.
- 17. Samples are spinned at max. rpm for 30sec.

 → 18. Filters are transferred into a new collection tube.
- 19. Samples are spinned at max. rpm for 1 min.
 → 20. Filters are transferred into a newcollection tube.
- 21. 35 μ L MD5 is dispensed on the spin filters. 22. Samples are incubated at room temperature for 2 min.
- 23. Samples are spinned at max. rpm for 1 min.
- 24. Filter is removed.

2.

→ 25. Supernatant is stored at -20 oC.

			_
Magazira	DALA	tration	

Reagents	Storage	Volume/sample
Nuclease-free Water	room	2µL

Additional components	Volume
DNA	1µL

- 1. Contact point is cleaned with a tissue.
- 2. "Measure nucleic acid" option is chosen for Nanodrop.
 3. 2µL Nuclease-free Water is put on the contact point to measure blank.
- 4. Contact point is cleaned with a tissue.
- 5. 1µL of the DNA are put on the contact point to measure samples

3.	Amplify 16S	PCR	1μL → 50μL		
	Ion16S Metagenomics Kit	Reagents	Color	Storage	Volume/sample
		DNA dilution buffer	transparent	2 ~ 8	18µL
		16S Primer Set V2-4-8		-25 ~ -15	5µL
		16S Primer Set V3-6-7-9		-25 ~ -15	5µL
		Negative Control Water	white	2 ~ -8	19µL
		E.coli DNA control		-25 ~ -15	2µL
		Additional components	Color	Storage	Volume/sample
		Amplitaq Gold		-25 ~ -15	25μL
		DNA · 2 E Eng/ul			111

- → 1. DNA is diluted with Nuclease-free water to the concentration of 2,5-5ng/µL.
 → 2. E.coli DNA control is diluted 1:10 2µL E.coli DNA control is dissolved in 18µL DNA Dilution Buffer.
- → 3. For each sample 2 PCR tubes are prepeared: one tube for the 16S Primer Set V2-4-8 and an other tube for the 16S Primer Set V3-6-9 reagents:

-0	and an other tube for the 100 i liller	oet vo-o-a reagenta.
	Component	Volume
	Negative Control Water	19µL
	16S Primer Set (V2-4-8 / V3-6-7-9)	5µL
	Amplitaq Gold	25μL
	DNA (dilutedsample/diluted control)	1µL
		Σ50μL

4. Tubes are placed in the PCR and the following program is runned:

Cit and the following	g program is runneu.		
	Stage	Temperature	Time
	Holding	95 oC	10 min
	Cycling	95 oC	30 sec
18 cycles		58 oC	30 sec
´		72 oC	20 sec
	Holding	72 oC	7 min
	Holding	4 oC	00
			Σ /11 min

4.	Purification for 16S	Magnetic rack	2x50µL → 20µL

Reagents	Storage	Volume/sample
Agencourt AM Pure XP*	fridge	72µL
Ethanol**	fridge	600µL
Nuclease-free Water	room	15µL

^{*}Agencourt AM Pure XP reagent is warmed up for room temperature before the purification process.

**70% Ethanol is prepared: 600µL/sample.

Additional components	Storage	Volume/sample
Nuclease-free Water	-25 ~ -15	15µL
DNA	-	20+20µL

- 1.The primer sets of each sample are combined in a 1,5mL tube: 20μL 16S Primer Set V2-4-8 and 20μL 16S Primer Set V3-6-7-9.
 2. 72μL (1.8x of the sample volume) Agencourt AM Pure XP Reagent is added.

 - 3. Samples are vortexed and spinned briefly.
 - Samples are incubated at room temperature for 5 min.
 Samples are placed at a magnetic rack for 3 min.
- 6. Supernatant is removed by a 200μL pipette without disturbing the magnetic beads.
 7. 300μL 70% ethanol is added to the samples tubes are turned on the magnetic rack.

- 8. Supernatant is removed by a 1000µL pipette without disturbing the magnetic beads.
 9. samples are spinned, placed back on the magnetic rack and the residual supernatant is removed by a 20µL pipette.

 - 10. Samples are air-dried for 4 min.
 11. Samples are removed from the magnetic rack and 15µL **Nuclease-free Water** is added.
 - 12. Samples are vortexed for 5-10 sec, spinned briefly and placed back to the magnetic rack for 1 min.
 - → 13. Supernatant is removed by 20µL pipette without taking any magnetic beads and placed in a 1,5 mL tube.

