

An Integrated Development Environment

for A Practical Agent Programming
Language

Tim J. Theeuwes

March 2010

Bachelor Thesis

 Supervisors: drs. L. J. M. van Moergestel
 Dr. M. M. Dastani

An Integrated Development Environment for A Practical Agent Programming Language - 2 -

Abstract
Nowadays almost all software developers are using Integrated Development Environments (IDE’s), to write
their code. Big examples of these editors are Eclipse [1], NetBeans [2] and TextPad [3]. Editors like these
provide indents lines, matching words, highlight source code syntactically and have auto code completion.
Using an IDE as a developer improves the quality of code, syntax errors are less made and code can be
written in a faster way due to the code completion function. In addition, the existence of an outline view
helps to walk trough the code will writing it.

The editor in 2APL, A Practical Agent Programming Language, a multi-agent programming language
developed by Utrecht University, uses Jext [4] as an editor to provide the code with some basic coloring.
There is no check on whether the code is valid and other options such as auto completion are not
available.

This project aims to create an IDE for 2APL that has syntax highlighting, indents lines, content assist, an
outline view, constraint violations checking, and the ability to run the project from the editor. The IDE will
be created as an Eclipse plug-in so the look and feel should be familiar with most of the code developers.
This Eclipse plug-in will be created with the use of Xtext [5], a Eclipse plug-in creator for textual domain
specific languages. With the use of this IDE, end users who are writing code for 2APL should be able to
write code without the full knowledge of the 2APL syntax and enjoy all the other advantages that are build
in the IDE to help the programmer.

Tim Theeuwes
Utrecht, February 2010

Get graded on your ideas, not on your grammar!
I. Thies, 2009

An Integrated Development Environment for A Practical Agent Programming Language - 3 -

Contents

LIST OF FIGURES 5

1 INTRODUCTION 6

2 BACKGROUND 7

2.1 MULTI-AGENT SYSTEMS 7
2.2 ABOUT 2APL 7
2.3 AN INTEGRATED DEVELOPMENT ENVIRONMENT 9
2.4 PLUG-INS 11
2.5 EDITORS IN OTHER AGENT PROGRAMMING LANGUAGES 11
2.6 CREATED WORK 11
2.7 PROJECT TIMELINE 12

3 CREATING THE IDE 14

3.1 USED PROGRAMS STRUCTURE 14
3.2 ECLIPSE 15
3.3 XTEXT 15
3.4 THE ECLIPSE WITH XTEXT PLATFORM 16
3.5 ANTLR 16
3.6 EMF 17
3.7 MWE & IDE PLUG-IN 17
3.8 ECORE TOOLS & XTEXT DIAGRAM 18
3.9 SYNTAX GRAMMAR 20
3.10 LEFT-RECURSIVE AND LEFT-FACTORING 21
3.11 OUTLINE VIEW 22
3.12 DSL 22
3.13 MULTIPLE ALTERNATIVES 23
3.14 BACKTRACKING 24
3.15 PROJECT CREATOR 24
3.16 SYNTAX HIGHLIGHTING 24
3.17 2APL SYNTAX 25
3.18 RUN CONFIGURATION 26

4 2APL IDE PLUG-IN 27

4.1 INSTALL THE 2APL IDE PLUG-IN 27
4.2 LOOK AND FEEL OF THE IDE 28
4.3 CREATE A NEW 2APL PROJECT 28
4.4 CHANGE SYNTAX COLORS IN THE IDE 29
4.5 RUN THE PROJECT FROM THE IDE 30

An Integrated Development Environment for A Practical Agent Programming Language - 4 -

5 2APL SYNTAX 31

5.1 EBNF LEGENDA 31
5.2 CURRENT EBNF 2APL SYNTAX 31
5.3 NEW EBNF 2APL SYNTAX 31
5.4 DIFFERENCES 33
5.5 2APL RULES IN DETAIL 34

6 EVALUATION 35

7 CONCLUSION AND FUTURE WORK 36

8 REFERENCES 37

9 APPENDICES 39

9.1 APPENDIX A - OLD EBNF 2APL SYNTAX 39
9.2 APPENDIX B – NEW EBNF 2APL SYNTAX 41
9.3 APPENDIX C – XTEXT GRAMMAR 43
9.4 APPENDIX D – MWE WORKFLOW FILE 47
9.5 APPENDIX E –SEMANTIC HIGHLIGHT CONFIGURATION 49
9.6 APPENDIX F – XTEXT DIAGRAM 52
9.7 APPENDIX G – PROJECT WIZARD 53
9.8 APPENDIX H – 2APL RULES IN DETAIL 55
9.9 APPENDIX I – RUN CONFIGURATION 84
9.10 APPENDIX J – ABSTRACTAPAPLRUNTIMEMODULE.JAVA 85

An Integrated Development Environment for A Practical Agent Programming Language - 5 -

List of Figures
Figure 2.1 - 2APL platform 9
Figure 2.2 - Some options in an IDE [12] 9
Figure 2.3 - Outline view example 10
Figure 2.4 - Content assist example 10
Figure 2.5 - Syntax highlight example 11
Figure 2.6 - Code validation example 11
Figure 2.7 - Project timeline 13

Figure 3.1 - Xtext projects 15
Figure 3.2 - Xtext project files 16
Figure 3.3 - Eclipse with Xtext platform 16
Figure 3.4 - Example of a syntax diagram created by ANTLR 17
Figure 3.5 - Running the MWE Workflow 17
Figure 3.6 - Export Xtext projects 1 18
Figure 3.7 - Export Xtext projects 2 18
Figure 3.8 - Initialize Ecore Diagram 19
Figure 3.9 - Xtext diagram 19
Figure 3.10 - Left-recursive rule example 21
Figure 3.11 - Left-factored rule example 21
Figure 3.12 - Multi valued features 22
Figure 3.13 - Single valued features 22
Figure 3.14 - Multiple alternatives example 23
Figure 3.15 - Multiple applicable rules example 23

Figure 4.1 - Xtext integration with EMF [45] 27
Figure 4.2 - IDE for 2APL 28
Figure 4.3 - New created project 29
Figure 4.4 - Color settings 29
Figure 4.5 - External tools configuration 1 30
Figure 4.6 - External tools configuration 2 30

An Integrated Development Environment for A Practical Agent Programming Language - 6 -

1 Introduction
Attending the multi-agent programming [31] course at Utrecht University during my research semester,
January 2009 till June 2009, I got my first hands on experience with 2APL. Participating in the practicum of
this course brought to my attention that the 2APL platform did not have an IDE to create 2APL code.
Working with a default notepad editor, the code was created during the various practicum sessions.

In my search to a final project for my bachelor study, I spoke with dr. M. M. Dastani, a lecturer at the
Intelligent Systems Group of Utrecht University [32], on the possibilities to create an IDE for 2APL. My
proposal to create an IDE for 2APL was received gratefully, and soon after the proposal a first drawing of a
project proposal was created.

From Hogeschool Utrecht drs. L. J. M. van Moergestel supported this idea, as he also had the
appropriate experience with 2APL and multi-agent systems since he attended various courses at Utrecht
University, including the multi-agent programming course, and was willing to be my first examinator during
my final bachelor project.

This thesis is composed of four parts. At first, I will describe the background that is needed to
understand the details in this project in chapter 2. In chapter 3, I will explain how and why various tools
and techniques are used. The actions taken in chapter 3 result in the final product, the 2APL IDE plug-in.
How this plug-in works is described in chapter 4, and finally the syntax of 2APL, that has had the various
updates during the project, is described to the bone in chapter 5. Ultimately, I will evaluate the project
and I will finish with my conclusion and ideas for future work.

I would like to take this opportunity to thank Mehdi Dastani for his time I stole to get the 2APL syntax fully
updated and his vision and advice throughout during this project. Most of all, I am grateful that I was asked
to keep on developing on 2APL as a member of the 2APL team. I would also like to express my gratitude to
the people of itemis [40], the company behind the Xtext project, for supporting me with their tutorials and
newsgroups. Furthermore, I would like to thank Leo van Moergestel for his assistance in each possible way.

An Integrated Development Environment for A Practical Agent Programming Language - 7 -

2 Background
In this chapter, some theoretical background is provided that is necessary to understand how this project
came to an existence. Next, an overview of the programs that were used to create the 2APL IDE plug-in,
will be described, together with a detailed explanation of those programs.

2.1 Multi-agent systems
The IDE was created for the 2APL platform, a multi-agent system oriented platform.

Multi-agent systems are systems composed of multiple interacting computing elements known as agents.
An agent is a computer system that is capable of independent action on behalf of its user or owner. A
multi-agent system is one that consists of a number of agents, which interact with one another, typically
by exchanging messages through some computer network infrastructure. In order to successfully interact,
these agents will thus require the ability to cooperate, coordinate and negotiate witch each other. [10]

Characteristics of multi-agent systems [10]:
1. Multi-agent systems consist of a number of interacting agents;
2. Multi-agent systems are designed to achieve some global goal;
3. Agents need abilities to cooperate, coordinate, and negotiate in order to achieve their

objectives;
4. Multi-agent systems are specified in terms of high-level abstract concepts such as role,

permission, responsibility, and interaction.
Multi-agent systems and Artificial Intelligence are not the same. Understanding and modeling social

intelligence and emergent behavior are essential in multi-agent systems. [20]

Artificial Intelligence Multi-agent systems

Planning Interaction and communication

Learning Social concepts: obligation, norms, responsibilities

Vision Optimal solutions can be obtained by co-ordination and co-operation

Language understanding Simulation can verify social and economic theories

2.2 About 2APL
2APL (A Practical Agent Programming Language) is an agent-oriented programming language created by the
Utrecht University that facilitates the implementation of multi-agent systems. It provides programming
constructs to implement an agent’s beliefs, goals, plans, actions, events and a set of rules through which
the agent can decide which actions to perform. [8]

To develop multi-agent programs, the 2APL platform is standard shipped with a editor that provides
only syntax coloring. The 2APL platform itself provides a step-by-step walkthrough while executing the

program, a message overview and a state tracker that shows the Beliefs , Goals and Plans for each
step.

2.2.1 2APL agent example

A very small example of a 2APL agent, which at runtime will make a number of pushups, looks like:

BeliefUpdates:
 {true} DoPushup(S, X) { not count(S), count(S+X) }

Beliefs:
 count(0).

Goals:
 Pushup(10)

PG-rules:
 Pushup(T) <- not count(T) |
 {
 [B(count(R));
 DoPushup(R, 1)]
 }

An Integrated Development Environment for A Practical Agent Programming Language - 8 -

2.2.2 Example 2APL agent explained in detail

The pushup agent consists of 4 parts;
1. BeliefUpdates
2. Beliefs
3. Goals
4. PG-rules

The BeliefUpdates rule is responsible for updating the current count in his belief base.
{true} DoPushup(S, X) { not count(S), count(S+X) }
Precondition Name Postcondition
In our case there is no precondition.

The S in the DoPushup function stands for the current count in the beliefbase where X stands for the
number of pushups that needs to be added to this S count.
The postcondition updates the beliefbase by first removing the current count and then add a new belief
with the new count.

The Beliefs are a Prolog notation of the facts within the program.
count(0).
The belief count has variable 0 at the time the agent executes, the BeliefUpdates are able to change
this variable.

Goals within 2APL tell the agent what state should be reached by executing actions.
pushup(10)
Where this looks like Prolog code, it is not, the goal is a state that the agent wants to believe, where in

our case the agent wants to pushup 10 times. To reach this the agent uses PG-rules explained next.

PG-rules are Planning Goal rules that are executed when the agent has the goal and this belief.
pushup(T) <- not count(T)
Variable T is grounded by the value 10 because the goal pushup(10) is still in place, where the belief not
count(10) is also true because when executing the agent this belief states count(0).
Because the PG-rule states true the plan is adopted.
B(count(R));
DoPushup(R, 1)
First we want to know the current count of pushups in the beliefbase of the agent, we’ll do this by a

beliefquery B(count(R)) and after this query the R variable will contain the current count of pushups.
Now the agent executes the BeliefUpdate DoPushup(R, 1) where the current count of pushups is added
with 1.

2.2.3 The 2APL platform

The 2APL platform, as shown in figure 2.1, consists of the loaded agents in the Multi-Agent System in the
left column, some menu buttons to run the agent , load a MAS file or to reload the initial states of the
agent, and on the right column different overviews of the selected agent in the left column.

The right column has the following views available:

Name Function

Overview Shows the beliefbase, goalbase and the planbase of the selected agent

Belief updates Shows all the belief update rules that the selected agent has

PG rules Shows all the PG rules that the selected agent has

PC rules Shows all the PC rules that the selected agent has

State Tracer For every state in the past of the agent the Step, Beliefs, Goals and Plans can be shown

Log Shows messages for every step the agent has taken

Not that all of agent codes in the 2APL platform the cannot be changed during runtime, but should be
changed in the 2APL files and then executed again to affect the changes.

An Integrated Development Environment for A Practical Agent Programming Language - 9 -

Figure 2.1 - 2APL platform

2.3 An Integrated Development Environment
As shown in the pushup agent example above, the code for the agent is plain, black on white with no
checks if the code is valid. An Integrated Development Environment (IDE) adds features to make the
programmer creating the code as simple as possible. So what should an IDE have or do?

Figure 2.2 - Some options in an IDE [12]

A lot of words/terms, I will now show an overview with an explanation of the functions that will be
available in the 2APL IDE in the next six subchapters.

An Integrated Development Environment for A Practical Agent Programming Language - 10 -

2.3.1 CodeFormatting

Since code formatting is more a personal flavor, i.e. everybody likes his code formatted a different way, I
will give an example or unformatted code and formatted code of a 2APL source.
Unformatted:

Formatted:

The meaning of code formatting is that code is easier readable. In the example above it is made clear
that formatting the code improves the ability to read the code. An IDE is able to accept whitespaces,
tabbing and new lines between the rules without throwing out an error.

2.3.2 OutlineView

An outline view gives a structured view of the code; the code is splitted into the different rules in a
hierarchical tree structure. The example below shows that selecting a rule in the outline view triggers the

code to be selected in the 2APL source, in this case the Atom rule offer .

Figure 2.3 - Outline view example

2.3.3 ContentAssist

A content assistor helps the writer of the code selecting the available input, i.e. all the available options,

in the IDE. It can be invoked by ctrl + space . The example shows what options are available in the
middle of this rule.

Figure 2.4 - Content assist example

2.3.4 SyntaxHighlighting

By highlighting the code syntactical the code gets even more readable as per default all the code is black
and the keywords are red. To change the color preferences; see chapter 4.4 for the manual. The example
will show the difference between uncolored and colored code.

Include: file .2apl other .2apl BeliefUpdates: { offer (A) and buy () }
AddBoughtObject (N , P) { boughtObject (N , P) }

Include:
file .2apl
other .2apl

BeliefUpdates:

{ offer(A) and buy() } AddBoughtObject(N, P) { boughtObject(N, P) }

An Integrated Development Environment for A Practical Agent Programming Language - 11 -

Figure 2.5 - Syntax highlight example

2.3.5 CodeValidation

The code validation function checks if the code applies to the syntax rules. If it does not an error in the
form of a red line will be given. By clicking on the red x in front of the line an error message will be shown,
in the example it also gives the solution.

Figure 2.6 - Code validation example

2.3.6 ProjectCreator

A project creator helps the end user setup a new 2APL project. By running the project creator, the user
will be able to start off quicker than when he has to create a new project from the ground. The project
creator in the 2APL IDE plug-in also creates an example agent, the push-up agent, that is an out of the box
finished example.

2.4 Plug-ins
This project creates an IDE in the form of a plug-in for Eclipse. A plug-in consists of a computer program
that interacts with a host application, in this project the Eclipse platform, to provide a certain specific,
function on demand. [34]

In this tutorial [35] it is described how to create a basic plug-in for the Eclipse platform and how this
plug-in is functioning, as in this project Xtext creates the plug-in with the use of a MWE workflow file I will
only describe how to create the specific Xtext plug-in and how this can be installed within the Eclipse
platform.

