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Introduction 
Stroke or cerebrovascular accident (CVA) is a central neurological deficit with 

an abrupt onset that lasts over 24 hours [1]. Stroke is common and the 

incidence increases with age [2]. Based on demographic characteristics in 

Europe, incidence of stroke is expected to rise [2]. A stroke can lead to long 

term disability [3], depression [4], reduction in quality of life [5] and death [6]. 

Moreover a large proportion of all stroke survivors report falls [7]. These falls 

can have devastating results such as hip fractures [8], which result even more 

often in long term disability in stroke survivors than in older adults and death 

rate three months post hip fracture is doubled in stroke survivors [9]. 

Adequate identification of fall-prone stroke survivors and preventing falls is of 

paramount importance and therefore the central goal in this thesis.  

A promising area of fall risk assessment is the study of gait analysis. Gait can 

be assessed in a laboratory setting, but novel techniques allow us to analyze 

gait in daily life and in (standardized) challenging conditions (i.e. after 

perturbations). This thesis aims to explore a variety of gait assessments for fall 

risk in stroke survivors, and explores the potential for improving gait stability 

using perturbation based gait training. Ultimately, this work could give 

guidance on how to identify individuals at elevated risk for falls and on how to 

improve their gait stability and prevent falls.    

Gait in stroke survivors 

In order to achieve a level of community involvement and physical 

independence, being able to walk is the primary aim of many stroke survivors 

[10]. It is therefore one of the most important goals during rehabilitation. Lord 
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et al. (2004) reported that around 75% of the stroke survivors found it very 

important or even essential “to get out and about” [11]. Unfortunately, after 

having a stroke only 60% of survivors reach some level of community walking 

again [11]. Those who managed to start walking again, still suffer from the 

consequences of a stroke, as gait deficits are still present. Common gait 

deficits are a more asymmetrical gait pattern [12] and a slower gait speed 

[13]. Also trunk–pelvis coordination in gait is often impaired, generally with 

more in-phase rather than anti-phase transverse plane rotations [14] and the 

amplitude of the center of mass in vertical direction is increased up to three 

times relative to normal gait, probably as a consequence of a compensatory 

strategy to lift the paretic limb into swing [15, 16]. These gait deficits explain 

to some extent the increased energy cost of locomotion in stroke survivors 

[16, 17]. Moreover, considering the high fall rates in stroke survivors [7], 

stability of gait is affected. Here, we define stable gait as gait that does not 

result into a fall [18]. Finally, the quantity of gait in stroke survivors is reduced 

and below physical activity recommendations [19], which may result in further 

deconditioning and cause a further decline in functioning and increased risk of 

falls in the long term. 

Falls 

In this thesis, we defined a fall as ‘any unanticipated event that results in 

participants coming to the ground, floor or lower level’ [20]. We excluded falls 

that had a clearly different cause than a loss of balance, such as fainting or an 

epileptic seizure.  
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Falls are common in all stages after stroke [7]. Reported fall rates in the 

chronic stage after stroke range from 43 to 70% during one year follow up. 

Moreover, stroke survivors are more likely to become repeated fallers as 

compared to healthy older adults [7]. Consequences of a fall can be 

devastating, including serious injuries such as hip fractures [8] and even death 

[9]. In addition, hip fractures as a result of a fall more often lead to immobility 

in stroke survivors [8], as compared to age matched controls. Other 

consequences of falls are loss of independence, social isolation [8] and as a 

consequence a further decline in physical functioning.    

Falls in stroke survivors occur during different activities, such as gait, 

transferring, reaching and bending [21]. However, the literature consistently 

states that most falls occur during gait followed by transferring [21–23]. 

Stroke survivors report that they fall during walking due to a trip or a slip [23] 

but also due to a loss of balance, a misjudgment of the environment, a lack of 

concentration and foot dragging [22]. Finally, the direction of falls is more 

often towards the paretic side [21] indicating a reduced ability to maintain 

balance or restore balance after a perturbation to the paretic side. This 

suggests that falls in stroke survivors have multiple causes, which suggests 

that multiple types of assessments are required to indicate fall risk. 

Fall risk assessments  

Considering the devastating effects of falls in stroke survivors, adequate fall 

risk assessment is of paramount importance, as it is a first step in targeted fall 

prevention. Accurate identification of fall risk helps to assign the actual fallers 

to fall prevention programs, comprising exercise and or other interventions, 
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which may reduce the risk of falls.  Moreover, with accurate identification of 

fallers, time and money can be spent on those who could actually benefit from 

a fall prevention program, and thereby enhance the cost-effectiveness of such 

a program. Finally, discovering differences between fallers and non-fallers 

could potentially function as a starting point for tailored fall prevention 

programs.  

Previous attempts to assess fall risk have focused on balance and transfer 

related tasks such as the Berg Balance score (BBS) [24], Time Up and Go Test 

(TUGT) [25] or Performance Oriented Mobility Assessment (POMA) [26]. Other 

studies focused on psychological factors such as the fear of falling [27] or 

depression [28, 29] to determine risk of falls. Although it seems that those 

assessments have some ability to indicate fall risk, results are often 

inconsistent with other studies [24] which renders the use of these 

assessments questionable.  

Assessment of gait 

As the majority of all falls occur during dynamic activities such as walking [21–

23] fall risk could be assessed using gait analysis. To this end several gait 

assessment methods are available.  

First, gait can be assessed in a controlled set up, thereby minimizing the 

influence of disturbing factors that could affect gait characteristics. Usually a 

treadmill or an over ground pathway is used, while motion capture cameras or 

accelerometers and force plates are used to collect kinematics and kinetics. 
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Gait characteristics collected using such a set up will be further referred to as 

steady-state gait characteristics. 

Second, gait can be assessed in a daily life setting using wearable technology 

like for instance accelerometers. An advantage is that gait is captured at the 

location were the actual falls occur. Therefore, this approach is more 

ecologically valid. Gait characteristics captured using such a set up will be 

further referred to as daily-life gait characteristics.  

The third and final gait assessment method applied in this dissertation is the 

assessment of perturbed gait. After gait is perturbed, ultimately, the type and 

quality of the responses will be decisive in whether someone will fall or not. 

As fallers frequently report that they fell due to misjudgment of a situation, 

slips and trips, [22] it intuitively makes sense to measure the responses of 

stroke survivors to gait perturbations. Assessing responses to gait 

perturbations requires a set up to perturb gait, preferably at a fixed moment 

in the gait cycle and with a fixed perturbation magnitude.  

Steady-state gait and fall risk 

Steady-state gait characteristics describe ‘how’ people walk. Steady-state gait 

characteristics are often collected while walking on a treadmill at preferred 

gait speed. To obtain reliable estimates of someone’s gait quality, it is 

important to collect and analyze a sufficient number of strides [30]. Some 

examples of gait characteristics are: gait speed, step length, swing time, gait 

variability, local dynamic stability and sample entropy. 
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Interestingly, previous studies have indicated that gait characteristics can 

predict fall risk [31–37]. Most of these studies are based on data derived from 

older adults [31–35] but people with Parkinson’s disease have been studied as 

well [36, 37].  