5.	Measure DNA concentration	Qubit 2.0 Fluorometer	20μL → 18μL	
	Qubit dsDNA HS Assay Kits	Reagents	Storage	Volume/sample
		Qubit dsDNA HS Reagent	-25 ~30	1µL
		Qubit dsDNA HS Buffer	-25 ~30	199µL
		Qubit dsDNA HS Standard 1	-25 ~8	10μL
		Qubit dsDNA HS Standard 2	-25 ~8	10μL
		Additional components	Storage	Volume/sample
		DNA	-	2µL

- → 1. Qubit working solution is prepared by diluting Qubit dsDNA HS Reagent with Qubit dsDNA Buffer in a ratio of 1(reagent): 200(buffer) 200µL working solution/sample.
- → 2. Qubit tubes are prepared for 2 standards and for the samples:

Standards: 190µL Qubit working solution + 10µL Qubit dsDNA HS Standard1/2 Samples: 198µL Qubit working solution + 2µL DNA sample.

- 3. Tubes are vortexed and spinned briefly.
- Tubes are incubated at room temperature for 2 min.
 Tubes are placed in the Qubit 2.0 Fluorometer in the following order: Standard 1 Standard 2 Samples.
- 6. Concentration of the original samples are calculated since here diluted samples were measured results are multiplied by 100.

6.	End repair	2-7μL → 100μL			
	lon Plus Fragment Library Kit	Reagents	Color	Storage	Volume/sample
		5X End Repair Buffer		-30 ~ -10	20μL
		End Repair Enzyme		-30 ~ -10	1µL
		Additional components	Storage	Volume/sample	
		Nuclease-free Water	room	to 79µL	
		DNA: 10-100ng	-	~2-7µL	

1. Dilute the DNA with Nuclease-free Water in a way that the solution's volume is 79μL and contains 10-100 ng DNA.
 2. The following components are added to the diluted DNA:

Component Volume 5X End Repair Buffer 20µL End Repair Enzyme Σ 100μL

3. Sample is mixed and spinned briefly.

4. Sample is incubated at room temperature for 20 min.

7	Purification for 16S	Magnetic rack	2v50ul - 20ul
٠.	rumication for 103	Magnetic rack	2λ50μΕ → 20μΕ

Reagents	Storage	Volume/sample
Agencourt AM Pure XP*	5	72µL
Ethanol**	5	1000μL
Nuclease-free Water	room	15µL

^{*}Agencourt AM Pure XP reagent is warmed up for room temperature before the purification process.

^{**70%} Ethanol is prepared: 1000µL/sample.

Additional components	Color	Storage	Volume/sample
Low TE*	transparent	-30 ~ -10	25µL
DNA	-	-	20+20µL

* From Ion Plus Fragment Library Kit.

- 1. $180\mu L$ (1,8 X of the sample volume) **Agencourt AM Pure XP Reagent** is added to the samples.
- 2. Samples are vortexed and spinned briefly.
- 3. Samples are incubated at room temperature for 5 min.

- 3. Samples are placed at a magnetic rack for 3 min.
 4. Samples are placed at a magnetic rack for 3 min.
 5. Supernatant is removed by a 1000µL pipette without disturbing the magnetic beads.
 6. 500µL 70% ethanol is added to the samples tubes are turned on the magnetic rack.
 7. Supernatant is removed by a 1000µL pipette without disturbing the magnetic beads.
 8. Samples are spinned, placed back on the magnetic rack and the residual supernatant is removed by a 20µL pipette.
- 9. Samples are air-dried for 4 min.
- 10. Samples are removed from the magnetic rack and 25µL Low TE is added.
- 11. Samples are vortexed for 5-10 sec, spinned briefly and placed back to the magnetic rack for 1 min.

 → 12. Supernatant (23-25μL) is removed by a 100μL pipette without taking any magnetic beads and placed in a 200μL PCR tube.