2.5 Editors in other Agent Programming Languages
A quick look at the editors used by other Agent Programming Languages is shown below. This also gives an
inside look in the other available Agent Programming Languages out there.

Table comparing the editors/IDE’s:

 2APL IDE 2APL editor Jason Jade* 3APL

Syntax highlighting Yes Yes Yes Yes Yes

Auto code completion Yes No No No No

Outline view Yes No No Yes No

Code validation Yes No Yes No No

Code templates Yes No Yes No No

Run project from IDE Yes No Yes No Yes

* For Jade a standard Java editor [1] was used, Jade itself is not shipped with an IDE or Editor.

2.6 Created work
The following work was created during this project:

1. IDE plug-in for 2APL
2. New EBNF syntax for 2APL
3. Manual and installation guide for the 2APL IDE plug-in
4. Tutorial for 2APL (partly created during the multi-agent programming course)
5. Bachelor Thesis

An Integrated Development Environment for A Practical Agent Programming Language - 12 -

2.7 Project timeline
The official start of this project was 1st of September 2009, but due to private circumstances I started two
weeks earlier so that I could go on an external training of two weeks at the end of September. The
deadline for this thesis was originally 15th of December 2009, with a presentation in January 2010.

The following planning was made in the project proposal:
1. Orientation 4-6 weeks
2. Definition 2-3 weeks
3. Design 2-4 weeks
4. Realization 3-6 weeks
5. Implementation 5-7 weeks
6. Documentation 2-3 weeks

Due to the fact that I attended the “Multi-agent programming” course at Utrecht University before

starting with this project, I have got a good impression of agent oriented languages, 2APL and the BDI
(Belief, Desire and Intentions) model. The experience I acquired during this course helped me getting
started faster than I planned. More information about this course can be found on the website of the
Computer Science department [31] of the Utrecht University.

When my thesis was disapproved for graduating in January 2010, I had to hand in a redefined version of
my thesis. The deadline for the second version of this thesis is 16th of March 2010, with a presentation in
the end of March or the beginning of April 2010.

The timeline, splitted in the different phases, looks at the end of the project like this:

Phase Start date Explanation

1 Orientation 20th of August 2009 Looking into existing IDE’s, reading
2APL documentation, making tutorials
of Eclipse

2 Start Xtext implementation 31st of August 2009 Working on Xtext to create the IDE,
looking into Xtext documentation

3 Update 2APL syntax 2nd of September 2009 Updating the 2APL syntax with Mehdi

4 Left-factoring 9th of September 2009 Starting to left-factor the updated
2APL rules to fit in the Xtext project

5 Thesis drafts Mid November 2009 Working on my thesis and review the
structure with Leo

6 Implementing Xtext features Mid November 2009 Adding the outline view, syntax
coloring and project creator

7 Finishing the 2APL syntax Begin December 2009 Making the final changes to the 2APL
syntax

8 Finishing the Xtext implementation Mid December 2009 Add the run project from IDE feature

9 Thesis hand in 16th of December 2009

10 Creating 2APL IDE manual End of December 2009 Creating the installation and user
guide for the 2APL IDE plug-in

11 Thesis disapproval 20th of January 2010 My thesis version of 16th of December
was disapproved for graduating

12 Updating thesis 21st of January 2010 Updating my thesis for graduating,
talking with Leo and Martin how to
change my thesis in an appropriate
way

13 Thesis hand in 2nd version 16th of March 2010

14 Project presentation End of March 2010

An Integrated Development Environment for A Practical Agent Programming Language - 13 -

Figure 2.7 - Project timeline

An Integrated Development Environment for A Practical Agent Programming Language - 14 -

3 Creating the IDE
In this chapter all the steps that are taken to get from the idea to the IDE will be explained. Starting with
an overview of all the programs and techniques used and how these are all related to each other. Next, the
programs and techniques will be discussed and explained, in some cases accompanied by an example to
explain it in detail.

After reading this chapter it should be possible for the reader to recreate the project totally from
scratch and understand how and why the various choices have been made.

3.1 Used programs structure
To create the 2APL IDE a lot of programs, techniques, tools and methods are used during the project. An
overview is shown below with the paragraph reference followed:

1. Eclipse 3.2 and 3.4
2. Xtext 3.3 and 3.4
3. ANTLR 3.5
4. EMF 3.6
5. ECore Tools 3.8
6. MWE 3.7
7. Left-factoring 3.10
8. Outline view 3.11
9. DSL 3.12
10. EBNF 3.9.1
11. Multiple Alternatives 3.13
12. Backtracking 3.14
13. Project creator 3.15
14. Syntax highlighting 3.16
15. Run configuration 3.18

Using this, resulted in the following outputs:
1. ANTLR Syntax diagrams 3.5
2. Xtext diagram 3.8
3. Xtext grammar 3.9.2
4. 2APL Syntax 3.17
5. IDE plug-in 3.7

How all the programs work together
that are used during this project.

Figure 3.1 - Used programs overview

An Integrated Development Environment for A Practical Agent Programming Language - 15 -

3.2 Eclipse
Eclipse is an open source community, whose projects are focused on building an open development
platform comprised of extensible frameworks, tools and runtimes for building, deploying and managing
software across the lifecycle. [17]

The choice for Eclipse as a framework for the 2APL IDE was made quickly. Although there are many
other editors available nowadays [2, 3, 4], Eclipse is well known under the end-users that will program in
2APL and Eclipse also supports the usage of EMF (Eclipse Modeling Framework) that is used by Xtext [5].

3.3 Xtext
Xtext is a framework for the development of domain-
specific languages and other textual programming
languages. It is tightly integrated with the Eclipse
Modeling Framework (EMF) and leverages the Eclipse
Platform in order to provide a language-specific
integrated development environment (IDE). [11]

It is implemented in Java and is based on Eclipse, EMF
and ANTLR. A view of how the Xtext plug-in works with
the other tools is shown here.

I found Xtext on the Eclipse forum [41] in the
Newcomers topic when I was asking for documentation or
examples of existing Eclipse IDE plug-ins.

Create a new Xtext project by following the next five steps:

1. Open Eclipse Xtext [5] en select File , New, Project .

2. Select Xtext Project in the New Project wizard to create a new Xtext project.

3. In the Xtext project wizard fill in:
a. Main project name;

(e.g. nl.uu.cs.apapl.ide)
b. Language name;

(e.g. nl.uu.cs.apapl.ide.APAPL)
c. DSL-File extension;

(e.g. 2apl)

d. Deselect the Create generator project checkbox (this option is for IDE plug-ins that
generate code from the created DSL).

4. By finishing the project wizard 2 new project will be available in the Package Explorer .

Figure 3.1 - Xtext projects

Figure 3.2 - Xtext overview [13]

An Integrated Development Environment for A Practical Agent Programming Language - 16 -

5. In the nl.uu.cs.apapl.ide src folder a default MWE Workflow file is created and also a
Xtext file, that holds the Xtext grammar, that can be found in appendix C, is created.

Figure 3.2 - Xtext project files

3.4 The Eclipse with Xtext platform
During this project I worked with Eclipse version 3.5.1 and Xtext version 0.7.2. The project consist of 2
parts, the language rules project and the GUI preferences project. Both of the projects are created during
the setup of a new Xtext project.

Figure 3.3 - Eclipse with Xtext platform

The editor has a package explorer that allows you to navigate through all the src and src-gen
files, an outline view to easily oversee all the rules in the currently opened file and the editor with the
opened file itself.

3.5 ANTLR
ANTLR, ANother Tool for Language Recognition, is a language tool that provides a framework for
constructing recognizers, interpreters, compilers, and translators from grammatical descriptions containing
actions in a variety of target languages. [18] It is used in this project to create the syntax diagrams and is
also used by Xtext to auto generate the parser.

Other examples of language tools are YACC [37], GNU bison [38] or Coco/R [39], but due to the fact
that ANTLR is also used by Xtext, it was more then obvious to use ANTLR for our syntax diagrams. More
information about ANTLR can be found on the ANTLR website [18].

3.5.1 Parser

A parser is one of the many components within the IDE, it checks for correct syntax and builds a abstract
syntax tree implicit in the input rules. [36] In this project, the parser is automatically generated by Xtext
by inserting the EBNF-like Xtext grammar, see chapter 3.9.2, and executing the MWE workflow, see
chapter 3.7. To get an impression of how complicated a parser can get if it would be build by hand, the
parser for 2APL, with a syntax that contains 50 rules, is 30302 lines of code and called

InternalAPAPLParser.java in this project.

An Integrated Development Environment for A Practical Agent Programming Language - 17 -

3.5.2 ANTLR syntax diagrams

To create the ANTLR syntax diagrams, the Xtext code had to be loaded in the ANTLR platform, which is
easily accomplished by importing the Xtext grammar file in the ANTLR platform, the full Xtext grammar
file can be found in appendix C. A syntax diagram of every rule is then generated. Below you will find an
example of such output, called an ANTLR syntax diagram.

Figure 3.4 - Example of a syntax diagram created by ANTLR

3.6 EMF
EMF stands for Eclipse Modeling Framework. The EMF project is a modeling framework and code generation
facility for building tools and other applications based on a structured data model. [28]

In the 2APL IDE plug-in, Xtext uses EMF to create an AST(abstract syntax tree)-meta model. Xtext
validates the AST for structural correctness, performs various modifications (linking, etc.) and
optimizations on it before eventually some other representation is created (typically code in some target
language). [29]

3.7 MWE & IDE plug-in
The modeling workflow engine (MWE) supports orchestration of different Eclipse modeling components to
be executed within Eclipse as well as standalone. Based on a dependency injection framework, one can
simply configure and wire up workflows using a declarative XML-based language. The project provides the
runtime used to execute workflows as well as the IDE tooling used to edit, start and debug them. [22]

During the creation of a new Xtext project, a workflow file (in this project named

GenerateAPAPL.mwe) was created. I see this file as a kind of an apache ant [23] build file. In order to
create the IDE, this workflow file needs to be executed.

Figure 3.5 - Running the MWE Workflow

In appendix D the full GenerateAPAPL.mwe file can be found. Parts changed in this file can be found
in chapters 3.14 Backtracking and 3.15 Project creator.

When executing the MWE Workflow the files from the folder src will be compiled, the result will be

stored in the folder src-gen , this folder then contains the generated java files that are the basis for the
IDE.

An Integrated Development Environment for A Practical Agent Programming Language - 18 -

To finally export the generated java code to a plug-in, the Xtext project has to be exported.

1. Select the 2 projects that where created during and right click to select Export;

Figure 3.6 - Export Xtext projects 1

2. In the Export wizard select Deployable plug-ins and fragments;

3. Select a Destination directory and click Finish.

Figure 3.7 - Export Xtext projects 2

The result is a set of two jar files; these files are the end product of this project. The files can now be
used by end users to enjoy all the features the 2APL IDE has to offer. In chapter 4.1 it is described how to
install the 2APL IDE plug-in files.

Note that executing the MWE workflow can be very time-consuming. A way to reduce the time that
worked for me was moving the entire Xtext project from a remote file system to my local desktop. This
action resulted in a executing time of 5 minutes to just over less than 25 seconds.

3.8 ECore Tools & Xtext diagram
The ECore Tools component provides a complete environment to create, edit and maintain ECore diagrams.
[21] In this project, an ECore diagram is created to show how all the 2APL rules have their specific
relations with other rules. To create an ECore diagram, the MWE Workflow has to be executed first (see

chapter 3.7 for this), then the src-gen folder holds an APAPL.ecore file that can be transferred to an
ECore diagram, in this thesis called the Xtext diagram.

An Integrated Development Environment for A Practical Agent Programming Language - 19 -

To create the Xtext diagram follow the three steps below:

1. Execute the MWE workflow file;

2. Open the src-gen folder and find the ecore file (in this project called APAPL.ecore);

3. Right-click the ecore file and select Initialize Ecore Diagram file ;

Figure 3.8 - Initialize Ecore Diagram

After step three there is a new file, called in our case APAPL.ecorediag , this gives a graphical
overview of all the various 2APL syntax rules and their relations with each other. In appendix F is a full size
version of the Xtext diagram attached.

Figure 3.9 - Xtext diagram

An Integrated Development Environment for A Practical Agent Programming Language - 20 -

3.9 Syntax grammar
During this project I have been using two types of grammar; the EBNF grammar that is used to describe the
2APL syntax, and the Xtext grammar that is used to create the Xtext project. In a simple way I see the
Xtext grammar as an add-on to the EBNF grammar, where the Xtext has more options to modify the final
2APL IDE plug-in.

The next two subchapters will describe the formal way of the different syntaxes used in this project.

3.9.1 EBNF grammar

EBNF stands for Extended Backus Naur Form and is used to describe the formal way of computer
programming languages. [42] The explanation of the used notations in the 2APL grammar are shown below:

<name> = rule name
{<rule>} = 0..* (This rule can persist zero or mult iple times)
[<rule>] = 0..1 (This rule is optional)
<rule>+ = 1..* (This rule can persist one or multi ple times)
<a> | = choice between rule name a and b
(<a> |) = choice between rule name a and b with in brackets
"var" = static text
; = end of the rule

Combinations of the differed notations are allowed as well (e.g. <ident> ["(" <ident> ")"];
which would mean that this rule should start with an <ident> followed optional by "(" <ident> ")").

3.9.2 Xtext grammar

The Xtext grammar rules are described using Extended Backus-Naur Form-like expressions. [27] The
explanation of the used notations in the Xtext grammar are shown below:

Name: = rule name (Xtext rule names start with a c apital letter)
Rule? = 0..1 (This rule is optional)
Rule* = 0..* (This rule can persist zero or multipl e times)
Rule+ = 1..* (This rule can persist one or multiple times)
A | B = choice between rule name A and B
(A | B) = choice between rules within brackets
"var" = static text
name+=Rule = a multi valued feature and adds the va lue on the right hand to
 that feature, which is a list feature
name=Rule = straight forward assignment, and used f or features which take only
 one element
; = end of the rule

The Xtext grammar is an implementation of the new 2APL syntax that I updated during this project, the

new syntax can be found in chapter 5. The Xtext grammar is left-factored where needed. The full Xtext
grammar can be found in appendix C. An example of a rule is described below:

EBNF syntax

Xtext syntax

Rules itself start with capital letters and the class where the rule is part of starts with a lowercase

letter. In the example shown above the rules are all multi valued, which means that there is an other rule

after Belquery , BeliefUpdateName or Literals .

<beliefupdate> =
"{"<belquery>"}" < beliefupdatename > "{"<literals>"}";

BeliefUpdate:
 "{" belquery+=Belquery "}" beliefUpdateName+=BeliefUpdateName
"{" literals+=Literals "}" ;

An Integrated Development Environment for A Practical Agent Programming Language - 21 -

3.10 Left-recursive and left-factoring
During the creation of the IDE plug-in I ran into the following problem, left-recursive rules, this are rules
that call itself e.g.

The Xtext parser uses a LL parser that parses the input from left to right. In the <belquery> rule it

can therefore never find a match for e.g. dummy() (an example of a literal) because it can be a

<literal> or a <belquery> (that has next a <literal> or <belquery> etc.) rule.

Figure 3.10 - Left-recursive rule example

This has to be rewritten with left-factoring. The rule would than look like:

The example dummy() would then parse to <termianlbelquery>, that will pars it to a <literal> and
finish.

Figure 3.11 - Left-factored rule example

In this project seven 2APL rules had to be rewritten with the help of left-factoring, these rules are:
1. test
2. plan
3. planvar
4. par
5. goalquery
6. belquery
7. artexp
In chapter 5 all the 2APL rules will be described, there these seven rules are left-factored, more

information about left factoring can be found in my posts on the Eclipse forum [43].