Steady-state gait characteristics in stroke survivors are different from older 

adults. For instance, variability of gait in stroke survivors appears to be higher 

than in age matched controls[38]. Due to differences in gait, it is questionable 

if similar, and to what extent gait characteristics predict fall risk in stroke 

survivors. Only one recent study found an association between gait 

characteristics and falls in stroke patients [39]. Therefore, chapter 4 of this 

dissertation examines if and how steady-state gait characteristics predict falls 

in stroke survivors.  

Daily-life gait and fall risk 

It is only recent that technology enables us to monitor gait over several 

consecutive days, thereby allowing us to assess quality of gait in daily life.  

An essential step prior to studying the association between falls and daily-life 

gait characteristics is selecting episodes of gait activity, because only the 

selected gait episodes should be processed to determine the quality of daily-

life gait. Misclassification of episodes could lead to random errors and 

potentially bias in estimates of quality of daily-life gait. Chapter 2 addresses 

the topic of selection of gait episodes in terms of validity and test-retest 

reliability.    
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In regard to daily-life gait characteristics, it is important to note that daily-life 

gait characteristics are derived from lower back acceleration signals alone 

rather than determining the location of each body segment as is the case in 

steady-state gait. Therefore, most gait characteristics that are determined in 

steady-state gait cannot be reliably estimated during daily-life gait. Thus, 

alternative measures have been applied to quantify ‘how’ people walk in daily 

life. Some measures, like the index of harmonicity [40] and harmonic ratio 

[41], are derived from the power spectrum [42]. Other measures based on 

time-domain analysis are stride regularity [43] and movement intensity, which 

is defined as the standard deviation of the acceleration signal [41].  

An example of a three dimensional acceleration time series obtained from a 

trunk mounted accelerometer on a walking participant is given in the upper 

panel of figure 1.1. The red line represents the acceleration in the vertical 

(VT) direction, the blue line the anterior-posterior (AP) acceleration and the 

green line the medio-lateral (ML) acceleration. The lower panel of figure 1.1 

illustrates the power spectrum of an acceleration time series of multiple 

walking episodes and indicates the location of the dominant and subsequent 

harmonics used to calculate the index of harmonicity [40] and harmonic ratio 

[41].   

Recent studies explored daily-life gait characteristics and found that indeed 

quality of gait contains valuable information regarding fall risk in older adults 

[44–47]. Additionally, by estimating the number of strides taken and or the 

total minutes walked during a day, accelerometry can be used to determine 

the amount of physical activity. Interestingly, it was recently found that after 

correcting for the quality of gait, increased quantity of gait increased the risk 
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of falls [47]. This highlights the potential of accelerometry to gain information 

about which factors contribute to falls. Nevertheless this research area is in its 

infancy, and the currently available prediction models require further 

validation [48].  

 

Figure 1.1: The upper panel illustrates a three-dimensional acceleration time series of a 

walking participant. The lower panel illustrates the power spectra of the AP acceleration time 

series of multiple gait episodes and indicates the dominant and subsequent harmonics. 
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Finally, similar to steady-state gait and it’s associations with falls, it is 

unknown whether daily-life gait characteristics reveal valuable information 

regarding fall risk in stroke survivors. The presented results at this point are 

based on healthy older adults. Chapters 3 and 4 determine whether daily-life 

gait characteristics predict falls in stroke survivors and how this is different 

from a general, healthy older population. 

Perturbed gait and fall risk 

Gait perturbations can be separated into two types. The first type are 

unexpected perturbations such as trips and slips. The second type of 

perturbations are expected perturbations like stepping over a curb, or 

avoiding a puddle. Both perturbation types require partly different skills which 

are affected in stroke survivors [49–51]. The work performed in this research 

area is limited, probably due to the expensive instrumentation needed to 

systematically perturb gait and measure responses. Moreover, performing 

such a perturbation experiment is labor-intensive, because measurement of 

kinematic responses requires placement of many markers, data collection 

often requires repeated trials and data analysis is not yet standardized and 

consequently time consuming.  

Responses to gait perturbations are usually explored by simulating trips or 

slips [52, 53] or by pulls applied to the upper body [54]. There is a large 

number of measures that aim to characterize the responses after a 

perturbation [55]. Most commonly used measures are Base of Support (BoS) 

measures: step length and width and measures that relate the Center of Mass 

(CoM) to the BOS, such as the Margin of Stability (MoS) [56, 57].  
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Figure 1.2: The extrapolated center of mass (XCoM) (blue line), a function of CoM position 

and velocity, and foot positioning (red lines) in medio-lateral direction. Halfway this time 

series the treadmill was translated, which resulted in deviating foot placements. 

Figure 1.2 illustrates the BoS together with the extrapolated center of mass 

(XCoM), which equals the center of mass position plus its velocity times the 

square root of the center of mass height divided by the gravitational 

acceleration [56, 57] during a walking trail with medio-lateral perturbations. 

See chapter 5 for a more detailed explanation. 

To our knowledge, no studies explored differences in gait responses after 

perturbations between fallers and non-fallers neither in healthy older adults 

nor in stroke survivors. Nevertheless, a few studies have compared responses 

after perturbations between older adults and stroke survivors [51, 53, 58]. 

While Krasovsky et al (2013) found a larger response in terms of timing of gait 

rhythm (i.e. larger deviations of gait events like heel strike as compared to 

steady-state) after perturbations in stroke survivors compared to healthy 

older adults [58], Kajrolkar et al (2014) concluded that stroke survivors have a 

preserved ability to adjust gait characteristics and maintain dynamic stability 

[51]. In chapter 5, we determined whether gait responses in unexpected gait 
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perturbations are different between fallers and non-fallers among stroke 

survivors. 

Expected gait perturbations are usually explored by setting up a pathway with 

an obstacle [49, 59–63]. Participants are asked to step over such an obstacle 

and obstacle crossing characteristics like: success rate, pre-crossing obstacle 

distance, toe clearance during crossing, crossing step length and post-crossing 

obstacle distance are examined. At present, interestingly, one study found 

that fall-prone stroke survivors were less successful in obstacle negotiation as 

compared to non-fall-prone stroke survivors[64]. In addition, stroke survivors 

had an impaired ability to cross obstacles compared to a general older adult 

population [62, 63, 65, 66]. Yet, whether expected gait perturbations have 

added value in identifying fall-prone stroke survivors remains largely 

unknown. Therefore, we studied in chapter 6 whether gait responses to 

expected perturbations are different between fallers and non-fallers. 

Interventions to improve gait stability 

Effective fall prevention programs exist for older adults [67] although frail 

elderly seem not to benefit from such programs [68]. According to a fairly 

recent Cochrane review, no effective programs are available for stroke 

survivors [69]. Fall prevention programs generally aim to improve physical 

activity, thereby improving physical functioning and reduce fall rates. Yet, falls 

are potentially influenced by many factors, such as for instance, the amount of 

gait activity [47]. Thus, although stroke survivors might improve their physical 

functioning to some extent, this could be outweighed by the increased 

exposure to fall hazards caused by the increased physical activity.  