_					
8.	Ligation / Library preparation	PCR	25μL → 100μL		
lon)	 Opress Barcode Adapters 1-16 Kit	Reagents	Color	Storage	Volume/sample
10117		Ion P1 Adapter	 	-30 ~ -10	2µL
		Ion Xpress Barcode*	white	-30 ~ -10	2μL
		* For each sample different barcode.			
	Ion Plus Fragment Library Kit	Reagents	Color	Storage	Volume/sample
	,	10X Ligase buffer		-30 ~ -10	10μL
		dNTP Mix		-30 ~ -10	2μL
		DNA ligase		-30 ~ -10	2µL
		Nick Repair Polymerase	transparent	-30 ~ -10	8µL
		Additional components	Color	Storage	Volume/sample
		Nuclease-free Water	white	-16	49µL
		DNA	-	-	25µL

- 1.Nuclease-free water is added to the DNA to have a volume of $25\mu L$.
- 2. The reagents are added to the DNA in the following order:

Component	Volume
10X Ligase buffer	10μL
Ion P1 Adapter	2μL
Ion Xpress Barcodes	2μL
dNTP Mix	2μL
Nuclease-free Water	49μL
DNA Ligase	2μL
Nick Repair Polymerase	8μL
	Σ 100μL

- Samples are vortexed and spinned briefly.
 Tubes are placed in the PCR and the following program is runned:

Stage	Temperature	Time
Hold	25 oC	15 min
Hold	72 oC	5 min
Hold	4 oC	00
		Σ 20 min

ightarrow 5. Samples are transferred into a 1,5 mL tube

9.

Purification fof the library

Magnetic rack

 $100\mu L \rightarrow 20\mu L$

Reagents	Storage	Volume/sample
Agencourt AM Pure XP*	8	140µL
Ethanol**	5	1000μL
Nuclease-free Water	room	15µL

*Agencourt AM Pure XP reagent is warmed up for room temperature before the purification process.

**70% Ethanol is prepared: 1000µL/sample.

Additional components	Color	Storage	Volume/sample
Low TE*	transparent	-30 ~ -10	20µL
DNA	-	-	100µL

^{*} From Ion Plus Fragment Library Kit.

- 1. 140µL (1.4x of the sample volume) Agencourt AM Pure XP Reagent is added to the samples.
- 2. Samples are vortexed and spinned briefly.3. Samples are incubated at room temperature for 5 min.

- 4. Samples are placed at a magnetic rack for 3 min.
 5. Supernatant is removed by a 1000µL pipette without disturbing the magnetic beads.
 6. 500µL 70% ethanol is added to the samples tubes are turned on the magnetic rack.
- 7. Supernatant is removed by a 1000µL pipette without disturbing the magnetic beads.

 8. Samples are spinned, placed back on the magnetic rack and the residual supernatant is removed by a 20µL pipette.
- 9. Samples are air-dried for 4 min.
 10. Samples are removed from the magnetic rack and 20µL **Low TE** is added.
- 11. Samples are vortexed for 5-10 sec, spinned briefly and placed back to the magnetic rack for 1 min.

 12. Supernatant is removed by a 20μL pipette and transferred into a 1,5 mL tube.

10.	

Determination of Library concentration

20µL → 18µL

	1		
Ion	Universal	Library Quantitation Kit	

Reagents	Color	Storage	Volume/standard
E.coli DH10B Control Library		-15 ~ -25 oC	5µL
TaqMan Fast Universal PCR Master Mix		2-8 oC	10μL
Ion Library TaqMan Quantitation Assay, 20X		-15 ~-25 oC	1µL

qPCR

Additional components	Storage	Volume/sample
Nuclease-free Water	room	45/18µL
DNA	-	2uL

Serial dilution of E.coli Control Library

- E.coli DH10B Control Library is vortexed and spinned briefly.
- 2. Serial dilutions are prepared in 4 dilutions

Ш	utions for 2 standard series:	DNA				
	Dilutions	Standard - E.coli	Nuclease-free Water	Dilution factor	Concentration	
	1*	5μL from Control L.	45µL	1:10	6,8 pM	
	2*	5µL Dilution 1	45µL	1:100	0,68 pM	
	3*	5µL Dilution 2	45µL	1:1000	0,068 pM	
	4*	5µL Dilution 3	45µL	1:10000	0,0068 pM	
	*Mixed before aliquots are taken for the next dilut	ion.				

Serial dilution of the samples 1. Serial dilutions are prepared from the samples:

	DNA		
Dilutions	Sample	N-free Water	Dilution factor
1*	2µL	18µL	1:10
2*	5µL Dilution 1	45µL	1:100
3*	5µL Dilution 2	45µL	1:1000
4*	5µL Dilution 3	45μL	1:10000
*Mixed before aliquots are taken for t	he next dilution.		