<belquery> =
 "true"
| <literal>
| <belquery> "and" <belquery>
;

<belquery> =
<terminalbelquery> ["and" <belquery>];

<terminalbelquery> =

 "true"
| <literal>
;

An Integrated Development Environment for A Practical Agent Programming Language - 22 -

3.11 Outline view
As described in chapter 2.3.3, the outline view greatly improves the overview structure of the created
code. In the 2APL IDE plug-in, the outline view is made out of two parts. The first part is responsible for
the multi valued features, whereas the second part is responsible for the features that only take one
element. [30]

In the next two subchapters I will describe the difference between these two parts and how they both
are implemented in the 2APL IDE plug-in.

3.11.1 Multi valued features

The += sign, the add operator, expects a multi valued feature and adds the value on the right hand to that
feature, which is a list feature. [30]

In the 2APL IDE plug-in this is used by rules that have the option to contain a different rule, which in
the 2APL case will be practical almost all of the rules. The Xtext grammar describes how this is
implemented, see chapter 3.9.2 for this.

A multi valued feature is shown as a collapsed item in the outline view, by expanding the item one or

more rules can be applicable, the example below shows that the rule Goals and Plans can contain more

than one Goal or Plan rule, that are now part of a list inside the outline view.

Figure 3.12 - Multi valued features

3.11.2 Single valued features

The simple equal sign = is the straight forward assignment, and used for features which take only one
element. [30]

By assigning a rule with a single valued feature, the outline is not given the name of the rule, as with a
multi valued feature, but is given the name of the value inside the rule.

An example is shown below where the Goal rule starts with a GroundAtom that starts with an Ident

that then gives the name of the GroundAtom in the outline view, in this case receiveMoney . Next, it is

for the GroundAtom rule possible to have one or more GroundPars , so this rule is given the name of the

rule itself, in the GroundPars rule it is possible to have a Num rule, in our case with the value 100 , this
value is than the name of the Num rule in our outline view.

Figure 3.13 - Single valued features

The single valued rules in the 2APL IDE plug-in are:
1. Num
2. Var
3. Ident

I have chosen for this construction in order to make sure that the outline view is really representing the

code, the end user can now distinguish the multiple same rules by the single valued features inside the
rules.

receiveMoney(100)

An Integrated Development Environment for A Practical Agent Programming Language - 23 -

3.12 DSL
A domain-specific language (DSL) is a small programming language, which focuses on a particular domain.
Such a domain can be more or less anything, in this case it is the 2APL syntax language. The idea is that its
concepts and notation is as close as possible to what you have in mind when you think about a solution in
that domain. Of course this concerns problems which can be solved or processed by computers somehow.
[16]

The opposite of a DSL is a so called GPL, a General Purpose Language such as Java or any other common
programming language. With a GPL you can solve every computer problem, but it might not always be the
best way to solve it. [16]

3.13 Multiple Alternatives
The problem with multiple alternatives is that the parser cannot make a decision between different rules,

e.g. the static text true can also be a <literal> , that can be an <atom> , that can be an <ident> what

may contain the text true . This example is shown below:

Figure 3.14 - Multiple alternatives example

It can also happen that there are multiple rules applicable, e.g. the rule <terminalpar> has

<artexps> and <pars> that when you follow the rules both can have a <num> rule. The parser is unable
to distinguish the difference. This example is shown below.

Figure 3.15 - Multiple applicable rules example

An Integrated Development Environment for A Practical Agent Programming Language - 24 -

By using the backtrack option this problem can be tackled, see chapter 3.14 about backtracking and
how to enable this feature.

3.14 Backtracking
Backtracking is a general algorithm for finding all, or some, solutions to computational problem. The
backtracking algorithm enumerates a set of partial candidates that, in principle, could be completed in
various ways to give all the possible solutions to the given problem. The completion is done incrementally,
by a sequence of candidate extension steps. [24]

To enable the backtracking algorithm in this project the Xtext manual provides the following solution
[25], this solution was also used in the 2APL IDE plug-in:

1. In the MWE workflow file, in this case GenerateAPAPL.mwe , replace:
<fragment class="org.eclipse.xtext.generator.AntlrD elegatingFragment"/>
with:
<fragment class="de.itemis.xtext.antlr.XtextAntlrGe neratorFragment">
<options backtrack="true"/></fragment>

2. Execute the MWE workflow file, see chapter 4.7.

3.15 Project creator
The project creator can be enabled by modifying the MWE workflow file and adding two files to the ui
package (in this case nl.uu.cs.apapl.ide.ui) by following the steps in the Xtext user guide [44].

1. Add the following line to the MWE workflow file:
<fragment
class="org.eclipse.xtext.ui.generator.projectWizard .SimpleProjectWizard
Fragment" generatorProjectName="${projectName}.gene rator"
modelFileExtension="2apl"/>

2. Modify the APAPLCustomNewProjectWizard.java file in the

nl.uu.cs.apapl.ide.ui.wizard package, change the addPages() function to:

The full APAPLCustomNewProjectWizard.java file can be found in the first part of

3. Modify the APAPLNewProject.xpt file, this file holds a default project with 2APL source
code that will be created during the project setup. The default source that is shipped with the
2APL IDE plug-in is the push-up agent that was described in chapter 2.2.1. The full

APAPLNewProject.xpt file can be found in part two of appendix G.

3.16 Syntax highlighting
After executing the MWE workflow the generated files will have some default settings regarding syntax
highlighting. To change the behavior of the highlighting functionality in the plug-in some changes have to

be made to the generated java files. The two files, APAPLSemanticHighlightConfiguration.java

and APAPLSemanticHighlightingCalculator.java , are responsible for the color settings and
identifying the various rules that will be given a color configuration. How this is implemented will be
explained in the following two subchapters, extracted from chapter 5 of the Xtext manual [26]. To register

the two new files in the 2APL IDE plug-in the Xtext generated APAPLUiModule.java file has to be

modified. In the first part of appendix E the full APAPLUiModule.java file can be found.

public void addPages() {
 mainPage = new WizardNewProjectCreationPage("basicNewProjectPage");
 mainPage .setTitle("2APL Project");
 mainPage .setDescription("Create a new 2APL project.");
 addPage(mainPage);
}

An Integrated Development Environment for A Practical Agent Programming Language - 25 -

3.16.1 Highlight configuration

In the APAPLSemanticHighlightConfiguration.java file the various text styles will be defined. In
the 2APL IDE plug-in there are four rules that can be given different text styles:

1. Atom
2. UpperAtom
3. GroundAtom
4. ExternalAction
For every of the four rules there is a text style created, this text style holds settings like the

background color, text color and font style (e.g. bold or italic). The atom text style source code looks like:
[26]

As per default I ship all the text styles of the four rules in this default format, the end users are free
the change the styles in the preferred way their selves. The full source code can be found in the second
part of appendix E.

3.16.2 Highlighting calculator

In the APAPLSemanticHighlightingCalculator.java file the different rules are identified and given
the text style settings specified earlier. To identify the various predefined rules all the content of the 2APL
file will be parsed into an EObject, that can then check if the object contains a rule that needs to be given

a text style. To walk through all these objects the following code is used to identify an atom rule: [26]

The full source code can be found in the third part of Appendix E.

3.17 2APL syntax
The 2APL syntax is written in the EBNF standard, in chapter 6 it is described how the syntax was at the
start of this project, what and why changes to the syntax have been made and a description of all the rules
is given.

By making a code example for every rule a formal test is executed, every rule has therefore tested as
shown in chapter 5.5 and appendix H.

public TextStyle atom() {
 TextStyle textStyle = new TextStyle();
 textStyle.setBackgroundColor(new RGB(255, 255, 255));
 textStyle.setColor(new RGB(0, 0, 0));
 return textStyle;
}

EObject current = iter.next();
if(current instanceof Atom){

AbstractNode node = null;
 NodeAdapter adapter = NodeUtil. getNodeAdapter(current);
 if (adapter != null) {
 CompositeNode nodeC = adapter.getParserNode();
 if (nodeC != null) {
 for (AbstractNode child: nodeC.getChildren()) {
 if (child instanceof LeafNode) {
 node = child;
 highlightNode(node,
APAPLSemanticHighlightConfiguration. ATOM, acceptor);
 }
 }
 }
 }
}

An Integrated Development Environment for A Practical Agent Programming Language - 26 -

3.18 Run configuration
A run configuration is made to execute the 2APL project from the IDE. In chapter 4.5 it is described how to
configure the 2APL IDE plug-in to execute the project. To obtain this functionality, a small change to the
2APL platform had to be made.

The run configuration starts the 2APL platform and sends some arguments to the 2apl.jar file, the

full arguments in the 2APL IDE plug-in are -jar 2apl.jar –nojade “${selected_recourse_loc}”
this executes the jar file and in this case disables the jade functionality inside the 2APL platform, then the

parameter ${selected_recourse_loc} is send that contains the full path to the 2APL project that is
active in the 2APL IDE.

In the 2APL platform, this parameter is used to load the MAS file that contains the agent configuration
of the 2APL project, the 2APL platform searches through the directory that is given by this parameter for a

file that has a .mas extension. If found, this file is loaded and executed in the 2APL platform, and if there
is no MAS file found, an error will be thrown to inform the user.

In appendix I the java code that has been added to the APAPL.java file is attached. Note that adding
this functionality has no impact on the way the 2APL platform works.

The run configuration option in the 2APL platform was first implemented by Michal Cap [33], a master
student at Utrecht University. This functionality only provided the loading of a selected file, what is
enough to run the 2APL platform from the command line, to have the desired functionality for the 2APL IDE
plug-in I modified his code so that a directory is checked to find a MAS file.

An Integrated Development Environment for A Practical Agent Programming Language - 27 -

4 2APL IDE plug-in
In the previous two chapters it has been described how to create an IDE. This chapter covers the question
of how to use the 2APL IDE plug-in. In this chapter, the various steps to install, work with and tune the IDE
as you like will be described. To use the 2APL IDE plug-in, it is required to have basic knowledge of the
Eclipse platform.

4.1 Install the 2APL IDE plug-in
In order to install the 2APL IDE plug-in you need to follow the next procedure:

1. Download the Eclipse Xtext application from its homepage at:
http://www.eclipse.org/Xtext/download

2. Extract the contents of the file into a directory. In this sequel, we assume that this directory

is named eclipse .
3. Download the 2APL IDE plug-in files from the 2APL website at:

http://apapl.sourceforge.net/?page_id=7

4. Extract the files to the eclipse plug-in directory named eclipse\plugins .
You can now use the 2APL IDE as part of the Eclipse framework by executing Eclipse, the 2APL IDE plug-

in is then automatically loaded. The 2APL IDE plug-in has been tested with Eclipse 3.5.1 , Xtext
0.7.2 , under Windows and Mac OS X .

4.1.1 In the background of the plug-in

This plug-in is created by Xtext, Xtext creates, as described in chapter 3.3, a plug-in for Eclipse. As I did
not change any of the code to get the plug-in working with Eclipse, i.e. Xtext takes fully care of this part, I
will only show how Xtext is integrated with EMF.

Figure 4.1 - Xtext integration with EMF [45]

For more information regarding the integration of the plug-in with Eclipse see the auto generated

AbstractAPAPLRuntimeModule.java file, attached in appendix J, how the various options are binded
in the framework.

An Integrated Development Environment for A Practical Agent Programming Language - 28 -

4.2 Look and feel of the IDE

Figure 4.2 - IDE for 2APL

In the left column the Package explorer is shown, this gives an overview of all the available projects,
shown as folders, available in the IDE. A project can be opened to get an overview of the files inside the
project.

In the center column the editor is active, this editor shows the opened file and applies all the futures
available in the IDE such as syntax coloring and code validation checks.

In the right column the outline view is presented that shows the outline view of the current opened file,
that is also the file opened in the center column.

4.3 Create a new 2APL project
In order to work with the IDE you need to create a project. A project consists of one MAS file and one or
multiple 2APL files. Follow the instructions to create a new project, when finished you can modify the
files the way you like, add new files and run the project from the IDE.

1. Create a new project in the Eclipse Xtext version that has the 2APL IDE plug-in installed

2. In the project wizard, choose APAPL project and give the project a name (e.g. push-up)

3. A template 2APL and MAS file are created within the new project

An Integrated Development Environment for A Practical Agent Programming Language - 29 -

Figure 4.3 - New created project

4.4 Change syntax colors in the IDE
In the IDE it is possible to change the color of the 2APL code. To do this go to the Preference page,

under the menu Window, and select Syntax Coloring under Xtext Languages and then APAPL.

Figure 4.4 - Color settings

Default only the Keyword token has a color (Red and bold), all the other tokens have the color black. It

is possible to change the token appearance of 2APL atom , 2APL externalaction , 2APL groundatom

and 2APL upperatom .

An Integrated Development Environment for A Practical Agent Programming Language - 30 -

4.5 Run the project from the IDE
It is possible to run the project form the IDE, this makes the sequence of trial and error a lot faster.

In order to run the project from the IDE a run configuration has to be added to the IDE.

1. Open the External Tools Configurations

2. In the External Tools Configurations window, right click program and select new

Figure 4.5 - External tools configuration 1

3. In the configurations window:
a. Name: a name for the run configuration

(e.g. 2APL with GUI)
b. Location: the full path to your java.exe

(e.g. C:\Program Files (x86)\Java\jdk1.6.0_04\bin\java.ex e)
c. Working Directory: the path to your 2APL directory

(e.g. D:\apapl)

d. Arguments: -jar 2apl.jar –nojade “${selected_recourse_loc }”

Figure 4.6 - External tools configuration 2

An Integrated Development Environment for A Practical Agent Programming Language - 31 -

5 2APL syntax
This chapter will review the 2APL syntax. During the project, many changes in the syntax have been made.
An overview of these changes can be found in chapter 5.4. The syntax is expressed in the EBNF, Extended
Backus–Naur Form [6], standard. Note that changing the syntax of the rules are made in a way that the
2APL platform does not have to be modified.