18 
 

A recent review identified only unsuccessful intervention studies aiming to 

reduce fall rates in  stroke survivors [69]. Thus, as most falls occur during gait, 

perhaps, we should first explore whether it is possible to improve gait stability 

in fall prone stroke survivors, which is at present unknown. An interesting 

novel intervention has emerged over the past several years [70]: Perturbation 

Based Training (PBT), which aims to increase the resistance against 

perturbations and thereby improve stability. There appears to be converging 

evidence that PBT can reduce fall rates in older adults and people with 

Parkinson’s disease [70]. In chapter 7 of this thesis, we studied whether this 

intervention improves gait stability in stroke survivors.    

Aims and Outline of this dissertation. 

The aim of this thesis was twofold. First, this thesis studied a variety of gait 

assessments with respect to their ability to assess fall risk in ambulatory 

chronic stroke survivors. Second, this thesis explored whether stroke survivors 

can improve their gait stability through PBT.  

In chapter 2, the validity and reliability of an accelerometry based gait 

recognition algorithm was examined by comparing quantitative gait 

characteristics against video observation in a repeated measures design. 

Chapter 3 determined whether the same accelerometry-based fall prediction 

models used in older adults can be applied in stroke survivors, or whether 

modifications are needed either in the selection of gait characteristics or the 

coefficients of such a model. In chapter 4, a comparison between 

conventional, clinical assessments, daily-life gait characteristics and steady-

state gait characteristics regarding their ability to predict fall risk was made. In 
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chapter 5, responses after unexpected gait perturbations were compared 

between fall-prone and non-fall-prone stroke survivors. Chapter 6 explored 

whether negotiation of obstacles during gait, thus responses to expected 

perturbations, are affected in fall-prone stroke survivors in comparison to 

non-fall-prone stroke survivors. Additionally, test-retest reliability of obstacle 

crossing gait characteristics was examined. In chapter 7, a pilot PBT was 

designed and applied to explore whether gait characteristics improved and 

consequently predicted decreased fall risk in a group of fall-prone chronic 

stroke survivors. Finally, in chapter 8 overall conclusions are drawn regarding 

fall risk assessment and fall risk reduction in stroke survivors. Moreover, a 

general discussion addresses the applied methods, clinical implications and 

future work.      
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CHAPTER 2 

QUANTIFYING GAIT BY 

ACCELEROMETRY 

 

 

 

 

 
 

 

 

Clinimetric properties of a novel feedback device for assessing gait 

parameters in stroke survivors Michiel Punt, Belinda van Alphen, Ingrid G van 

de Port, Jaap H van Dieën, Kathleen Michael, Jacqueline Outermans, Harriet 

Wittink, Journal of NeuroEngineering and Rehabilitation,2014. 
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Abstract 

Background. Community-dwelling stroke survivors tend to become less 
physically active over time. There is no ‘gold standard’ to measure walking 
activity in this population. Assessment of walking activity generally involves 
subjective or observer-rated instruments. Objective measuring with an activity 
monitor, however, gives more insight into the actual walking activity. 
Although several activity monitors have been used in stroke patients, none of 
these include feedback about the actual walking activity. FESTA (FEedback to 
Stimulate Activity) determines number of steps, number of walking bouts, 
covered distance and ambulatory activity profiles over time and also provides 
feedback about the walking activity to the user and the therapist. 
 
Objective. To examine the criterion validity and test-retest-reliability of the 
FESTA as a measure of walking activity in chronic stroke patients. To target the 
properties of the measurement device itself and thus exclude effects of 
behavioral variability as much as possible evaluation was performed in 
standardized activities. 
 
Methods. Community-dwelling individuals with chronic stroke were tested 
twice with a test-retest interval varying from two days to two weeks. They 
performed a six-minute walk test and a standardized treadmill test at different 
speeds on both testing days. Walking activity was expressed in gait 
parameters: steps, mean-step-length and walking distance. Output data of the 
FESTA was compared with video analysis as the criterion measurement. 
Intraclass Correlations Coefficients (ICCs) and Mean Relative Root Squared 
Error (MRRSE) were calculated. 
 
Results. Thirty-three patients were tested to determine criterion validity, 27 
patients of this group were tested twice for test-retest reliability. ICC values 
for validity and reliability were high, ranging from .841 to .972.  
 

Conclusion. This study demonstrated good criterion validity and test-retest-
reliability of FESTA for measuring specific gait parameters in chronic stroke 
patients. FESTA is a valid and reliable tool for capturing walking activity 
measurements in stroke, and has applicability to both clinical practice and 
research. 
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Introduction 

In many Western nations, stroke is a leading cause of death and serious long-

term disability [71].  

A frequent consequence of stroke is unilateral loss or limitation of muscle 

function, leading to a loss of mobility, movement and functional ability [72, 

73]. Van de Port et al.(2006) showed that a substantial proportion of 

community-dwelling stroke survivors becomes less physically active over 

time[74]. Post-stroke physical inactivity may produce physical deconditioning, 

and as a consequence a decline in function[75]. A decline in function reduces 

participation in the community and quality of life[76] and decreases 

independence of the stroke survivor[75]. Furthermore, physical inactivity 

increases the risk of developing co-morbidities and having a recurrent 

stroke[75]. Accurate measurement of real life walking activity could be 

beneficial in tailoring rehabilitation. Using actual performance data and 

providing feedback might support self-management strategies to prevent 

physical and functional decline and subsequent consequences.  

Currently assessment of walking activity generally involves subjective or 

observer-rated instruments[77]. These instruments have disadvantages such 

as the risk of recall bias, social desirability of answers, and poor 

generalisation[77]. Objective assessment of the number of steps can be done 

with pedometers. Roos et.al.(2012) demonstrated the disadvantage of 

measuring only the total number of steps taken.[78]. They found differences 

in walking bouts and time between older adults and stroke survivors and that 

it varied based on functional ability. This relevant variation could not have 
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been identified when measuring only steps per day [78]. Measuring gait 

parameters with accelerometers overcomes the limitation of measuring only 

the number of steps. To measure gait parameters by accelerometry in this 

population specific algorithms are required since stroke survivors are slow 

walkers[79] and accuracy of detecting steps decreases when gait speed and 

step frequency decrease [80].To date, several motion sensors have been used 

[81, 82], such as the accelerometer based StepWatch Activity Monitor (SAM) 

which had good validity in measuring gait parameters in stroke survivors. 

However, current devices are not capable of providing feedback to the stroke 

survivor about their walking activity. Providing feedback about their walking 

activity might prevent  physical inactivity, and as a consequence a decline in 

function [75]. To monitor walking and to investigate potential beneficial 

effects of feedback in stroke survivors we developed FESTA.  