These dilutions will be used for the qPCR

Preparation of 96 well tubes for qPCR

1. 15 μL/sampel Reaction mix is prepared in a DNA-free chamber:

Component	Volume/sample or standard
TaqMan Fast Universal PCR Master Mix	10μL
Ion Library TaqMan Quantitation Assay, 20X	1μL
Nuclease-free Water	4μL
	Σ 15ul

- 2. Reaction mix is briefly vortexed and spinned.
 3. 15µL reaction mix is pipetted to the 96 well plates for the reaction of the standards (8) for the blanks (2) and for the samples.
- 4. The following are added to the 96 well plate:
 - 5µL of Nuclease-free Water is added to the blank tubes
- 5µL of the standard dilutions (4 dilutions/standard) to the satndard tubes
- $5\mu L$ of the sample dilution (2 dilutions/sample) to the sample tubes

Standards and the sampes are placed in the following way into the 96 well plate: 5. 96 plate is sealed and spinned.

	A	В	С	D	E	F
1	Blank -a	Blank -b		Sample 1 (Dilution 3)	Sample 2 (Dilution 3)	
2	Standard 1 -a	Standard 1 -b		Sample 1 (Dilution 4)	Sample 2 (Dilution 4)	
3	Standard 2 -a	Standard 2 -b				
4	Standard 3 -a	Standard 3 -b				
5	Standard 4 -a	Standard 4 -b				

qPCR

1. qPCR is programmed in the following way

E.coli library sandard's concentrations are entered: 6.8 pM, 0.68 pM, 0.068 pM, 0.0068 pM.

Passive reference dye: ROX Reference Dye TaqMan probe reporter/quencher: FAM dye/MGB

Reaction volume: 20µL

2. The following program is

runnea:	Stage	remperature	ime
	Hold optional	50 oC	2 min
	Hold optional	95 oC	20 sec
40 cycles	Cycle	95 oC	1sec
		60 oC	20 sec
· · · · · · · · · · · · · · · · · · ·	Hold optional	50 oC	2 min
	Hold optional	95 oC	20 sec
40 cycles	Cycle	95 oC	3 sec
		60 oC	30 sec

- 1. From the Ct values and the standards' concentrations the undiluted samples concentration is calculated.
 2. Dilution factor of thew samples is calculated for 10 pM/L.

11. Addition of ISPs Ion One Touch 2 Ion PGM Template OT2 Supplies 400 Storage Instrument Amount per run Reagent Tubes room Recovery Router Recovery Tubes room Amplification Plate room Sipper Tubes Cleaning Adaptor room Ion PGM Template OT2 Solutions 400 Reagents Storage Volume needed Placed on Ion One Touch Oil (450 mL size) room 1/2 of Reagent Tube 1/4 of Reagent tube Recovery Solution room room PCR Reagent B 285 µL room room Reaction Oil (27-mL size) room Wash Solution room 500 uL room

lon l	DCM.	Tomplato	OT2	Doggonte	400

Reagents	Color	Storage	Volume needed	Placed on
Reagent Mix		-30 ~ -10 oC	500 μL	room
Enzyme Mix		-30 ~ -10 oC	50 μL	ice
Ion Sphere Particles		-30 ~ -10 oC	100 μL	room
Reagent X	white	-30 ~ -10 oC	40 μL	ice

Instrument	Amount per run
Reaction Filter Assembly	1

Initialization of the machine

- 1. Install 2 Reagent tube: for Oil 1/2 full tube, for Recovery Solution 1/4 full tube.
- 2. New recovery tubes and the recovery router is installed.
- 3. New amplification plate is inserted syringe is guided into the centrifuge's lid.
- 4. Sample preparation
- 1. Samples are diluted with Nuclease-free water for 10 pM concentration.
- 2. Equal amount of samples are put together into an Eppendorf LoBind tube the final volume is 25 μ L.
- → 3. Amplification solution is prepared in a 1,5 mL Eppendorf LoBind tube in the following order:

Component	Volume	Preparation
1. Reagent mix	500 μL	30 sec vortex, 2 sec spin
2. PCR Reagent B	285 μL	1 min vortex, 2 sec spin
3. Enzyme Mix	50 μL	2 sec spin
4. Reagent X	40 µL	2 sec spin
5. Diluted library	25 μL	

- 4. Amlification solution is vortexed and spinned briefly.
- 5. Ion Sphere Particles are prepared: 1 min vortex, 2 sec spin
- 6. 100 μL Ion Sphere Particles are added to the amplification solution.
- 7. Amplification solution is vortexed briefly.