5.1 EBNF legenda
<name> = rule name
{<rule>} = 0..* (This rule can persist zero or mult iple times)
[<rule>] = 0..1 (This rule is optional)
<rule>+ = 1..* (This rule can persist one or multi ple times)
<A> | = choice between rule name A and B
(<A> |) = choice between rule name A and B with in brackets
"var" = static text
; = end of the rule

5.2 Current EBNF 2APL syntax
The current 2APL syntax specifies <atom> as a Prolog like atomic formula starting with a lowercase letter,

<Atom> to denote a Prolog like atomic formula starting with a capital letter, <ident> to denote a string,

<Var> to denote a string starting with a capital letter and <ground_atom> to denote a grounded atomic
formula. [7, 19]

Because of the missing specification of these rules, it is unclear what an atom rule should look like. This
problem does not only exist for the atom rule, but for all the unspecified rules in the current EBNF 2APL
syntax. The full syntax can be found in appendix A. [19]

5.3 New EBNF 2APL syntax
The new syntax is a rewrite of the current syntax. It can also be found in appendix B.
<APAPL> = { "Include:" <includes>
 | "BeliefUpdates:" <beliefupdates>
 | "Beliefs:" <beliefs>
 | "Goals:" <goals>
 | "Plans:" <plans>
 | "PG-rules:" <pgrules>
 | "PC-rules:" <pcrules>
 | "PR-rules:" <prrules> };
<includes> = <include>+;
<include> = <ident> ".2apl";
<beliefupdates> = <beliefupdate>+;
<beliefupdate> = "{" [<belquery>] "}" <beliefupdate name> "{" <literals> "}";
<beliefupdatename> = <upperatom>;
<beliefs> = <belief>+;
<belief> = <ground_atom>"."
 | <atom> ":-" <literals> ".";
<goals> = <goal> {"," <goal>};
<goal> = <ground_atom> {"and" <ground_atom>};
<baction> = "skip"
 | <beliefupdatename>
 | <sendaction>
 | <externalaction>
 | <abstractaction>
 | <test>
 | <adoptgoal>
 | <dropgoal>;
<plans> = <plan> {"," <plan>};

An Integrated Development Environment for A Practical Agent Programming Language - 32 -

<plan> = <baction>
 | <sequenceplan>
 | <ifplan>
 | <whileplan>
 | <atomicplan>
 | <scopeplan>;
<sendaction> = "send(" <iv> "," <iv> "," <atom> ")"
 | "send(" <iv> "," <iv> "," <iv> "," <iv> "," <ato m> ")";
<externalaction> = "@" <ident> "(" <atom> "," <var> ")";
<abstractaction> = <atom>;
<test> = "B(" <belquery> ")"
 | "G(" <goalquery> ")"
 | <test> "&" <test>
 | "(" <test> ")";
<adoptgoal> = "adopta(" <goalvar> ")"
 | "adoptz(" <goalvar> ")";
<dropgoal> = "dropgoal(" <goalvar> ")"
 | "dropsubgoals(" <goalvar> ")"
 | "dropsupergoals(" <goalvar> ")";
<ifplan> = "if" <test> "then" <scopeplan> ["else" < scopeplan>];
<whileplan> = "while" <test> "do" <scopeplan>;
<atomicplan> = "[" <plan> "]";
<scopeplan> = "{" <plan> "}";
<pgrules> = <pgrule>+;
<pgrule> = [<goalquery>] "<-" <belquery> "|" <plan> ;
<pcrules> = <pcrule>+;
<pcrule> = <atom> "<-" <belquery> "|" <plan>;
<prrules> = <prrule>+;
<prrule> = <planvar> "<-" <belquery> "|" <planvar>;
<goalvar> = <atom> {"and" <atom>};
<planvar> = <plan>
 | <var>
 | "if" <test> "then" <scopeplanvar> ["else" <scope lanvar>]
 | "while" <test> "do" <scopeplanvar>
 | <planvar> ";" <planvar>;
<scopeplanvar> = "{" <planvar> "}";
<literals> = <literal> {"," <literal>};
<literal> = <atom>
 | <infixatom>
 | "not" <atom>
 | "not" <infixatom>;
<belquery> = "true"
 | <belquery> "and" <belquery>
 | <belquery> "or" <belquery>
 | "(" <belquery ")"
 | <literal>;
<goalquery> = "true"
 | <goalquery> "and" <goalquery>
 | <goalquery> "or" <goalquery>
 | "(" <goalquery> ")"
 | <atom>;
<iv> = <ident> | <var>;
<groundatom> = <ident> "(" <groundpars> ")";
<groundpars> = <groundpar> {"," <groundpar>};
<groundpar> = <ident> | <num> | "_"
 | "[" [<groundpars>] "]"
 | "[" <groundpars> "|" <var> "]";
<upperatom> = <var> "(" [<pars>] ")";
<atom> = <ident> ["(" [<pars>] ")"];
<infixatom> = <par> ("=" | ">" | "<" | "=" | "<=" | ">=" | "=>" | "=<")
 <par>;
<pars> = <par> {"," <par>};
<par> = <var> | <num> | "_" | <atom>
 | <par> ("+" | "-" | "*" | "/") <par>
 | "[" <pars> "]"
 | "[" (<artexps> | <pars>) "|" <var> "]";

An Integrated Development Environment for A Practical Agent Programming Language - 33 -

<artexps> = <artexp> {"," <artexp>};
<artexp> = <var> | <num>
 | <artexp> ("+" | "-" | "*" | "/") <artexp>
 | "(" <artexp> ")";
<var> = "A".."Z" {"a".."z" | "A".."Z" | "0".."9" | "_"};
<ident> = "a".."z" {"a".."z" | "A".."Z" | "0".."9" | "_"};
<num> = ("0".."9")+;

5.4 Differences
The differences are made without the need to change the existing program and can be grouped in 2 parts,

one is the group that holds the changes for a better overview, like includes and beliefupdates and

the other group contain the rules that where not specified like atom and var .

In the new version of the 2APL syntax the following rules have been added or specified:

 Rule name Description

1. <APAPL> This rule overrides the old <Agent_Prog> rule

2. <includes> This rule is created to have multiple <include> rules

3. <include> This rule specifies one singe file that is included

4. <beliefupdates> This rule is created to have multiple <beliefupdate> rules

5. <beliefupdatename> This rule is created to have a better overview in the <beliefupdate>
rule itself

6. <beliefs> This rule is created to have multiple <belief> rules

7. <groundatom> This rule specifies an <atom> like rule that should have one or more
parameters

8. <groundpars> This rule is created to have multiple <groundpar> rules

9. <groundpar> This rule specifies all the parameters within a <groundatom> rule

10. <upperatom> This rule is identical to the <atom> rule but it starts with a capital letter

11. <atom> This rule specifies how an <atom> rule should be implemented

12. <infixatom> This rule is a special type of <atom>

13. <pars> This rule is created to have multiple <par> rules

14. <par> This rule specifies all the parameters within an <atom> , <upperatom> or

<infixatom> rules

15. <artexps> This rule is created to have multiple <artexp> rules

16. <artexp> This rule specifies the arithmetic expressions within a <par> rule

17. <var> This rule specifies a string starting with a capital letter

18. <ident> This rule specifies a string starting with a lowercase letter

19. <num> This rule specifies a number

The following rules have been deleted:

 Rule name Description

1. <Agent_Prog> This rule is replaced by the <APAPL> rule
2. <BelUpSpec> This rule is replaced by the <beliefupdate> rule

The following rules have been modified:

 Rule name

1. <beliefupdate>

2. <plan>

3. <sendaction>

4. <test>

5. <literal>

In appendix H is described what has changed for this five rules.

An Integrated Development Environment for A Practical Agent Programming Language - 34 -

5.5 2APL rules in detail
In total there are 50 rules in the 2APL syntax, all of these rules are well documented in appendix H. Every
rule is described in the following seven ways:

1. Old EBNF syntax:
If the rule syntax has been updated this area shows the old syntax EBNF syntax

2. EBNF syntax:
The full syntax for the rule is shown here

3. Xtext syntax:
The Xtext syntax is shown here, if needed rules are left-factored and operators are added to
create the wanted outline view

4. ANTLR syntax diagram:
This diagram is added to have a graphical view of the rule, it shows that when a rule is chosen
what various steps are available to take next

5. Description:
In the description I briefly describe how the rule can be used, here I do not describe why a rule
exists in the 2APL platform, for this I suggest to read the 2APL user manual [7, 19]

6. Outline view:
The 2APL IDE plug-in gives an outline view for the rule that I here show to have a better
oversight of the rule

7. Example:
An example of the rule is given, here I use different coloring settings for the various rule to
distinguish the rules better

An Integrated Development Environment for A Practical Agent Programming Language - 35 -

6 Evaluation
Overall, I am very satisfied with the result of the project. When I started my search for existing IDE’s,
Eclipse and Xtext came up very fast, resulting in a good start of my project. Then I found out that not all
the rules of 2APL where described in the existing syntax, so these had to be added or existing rules had to
be modified. This took more time then I anticipated, and at the start of the project I did not even
calculate the time for this research in the project. Adding and modifying the 2APL syntax got me right into
the left-recursion problem, some extra changes had to be made to the Xtext grammar, but the
documentation available for this problem on the internet was more then enough to solve this matter.

If I look at the end product, the 2APL IDE plug-in that is now available for all the 2APL developers, I
could not have thought that all the options I wanted in the plug-in have been realized. Of course there is
more functionality to be added in a later stage, but considering the short time for this project I am more
then pleased with the result.

When I would have to make an other IDE, I would definitely use the same structure as I did in this
project, but I would require a complete syntax of the DSL before starting. During this project I had the
time to work on the syntax, but would have asked the 2APL development team to work on this if I came in
a short of time as this task was very time-consuming. I think that because of the use of a Prolog engine in
2APL the syntax is incomplete, if I check what rules are described in the existing syntax, all of these rules
are specific 2APL rules that refer in some cases to a Prolog rule. For this project all the available rules had
to be described, so just referring to a rule in Prolog would not work within the Xtext project. Working on
the 2APL syntax gained me quite some experience with the EBNF standard and the left-recursion problem.

Not only was this project the end of my Bachelor study, it is also the beginning of my Master study and
while working on this project I attended the Intelligent agents course [14] from John-Jules Meyer and the
Multi-agent systems course [15] from Mehdi Dastani. Attending these courses gave me a better insight into
the world of agents and into how 2APL is used in the agent-oriented world. All this will hopefully result in a
jump start towards my Master study.

An Integrated Development Environment for A Practical Agent Programming Language - 36 -

7 Conclusion and future work
During this project I have gained a good impression about how hard it is to create a programming language.
Although the 2APL language is relatively small compared to Java or C, it still manages to design agent
applications on a BDI model. Due to the fact that a good IDE was missing for 2APL, it was very hard for
programmers to create a bug free application without having to study the full 2APL syntax. Since the
creation of the IDE I received quite some positive feedback from people that used it, or even heard about
it. I hope that the use my IDE in the next Multi-agent programming course at Utrecht University will help
2APL developers to create, test and execute their projects.

To optimize the created IDE some additional features can be created, and of course it is possible that
during the Multi-agent programming course bugs are found in the IDE that need to be solved.

Additional futures that can be implemented later are:
1. Auto code formatting

The java editor in Eclipse has the function to press cltr + shift + F to format the code
automatically, this can be added in a later version of the 2APL IDE plug-in as well.

2. MAS file editor
To create a project in 2APL a mas file is required, an editor could be created for the relative
small mas files in projects. The latest development shows that the possibility exists that this
mas file will be replaced by a xml file. But also for this xml file a modified editor can be build.

3. 2APL pull down menu with help options
This menu should be available next to the Help section of Eclipse, it can hold a link to the
documentation of 2APL an other references.

4. Environment creator for the 2APL platform
A new editor can be build to create environments for 2APL. Recent development indicates that
this environment will be changed to a default standard so the environment will also work with
multi-agent programming languages such as Jason, agentspeak or jadex.

5. Negative integers and doubles
It is possible to run the 2APL platform with a negative integer, but the 2APL IDE does not
recognize a negative number as valid, this simply because it was not described in the 2APL
syntax. This syntax should be changed in a way to allow negative numbers and doubles.

An Integrated Development Environment for A Practical Agent Programming Language - 37 -

8 References

[1] www.eclipse.org accessed 19 November 2009
[2] http://netbeans.org accessed 19 November 2009
[3] www.textpad.com accessed 19 November 2009
[4] www.jext.org accessed 19 November 2009
[5] www.eclipse.org/Xtext accessed 19 November 2009 and 1 December 2009
[6] http://www.cs.cmu.edu/~pattis/misc/ebnf.pdf accessed 19 November 2009
[7] 2APL user guide http://www.cs.uu.nl/2apl/downloads/userguide.pdf accessed 19 November 2009
[8] www.cs.uu.nl/2apl accessed 1 December 2009
[9] http://www.eclipse.org/modeling/emft/?project=ecoretools accessed 7 December 2009
[10] M. Wooldridge. An Introduction to Multiagent Systems. John Wiley and Sons Ltd, February 2002.
[11] http://www.eclipse.org/Xtext/documentation/0_7_2/xtext.html#WhatisXtext accessed 8

December 2009
[12] http://www.slideshare.net/HeikoB/xtext-webinar slide 28 accessed 8 December 2009
[13] http://www.slideshare.net/peterfriese/building-dsls-with-eclipse-1916333 (Slide 65) Accessed 2

December 2009
[14] http://www.cs.uu.nl/education/vak.php?stijl=2&vak=INFOIAG&jaar=2009
[15] http://www.cs.uu.nl/education/vak.php?stijl=2&vak=INFOMAS&jaar=2009
[16] http://www.eclipse.org/Xtext/documentation/0_7_2/xtext.html#DSL accessed 1 December 2009
[17] http://www.eclipse.org/org/ accessed 8 December 2009
[18] http://www.antlr.org/ accessed 11 December 2009
[19] Mehdi Dastani, 2APL: a practical agent programming language, International Journal of

Autonomous Agents and Multi-Agent Systems (JAAMAS), 16(3):214-248, Special Issue on
Computational Logic-based Agents, (eds.) Francesca Toni and Jamal Bentahar, 2008.

[20] http://www.cs.uu.nl/docs/vakken/mas/slides/introduction.pdf slide 10 and 11 accessed 29
January 2010

[21] http://www.eclipse.org/modeling/emft/?project=ecoretools accessed 1 February 2010
[22] http://wiki.eclipse.org/Modeling_Workflow_Engine_(MWE) accessed 1 February 2010
[23] http://ant.apache.org/ accessed 1 February 20103
[24] http://en.wikipedia.org/wiki/Backtracking accessed 10 February 2010
[25] http://wiki.eclipse.org/Xtext/FAQ#OK.2C_but_I_didn.27t_get_these_warnings_in_oAW_Xtext.C2.

A0.21 accessed 10 February 2010
[26] http://www.eclipse.org/Xtext/documentation/0_7_0/xtext.html#highlighting accessed 10

February 2010
[27] http://www.eclipse.org/Xtext/documentation/0_7_0/xtext.html#rules accessed 11 February

2010
[28] http://www.eclipse.org/modeling/emf/ accessed 11 February 2010
[29] http://www.theserverside.com/tt/articles/article.tss?l=PragmaticGen accessed 11 February 2010
[30] http://www.eclipse.org/Xtext/documentation/0_7_0/xtext.html#rules accessed 11 February

2010
[31] http://www.cs.uu.nl/education/vak.php?stijl=2&vak=INFOMAP&jaar=2008 accessed 15 February

2010
[32] http://people.cs.uu.nl/mehdi/ accessed 16 February 2010
[33] http://apapl.svn.sourceforge.net/viewvc/apapl/trunk/src/APAPL.java?view=markup&pathrev=25

accessed 17 February 2010
[34] http://en.wikipedia.org/wiki/Plug-in_(computing) accessed 19 February 2010
[35] http://www.eclipse.org/articles/Article-Your%20First%20Plug-in/YourFirstPlugin.html accessed

19 February 2010
[36] http://en.wikipedia.org/wiki/Parsing accessed 19 February 2010
[37] http://dinosaur.compilertools.net/yacc/index.html accessed 19 February 2010
[38] http://www.gnu.org/software/bison/ accessed 19 February 2010
[39] http://www.ssw.uni-linz.ac.at/Coco/ accessed 19 February 2010
[40] http://xtext.itemis.com/ accessed 2 March 2010

An Integrated Development Environment for A Practical Agent Programming Language - 38 -

[41] http://www.eclipse.org/forums/index.php?t=msg&goto=480994&#msg_480994 accessed August
2009

[42] http://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_Form accessed 2 March 2010
[43] http://www.eclipse.org/forums/index.php?t=showposts&id=67905& accessed 2 Marc 2010
[44] http://www.eclipse.org/Xtext/documentation/latest/xtext.html#projectwizard accessed 2

March 2010
[45] http://www.slideshare.net/HeikoB/xtext-webinar slide 33, accessed 4 March 2010

An Integrated Development Environment for A Practical Agent Programming Language - 39 -