 

FESTA (FEedback to STimulate Activity) is a telemetric system that includes a 

tri-axial piezo capacitive accelerometer which can be coupled to a docking 

station. The station is capable of; calculating gait parameters, evaluating 

whether the amount of walking activity during the day was sufficient 

according to the goal set by the physical therapist, providing the feedback at a 

screen visible for the stroke patient, sending an email towards the physical 

therapist with the calculated gait parameters and recharging the battery of 

the accelerometer to continue monitoring the next day.  

 

As measuring gait parameters is more challenging in stroke survivors, the first 

step in this developing process was to examine the criterion validity and test-

retest reliability of FESTA at gait parameter recognition in chronic stroke 
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survivors using a stroke specific developed algorithm. We examined gait 

parameters; steps, mean-step-length with a standardized treadmill test and 

walking distance with an over ground 6 minute walk test. Furthermore FESTA 

calculates walking time and walking bouts as a derivative from steps[83].   

Methods 
Participants 

A convenience sample of community-dwelling, chronic stroke survivors was 

recruited from ten private physical therapy practices, the daycare center of 

‘Zorgspectrum’ and the patients’ association ‘Samen verder’ in the 

Netherlands and the University of Maryland in the United States of America. 

Stroke was defined according to the World Health Organization definition. 

Participants were able to walk independently without physical assistance 

(Functional Ambulation Categories score ≥ 3) [84] and were at least three 

months post stroke.Participants were excluded if they had severe cognitive 

disorders (Mini-Mental State Examination <24)[85], severe communicative 

disorders (Utrechts Communicatie Onderzoek <4) [86]or acute disorders 

impairing gait. All participants gave written informed consent prior to 

participation in the study. The research protocol and all informational material 

were approved by the Medical Ethical Committee (MEC) of the University 

Medical Center Utrecht and the Institutional Review Board of the University of 

Maryland, Baltimore.Treatment of the participants was according to the 

Helsinki declaration [87]. 

Equipment & experimental protocol 

procedure 
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Participants were tested twice with a test-retest interval of a minimum of two 

days and a maximum of two weeks using the six-minute walk test (6MWT) and 

a standardized treadmill test. At baseline, inclusion measurements and 

collection of personal and anthropometric data were performed prior to the 

physical tests.  

FESTA monitor 

During both tests the FESTA was worn around the back site of the waist, 

between the spina iliaca posterior superiors. The FESTA contains one tri-axial, 

piezo-capacitive accelerometer (70*80*25mm, 150 grams, range ± 2.5g). 

Based on sensor alignment, acceleration signals were identified as anterior-

posterior (AP), medio-lateral (ML) and vertical (VT). Output is in mV, a change 

of 1mV corresponded to a change of 0.08 m/s2 (resolution). Acceleration 

signals were digitally stored on a memory card with a sampling rate of 25 

samples/s.  

6MWT 

The 6MWT was performed to assess over ground walking distance. The 6MWT 

was performed according to the American Thoracic Society Guidelines[88]. 

Walked distance was determined by counting the number of walked laps (20 

meters) and adding any final fraction of laps, measured by a measuring wheel. 

Results were used to calculate the comfortable walking speeds for the 

treadmill test (CWT) and to assess the over ground walking distance validity 

and reliability of the FESTA.  

Standardized treadmill test  
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Gait parameters, number of steps and mean-step-length were determined 

using a standardized treadmill test. Because accuracy of the gait parameter; 

steps recognition depends on gait speed and gait speed may vary during a day 

and is low in this population [79] we executed a treadmill test at three 

different gait speeds within each subject. Gait speeds were established at 15% 

below, equally to and 15% above comfortable gait speed. Each speed 

condition lasted for two minutes. The mean walking speed measured by the 

6MWT -10% was used to define the comfortable walking speed. Fingertip 

handrail support was allowed during testing.  The treadmills (En Mill treadmill, 

Enraf Nonius, the Netherlands and Gait Trainer 3™, Biodex, USA) was 

calibrated prior to the study. A camera was placed 1.2 meter behind the 

treadmill (Panasonic type HC-V70, 50 samples/s)  

Data processing and algorithms  

From every block of two minutes at different speeds, only the last 90 seconds 

were analysed. The researcher counted the number of steps during these 

blocks of 90 seconds from the video afterwards and was blinded from the 

results of FESTA. Distances from the treadmill test were determined by using 

the treadmill speed and the testing time of the treadmill test. The average 

step length for both legs, the mean-step-length was derived from the distance 

and divided by the steps taken by both legs. 

From the same blocks of 90 seconds, the gait parameters (number of steps 

and mean-step-length) from FESTA were analysed using Matlab (Matlab 

7.10.1, The MathWorks Inc, USA).For the step detection we used spectral 

analysis derived from the AP acceleration signal.  Taking the individual variety 
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of the distance-acceleration relationship into account, we used an individual 

calibration procedure for distance measures to determine the acceleration-

distance relation[89]. Firstly we calculated the root mean square of the AP 

acceleration signal, secondly conducted a linear fit (first order polynomial) 

between the different gait speeds and the different root mean square values 

thirdly we used the polynomial function to predict the walking speed and 

subsequently walking distance in the treadmill test and 6MWT.This distance 

prediction derived from a single acceleration signal and the individual 

calibration procedure is descripted by Schutz et al. (2002) [89] in more detail.  

To assess the validity and reliability of FESTA, we compared the gait 

parameters derived from FESTA with the golden standard. Comparisons for 

the gait parameters steps and mean-step-length were performed by using the 

data from the treadmill test. The comparison of the gait parameter walking 

distance was performed using the data derived from the 6MWT. The steps 

counted from the video analysis and the actual distance walked calculated by 

multiplying speed and time. This procedure is consistent with procedures from 

similar validation studies[90, 91], [92, 93]  and video analysis seems to be the 

most appropriate criterion standard for the assessment of physical 

activity[93].  

Statistics 

Descriptive statistics were performed for all variables and normality was 

assessed by visual inspection of histograms and quantile-quantile plots. An 

ICC3,1 of ≥ .75 was defined as high as suggested by Burdock et al.(1963) [94]. 
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All calculations were performed using SPSS (IBM Software, SPSS Statistics 20, 

USA) or Matlab (Matlab 7.10.1, The MathWorks Inc, USA).  

Validity 

To assess the level of agreement between FESTA and the golden standard, and 

thus the criterion validity, single measures intraclass correlation 

coefficientsagreement (ICC3,1, Two-way mixed model) were calculated for the 

different gait parameters; number of steps and mean-step-length obtained 

from the treadmill test and over ground walked distance in the 6MWT. 

Furthermore the Mean Relative Root Square Error (MRRSE) was calculated for 

each parameter. The MRRSE is a measure of the differences between the 

values of FESTA and the observed values, relative to the unit of measurement 

(see Formula). The MRRSE gives an indication of the mean error of FESTA per 

step or number of steps as a percentage of the measurement unit. 

       
                    

     

obsX
         

obsX = mean of the observed values, criterion measurement, video analysis 

idelmoX ,
 = values obtained by FESTA 

Reliability 

Single measures intraclass correlation coefficientsconsistency (ICC3,1, Two-way 

mixed model) was calculated to analyse the test-retest reliability of FESTA. 