The amplification run in the machine has to start within 15 min!

- Amplification solution is pipetted up and down and pipettetted by a 1000 µL tip into the Reaction Filter Assembly.
 500 µL Reaction Oil is pipetted into the Reaction Filter Assembly.
- 5. Reaction Filter Assembly is placed on the machine.
- 6. The machine is set for the "Run"mode, the right Kit and "Assisted" mode is chosen.
- 7. Enrichment of the library ~ 8 hours.

Samples have to be removed within 16 hours after the run started! 8. Samples are spinned in the machine: "Options" → "Final spin" ~10 min.

- 9. Recovery tubes are placed on a rack and the supernatant is removed in a way that 100 µL stays in the tubes and the ISP pellett is not disturbed.
- 10. 500 $\,\mu$ L Wash soulution is added to each Recovery tube, then the ISPs are dissoved by pipetting up and down th solution.
- 11. The content of the Recovery tubes is transferred into a 1,5 mL Eppendorf LoBind tube.

- 12. ISPs are heated at 50 oC for 2 min. And spinned at max speed for 2,5 min.
- 13. Supernatant is removed in a way that 102 µL stays in the tubes and the ISP pellett is not disturbed.

Cleaning of the machine

- 1. The machine is set to "clean" mode Instruction om the machine's display:

 - There is >20 mL oil in the reagent tube.
 Amplification plate stays in the machine, but the attached syringe is removed from the lid and guided into a waste tube.
 - Reaction Filter Assembly is removed and a new claning adapter is installed.
- 2. Cleaning run ~ 14 min.
- 3. Amplification Plate is removed, the heatblock left open.
- 4. Cleaning adaptor stays on the machine between runs.
- 5. The oil in the centrifuge chamber is wiped with a tissue.

12. Quality control of ISPs Qubit 2.0 Fluorometer Ion Sphere Quality Control Kit Reagent Amount / sample Storage Alexa Fluor 488 Alexa Fluor 647 lon Probes Annealing Buffer 1 μL 19 µL Quality Control Wash Buffer Ion PGM Template OT2 Solutions 400 Amount / sample Reagent Storage up to 100 μL

- 1. Alexa Fluor 488 & 647 are vortexed and spinned briefly.
- 2. Quibit → Ion → Alexa Fluor 488 : reagent is placed in Qubit RFU value is recorded.

 → Alexa Fluor 647 : reagent is placed in Qubit RFU value is recorded.
- 3. Sample volume is adjusted to 100 μL with $\,$ Ion OneTouch Wash Solution.
- → 4. The followings are added to a 200 µL PCR tube:

Sample	2 µL	
Annealing Buffer	19 µL	
Ion Probes	1 μL	
·	Σ 22 μL	

- The content of the PCR tube is mixed, pipetted up and down.
 The following PCR program is runned:

Stage	Temperature	Time
Hold	95 oC	2 min
Hold	37 oC	2 min
		Σ 4 min

- 7. 200 µL of **Quality Control Wash Buffer** is added to the PCR tube.

- Repeat 2X

 8. PCR tube is vortexed and centrifuged at 15,500 x g for 1.5 minutes.

 9. Supernatant is removed in a way that the ISP pellet is not disturbed.

 → 10. The remaining 10 µL sample is transferred into a Qubit tube.

 11. 190 µL of Quality Control Wash Buffer is added to the sample and pipetted up and down.

 - 12. Negative control tube is prepared: 200 μL of Quality Control Wash Buffer is added to a Qubit tube.

 13. Negative control tube is prepared: 200 μL of Quality Control Wash Buffer is added to a Qubit tube.

 14. Negative control and the sample is read by Qubit: Quibit "Ion " Alexa Fluor 488/647 RFU values are recorded.

 15. The Alexa Fluor 488 value must be >100 counts.
 - 14. RFU values are filled in the Qubit 2.0 Easy Calculator Microsoft Excel Spreadsheet. (Calibration factor = 0,48) 15. Quality of the sample is read as the followings:

Percent Templated ISPs Description	
< 10%	Sample contains an insufficient number of templated ISPs to achieve optimal loading density on the Ion Chip.
10-30%	Optimal amount of library.
>30%	Sample will yield multi-templated ISPs (mixed reads).