9 Appendices

9.1 Appendix A - Old EBNF 2APL syntax
<Agent_Prog> = { "Include:" <ident>
 | "BeliefUpdates:" <BelUpSpec>
 | "Beliefs:" <belief>
 | "Goals:" <goals>
 | "Plans:" <plans>
 | "PG-rules:" <pgrules>
 | "PC-rules:" <pcrules>
 | "PR-rules:" <prrules> };
<BelUpSpec> = "{"<belquery>"}" <beliefupdate> "{"<l iterals>"}";
<beliefupdate> = <Atom>;
<belief> = <ground_atom>"."
 | <atom> ":-" <literals>".";
<goals> = <goal> {"," <goal>};
<goal> = <ground_atom> {"and" <ground_atom>};
<baction> = "skip"
 | <beliefupdatename>
 | <sendaction>
 | <externalaction>
 | <abstractaction>
 | <test>
 | <adoptgoal>
 | <dropgoal>;
<plans> = <plan> {"," <plan>};
<plan> = <baction>
 | <sequenceplan>
 | <ifplan>
 | <whileplan>
 | <atomicplan>;
<sendaction> = "send(" <iv> "," <iv> "," <atom> ")" ;
 | "send(" <iv> "," <iv> "," <iv> "," <iv> "," <ato m> ")";
<externalaction> = "@" <ident> "(" <atom> "," <var> ")";
<abstractaction> = <atom>;
<test> = "B(" <belquery> ")"
 | "G(" <goalquery> ")"
 | <test> "&" <test>;
<adoptgoal> = "adopta(" <goalvar> ")"
 | "adoptz(" <goalvar> ")";
<dropgoal> = "dropgoal(" <goalvar> ")"
 | "dropsubgoals(" <goalvar> ")"
 | "dropsupergoals(" <goalvar> ")";
<ifplan> = "if" <test> "then" <scopeplan> ["else" < scopeplan>];
<whileplan> = "while" <test> "do" <scopeplan>;
<atomicplan> = "[" <plan> "]";
<scopeplan> = "{" <plan> "}";
<pgrules> = <pgrule>+;
<pgrule> = [<goalquery>] "<-" <belquery> "|" <plan> ;
<pcrules> = <pcrule>+;
<pcrule> = <atom> "<-" <belquery> "|" <plan>;
<prrules> = <prrule>+;
<prrule> = <planvar> "<-" <belquery> "|" <planvar>;
<goalvar> = <atom> {"and" <atom>};
<planvar> = <plan>
 | <var>
 | "if" <test> "then" <scopeplanvar> ["else" <scope lanvar>]
 | "while" <test> "do" <scopeplanvar>
 | <planvar> ";" <planvar>;
<scopeplanvar> = "{" <planvar> "}";
<literals> = <literal> {"," <literal>};

An Integrated Development Environment for A Practical Agent Programming Language - 40 -

<literal> = <atom>
 | "not" <atom>;
<belquery> = "true"
 | <belquery> "and" <belquery>
 | <belquery> "or" <belquery>
 | "(" <belquery ")"
 | <literal>;
<goalquery> = "true"
 | <goalquery> "and" <goalquery>
 | <goalquery> "or" <goalquery>
 | "(" <goalquery> ")"
 | <atom>;
<iv> = <ident> | <var>;

An Integrated Development Environment for A Practical Agent Programming Language - 41 -

9.2 Appendix B – New EBNF 2APL syntax
<APAPL> = { "Include:" <includes>
 | "BeliefUpdates:" <beliefupdates>
 | "Beliefs:" <beliefs>
 | "Goals:" <goals>
 | "Plans:" <plans>
 | "PG-rules:" <pgrules>
 | "PC-rules:" <pcrules>
 | "PR-rules:" <prrules> };
<includes> = <include>+;
<include> = <ident> ".2apl";
<beliefupdates> = <beliefupdate>+;
<beliefupdate> = "{" [<belquery>] "}" <beliefupdate name> "{" <literals> "}";
<beliefupdatename> = <upperatom>;
<beliefs> = <belief>+;
<belief> = <ground_atom>"."
 | <atom> ":-" <literals> ".";
<goals> = <goal> {"," <goal>};
<goal> = <ground_atom> {"and" <ground_atom>};
<baction> = "skip"
 | <beliefupdatename>
 | <sendaction>
 | <externalaction>
 | <abstractaction>
 | <test>
 | <adoptgoal>
 | <dropgoal>;
<plans> = <plan> {"," <plan>};
<plan> = <baction>
 | <sequenceplan>
 | <ifplan>
 | <whileplan>
 | <atomicplan>
 | <scopeplan>;
<sendaction> = "send(" <iv> "," <iv> "," <atom> ")"
 | "send(" <iv> "," <iv> "," <iv> "," <iv> "," <ato m> ")";
<externalaction> = "@" <ident> "(" <atom> "," <var> ")";
<abstractaction> = <atom>;
<test> = "B(" <belquery> ")"
 | "G(" <goalquery> ")"
 | <test> "&" <test>
 | "(" <test> ")";
<adoptgoal> = "adopta(" <goalvar> ")"
 | "adoptz(" <goalvar> ")";
<dropgoal> = "dropgoal(" <goalvar> ")"
 | "dropsubgoals(" <goalvar> ")"
 | "dropsupergoals(" <goalvar> ")";
<ifplan> = "if" <test> "then" <scopeplan> ["else" < scopeplan>];
<whileplan> = "while" <test> "do" <scopeplan>;
<atomicplan> = "[" <plan> "]";
<scopeplan> = "{" <plan> "}";
<pgrules> = <pgrule>+;
<pgrule> = [<goalquery>] "<-" <belquery> "|" <plan> ;
<pcrules> = <pcrule>+;
<pcrule> = <atom> "<-" <belquery> "|" <plan>;
<prrules> = <prrule>+;
<prrule> = <planvar> "<-" <belquery> "|" <planvar>;
<goalvar> = <atom> {"and" <atom>};
<planvar> = <plan>
 | <var>
 | "if" <test> "then" <scopeplanvar> ["else" <scope lanvar>]
 | "while" <test> "do" <scopeplanvar>
 | <planvar> ";" <planvar>;

An Integrated Development Environment for A Practical Agent Programming Language - 42 -

<scopeplanvar> = "{" <planvar> "}";
<literals> = <literal> {"," <literal>};
<literal> = <atom>
 | <infixatom>
 | "not" <atom>
 | "not" <infixatom>;
<belquery> = "true"
 | <belquery> "and" <belquery>
 | <belquery> "or" <belquery>
 | "(" <belquery ")"
 | <literal>;
<goalquery> = "true"
 | <goalquery> "and" <goalquery>
 | <goalquery> "or" <goalquery>
 | "(" <goalquery> ")"
 | <atom>;
<iv> = <ident> | <var>;
<groundatom> = <ident> "(" <groundpars> ")";
<groundpars> = <groundpar> {"," <groundpar>};
<groundpar> = <ident> | <num> | "_"
 | "[" [<groundpars>] "]"
 | "[" <groundpars> "|" <var> "]";
<upperatom> = <var> "(" [<pars>] ")";
<atom> = <ident> ["(" [<pars>] ")"];
<infixatom> = <par> ("=" | ">" | "<" | "=" | "<=" | ">=" | "=>" | "=<")
 <par>;
<pars> = <par> {"," <par>};
<par> = <var> | <num> | "_" | <atom>
 | <par> ("+" | "-" | "*" | "/") <par>
 | "[" <pars> "]"
 | "[" (<artexps> | <pars>) "|" <var> "]";
<artexps> = <artexp> {"," <artexp>};
<artexp> = <var> | <num>
 | <artexp> ("+" | "-" | "*" | "/") <artexp>
 | "(" <artexp> ")";
<var> = "A".."Z" {"a".."z" | "A".."Z" | "0".."9" | "_"};
<ident> = "a".."z" {"a".."z" | "A".."Z" | "0".."9" | "_"};
<num> = ("0".."9")+;

An Integrated Development Environment for A Practical Agent Programming Language - 43 -

9.3 Appendix C – Xtext grammar
grammar nl.uu.cs.apapl.ide.APAPL with org.eclipse.xtext.common.Terminals

generate aPAPL "http://www.uu.nl/cs/apapl/ide/APAPL"

//** APAPL **//
APAPL:
 (elements+=
 "Include:" includes+=Includes
 | "BeliefUpdates:" beliefUpdates+=BeliefUpdates
 | "Beliefs:" beliefs+=Beliefs
 | "Goals:" goals+=Goals
 | "Plans:" plans+=Plans
 | "PG-rules:" pgrules+=Pgrules
 | "PC-rules:" pcrules+=Pcrules
 | "PR-rules:" prrules+=Prrules
)*
 ;

//** Include elemenet **//
Includes:
 (include+=Include)+;
Include:
 includeName=Ident ".2apl" ;

//** BeliefUpdates element **//
BeliefUpdates:
 (beliefUpdate+=BeliefUpdate)+;
BeliefUpdate:
 "{" (belquery+=Belquery)? "}" beliefUpdateName+=BeliefUpdateName "{"
literals+=Literals "}" ;
BeliefUpdateName:
 upperatom+=UpperAtom;

//** Belief element **//
Beliefs:
 (belief+=Belief)+;
Belief:
 groundAtom+=GroundAtom "."
 | atom+=Atom ":-" literals+=Literals "."
 ;

//** Belief Query **//
Belquery:
 TerminalBelquery ({ Belquery.belquery+= current} (("and" | "or")
belquery+=TerminalBelquery)+)?;
TerminalBelquery returns Belquery:
 "true"
 | literal+=Literal
 | '(' belquery+=Belquery ')'
 ;

//** Goal Query **//
Goalquery:
 TerminalGoalquery ({ Goalquery.goalquery+= current} (("and" | "or")
goalquery+=TerminalGoalquery)+)?;
TerminalGoalquery returns Goalquery:
 "true"
 | atom+=Atom
 | '(' goalquery+=Goalquery ')'
 ;

An Integrated Development Environment for A Practical Agent Programming Language - 44 -

//** Goals element **//
Goals:
 goal+=Goal ("," goal+=Goal)*;
Goal:
 groundAtom+=GroundAtom ("and" groundAtom+=GroundAtom)*;
Adoptgoal:
 "adopta(" goalvar+=Goalvar ")"
 | "adoptz(" goalvar+=Goalvar ")"
 ;
Dropgoal:
 "dropgoal(" goalvar+=Goalvar ")"
 | "dropsubgoals(" goalvar+=Goalvar ")"
 | "drupsupergoals(" goalvar+=Goalvar ")"
 ;
Goalvar:
 atom+=Atom ("and" atom+=Atom)*;

//** Plans element **//
Plans:
 plan+=Plan ("," plan+=Plan)*;
Plan:
 TerminalPlan ({ Plan.plan+= current} (";" plan+=TerminalPlan)+)?;
TerminalPlan returns Plan:
 baction+=Baction
 | ifPlan+=IfPlan
 | whilePlan+=WhilePlan
 | scopePlan+=ScopePlan
 | atomicPlan+=AtomicPlan
 ;
AtomicPlan:
 "[" plan+=Plan "]" ;
ScopePlan:
 "{" plan+=Plan "}" ;
IfPlan:
 "if" test+=Test "then" scopePlan+=ScopePlan ("else" scopePlan+=ScopePlan)?;
WhilePlan:
 "while" test+=Test "do" scopePlan+=ScopePlan;

//** Bactions **//
Baction:
 "skip"
 | test+=Test
 | externalAction+=ExternalAction
 | abstractAction+=AbstractAction
 | adoptgoal+=Adoptgoal
 | dropgoal+=Dropgoal
 | sendAction+=SendAction
 | beliefUpdateName+=BeliefUpdateName
 ;

//** Actions **//
ExternalAction:
 "@" name=Ident "(" atom+=Atom "," varname=Var ")" ;
AbstractAction:
 atom+=Atom;
SendAction:
 "send(" iv+=Iv "," iv+=Iv "," atom+=Atom ")"
 | "send(" iv+=Iv "," iv+=Iv "," iv+=Iv "," iv+=Iv "," atom+=Atom ")"
 ;

//** PG-rules **//
Pgrules:
 (pgrule+=Pgrule)+;
Pgrule:
 (goalquery+=Goalquery)? "<-" belquery+=Belquery "|" plan+=Plan;

An Integrated Development Environment for A Practical Agent Programming Language - 45 -

//** PC-rules **//
Pcrules:
 (pcrule+=Pcrule)+;
Pcrule:
 atom+=Atom "<-" belquery+=Belquery "|" plan+=Plan;

//** PR-rules **//
Prrules:
 (prrule+=Prrule)+;
Prrule:
 planvar+=Planvar "<-" belquery+=Belquery "|" planvar+=Planvar;

//** Planvar **//
Planvar:
 TerminalPlanvar ({ Planvar.planvar+= current} (";" planvar+=TerminalPlanvar)+)?;
TerminalPlanvar returns Planvar:
 name=Var
 | name= "if" test+=Test "then" scopePlanvar+=ScopePlanvar ("else"
scopePlanvar+=ScopePlanvar)?
 | name= "while" test+=Test "do" scopePlanvar+=ScopePlanvar
 | plan+=TerminalPlan
 ;
ScopePlanvar:
 "{" planvar+=Planvar "}" ;

//** Test **//
Test:
 TerminalTest ({ Test.test+= current} ("&" test+=TerminalTest)+)?;
TerminalTest returns Test:
 BelqueryTest | GoalqueryTest | "(" test+=Test ")" ;
BelqueryTest:
 "B(" belquery+=Belquery ")" ;
GoalqueryTest:
 "G(" goalquery+=Goalquery ")" ;

Literals:
 literal+=Literal ("," literal+=Literal)*;
Literal:
 atom+=Atom
 | infixatom+=InfixAtom
 | "not" atom+=Atom
 | "not" infixatom+=InfixAtom
 ;
Iv:
 name=Ident | name=Var;

//** Terminal en static datatype rules **//
GroundAtom:
 name=Ident "(" groundpars+=GroundPars ")" ;
GroundPars:
 groundpar+=GroundPar ("," groundpar+=GroundPar)*;
GroundPar:
 name=Ident
 | name=Num
 | "_"
 | "[" (groundpars+=GroundPars)? "]"
 | "[" groundpars+=GroundPars "|" name=Var "]"
 ;

UpperAtom:
 name=Var '(' (pars+=Pars)? ')' ;

Atom:
 name=Ident ("(" (pars+=Pars)? ")")?;

An Integrated Development Environment for A Practical Agent Programming Language - 46 -

InfixAtom:
 par+=Par ("=" | ">" | "<" | "<=" | ">=" | "=>" | "=<") par+=Par;

Pars:
 par+=Par ("," par+=Par)*;
Par:
 TerminalPar ({ Par.par+= current} (("+" | "-" | "*" | "/") par+=TerminalPar)+)?;
TerminalPar returns Par:
 name=Var
 | name=Num
 | name= '_'
 | '[' (pars+=Pars)? ']'
 | '[' (artexps+=ArtExps | pars+=Pars) '|' name=Var ']'
 | atom+=Atom
 ;

ArtExps:
 artexp+=ArtExp (',' artexp+=ArtExp)*;
ArtExp:
 TerminalArtExp ({ ArtExp.artexp+= current} (("+" | "-" | "*" | "/")
artexp+=TerminalArtExp)+)?;
TerminalArtExp returns ArtExp:
 name=Var
 | name=Num
 | '(' artexp+=ArtExp ')'
 ;

terminal Var:
 ('A' .. 'Z') ('a' .. 'z' | 'A' .. 'Z' | '0' .. '9' | "_")*;
terminal Ident:
 ('a' .. 'z') ('a' .. 'z' | 'A' .. 'Z' | '0' .. '9' | "_")*;
terminal Num:
 ('0' .. '9')+;

terminal SL_COMMENT:
 ('//' | '%') !('\n' | '\r')* ('\r' ? '\n')? ;

An Integrated Development Environment for A Practical Agent Programming Language - 47 -

9.4 Appendix D – MWE workflow file
<workflow>
 <property file= "nl/uu/cs/apapl/ide/GenerateAPAPL.properties" />

 <property name="runtimeProject" value= "../${projectName}" />

 <bean class= "org.eclipse.emf.mwe.utils.StandaloneSetup"
platformUri= "${runtimeProject}/.." />

 <component class= "org.eclipse.emf.mwe.utils.DirectoryCleaner"
directory= "${runtimeProject}/src-gen" />
 <component class= "org.eclipse.emf.mwe.utils.DirectoryCleaner"
directory= "${runtimeProject}.ui/src-gen" />

 <component class= "org.eclipse.xtext.generator.Generator" >
 <pathRtProject value= "${runtimeProject}" />
 <pathUiProject value= "${runtimeProject}.ui" />
 <projectNameRt value= "${projectName}" />
 <projectNameUi value= "${projectName}.ui" />