Additionally, the Minimal Detectable Change (MDC95) was calculated from the 

Standard Error of Measurement (SEM) as MDC95 = [1.96*SEMconsistency *√2] and 
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SEM = [sd *        ], where r  is the test-retest reliability coefficient 

ICCagreement 3,1 and sd is the standard deviation of the scores at the first test 

occasion (T0). The SEM is multiplied by 1.96 to determine the 95% confidence 

interval and multiplied by the square root of 2 to account for the additional 

error associated with repeated measurements[95]. The MDC95 is the minimal 

amount of change that must be observed before the change can be 

considered to exceed the variation and measurement error at the 95% 

confidence level. 

Results 
A total of 33 participants (17 men and 16 women) were tested and their data 

were used to determine the criterion validity of FESTA. Twenty-seven 

participants were tested twice. The other six participants did not perform a 

second test, due to motivational problems to perform a second test or being 

unable to perform a second test within the set time limit of two weeks after 

the first test. The mean age of the 33 participants was 61.8 ± 8.8 years, time 

since stroke was 5.6 years ± 3.8 years and the functional ambulation category 

(FAC) scores ranged from 3 to 5 (mean 4.4 ± 0.7). The average distance walked 

in the 6MWT was 317.3 meters, which is 0.88 m/s, ranging from 36 to 580 

meters. For the treadmill testing, the different walking speeds varied from 

0.08 to 1.5 m/s.   

Validity 

For steps and mean-step-length at the three different gait speeds, ICCagreement 

3,1 varied between 0.841 and 0.971 (p≤ 0.001 for all values). Mean Relative 
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Root Squared Errors (MRRSE) ranged between 3.4 and 9.1%. All agreement 

parameters are presented in table 2.1. 

Table 2.1: Criterion validity results FESTA  

Speed Parameter 
Video 

Analysis  FESTA 
MRRSE 

(%) ICC 

Speed 1 = CWT - 
15% 

 

Mean ±SD Mean ±SD 

  Mean ± SD: 2.4 ± 
1.1  km/h Step Count  129 ±25 135 ± 21 5.8 .841 
Range: 0.3 - 4.4 
km/h 

Mean step 
length (m) 0.45 ± 0.14 

0.43 ± 
0.16 9.1 .910 

      Speed 2  = CWT 
     Mean ± SD:  2.8 ±  

1.2 km/h Step Count  138 ± 27 141 ± 23 3.5 .964 
Range: 0.4 - 5.2 
km/h 

Mean step 
length (m) 0.50 ± 0.15 

0.48 ± 
0.16 6.2 .964 

      Speed 3 = CWT + 
15% 

     Mean ± SD: 3.2 ± 
1.4 km/h Step Count  145 ± 28 146 ± 25 3.4 .964 
Range: 0.5 - 5.6 
km/h 

Mean step 
length (m) 0.54 ± 0.17 

0.52 ± 
0.18 5.3 .971 

 MRRSE = Mean Relative Root Squared Error; percentage mean absolute deviation, ICC = 

Intraclass Correlation Coefficient, CWT = Comfortable Walking Speed for Treadmill. 

 
 

Figures 2.1 illustrates the differences between the golden standard and FESTA 

for the gait parameters steps and mean-step-length, with the difference in 

steps (top panel) and mean-step-length (bottom panel). 
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Figure 2.1: FESTA estimates of steps minus golden standard (top panel). FESTA estimates of 
mean-step-length minus golden standard (bottom panel). At 15% below comfortable walking 
speed (CWT −15%) equal to (CWT) and 15% above. 

 

Criterion validity for over ground walking distance during the 6MWT is 

presented in table 2.2. Difference between measured and estimated over 

ground walking distance in meters averaged -20.1 meters see figure 2.2.  

 
Table 2.2: Criterion validity of distance measure for over ground 
walking: 6MWT  

  
6MWT (m)  
measured 

6MWT (m) 
FESTA 

MRRSE 
(%) ICC 

Mean ±  SD 317.3 ±  134.7 
 

337.4±136.3 12.1 .937 

Range  36.0 -580.0 44-581.5 
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Figure 2.2: FESTA estimates of covered distance (M) minus 
golden standard at the 6MWT. 

Reliability 

Table 2.3 presents the test-retest reliability for the gait parameters steps and 

mean-step-length, including ICC values and MDC. ICCconsistency 3,1 scores ranged 

from 0.876 to 0.972 and were all significant at p≤ 0.001.  

Table 2.3: Test-retest reliability of gait parameters obtained by FESTA 

  

Speed Parameter 
T0 (Mean 
± SD) 

T1 (Mean 
± SD) ICC MDC95 

Speed 1 = CWT - 
15% Step Count (steps) 

136 ± 
21.0 

135 ± 
20.4 .938 14.3 

 

Mean step length 
(m) 

0.44 ± 
0.15 

0.42 ± 
0.14 .876 0.14 

      
Speed 2  = CWT Step Count (steps) 

141 ± 
22.5 

140 ± 
22.6 .949 14.1 

 

Mean step length 
(m) 

0.48 ± 
0.14 

0.48 ± 
0.15 .942 0.10 

      Speed 3 = CWT + 
15% Step Count (steps) 

145 ± 
23.9 

144. ± 
25.6 .972 11.4 

 

Mean step length 
(m) 

0.52 ± 
0.16 

0.53 ± 
0.16 .944 0.10 
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Figure 2.3 illustrates the differences between the first and second test 

occasion, reliability of the gait parameters; steps (top panel) and mean-step-

length (bottom panel).  

 

Figure 2.3: FESTA estimates, difference between steps at the first and second test occasion 
(top panel). FESTA estimates, difference between mean-step-length at the first and second 
test occasion (bottom panel). 

 
Test-retest reliability for over ground distance covered during the 6MWT for 

ICCagreement 3,1 ,is .97. Mean difference in meters was 8.1 meter, see figure 2.4.  

 

 
Figure2. 4: FESTA estimates difference in covered walking distance (M) between the first and 
second test occasion. 
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Discussion 
The objective of this study was to examine the criterion validity and test-retest 

reliability of the novel telemetric system, FESTA, in measuring walking activity 

in stroke survivors. To this end, we tested gait parameters; steps, mean-step-

length and walking distance in chronic stroke survivors. Results of criterion 

validity and test-retest reliability indicate good validity and reliability as all ICC 

values were between .841 and .972. These results are similar to the most 

commonly used accelerometer in the stroke population [80] [82] [96]. 

Moreover the results present higher accuracy in comparison algorithms not 

specifically developed for the stroke population [96].  

No clear trend can be seen between ICC values and MRRSE and the three gait 

speed conditions. This indicates that the validity of the FESTA is not affected 

by gait speed. Although the latter finding demonstrates the possible 

robustness of the FESTA for real-life use, we have to take into account that 

gait parameters differ for treadmill walking and over ground walking[97]. 