Qubit® 2.0 Fluorometer observation	Ion PGM [™] System observation	Possible cause	Recommended action
<10% Templated ISPs	Lower loading Lower % enriched Lower key signal Lower throughput	Too little library input into template preparation	Increase library input to target 20–25% templated ISPs. or Continue with sequencing; expect lower throughput.
>30% Templated ISPs, but <70%	Increased number of filtered reads	Too much library input into template preparation	Decrease library input to target 20–25% templated ISPs. or Continue with sequencing; expect lower throughput.
>70% Templated ISPs	Increased % primer dimer filtered reads Lower throughput	Adapter dimer contaminating library, more likely in short amplicon, lon AmpliSeq [™] or miRNA libraries	Check Bioanalyzer® traces for adapter dimer peak (Amplicon library or lon AmpliSeq library peak around 70 bp; miRNA library peak around 60bpl. Re-purify Agencourt® library using AMPure® XP Kit clean-up steps as outlined in the appropriate user guides.
	Low % enriched Lower throughput High % filtered reads	Ion OneTouch™ 2 Instrument underperformance	Troubleshoot with Technical Support or a Field Application Scientist.

	1				
40	- 11 / (105				
13.	Enrichment of ISPs	Ion One Touch ES			
				=	
Ion P	GM™ Template OT2 Supplies 400	Instrument	Amount per run		
		8-well strip	1	7	
		Eppendorf LoRetention Dualfilter Tips	1	7	
				_	
I	on PGM™ Enrichment Beads	Reagents	Color	Storage	Volume needed
		Dynabeads MyOne Streptavidin C1 Beads		2-8 oC	13 µL
lon F	PGM Template OT2 Solutions 400	Reagents	Color	Storage	Volume needed
lon F	PGM Template OT2 Solutions 400	Reagents Ion OneTouch Wash Solution	Color -	Storage room	Volume needed 900 µL
lon F	PGM Template OT2 Solutions 400	·	Color -		
lon F	PGM Template OT2 Solutions 400	Ion OneTouch Wash Solution	Color - -	room	
lon F	GM Template OT2 Solutions 400	Ion OneTouch Wash Solution Neutralization solution	-	room	900 µL
lon F	GM Template OT2 Solutions 400	lon OneTouch Wash Solution Neutralization solution Tween Solution	-	room room room	900 μL 280 μL
lon F	PGM Template OT2 Solutions 400	lon OneTouch Wash Solution Neutralization solution Tween Solution	-	room room room	900 μL 280 μL

^{*} Freshly prepared with Nuclease-free water.

- Residual volume test

 1. New pipette tip is installed.
- 2. 80 µL water is loaded into Well 2 the 8Well strip is placed then in the tray to the right side (square edge is on the left).
- 3. Run is started: when Well 2 is empty, the 8 Well strip is pushed to the left side. 4. When the solution is loaded into Well 4 the run is stopped.
- 5. The residue in Well 2 has to be <2 $\,\mu L.$

Preparation of the 8 Well strip

→ 1. Melt off solution is prepared in the following order:

Tween Solution 280 µL

- 1M NaOH 40 $\,\mu$ L \rightarrow 2. Dynabeads MyOne Streptavidin C1 Beads are vortexed for 30 sec and spinned for 2 sec.
- 3. Dynabeads MyOne Streptavidin C1 Beads are pipetted up and down and 13 µL of it is put into a 1,5 mL Eppendorf LoBind tube.
- 4. The tube is placed on a magnetic rack for 2 min, then the supernatant is removed. 5. 130 μ L of **MyOne Beads Wash Solution** is added to the tube.
- 6. Tube is vortexed for 30 sec and spinned for 2 sec.
- 7. the 8 Well strip is filled in the following way: Well 1: 100 μ L of template-positive ISP sample.

Well 2: 130 µL of Beads in the Wash Solution.
Well 3: 300 µL lon OneTouch Wash Solution
Well 4: 300 µL lon OneTouch Wash Solution

Well 5: 300 µL Ion OneTouch Wash Solution Well 6: -

Well 7: 300 µL of Melt-off solution

Well 8: -

- 1. A new pipette tip and a 200 µL PCR tube are installed. 2. 10 µL of Neutralization solution is added to the PCR tube.
- 3. 8 Well stip is placed dto the right side (square edge is on the left) and the magnetic beads are pipetted up and down before the run.
- 4. Start the run: ~ 35 min.