 <language uri= "${grammarURI}" fileExtensions= "${file.extensions}" >
 <!-- Java API to access grammar elements (required by several other
fragments) -->
 <fragment
class= "org.eclipse.xtext.generator.grammarAccess.GrammarA ccessFragment" />

 <!-- generates Java API for the generated EPackages -->
 <fragment
class= "org.eclipse.xtext.generator.ecore.EcoreGeneratorFr agment" />

 <!-- the serialization component -->
 <fragment
class= "org.eclipse.xtext.generator.parseTreeConstructor.P arseTreeConstructorFragment" />

 <!-- a custom ResourceFactory for use with EMF -->
 <fragment
class= "org.eclipse.xtext.generator.resourceFactory.Resour ceFactoryFragment"
 fileExtensions= "${file.extensions}" />

 <!-- the following fragment tries to use the Antlr Generator fragment
which can be installed via update manager from http ://download.itemis.com/updates/ -->
 <!-- <fragment
class="org.eclipse.xtext.generator.AntlrDelegatingF ragment" /> -->
 <fragment class= "de.itemis.xtext.antlr.XtextAntlrGeneratorFragment" >
 <options backtrack= "true" memoize= "true" />
 </fragment>

 <!-- java-based API for validation -->
 <fragment
class= "org.eclipse.xtext.generator.validation.JavaValidat orFragment" >
 <composedCheck value= "org.eclipse.xtext.validation.ImportUriValidator" />
 </fragment>

 <!-- scoping API -->
 <fragment
class= "org.eclipse.xtext.generator.scoping.JavaScopingFra gment" />

 <!-- formatter API -->
 <fragment
class= "org.eclipse.xtext.generator.formatting.FormatterFr agment" />

 <!-- labeling API -->
 <fragment
class= "org.eclipse.xtext.ui.generator.labeling.LabelProvi derFragment" />

An Integrated Development Environment for A Practical Agent Programming Language - 48 -

 <!-- outline API -->
 <fragment
class= "org.eclipse.xtext.ui.generator.outline.Transformer Fragment" />
 <fragment
class= "org.eclipse.xtext.ui.generator.outline.OutlineNode AdapterFactoryFragment" />

 <!-- java-based API for content assistance -->
 <fragment
class= "org.eclipse.xtext.ui.generator.contentAssist.JavaB asedContentAssistFragment" />
 <!-- the following fragment tries to use the Antlr based content
assist fragment which can be downloaded from http:/ /www.itemis.com
 and will be ignored if it's not available. -->
 <fragment
class= "org.eclipse.xtext.generator.DelegatingGeneratorFra gment"
 delegate= "de.itemis.xtext.antlr.XtextAntlrUiGeneratorFragmen t"
 message= "You are generating without ANTLR. It is highly
recommended to download and use the plugin 'de.item is.xtext.antlr' \n\t using the update
site http://download.itemis.com/updates/." >
 </fragment>
 <!-- <fragment
class="de.itemis.xtext.antlr.XtextAntlrUiGeneratorF ragment"/> -->
 <fragment
class= "de.itemis.xtext.antlr.XtextAntlrUiGeneratorFragmen t" >
 <options backtrack= "true" memoize= "true" />
 </fragment>

 <!-- project wizard (optional) -->
 <fragment
class= "org.eclipse.xtext.ui.generator.projectWizard.Simpl eProjectWizardFragment"
generatorProjectName= "${projectName}.generator" modelFileExtension= "2apl" />

 </language>
 </component>
</workflow>

An Integrated Development Environment for A Practical Agent Programming Language - 49 -

9.5 Appendix E –Semantic highlight configuration
APAPLUiModule.java
package nl.uu.cs.apapl.ide;

import org.eclipse.xtext.ui.common.editor.syntaxcoloring. *;
import org.eclipse.xtext.ui.core.wizard.IProjectCreator ;

/**
 * Use this class to register components to be used within the IDE.
 */
public class APAPLUiModule extends nl.uu.cs.apapl.ide.AbstractAPAPLUiModule {
 //** Insert the configuration file for the syntax h ighlighting **//
 public Class<? extends ISemanticHighlightingConfiguration>
bindISemanticHighlightingConfiguration() {
 return APAPLSemanticHighlightConfiguration. class;
 }
 //** Insert the highlighting calculator that looks if a token is part of one of the
predifined tokens that need to be highlighted **//
 public Class<? extends ISemanticHighlightingCalculator>
bindISemanticHighlightingCalculator() {
 return APAPLSemanticHighlightingCalculator. class;
 }
}

APAPLSemanticHighlightConfiguration.java
package nl.uu.cs.apapl.ide;

import org.eclipse.swt.SWT ;
import org.eclipse.swt.graphics.RGB;
import org.eclipse.xtext.ui.common.editor.syntaxcoloring. *;
import org.eclipse.xtext.ui.core.editor.utils.TextStyle;

public class APAPLSemanticHighlightConfiguration implements
ISemanticHighlightingConfiguration {
 // provide an id string for the highlighting calcul ator
 public static final String ATOM = "2APL atom" ;
 public static final String UPPERATOM = "2APL upperatom" ;
 public static final String GROUNDATOM = "2APL groundatom" ;
 public static final String EXTERNALACTION = "2APL externalaction" ;
 // configure the acceptor providing the id, the des cription string
 // that will appear in the preference page and the initial text style
 // method for calculating an actual text styles
 public void configure(IHighlightingConfigurationAcceptor accep tor) {
 acceptor.acceptDefaultHighlighting(ATOM, "2APL atom" , atom());
 acceptor.acceptDefaultHighlighting(UPPERATOM, "2APL upperatom" ,
upperatom());
 acceptor.acceptDefaultHighlighting(GROUNDATOM, "2APL groundatom" ,
groundatom());
 acceptor.acceptDefaultHighlighting(EXTERNALACTION, "2APL externalaction" ,
externalaction());
 }
 public TextStyle atom() {
 TextStyle textStyle = new TextStyle();
 textStyle.setBackgroundColor(new RGB(255, 255, 255));
 textStyle.setColor(new RGB(0, 0, 0));
 return textStyle;
 }
 public TextStyle upperatom() {
 TextStyle textStyle = new TextStyle();
 textStyle.setBackgroundColor(new RGB(255, 255, 255));
 textStyle.setColor(new RGB(0, 0, 0));
 return textStyle;
 }

An Integrated Development Environment for A Practical Agent Programming Language - 50 -

 public TextStyle groundatom() {
 TextStyle textStyle = new TextStyle();
 textStyle.setBackgroundColor(new RGB(255, 255, 255));
 textStyle.setColor(new RGB(0, 0, 0));
 return textStyle;
 }

 public TextStyle externalaction() {
 TextStyle textStyle = new TextStyle();
 textStyle.setBackgroundColor(new RGB(255, 255, 255));
 textStyle.setColor(new RGB(0, 0, 0));
 return textStyle;
 }
}

APAPLSemanticHighlightingCalculator.java
package nl.uu.cs.apapl.ide;

import java.util.*;
import nl.uu.cs.apapl.ide.aPAPL.*;
import org.eclipse.emf.ecore.*;
import org.eclipse.emf.ecore.util.EcoreUtil;
import org.eclipse.xtext.parsetree.*;
import org.eclipse.xtext.resource.*;
import org.eclipse.xtext.ui.common.editor.syntaxcoloring. *;

public class APAPLSemanticHighlightingCalculator implements
ISemanticHighlightingCalculator {

 public void provideHighlightingFor(XtextResource resource,
IHighlightedPositionAcceptor acceptor) {
 if (resource == null)
 return;
 Iterator<EObject> iter = EcoreUtil. getAllContents(resource, true);
 while(iter.hasNext()) {
 EObject current = iter.next();
 if(current instanceof Atom){
 AbstractNode node = null;
 NodeAdapter adapter = NodeUtil. getNodeAdapter(current);
 if (adapter != null) {
 CompositeNode nodeC = adapter.getParserNode();
 if (nodeC != null) {
 for (AbstractNode child: nodeC.getChildren()) {
 if (child instanceof LeafNode) {
 node = child;
 highlightNode(node,
APAPLSemanticHighlightConfiguration. ATOM, acceptor);
 }
 }
 }
 }
 }
 else if(current instanceof UpperAtom){
 AbstractNode node = null;
 NodeAdapter adapter = NodeUtil. getNodeAdapter(current);
 if (adapter != null) {
 CompositeNode nodeC = adapter.getParserNode();
 if (nodeC != null) {
 for (AbstractNode child: nodeC.getChildren()) {
 if (child instanceof LeafNode) {
 node = child;
 highlightNode(node,
APAPLSemanticHighlightConfiguration. UPPERATOM, acceptor);
 }
 }
 }

An Integrated Development Environment for A Practical Agent Programming Language - 51 -

 }
 }
 else if(current instanceof GroundAtom){
 AbstractNode node = null;
 NodeAdapter adapter = NodeUtil. getNodeAdapter(current);
 if (adapter != null) {
 CompositeNode nodeC = adapter.getParserNode();
 if (nodeC != null) {
 for (AbstractNode child: nodeC.getChildren()) {
 if (child instanceof LeafNode) {
 node = child;
 highlightNode(node,
APAPLSemanticHighlightConfiguration. GROUNDATOM, acceptor);
 }
 }
 }
 }
 }
 else if(current instanceof ExternalAction){
 AbstractNode node = null;
 NodeAdapter adapter = NodeUtil. getNodeAdapter(current);
 if (adapter != null) {
 CompositeNode nodeC = adapter.getParserNode();
 if (nodeC != null) {
 for (AbstractNode child: nodeC.getChildren()) {
 if (child instanceof LeafNode) {
 node = child;
 highlightNode(node,
APAPLSemanticHighlightConfiguration. EXTERNALACTION, acceptor);
 }
 }
 }
 }
 }
 }
 }
 private void highlightNode(AbstractNode node, String id,
IHighlightedPositionAcceptor acceptor) {
 if (node == null)
 return;
 if (node instanceof LeafNode) {
 acceptor.addPosition(node.getOffset(), node.getL ength(), id);
 } else {
 for (LeafNode leaf: node.getLeafNodes()) {
 if (!leaf.isHidden()) {
 acceptor.addPosition(leaf.getOffset(), leaf.ge tLength(),
id);
 }
 }
 }
 }

}

An Integrated Development Environment for A Practical Agent Programming Language - 52 -

9.6 Appendix F – Xtext diagram

An Integrated Development Environment for A Practical Agent Programming Language - 53 -

9.7 Appendix G – Project wizard
APAPLCustomNewProjectWizard.java
package nl.uu.cs.apapl.ide.ui.wizard;

import org.eclipse.ui.dialogs.WizardNewProjectCreationPag e;
import org.eclipse.xtext.ui.core.wizard.IProjectInfo;
import org.eclipse.xtext.ui.core.wizard.XtextNewProjectWi zard;

public class APAPLCustomNewProjectWizard extends XtextNewProjectWizard {

 private WizardNewProjectCreationPage mainPage ;

 public APAPLCustomNewProjectWizard() {
 super();
 setWindowTitle("New 2APL Project");
 }

 /**
 * Use this method to add pages to the wizard.
 * The one - time generated version of this class will add a def ault new project page
to the wizard.
 */
 public void addPages() {
 mainPage = new WizardNewProjectCreationPage("basicNewProjectPage");
 mainPage .setTitle("2APL Project");
 mainPage .setDescription("Create a new 2APL project.");
 addPage(mainPage);
 }

 /**
 * Use this method to read the project settings fr om the wizard pages and feed them
into the project info class.
 */
 @Override
 protected IProjectInfo getProjectInfo() {
 nl.uu.cs.apapl.ide.ui.wizard.APAPLProjectInfo pro jectInfo = new
nl.uu.cs.apapl.ide.ui.wizard.APAPLProjectInfo();
 projectInfo.setProjectName(mainPage .getProjectName());
 return projectInfo;
 }

}

An Integrated Development Environment for A Practical Agent Programming Language - 54 -

APAPLNewProject.xpt
«IMPORT nl::uu::cs::apapl::ide::ui::wizard»

«DEFINE main FOR APAPLProjectInfo»
«EXPAND model FOR this»
«EXPAND project FOR this»
«ENDDEFINE»

«DEFINE model FOR APAPLProjectInfo»
«FILE "agent.2apl" -»
/*
 * This is an example model for a new 2APL project
 */
BeliefUpdates:
 {true} DoPushup(S, X) { not count(S), count(S+X) }
Beliefs:
 count(0).
Goals:
 pushup(10)
PG-rules:
 pushup(T) <- not count(T) | {
 [B(count(R));
 DoPushup(R, 1)]
 }
«ENDFILE»
«ENDDEFINE»
«DEFINE project FOR APAPLProjectInfo»
«FILE "pushup.mas" -»
/*
 * This is an example project mas (Multi Agent Systems) file for a new 2APL project
 */
pushup : agent.2apl
«ENDFILE»
«ENDDEFINE»

An Integrated Development Environment for A Practical Agent Programming Language - 55 -

9.8 Appendix H – 2APL rules in detail

9.8.1 APAPL 56
9.8.2 INCLUDES 57
9.8.3 INCLUDE 57
9.8.4 BELIEFUPDATES 58
9.8.5 BELIEFUPDATE 58
9.8.6 BELIEFUPDATENAME 59
9.8.7 BELIEFS 59
9.8.8 BELIEF 59
9.8.9 GOALS 60
9.8.10 GOAL 60
9.8.11 BACTION 61
9.8.12 PLANS 62
9.8.13 PLAN 63
9.8.14 SENDACTION 64
9.8.15 EXTERNALACTION 65
9.8.16 ABSTRACTACTION 65
9.8.17 TEST 65
9.8.18 ADOPTGOAL 66
9.8.19 DROPGOAL 67
9.8.20 IFPLAN 67
9.8.21 WHILEPLAN 68
9.8.22 ATOMICPLAN 68
9.8.23 SCOPEPLAN 69
9.8.24 PGRULES 69
9.8.25 PGRULE 70
9.8.26 PCRULES 70
9.8.27 PCRULE 70
9.8.28 PRRULES 71
9.8.29 PRRULE 71
9.8.30 GOALVAR 72
9.8.31 PLANVAR 72
9.8.32 SCOPEPLANVAR 73
9.8.33 LITERALS 73
9.8.34 LITERAL 74
9.8.35 BELQUERY 74
9.8.36 GOALQUERY 75
9.8.37 IV 76
9.8.38 GROUNDATOM 76
9.8.39 GROUNDPARS 77
9.8.40 GROUNDPAR 77
9.8.41 UPPERATOM 78
9.8.42 ATOM 79
9.8.43 INFIXATOM 79
9.8.44 PARS 80
9.8.45 PAR 80
9.8.46 ARTEXPS 81
9.8.47 ARTEXP 82
9.8.48 VAR 82
9.8.49 IDENT 83
9.8.50 NUM 83

An Integrated Development Environment for A Practical Agent Programming Language - 56 -

9.8.1 APAPL

Old EBNF syntax

EBNF syntax

Xtext syntax

ANTLR syntax diagram

Description

The first rule that should be used is the <APAPL>, this rule can include zero or more elements. Changes

from the old version <Agent_Prog> are made to have a concurrent style.

<APAPL> = { "Include:" <includes>
 | "BeliefUpdates:" <beliefupdates>
 | "Beliefs:" <beliefs>
 | "Goals:" <goals>
 | "Plans:" <plans>
 | "PG-rules:" <pgrules>
 | "PC-rules:" <pcrules>
 | "PR-rules:" <prrules> };

APAPL:
 (elements+=
 "Include:" includes+=Includes
 | "BeliefUpdates:" beliefUpdates+=BeliefUpdates
 | "Beliefs:" beliefs+=Beliefs
 | "Goals:" goals+=Goals
 | "Plans:" plans+=Plans
 | "PG-rules:" pgrules+=Pgrules
 | "PC-rules:" pcrules+=Pcrules
 | "PR-rules:" prrules+=Prrules
)*
 ;

<Agent_Prog> = { "Include:" <ident>
 | "BeliefUpdates:" <BelUpSpec>
 | "Beliefs:" <belief>
 | "Goals:" <goals>
 | "Plans:" <plans>
 | "PG-rules:" <pgrules>
 | "PC-rules:" <pcrules>
 | "PR-rules:" <prrules> };

An Integrated Development Environment for A Practical Agent Programming Language - 57 -

9.8.2 includes

EBNF syntax

Xtext syntax

ANTLR syntax diagram

Description

If the <includes> rule is called there should be at least one <include> rule present.