When walking on a treadmill, the gait patterns of chronic stroke survivors are 

more symmetrical and stable compared to over ground walking. Furthermore 

in real-life gait speed may vary during a day and even within a walking bout. 

Therefore the gait parameters steps and mean-step-length have to be 

interpreted with caution since these parameters were only tested at the 

treadmill and might not be generalizable to walking over ground. Further 

research is needed to determine these outcomes in over ground walking. 

Another limitation of the study was the test-retest reliability design. Although 

all conditions were similar in the first and second test occasion, subjects did 

perform slightly different in the first and second test. In example subjects took 
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slightly fewer steps at the treadmill test or walked a few meters further in the 

second 6MWT compared to the first test occasion. This affected the reliability 

results of FESTA. 

For specific measurement devices, measurement errors should be smaller 

than the Minimal Clinically Important Difference (MCID) to detect a valuable 

effect for individuals. For the treadmill tests, no MCIDs have been defined. 

The MDC95 score of the FESTA for over ground walked distance at the 6MWT 

was 62.2 meters. Although we used for the distance parameter an individual 

calibration, which appears to be more accurate than a general estimation [89], 

MDC of 62.2 meters is still slightly greater than the MDC of 54.1 meters [98] 

for the 6MWT. Herein we assumed that 54.1 was the optimum MDC value, as 

we used the same 6MWT with similar subjects. Therefore distance measures 

still have to be interpreted with caution.  

Statistical considerations 

Previous studies with a similar design and aim as we had [81, 82] [99–101] 

expressed accuracy performance in ICC values and Limits of Agreement. In this 

study, we added a new measure for validity; the Mean Relative Root Squared 

Error (MRRSE). It is known that ICC values are strongly influenced by the 

magnitude of the variance within the study sample. Furthermore, other than 

the name ICCagreement suggests, the ratio of variances is calculated, rather than 

the absolute agreement score [102]. When taking a closer look at the ICC 

formula, it is clear that a large variance in subject scores, as is the case in this 

study, will lead to a higher ICC [102]. Studies with different variances in their 

study populations can therefore not be compared directly. To get a better 
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insight in the true agreement between the output of the FESTA and ‘gold 

standard’, and to eliminate the effect of the high variance in our study 

population, we calculated the MRRSE for each gait parameter. The MRRSE 

represents the mean absolute percentage difference between the two 

measurement devices, expressed in the percentage of unit of the parameter. 

This score is easy to use in daily practice, easy to interpret and not dependent 

of variance between patients. Therefore, we hereby suggest using the MRRSE 

in future research, as it provides a more direct comparison between studies 

and between measurement devices.  

FESTA 

FESTA (FEedback to STimulate Activity) is a newly developed telemetric 

system and validity and reliability were shown to be good in the present 

analysis. It is designed to monitor and stimulate stroke survivors with respect 

to their daily walking activity. The physical therapist is able to interact by 

setting walking activity goals based on walking time and walking bouts. FESTA 

has several advantages over other methods for assessing walking activity; it 

can measure different gait parameters such as number of steps, mean-step-

length, distance and as derivatives walking time and the number of walking 

bouts[83], whereas a step-counter can only determine the number of steps. 

Roos et. al.(2012) clearly stated that steps alone is not sufficient to 

characterize physical inactivity in stroke survivors[78].Due to the docking 

station FESTA is not limited by battery life and data capacity. Therefore it is 

able to monitor for a long time period without recharging or removing data. 

Furthermore FESTA provides the researcher and physical therapist and stroke 

survivor with real-life walking activity information. Future research will involve 
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studying the effect of giving feedback using this device. The aim will be to 

increase walking activity by providing feedback to the user and providing 

information of actual walking activity and the daily pattern of walking activity 

to the physical therapist. Using FESTA provides new possibilities to measure 

walking activity of chronic stroke survivors in a valid and reliable way and 

thereby offers a variety of perspectives for research and treatment in this 

population. 

Conclusion 
Based on ICC values and MRRSE, this study demonstrated good criterion 

validity and test-retest reliability of the telemetric system FESTA for measuring 

gait parameters in chronic stroke survivors. FESTA provides the possibility to 

measure gait parameters in a valid and reliable manner and can be used, in 

both clinical practice and academic research. 
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CHAPTER 3 

 

STROKE SURVIVORS VS OLDER 
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Characteristics of daily life gait in fall and non fall-prone stroke survivors and 

controls Michiel Punt, Sjoerd M. Bruijn, Kimberley S. van Schooten, Mirjam 

Pijnappels, Ingrid G. van de Port , Harriet Wittink , Jaap H. van Dieën. Journal 
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Abstract 
Background. Falls in stroke survivors can lead to serious injuries and medical 
costs. Fall risk in older adults can be predicted based on gait characteristics 
measured in daily life. Given the different gait patterns that stroke survivors 
exhibit it is unclear whether a similar fall-prediction model could be used in 
this group.  

Objective. Therefore the main purpose of this study was to examine whether 
fall-prediction models that have been used in older adults can also be used in 
a population of stroke survivors, or if modifications are needed, either in the 
cut-off values of such models, or in the gait characteristics of interest.  

Methods. This study investigated gait characteristics by assessing 
accelerations of the lower back measured during seven consecutive days in 31 
non fall-prone stroke survivors, 25 fall-prone stroke survivors,20 
neurologically intact fall-prone older adults and 30 non fall-prone older adults. 
We created a binary logistic regression model to assess the ability of 
predicting falls for each gait characteristic. We included health status and the 
interaction between health status (stroke survivors versus older adults) and 
gait characteristic in the model.  

Results. We found four significant interactions between gait characteristics 
and health status. Furthermore we found another four gait characteristics that 
had similar predictive capacity in both stroke survivors and older adults.  

Conclusion. The interactions between gait characteristics and health status 
indicate that gait characteristics are differently associated with fall history 
between stroke survivors and older adults. Thus specific models are needed to 
predict fall risk in stroke survivors. 
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Introduction 
Falls are a major problem in the growing older population. Falls can result in 

serious injuries leading to considerable medical costs[103]. In stroke survivors, 

fall rates are higher in comparison to healthy older adults[7, 104]. Falls may 

increase the fear of falling and may subsequently reduce physical 

activity[105],which can result in physical deconditioning and may further 

increase fall risk in the long term. 

Objective fall risk assessment often involves assessment of balance control, 

for example with the Berg Balance Scale [24]. However, the relation between 

deficits in balance control and fall rates in stroke survivors is inconsistent[7, 

24]. It has been suggested that this might be due to fact that most balance 

tests are static in nature[106],while most falls occur during dynamic tasks such 

as walking and transfers[7]. Interestingly, several characteristics of gait quality 

have been shown to differentiate fallers from non-fallers among older 

adults[44, 46, 47]. These characteristics can be measured in daily life by 

accelerometry, and reflect aspects such as stability, symmetry, smoothness 

and variability. van Schooten et.al.[47] demonstrated the added value of such 

gait characteristics to conventional clinical predictors of fall risk.  