. Sequencing	Ion Torrent PGM			
Ion PGM Sequencing Supplies 400	Reagents	Storage		
	Wash Bottle Sipper Tubes	room		
	Reagent Bottle Sipper Tubes	room		
	Reagent Bottles (50 mL)	room		
	Wash 1 Bottle (250 mL)	room		
	Wash 2 Bottle (2 L)	room		
	Wash 3 Bottle (250 mL)	room		
Ion PGM Sequencing Reagents 400	Reagents	Color	Storage	Volume needed
	Ion PGM Sequencing 400 dGTP		-30 ~-10 oC	20 µL
	Ion PGM Sequencing 400 dCTP		-30 ~-10 oC	20 uL
	Ion PGM Sequencing 400 dATP		-30 ~-10 oC	20 µL
	Ion PGM Sequencing 400 dTTP		-30 ~-10 oC	20 µL
	Ion PGM Sequencing 400 Polymerase		-30 ~-10 oC	1 µL
	Sequencing Primer	white	-30 ~-10 oC	3 µL
	Control Ion Sphere Particles	transparent	-30 ~-10 oC	5 μL
Ion PGM Sequencing Solutions 400	Reagents	Storage	Volume needed	
3	Ion PGM Sequencing 400 W2 Solution	2-8 oC	whole bottle	
	Ion PGM Sequencing 400 1X W3 Solution	2-8 oC	50mL	
	Ion PGM Cleaning Tablet	2-8 oC	1 tablet	
	Annealing Buffer			100 µL
lon 314™ Chip Kit v2	Instrument	Amount per run		
ion or i ompriic 12	lon 314 Chip v2	1		
Ion PGM™ Controls Kit	Reagents	Color	Storage	Volume needed
IOH PGM CONTIONS KIL	Ion Sphere Test Fragments	Coloi	Storage	5 uL
				- V P.
	Additional components	Storage	Volume/sample	
	1 M NaOH*	room	1 mL	
	100 mM NaOH*	room	420 µL	

Clean with:	Schedule:		
18 MΩ water	Daily, when instrument is in use (e.g., not necessary on weekends)		
	After < 1000 flows (e.g., a single 400-base-read run or 2 × 200-base-read runs)		
	 If more than 27 hours but less than 48 hours have elapsed between the last cleaning/initialization and the start of a run 		
	If you cleaned with chlorite a week ago and have not used the instrument since then		
Chlorite solution	Once a week, unless the instrument has not been used since the last chlorite cleaning (in which case, clean with 18 MΩ water before using)		
	If the instrument has been left with reagents for more than 48 hours (for example, over the weekend)		

- Cleaning with chlorine

 1. All tubes and bottles are removed from the machine.
- 2. An old chip (for chlorine cleaning) is in the machine.3. Washing bottles are rinsed twice.
- 4. A glass bottle is filled with 1 L of 18 Ω water and an Ion PGM CleaningTablet (chlorite tablet) is added to the bottle 10 min until it dissolves completely.
- 5. 1 mL of 1 M NaOH is added to the bottle.
 6. The solution is filtered through a 0.22-µm or 0.45-µm filter.
 Chlorite solution has to be used within 2–3 hours!

- 7. 250 mL of filtered chlorite solution is added to the W1 bottle. 8. The sipper in W1 position is cleaned with 18 Ω water.
- 9.. 3 washing bottles are attached to the machine: W1: 250 mL chlorine solution, W2 and W3 are empty.
- 10. Collection trays are placed below the sipper tubes at A,T,G,C. "Clean" mode is chosen and the following instructions are followed.

Cleaning takes ~ 14 min.

Cleaning with 18 Ω water

- All tubes and bottles are removed from the machine.
 An old chip is in the machine.
- 3. Washing bottles are rinsed twice.
- 4. 250 mL water is added to W1 bottle. 5. The sipper in W1 position is cleaned with 18 Ω water.
- 6. 3 washing bottles are attached to the machine: W1: 250 mL water, W2 and W3 are empty.
- 7. Collection trays are placed below the sipper tubes at A,T,G,C. "Clean" mode is chosen and the following instructions are followed.

Cleaning takes ~ 14 min.

Preparation of Wash 2 bottle

- 1. Wash 2 bottle is rinsed three times. 2. The bottle is filled with \sim 2L of 18 Ω water unill the mold line.
- The entire content of an Ion PGM Sequencing 400 W2 Solution is added to the bottle the barcode is stored.
 70 μL of freshly prepared 100 mM NaOH solution is added.
- 5. The content of the bottle is mixed and stored with closed cap.