9.8.3 include

EBNF syntax

Xtext syntax

ANTLR syntax diagram

Description

An <include> rule starts with an <ident> followed by .2apl . An example could be:

<includes> = <include>+;

Includes:
 (include+=Include)+;

<include> = <ident> " .2apl " ;

Include:
 includeName=Ident ".2apl" ;

Include: file .2apl

An Integrated Development Environment for A Practical Agent Programming Language - 58 -

9.8.4 beliefupdates

EBNF syntax

Xtext syntax

ANTLR syntax diagram

Description

If the <beliefupdates> rule is called there should be at lease one <beliefupdate> rule present.

9.8.5 beliefupdate

Old EBNF syntax

EBNF syntax

Xtext syntax

ANTLR syntax diagram

Description

An <beliefupdate> rule has 3 parts. The first part, between the { and } brackets, is the so called
per-condition, the second part is the <beliefupdatename> that holds the name for the beliefupdate and

the 3rd part, between the { and } brackets. In the old version of the 2APL syntax this rule was called
<BelUpSpec> . An example could be:

<beliefupdates> = <beliefupdate>+;

BeliefUpdates:
 (beliefUpdate+=BeliefUpdate)+;

<beliefupdate> =
"{"<belquery>"}" < beliefupdatename > "{"<literals>"}";

BeliefUpdate:
 "{" belquery+=Belquery "}" beliefUpdateName+=BeliefUpdateName
"{" literals+=Literals "}" ;

{ not soldObject(N, P, M) }
AddSoldObject(N, P, M)
{ soldObject(N, P, M) }

<BelUpSpec> =
"{"<belquery>"}" <beliefupdate> "{"<literals>"}";

<beliefupdate> = <Atom>;

An Integrated Development Environment for A Practical Agent Programming Language - 59 -

9.8.6 beliefupdatename

EBNF syntax

Xtext syntax

ANTLR syntax diagram

Description

A <beliefupdatename> consists of exactly one <upperatom> .

9.8.7 beliefs

EBNF syntax

Xtext syntax

ANTLR syntax diagram

Description

If the <beliefs> rule is called there should be at lease one <belief> rule present. This rule didn’t
exist in the old 2APL syntax and is added to have a better view if multiple beliefs are implemented.

9.8.8 belief

EBNF syntax

Xtext syntax

<belief> = <ground_atom>"." | <atom> ":-" <literals > ".";

Belief:
 groundAtom+=GroundAtom "."
 | atom+=Atom ":-" literals+=Literals "."
 ;

<beliefs> = <belief>+;

Beliefs:
 (belief+=Belief)+;

<beliefupdatename> = <upperatom>;

BeliefUpdateName:
 upperatom+=UpperAtom;

AddSoldObject(N, P, M)

belief1(slow).
belief2(fast) :- walking(Hard).

An Integrated Development Environment for A Practical Agent Programming Language - 60 -

ANTLR syntax diagram

Description

The <belief> rule holds a <groundatom> followed by a . or an <atom> followed by :-
<literals>. .

9.8.9 goals

EBNF syntax

Xtext syntax

ANTLR syntax diagram

Description

If the <goals> rule is called there should be at lease one <goal> rule present.

9.8.10 goal

EBNF syntax

Xtext syntax

<goals> = <goal> { " , " <goal>};

Goals:
 goal+=Goal ("," goal+=Goal)*;

<goal> = <ground_atom> {"and" <ground_atom>};

Goal:
 groundAtom+=GroundAtom ("and" groundAtom+=GroundAtom)*;

bomb(3,3).

clean(blockWorld) :- not bomb(X,Y) , not
carry(bomb).

hover(something) :- X is Y+1, F is X-1.

goal1(slow),
goal2(fast)

An Integrated Development Environment for A Practical Agent Programming Language - 61 -

ANTLR syntax diagram

Description

A <goal> starts with <groundatom> and optional followed by multiple times and <groundatom> .

9.8.11 baction

EBNF syntax

Xtext syntax

ANTLR syntax diagram

<baction> = "skip"
| < beliefupdatename >
| <sendaction>
| <externalaction>
| <abstractaction>
| <test>
| <adoptgoal>
| <dropgoal>
;

Baction:
 "skip"
 | test+=Test
 | externalAction+=ExternalAction
 | abstractAction+=AbstractAction
 | adoptgoal+=Adoptgoal
 | dropgoal+=Dropgoal
 | sendAction+=SendAction
 | beliefUpdateName+=BeliefUpdateName
 ;

buy([car], 7, 10)

running(fast) and have(drink)

An Integrated Development Environment for A Practical Agent Programming Language - 62 -

Description
The basic actions are grouped together in <baction> and can have exactly one of the following rules

skip, <upperatom>, <sendaction>, <externalaction>, <abstractaction>, <test>, <adoptgoal>, <dropgoal>.

9.8.12 plans

EBNF syntax

Xtext syntax

ANTLR syntax diagram

Description

<plans> start with <plan> and optional followed by multiple times , <plan> .

<plans> = <plan> { " , " <plan>};

Plans:
plan+=Plan ("," plan+=Plan)*;

B(test)

@external(action(), L)

abstract(Action)

adopta(goal)

dropgoal(goal)

send(a, b, c())

Update(X, Y)

planA(X, Y),
PlanB(),
@planC(f(), L)

An Integrated Development Environment for A Practical Agent Programming Language - 63 -

9.8.13 plan

Old EBNF syntax

EBNF syntax

Xtext syntax

ANTLR syntax diagram

<plan> = <baction>
| <sequenceplan>
| <ifplan>
| <whileplan>
| <atomicplan>
| <scopeplan>
;

Plan:
TerminalPlan ({ Plan.plan+= current} (";"
plan+=TerminalPlan)+)?;

TerminalPlan returns Plan:
 baction+=Baction
 | ifPlan+=IfPlan
 | whilePlan+=WhilePlan
 | scopePlan+=ScopePlan
 | atomicPlan+=AtomicPlan
 ;

<plan> = <baction>
| <sequenceplan>
| <ifplan>
| <whileplan>
| <atomicplan>
;

An Integrated Development Environment for A Practical Agent Programming Language - 64 -

Description

The <sequenceplan> has been left out of the Xtext syntax but is implemented as TerminalPlan .

This new rule then contains all the other rules that <plan> should have. This change has to be made to

make the language left-factored. In the example below a <scopeplan> and a <atomicplan> are both

part of the <sequenceplan> because of the ; between the <scopeplan> and <atomicplan> .

9.8.14 sendaction

Old EBNF syntax

EBNF syntax

Xtext syntax

ANTRL syntax diagram

Description

The <sendaction> has two possibilities, one with 2 times <iv> and one with 4 times <iv> . An
example is shown below.

<sendaction> = "send(" <iv> "," <iv> "," <atom> ")"
| "send(" <iv> "," <iv> "," <iv> "," <iv> ","

<atom> ")"
;

SendAction:
 "send(" iv+=Iv "," iv+=Iv "," atom+=Atom ")"
 | "send(" iv+=Iv "," iv+=Iv "," iv+=Iv "," iv+=Iv ","
 atom+=Atom ")"
 ;

Plans:
{ scope(yPlan) }
;
[atomic(xPlan)]

send(Receiver, Performative, content(X))

send(Receiver, Performative, Language, Ontology,
content(Y))

<sendaction> = "send(" <iv> "," <iv> "," <atom> ")" ;
 | "send(" <iv> "," <iv> "," <iv> "," <iv> ","
<atom> ")";

An Integrated Development Environment for A Practical Agent Programming Language - 65 -

9.8.15 externalaction

EBNF syntax

Xtext syntax

ANTRL syntax diagram

Description

The <externalaction> is supposed to change the external environment by sending and receiving

messages. This starts with an <ident> that denote the name of the environment, an <atom> to call the

method in the external environment and a <var> that stores a return value.

9.8.16 abstractaction

EBNF syntax

Xtext syntax

ANTRL syntax diagram

Description

An <abstractaction> contains one <atom>.

9.8.17 test

Old EBNF syntax

EBNF syntax

<externalaction> = " @" <ident> " (" <atom> " , " <Var> ") " ;

ExternalAction:
 "@" name=Ident "(" atom+=Atom "," varname=Var ")" ;

<abstractaction> = <atom>;

AbstractAction:
 atom+=Atom;

<test> = "B(" <belquery> ")"
 | "G(" <goalquery> ")"
 | <test> "&" <test>
 | "(" <test> ")"
 ;

@blockworld(enter(Xpos, Ypos), Return)

remove(X)

<test> = "B(" <belquery> ")"
 | "G(" <goalquery> ")"
 | <test> "&" <test>
 ;

An Integrated Development Environment for A Practical Agent Programming Language - 66 -

Xtext syntax

ANTRL syntax diagram

Description

The <test> rule also needed to be left-factored to TerminalTest . Then TerminalTest was devided

in BelqueryTest and GoalqueryTest to make sure the outline structure is maintained.

9.8.18 adoptgoal

EBNF syntax

Xtext syntax

Test:
 TerminalTest ({ Test.test+= current} ("&"
test+=TerminalTest)+)?;
TerminalTest returns Test:
 BelqueryTest | GoalqueryTest | "(" test+=Test ")" ;
BelqueryTest:
 "B(" belquery+=Belquery ")" ;
GoalqueryTest:
 "G(" goalquery+=Goalquery ")" ;

<adoptgoal> = "adopta(" <goalvar> ")"
| "adoptz(" <goalvar> ")"
;

Adoptgoal:
 "adopta(" goalvar+=Goalvar ")"
 | "adoptz(" goalvar+=Goalvar ")"
 ;

B(me(X,Y)) & B(other(X1,Y1))

G(walking())

An Integrated Development Environment for A Practical Agent Programming Language - 67 -

ANTRL syntax diagram

Description

<adoptgoal> can implement a goal at the top by adopta or at the end by adoptz .

9.8.19 dropgoal

EBNF syntax

Xtext syntax

ANTRL syntax diagram

Description

<dropgoal> can drop a goals from an agent’s goal base.

9.8.20 ifplan

EBNF syntax

Xtext syntax

<dropgoal> = "dropgoal(" <goalvar> ")"
| "dropsubgoals(" <goalvar> ")"
| "dropsupergoals(" <goalvar> ")"
;

Dropgoal:
 "dropgoal(" goalvar+=Goalvar ")"
 | "dropsubgoals(" goalvar+=Goalvar ")"
 | "drupsupergoals(" goalvar+=Goalvar ")"
 ;

<ifplan> =
"if" <test> "then" <scopeplan> ["else" <scopeplan>] ;

IfPlan:
"if" test+=Test "then" scopePlan+=ScopePlan ("else"
scopePlan+=ScopePlan)?;

adopta(doCheck())

adoptz(stop())

dropgoal(check())

dropsubgoals(goalX(F))

An Integrated Development Environment for A Practical Agent Programming Language - 68 -

ANTRL syntax diagram

Description

The <ifplan> is formatted as if <test> then <scopeplan> and optionally the form else
<scopeplan> . The example shows that it is also possible to have a <sequenceplan> within the

<scopeplan> .

9.8.21 whileplan

EBNF syntax

Xtext syntax

ANTRL syntax diagram

Description

<whileplan> will repeat the <scopeplan> until the <test> returns false.

9.8.22 atomicplan

EBNF syntax

Xtext syntax

ANTRL syntax diagram

<whileplan> = " while " <test> " do" <scopeplan>;

WhilePlan:
 "while" test+=Test "do" scopePlan+=ScopePlan;

<atomicplan> = " [" <plan> "] " ;

AtomicPlan:
 "[" plan+=Plan "]" ;

if B(have(Car)) then {
 sell(Car); collect(Money)
}
else {
 getGas(UnleadedFuel)
}

while B(HaveMoney < 1000) do {
 work
}

An Integrated Development Environment for A Practical Agent Programming Language - 69 -

Description

 An <atomicplan> surrounds the <plan> with a [and] bracket.

9.8.23 scopeplan

EBNF syntax

Xtext syntax

ANTRL syntax diagram

Description

 <scopeplan> surrounds the <plan> with a { and } bracket.

9.8.24 pgrules

EBNF syntax

Xtext syntax

ANTRL syntax diagram

Description

If <pgrules> is called, at least one <pgrule> should be present.

<scopeplan> = " { " <plan> " } " ;

ScopePlan:
 "{" plan+=Plan "}" ;

<pgrules> = <pgrule>+;

Pgrules:
 (pgrule+=Pgrule)+;

[plan(Y)]

{ plan(Y) }

PG-rules:
<- true | skip
true <- true | skip

An Integrated Development Environment for A Practical Agent Programming Language - 70 -

9.8.25 pgrule

EBNF syntax

Xtext syntax

ANTRL syntax diagram

Description

If the <pgrule> is called, it starts optional with a <goalquery> followed by <- and a <belquery>

ending with | <plan> .

9.8.26 pcrules

EBNF syntax

Xtext syntax

ANTRL syntax diagram

Description

If <pcrules> is called at least one <pcrule> should be present.

9.8.27 pcrule

EBNF syntax

Xtext syntax

<pgrule> = [<goalquery>] "<-" <belquery> "|" <plan> ;

Pgrule:
(goalquery+=Goalquery)? "<-" belquery+=Belquery "|"
plan+=Plan;

<pcrules> = <pcrule>+;

Pcrules:
 (pcrule+=Pcrule)+;

<pcrule> = <atom> " <- " <belquery> " | " <plan>;

Pcrule:
 atom+=Atom "<-" belquery+=Belquery "|" plan+=Plan;

PG-rules:
 makeMoney(Lots) <- have(Car) | Sell(Car)

PC-rules:
atom <- belquery | plan

An Integrated Development Environment for A Practical Agent Programming Language - 71 -

ANTRL syntax diagram

Description

A <pcrule> starts with an <atom> followed by <- <belquery> and ends with | <plan> .

9.8.28 prrules

EBNF syntax

Xtext syntax

ANTRL syntax diagram

Description

If <prrules> is called at least one <prrule> should be present.

9.8.29 prrule

EBNF syntax

Xtext syntax

ANTRL syntax diagram

Description

A <prrule> starts with a <planvar> followed by <- <belquery> and ends with | <planvar> .

<prrules> = <prrule>+;

Prrules:
 (prrule+=Prrule)+;

<prrule> = <planvar> " <- " <belquery> " | " <planvar>;

Prrule:
 planvar+=Planvar "<-" belquery+=Belquery "|" planvar+=Planvar;

message(From, Bank, received(X)) <- have(Account) |
{
 SaveInAccount(X)
}

PR-rules:
Planvar <- true | Planvar

@externalworld(getCar(Toyota), R) <- not haveCar()
| {
 UpdateCar(R)
}

An Integrated Development Environment for A Practical Agent Programming Language - 72 -

9.8.30 goalvar

EBNF syntax

Xtext syntax

ANTRL syntax diagram

Description

 <goalvar> contains at least one <atom> and can optionally multiple times be followed by and
<atom> .