A similar approach may be useful for stroke survivors, and could add value to 

existing clinical tests. However, quantity and quality of gait are different in 

stroke survivors[12, 38, 78] than in healthy individuals, and it is therefore 

unclear whether a fall risk prediction model as used by van Schooten et al[47] 

can be used in stroke survivors. For example, stroke survivors have a more 

asymmetrical[12] and unstable gait[38] compared to age matched controls. 

Furthermore stroke survivors are physically less active[78] and physical 
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activity has been associated to falls as well[47]. Thus, even if the same gait 

quality characteristics predict falling in stroke survivors and in healthy 

controls, it may be that regression coefficients for these characteristics are 

markedly different in a prediction model for stroke survivors compared to 

models developed for healthy older adults. 

To this date, exploring the potential of fall prediction models based on gait 

characteristics has been limited to older adults; however, gait in stroke 

survivors is remarkably different and fall incidences are a frequent problem in 

stroke survivors. To explore the potential of using daily life gait assessment to 

predict falls in stroke survivors, the main purpose of the current study was to 

examine whether fall-prediction models that have been used in healthy older 

adults[44, 46, 47] can also be used in a population of stroke survivors, or if 

modifications are needed, either in the regression coefficients of such models, 

or in the gait characteristics of interest. 

Methods 
Participants 

We tested community-dwelling stroke survivors as well as healthy older 

adults. Stroke survivors were recruited via local physical therapy centers and 

through national peer group meetings. Stroke survivors were above the age of 

18, at least one year post stroke and were living in the community 

independently. Stroke survivors were excluded from the study if they had a 

functional ambulation category of two or less. Data for the healthy older 

adults group were derived from a data set of a larger study on ‘fall risk 

assessment in older adults’(FARAO)[46, 47]. We only included participants 
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from who we were certain that they were free of any neurological damage, 

such as a history of stroke or Parkinson’s disease. Control participants for this 

study were recruited via general practitioners, pharmacies and residential 

care facilities in the area of Amsterdam, The Netherlands. Participants were 

excluded from the study if they had severe cognitive disorders, as indicated by 

a minimal mental state examination score of 24 or less[85]. All participants 

were able to walk independently for at least 20 meters, if necessary with a 

walking aid. The research protocol was approved by the medical ethical 

committees of the University Medical Center Utrecht and the VU medical 

center Amsterdam, The Netherlands. All participants signed informed consent 

and treatment of the participants was according to Good Clinical Practice. 

Data collection 

Fall status was determined using a self-reported questionnaire asking about 

falls in the last twelve months prior to determining gait characteristics. A fall 

was defined as; ‘any unanticipated event that results in participant coming to 

the ground, floor or lower level’ [20]. To estimate quantitative and qualitative 

gait characteristics, participants were asked to wear a tri-axial accelerometer 

(55 grams), (McRoberts, Den Haag, The Netherlands) at the middle of the 

lower back using an elastic belt[107]. The accelerometer was aligned to 

coincide with the anterior-posterior (AP), medio-lateral (ML) and vertical (VT) 

body-axis. Participants were instructed to realign the accelerometer during 

the monitoring period if necessary. Data were sampled at 100 samples/s with 

a range ± 6g and digitally stored on a mini SD card. Participants were 

instructed to wear the accelerometer for seven consecutive days, preferably 

during day and night, but were allowed to take it off when going to bed. The 
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accelerometer was removed during showering and other water-related 

activities to prevent damage.  

Data analysis 

Based on health status and fall history of at least one fall in the previous year, 

we classified participants into four groups: non fall-prone stroke survivors (NF-

SS), fall-prone stroke survivors (F-SS) and a control (CON) group of older adults 

thus fall-prone older adults (F-CON) and non fall-prone older adults (NF-CON) 

and used these groups for further analyses. 

Gait activity was identified from the weekly time series using a validated 

algorithm for gait detection and gait quantification[108]. The algorithm 

searches for gait activity based on the spectral content of the AP acceleration 

and discards periods of activity shorter than eight seconds. Total monitoring 

time was defined as the time between the first and last gait episode of each 

participant over the seven days. Prior to estimating gait characteristics, 

potential accelerometer misalignment was corrected according to the method 

described by Rispens et al [107]. 

Gait quantity was expressed as the duration of gait activity per 24 hours and 

the number of walking bouts per 24 hours. We classified walking bouts of 24 

seconds or shorter as short walking bouts. Short walking bouts are likely to be 

executed predominantly in at-home settings, which might affect gait 

characteristics (for instance, turning affects step length symmetry, and usually 

in-home walking coincides with more turning as compared to walking 

outdoors). All walking bouts were divided into eight-seconds epochs for 

further analysis. We calculated the number of eight seconds epochs that were 
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part of the short walking bouts and divided this by the total number of 

epochs. Thus we were able to determine whether the characteristics of gait 

quality were derived under similar circumstances between groups.  

We estimated gait quality characteristics that have shown promise in 

differentiating between fallers and non-fallers among older adults[46]. 

Specifically, we calculated gait speed [109], gait symmetry determined by the 

harmonic ratio (HR) [41]. This HR measure divides the sum of the first ten 

even harmonics through the sum of the first ten odd harmonics. Symmetrical 

gait in the VT and AP direction will predominantly contain even harmonics 

which will result in a higher HR. The smoothness of gait was determined by 

dividing the ground frequency (first harmonic) of the time series by the first 

six harmonics of the time series, the  index of harmonicity (IH) [40]. A 

complete smooth gait can be described by one sinusoidal function and no 

higher harmonics would be necessary to describe the signal. Subsequently this 

would result in a higher  IH value. Several indicators of gait variability were 

determined. Firstly the amplitude of the dominant peak which represents the 

‘strength’ of the dominant peak relative to the rest of the signal [42], and 

hence a high value represents a low variability. Secondly the width of peak of 

the power spectrum reflects the dispersion of the dominant peak [42] and 

hence a higher value represents a higher variability. Thirdly stride frequency 

variability, and fourthly local dynamic stability expressed as the local 

divergence exponent (LDE), which quantifies the exponential rate of 

divergence from initially nearby kinematics states as a function of stride 

time[46]. A higher LDE indicates a faster diverging acceleration signal and 

indicates a more unstable gait pattern. Except for gait speed and stride time 
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all these characteristics were determined in three directions using algorithms 

previously described by Rispens et al.[46]. Estimation of gait quality 

characteristics was performed on each epoch of 8-seconds length, which was 

sufficient long for estimating spectral features [110]. For each characteristic, 

the median value over all gait epochs of a participant was used for statistical 

evaluation. We took the median value as the median is less sensitive in 

comparison to the mean for outliers in the estimated gait characteristic. 

Statistics 

For each group, means and standard deviations are reported. Participant 

characteristics and monitoring duration were compared between groups using 

health status (stroke survivor or healthy older adult) and fall history as two 

categorical factors in an analysis of variance (ANOVA).When these analyses 

revealed differences between groups, the variable concerned was used as a 

covariate to control for its effects in subsequent analyses. To facilitate 

objective comparison between independent variables we z transformed 

continues variables prior to performing the logistic regression. We developed 

a fall prediction model per gait characteristic using binary logistic regression. 