Preparation of Wash 1 and 3 bottles

- 1. Bottles are rinsed with water 3X.
- 2. The following compounds are added to the bottles:

 Wash 1: 350 µL of freshly prepared 100 mM NaOH

Wash 3: 50 mL Ion PGM Sequencing 400 1X W3 Solution

3. Bottles are stored with closed caps.

Cleaning wash bottles are removed from the machine and new sippers are installed for the washing bottles.

Wash 1,2 and 3 bottles are attached to the machine

The same chip is in the machine as it was during cleaning.

Machine is set to "Initialize" mode - ~ 30 min. Plan run

- 1. Homepage: 145.39.105.108
- 2. Plan Plan template run 16S target sequencing Settings: Plan run
- Run parameters: name, sample names and barcodes
- Applications: Metagenomics, 16S targeted
- Kits: Barcode set Ion Xpress
- Output: 16S

Preparation of dNTP Change gloves!

- dNTP solutions are vortexed and spinned briefly.
- 2. 20 μL of dNTP solution is added to each Reagent bottle
- 3. New sippers are installed after one is installed the related Reagent bottle is attached.

Preparation of ISPs

- → 1. Half of the volume of the ISPs with the library is transerred into a 200 µL PCR tube one will be sequenced the other stored.
- 2. Contol Ion Sphere Particles are vortexed and spinned briefly.
- 3.5 µL Control lon Sphere Particles are added to the half volume of ISPs then is's pipetted up and down and spinned for 2 sec.
- Supernatant is removed in a way that the ISP pellet is not disturbed and 3 μL liquid stays in the tube.
 3 μL Sequencing Primer is added then it's pipetted up and down to disperse the pellet.
- 6. Sample is put on the following PCR program:

Stage	Temperature	Time
Hold	95 oC	2 min
Hold	37 oC	2 min
		Σ 4 min

Ion 314 Chip v2 No glowes!

- A new chip is removed from its package barcode is stored.
- Chip is placed on the grounding plate the cleaning chip stays in the machine and the machine is set for the "Run"mode.
 The chip is replaced when it's indicated on the machine's screen touching the groundig plate with fingers is necessary before.
- 4. Barcode is scanned when it's indicated on the machine's screen.
- 5. "Chip check"option on the sreen is chosen.
- 6. If the check is succesfull, the new chip is placed on the grounding plate and the old one is put back into the machine.
- 7. Waste container is emptied.
- 8. PCR tube is removed from the PCR and 1 µL Ion PGM Sequencing Polymerase is added.
- 9. Sample is pipetted up and down and incubated at room temperature for 5 min.
- 10. The liquid from the chip is removed by a 20 µL pipette.11. Chip is spinned for 5 sec upside down (tab poiting in) then it's placed on a desk but stays in the adapter bucket
- 12. Chip is loaded with the 7 μ L sample 0,5 μ L stays in the tip to avoid air bubbles.
- 13. Chip is spinned for 30 sec in normal position (tab pointing in)
- 14. Sample is mixed: 5 μL volume is pipetted up and down.
- 15. Chip is spinned for 30 sec in normal position (tab pointing out)
- 16. Sample is mixed: 5 µL volume is pipetted up and down.
- 17. Chip is spinned for 30 sec in normal position (tab pointing in).
- 18. Sample is mixed: thw whole volume is pipetted up and down then removed.

 19. Chip is spinned for 5 sec in normal position (tab pointing out).
- 20. Chip is gently knocked to a desk to empty the remaining liquid, then wiped with a tissue.

Sequencing

- 1. "Planned run"option is selected.
- 2. Chip is placed on the groundig plate and put in the machine when it's indicated on the screen.

Run takes ~ 4 hours.

Cleaning with 18 Ω water

- 1. All tubes and bottles are removed from the machine.
- 2. Chip stays in the machine.
- 3. Washing bottles are rinsed twice.
- 4. 250 mL water is added to W1 bottle.
- 5. 3 washing bottles are attached to the machine: W1: 250 mL water, W2 and W3 are empty,
- 6. Collection trays are placed below the sipper tubes at A,T,G,C.
- "Clean" mode is chosen and the following instructions are followed:

At the end the wash bottles and sippers stays attached to the machine.