9.8.31 planvar

EBNF syntax

Xtext syntax

<goalvar> = <atom> { " and" <atom>} ;

Goalvar:
 atom+=Atom ("and" atom+=Atom)*;

<planvar> = <plan>
| <Var>
| "if" <test> "then" <scopeplanvar> ["else"

<scopelanvar>]
| "while" <test> "do" <scopeplanvar>
| <planvar> ";" <planvar>
;

Planvar:
TerminalPlanvar ({ Planvar.planvar+= current} (";"
planvar+=TerminalPlanvar)+)?;

TerminalPlanvar returns Planvar:
 name=Var
 | name= "if" test+=Test "then" scopePlanvar+=ScopePlanvar
 ("else" scopePlanvar+=ScopePlanvar)?
 | name= "while" test+=Test "do" scopePlanvar+=ScopePlanvar
 | plan+=TerminalPlan
 ;

adopta(doCheck() and stopWalk())

An Integrated Development Environment for A Practical Agent Programming Language - 73 -

ANTRL syntax diagram

Description

 <planvar> also needed to be left-factored, so TerminalPlanvar was created. In

TerminalPlanvar it is possible to put a <var> a differend version of <ifplan> and <whileplan> and

TerminalPlan . Note that TerminalPlan is differend than TerminalPlanvar .

9.8.32 scopeplanvar

EBNF syntax

Xtext syntax

ANTRL syntax diagram

Description

<scopeplanvar> is almost the same as <scopeplan> only between the { and } brackets now exists
<planvar> .

9.8.33 literals

EBNF syntax

Xtext syntax

ANTRL syntax diagram

<scopeplanvar> = " { " <planvar> " } " ;

ScopePlanvar:
 "{" planvar+=Planvar "}" ;

<literals> = <literal> { " , " <literal>} ;

Literals:
 literal+=Literal ("," literal+=Literal)*;

Toyota ; B(Car = Toyota)

{ Toyota ; B(Car = Toyota) }

An Integrated Development Environment for A Practical Agent Programming Language - 74 -

Description

<literals> consist of <literal> optional followed by multiple times , <literal> .

9.8.34 literal

Old EBNF syntax

EBNF syntax

Xtext syntax

ANTRL syntax diagram

Description

A <literal> has 4 posible options: <atom> or <infixatom> or not <atom> or not <infixatom>.

9.8.35 belquery

EBNF syntax

<literal> = (<atom> | <infixatom>)
| "not" (<atom> | <infixatom>)
;

Literal:
 atom+=Atom
 | infixatom+=InfixAtom
 | "not" atom+=Atom
 | "not" infixatom+=InfixAtom
 ;

<belquery> = "true"
 | <belquery> "and" <belquery>
 | <belquery> "or" <belquery>
 | "(" <belquery ")"
 | <literal>

;

not have(Car) , have(Money)

not have(Car)

X is Y+1

<literal> = <atom>
| "not" <atom>
;

An Integrated Development Environment for A Practical Agent Programming Language - 75 -

Xtext syntax

ANTRL syntax diagram

Description

To remove the left-recursion TerminalBelquery was created. TerminalBelquery can have true

<literal> or an <belquery> encapsulated by (and) .

9.8.36 goalquery

EBNF syntax

Xtext syntax

Belquery:
TerminalBelquery ({ Belquery.belquery+= current} (("and" | "or")
belquery+=TerminalBelquery)+)?;

TerminalBelquery returns Belquery:
 "true"
 | literal+=Literal
 | '(' belquery+=Belquery ')'
 ;

<goalquery> = "true"
 | <goalquery> "and" <goalquery>
 | <goalquery> "or" <goalquery>
 | "(" <goalquery> ")"
 | <atom>

;

Goalquery:
 TerminalGoalquery ({ Goalquery.goalquery+= current} (("and" |
 "or") goalquery+=TerminalGoalquery)+)?;
TerminalGoalquery:
 "true"
 | atom+=Atom
 | '(' goalQuery+=Goalquery ')'
 ;

(have(Account) and status(active))

An Integrated Development Environment for A Practical Agent Programming Language - 76 -

ANTRL syntax diagram

Description

The only difference between <goalquery> and <belquery> is the <atom> and <literal> . To

remove the left-recursion TerminalGoalquery was created.

9.8.37 iv

EBNF syntax

Xtext syntax

ANTRL syntax diagram

Description

An <iv> can be an <ident> or a <var> this rule is only used in the <sendaction> .

9.8.38 groundatom

EBNF syntax

Xtext syntax

ANTRL syntax diagram

<iv> = <ident > | <Var> ;

Iv:
 name=Ident | name=Var;

<groundatom> = <ident> " (" <groundpars> ") " ;

GroundAtom:
 name=Ident "(" groundpars+=GroundPars ")" ;

(makeMoney(Lots) and have(Time)

An Integrated Development Environment for A Practical Agent Programming Language - 77 -

Description

A <groundatom> is a atom that must have <groundpars> surrounded by (and) .

9.8.39 groundpars

EBNF syntax

Xtext syntax

ANTRL syntax diagram

Description

<groundpars> consist of <groundpar> optionaly followed by one or multiple times ,
<groundpar> .

9.8.40 groundpar

EBNF syntax

Xtext syntax

<groundpars> = <groundpar> { " , " <groundpar>};

GroundPars:
 groundpar+=GroundPar ("," groundpar+=GroundPar)*;

<groundpar> = <ident> | <num> | "_"
 | "[" [<groundpars>] "]"
 | "[" <groundpars> "|" <var> "]"
 ;

GroundPar:
 name=Ident

 | name=Num
 | "_"
 | "[" (groundpars+=GroundPars)? "]"
 | "[" groundpars+=GroundPars "|" name=Var "]"
 ;

start(0, xPos, yPos)

start(0, xPos, yPos, [A, _ | F]).

An Integrated Development Environment for A Practical Agent Programming Language - 78 -

ANTRL syntax diagram

Description

<groundpar> can contain an <ident> a <num> or a _. Also optional <groundpars> surrounded by [
and] or [<groundpars> | <var>] .

9.8.41 upperatom

EBNF syntax

Xtext syntax

ANTRL syntax diagram

Description

An <upperatom> is used to denote a <beliefupdatename> and starts with a <var> followed by the

(and) bracket with optional <pars> between the brackets.

<upperatom> = <var> " (" [<pars>] ") " ;

UpperAtom:
 name=Var '(' (pars+=Pars)? ')' ;

start(
name,
9,
_,
[A, B],
[F, 9 | Rest]

)

Update()

AddReceivedMoney(N, P, M)

An Integrated Development Environment for A Practical Agent Programming Language - 79 -

9.8.42 atom

EBNF syntax

Xtext syntax

ANTRL syntax diagram

Description

An <atom> starts with <ident> and optional (and) brackets with optional <pars> between the
brackets.

9.8.43 infixatom

EBNF syntax

Xtext syntax

<atom> = <ident> ["(" [<pars>] ")"];

Atom:
 name=Ident ("(" (pars+=Pars)? ")")?;

<infixatom> = <par> ("=" | ">" | "<" | "=" | "<=" | ">=" | "=>" |
"=<") <par>;

InfixAtom:
 par+=Par ("=" | ">" | "<" | "<=" | ">=" | "=>" | "=<")
par+=Par
 ;

atom

running()

received(Money)

An Integrated Development Environment for A Practical Agent Programming Language - 80 -

ANTRL syntax diagram

Description

An <infixatom> is a logic atom starting with <par> followed by an expression and ending with

<par> .

9.8.44 pars

EBNF syntax

Xtext syntax

ANTRL syntax diagram

Description

<pars> consists of <par> optionally followed by one or multiple times , <par> .

9.8.45 par

EBNF syntax

<pars> = <par> { " , " < par>};

Pars:
 par+=Par ("," par+=Par)*;

<par> = <var> | <num> | "_" | <atom>
 | "[" <pars> "]"
 | "[" (<artexps> | <pars>) "|" <var> "]"
 ;

X = Y+1

F- X > X+3

x,[f]

An Integrated Development Environment for A Practical Agent Programming Language - 81 -

Xtext syntax

ANTRL syntax diagram

Description

To remove the left-recusion, TerminalPar was created. <par> starts with TerminalPar and

optional an operation followed by TerminalPar . TerminalPar can consist of a <var> a <num> a _ or an
<atom> . TerminalPar can also have [and] brackets with <pars> or <artexps> inside.

9.8.46 artexps

EBNF syntax

Xtext syntax

Par:
 TerminalPar ({ Par.par+= current} (("+" | "-" | "*" | "/")
par+=TerminalPar)+)?;
TerminalPar returns Par:
 name=Var
 | name=Num
 | name= '_'
 | '[' pars+=Pars ']'
 | '[' (artexps+=ArtExps | pars+=Pars) '|' name=Var ']'
 | atom+=Atom
 ;

<artexps> = <artexp> {"," <artexp>};

ArtExps:
 artexp+=ArtExp (',' artexp+=ArtExp)*;

Done + current(X) - cheat * [X]

An Integrated Development Environment for A Practical Agent Programming Language - 82 -

ANTRL syntax diagram

Description

<artexps> consists of <artexp> optionally followed by one or multiple times , <artexp> .

9.8.47 artexp

EBNF syntax

Xtext syntax

ANTRL syntax diagram

Description

<artexp> starts with TerminalArtExp that can consist of a <var> a <num> or an <artexp>

surrounded by (and) brackets. <artexp> can also consist of TerminalArtExp followed one or multipe

times by an operation and TerminalArtExp .

9.8.48 var

EBNF syntax

Xtext syntax

<artexp> = <var> | <num>
 | <artexp> ("+" | "-" | "*" | "/") <artexp>
 | "(" <artexp> ")"
 ;

ArtExp:
TerminalArtExp ({ ArtExp.artexp+= current} (("+" | "-" | "*" |
"/") artexp+=TerminalArtExp)+)?;

TerminalArtExp returns ArtExp:
 name=Var
 | name=Num
 | '(' artexp+=ArtExp ')'
 ;

<var> = " A" .. " Z" { " a" .. " z" | " A" .. " Z" | " 0" .. " 9" | " _" };

terminal Var:
 ('A' .. 'Z') ('a' .. 'z' | 'A' .. 'Z' | '0' .. '9' | "_")*;

X+10 , Y- x

An Integrated Development Environment for A Practical Agent Programming Language - 83 -

ANTRL syntax diagram

Description

A <var> denotes a string starting with a capital letter.

9.8.49 ident

EBNF syntax

Xtext syntax

ANTRL syntax diagram

Description

An <ident> denotes a string starting with a lowercase letter.

9.8.50 num

EBNF syntax

Xtext syntax

ANTRL syntax diagram

Description

A <num> denotes a number value.

<ident> = " a" .. " z" { " a" .. " z" | " A" .. " Z" | " 0" .. " 9" | " _" };

terminal Ident:
 ('a' .. 'z') ('a' .. 'z' | 'A' .. 'Z' | '0' .. '9' | "_")*;

<num> = ("0".."9")+;

terminal Num:
 ('0' .. '9')+;

Seller

seller

900

An Integrated Development Environment for A Practical Agent Programming Language - 84 -

9.9 Appendix I – Run configuration
APAPL.java
if (args. length > 0) {
 if (!args[args. length - 1].startsWith("-")) {
 // Does the file exist?
 masfile = new File(args[args. length - 1]);
 if (!masfile.isFile()) {
 // Try to find the mas file in the directory
 if (masfile.isDirectory()) {
 File[] listOfFiles = masfile.listFiles();
 for (int i = 0; i < listOfFiles. length ; i++) {
 if (listOfFiles[i].isFile() &&
listOfFiles[i].getName().endsWith(".mas")) {
 System. out.print("Found mas file " +
listOfFiles[i].getName() + " in directory " + args[args. length - 1] + "\n");
 masfile = new File(args[args. length - 1] +
File. separator + listOfFiles[i].getName());
 break;
 }
 }
 // Check again if a mas file is found and loaded
 if (!masfile.isFile()) {
 System. out.print("Cannot access MAS file: " + masfile +
"\n");
 System. exit(0);
 }
 } else {
 System. out.print("Cannot access MAS file: " + masfile + "\n");
 System. exit(0);
 }
 }
 }
}

An Integrated Development Environment for A Practical Agent Programming Language - 85 -

9.10 Appendix J – AbstractAPAPLRuntimeModule.java
/*
 * generated by Xtext
 */
package nl.uu.cs.apapl.ide;

import org.eclipse.xtext.Constants;
import org.eclipse.xtext.service.DefaultRuntimeModule;

import com.google.inject.Binder;
import com.google.inject.name.Names;

/**
 * Manual modifications go to {nl.uu.cs.apapl.ide.A PAPLRuntimeModule}
 */
public abstract class AbstractAPAPLRuntimeModule extends DefaultRuntimeModule {

 @Override
 public void configure(Binder binder) {
 super.configure(binder);

 binder.bind(String. class).annotatedWith(Names. named(Constants. LANGUAGE_NAME)).toIns
tance(
 "nl.uu.cs.apapl.ide.APAPL");
 }

 // contributed by org.eclipse.xtext.generator.gramm arAccess.GrammarAccessFragment
 public Class<? extends org.eclipse.xtext.IGrammarAccess> bindIGrammarAcce ss() {
 return nl.uu.cs.apapl.ide.services.APAPLGrammarAccess. class;
 }

 // contributed by
org.eclipse.xtext.generator.parseTreeConstructor.Pa rseTreeConstructorFragment
 public Class<? extends org.eclipse.xtext.parsetree.reconstr.IParseTreeCon structor>
bindIParseTreeConstructor() {
 return
nl.uu.cs.apapl.ide.parseTreeConstruction.APAPLParse treeConstructor. class;
 }

 // contributed by de.itemis.xtext.antlr.XtextAntlrG eneratorFragment
 public Class<? extends org.eclipse.xtext.parser.antlr.IAntlrParser>
bindIAntlrParser() {
 return nl.uu.cs.apapl.ide.parser.antlr.APAPLParser. class;
 }

 // contributed by de.itemis.xtext.antlr.XtextAntlrG eneratorFragment
 public Class<? extends org.eclipse.xtext.parser.ITokenToStringConverter>
bindITokenToStringConverter() {
 return org.eclipse.xtext.parser.antlr.AntlrTokenToStringC onverter. class;
 }

 // contributed by de.itemis.xtext.antlr.XtextAntlrG eneratorFragment
 public Class<? extends org.eclipse.xtext.parser.antlr.IAntlrTokenFileProv ider>
bindIAntlrTokenFileProvider() {
 return nl.uu.cs.apapl.ide.parser.antlr.APAPLAntlrTokenFil eProvider. class;
 }

 // contributed by de.itemis.xtext.antlr.XtextAntlrG eneratorFragment
 public Class<? extends org.eclipse.xtext.parser.antlr.Lexer> bindLexer() {
 return nl.uu.cs.apapl.ide.parser.antlr.internal.InternalA PAPLLexer. class;
 }

An Integrated Development Environment for A Practical Agent Programming Language - 86 -

 // contributed by de.itemis.xtext.antlr.XtextAntlrG eneratorFragment
 public Class<? extends org.eclipse.xtext.parser.antlr.ITokenDefProvider>
bindITokenDefProvider() {
 return org.eclipse.xtext.parser.antlr.AntlrTokenDefProvid er. class;
 }

 // contributed by org.eclipse.xtext.generator.valid ation.JavaValidatorFragment
 @org.eclipse.xtext.service. SingletonBinding (eager= true) public Class<? extends
nl.uu.cs.apapl.ide.validation.APAPLJavaValidator> b indAPAPLJavaValidator() {
 return nl.uu.cs.apapl.ide.validation.APAPLJavaValidator. class;
 }

 // contributed by org.eclipse.xtext.generator.scopi ng.JavaScopingFragment
 public Class<? extends org.eclipse.xtext.scoping.IScopeProvider>
bindIScopeProvider() {
 return nl.uu.cs.apapl.ide.scoping.APAPLScopeProvider. class;
 }

 // contributed by org.eclipse.xtext.generator.forma tting.FormatterFragment
 public Class<? extends org.eclipse.xtext.formatting.IFormatter> bindIForm atter() {
 return nl.uu.cs.apapl.ide.formatting.APAPLFormatter. class;
 }

}