Fall history was used as dependent variable, while the gait characteristic and 

the categorical variable health status (stroke survivors versus healthy older 

adults, coded as 1 and 0 respectively) were the independent variables. The 

interaction between health status and the gait characteristic was also included 

in the model, but if the interaction did not reach a p-value of ≤ 0.05 it was 

removed from the model and a new model with health status and the gait 

characteristic only was created. The odds ratio (OR)is a number indicating the 

amount of increased fall risk per unit increase of the independent variable. If a 
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significant OR is found for a specific gait characteristic only, this implies that it 

is associated with fall history and  that this association does not depend on 

health status (controls, older adults and stroke survivors). If in addition a 

significant OR is found for health status, but no interaction, this implies that 

fall risk is dependent on health status, but that the change in risk with a unit 

change in the gait characteristic is independent of health status. If an 

interaction effect is found, this implies that the relation of the gait 

characteristic with fall history is different between health status groups, 

suggesting that a specific model is needed for stroke survivors. All statistical 

analyses were performed using SPSS software version 20.0,and a p-value of ≤ 

0.05 was considered statistically significant. 

Results 
A total of 106 participants volunteered for the study. Of the 56 participating 

stroke survivors 25 (45%) had experienced at least one fall in the previous 

year. A total of 50 control older adults participated of whom 20 (40%) had 

experienced at least one fall in the previous year. Participant characteristics 

and monitoring duration results for each group are presented in table 3.1. 

Tables 3.2 and 3.3 provide an overview of which gait characteristics show 

promise in regard to predicting fall risk in stroke survivors and older adults. 

More precise, table 3.2 provides an overview of quantitative and qualitative 

gait characteristic values between stroke survivors and older adults and is as 

well subdivided in fallers and non fallers. An overview of the corresponding 

Odds ratios (OR) between all four groups and p-values derived from the binary 

logistic regression models are presented in table 3.3. 
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Two-way ANOVAs for participant characteristics revealed no differences in 

monitoring duration and anthropometrics between groups, but showed a 

significant interaction effect on age, with the NF-SS group being significantly 

younger than the other three groups. Further results were corrected for this 

difference by using age as covariate. 

 

 

Table 3.1:Participant characteristics for the four groups. 

 NF-SS 
Mean ± SD 

F-SS 
Mean ± SD 

NF-CON 
Mean ± SD 

F-CON 
Mean ± SD 

Female/male 15/16 15/10 13/17 14/6 

Age (years) 64.1 ± 11.6 69.0 ± 9.2 71.9 ± 4.1 74.9 ± 8 

Height (m) 171.4 ± 8.8 172.3 ± 9.3 169.4 ± 9.2 170.4 ± 7.7  

Weight (kg) 79.7 ± 14.7 82.9 ± 16.5 75.1 ± 10.5  75.3 ± 13.7 

BMI (kg/m2) 27.0 ± 3.8 28.1 ± 6.5 25.8 ± 2.5 26.1 ± 3.7 

Monitoring(days) 6.5 ± 0.5 6.5 ± 0.4 6.4 ± 0.7 6.5 ± 0.6 

 Health status Fall history Health  * Fall history 

F-Value / P-Value F P F P F P 

Age (years) 14.98 <0.001 0.29 0.59 5.21 0.024 

Height (m) 1.37 0.244 0.01 0.99 0.33 0.564 

Weight (kg) 3.87 0.051 3.89 0.534 0.34 0.561 

BMI (kg/m2) 3.52 0.063 0.71 0.400 0.21 0.645 

Monitoring(days) 0.85 0.771 0.48 0.827 0.945 0.333 

Main effects for health status and fall history and their interaction are presented. Significant p-values are printed in 
bold. non-fallers, stroke survivors (NF-SS), faller, stroke survivor (F-SS) non-faller control group of older adults (NF-
CON), faller control group of older adult (F-CON). 
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No associations with a history of falls were found for gait quantity 

characteristics (see table 3.3). Four gait quality characteristics were found to 

be associated with a history of falls independent of health status (see table 

3.3).  A reduced gait symmetry (HR) in the VT and AP direction and decreased 

gait smoothness (IH) in the VT direction were associated with a history of falls 

in both groups. Moreover an increase in the dominant amplitude of the power 

spectrum in the ML direction was associated with an increased fall risk in both 

groups. Increased stride time and reduced gait speed showed a trend of 

increased fall risk in both groups, respectively (p=.06 and p=.07). In addition 

for four gait quality characteristics a significant interaction term between 

health status and gait characteristic, was predictive for fall history (see table 

3.3). For gait smoothness (IH) in the ML direction, this indicated that a higher 

IH increased fall risk, but less so in stroke patients, although stroke increased 

the fall risk. Moreover an larger width of the dominant peak of the power 

spectrum in VT direction higher fall risk in stroke survivors but lower in older 

adults. A higher amplitude of the dominant peak in VT was associated with a 

lower fall risk in stroke survivors but not in older adults, with stroke increasing 

fall risk as well. Finally, an increase in the local divergence exponent (decrease 

in local dynamic stability) in the ML direction, increased fall risk in stroke 

survivors, but not in healthy older adults. 
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Table 3.2: Quantitative and qualitative gait characteristics for the four groups. 

          NF-SS                    F-SS   NF-CON   F-CON 

Quantitative measures Mean ± SD Mean ± SD Mean ± SD Mean ± SD 

Gait activity (min/day)   35.9 ± 20.1 34.4 ± 24 47.5 ± 21.8 50 ± 19.8 
WB/day 127 ± 64.5 125 ± 77.3 158 ± 54.4 152 ± 49.9 
Short WB (%) 91.6 ± 4.8  92.4 ± 6.2 89.7 ± 6 90.2 ± 3.9 
Short WB epochs(%) 27.8 ± 18.4 43.3 ± 28.5 25.5 ± 15.9  23.8 ± 10.1 

Qualitative measures     

Gait speed (m/s) 0.74 ± 0.14 0.67 ± 0.17 0.93 ± 0.30 0.90 ± 0.21 
Stride time (seconds) 1.26 ± 0.20 1.44 ± 0.40 1.14 ± 0.13 1.15 ± 0.08 
Harmonic Ratio  VT 1.31 ± 0.20 1.20 ± 0.20 1.92 ± 0.31 1.67 ± 0.32 
Harmonic Ratio  ML 1.33 ± 0.13 1.35 ± 0.22 1.45 ± 0.15 1.51 ± 0.26 
Harmonic Ratio  AP 
Freq. Variability  VT 
Freq. Variability  ML 
Freq. Variability  AP 
IH                          VT 
IH                          ML 
IH                          AP 
Amplitude (psd) VT 
Amplitude (psd) ML 
Amplitude (psd) AP 
Width (psd)         VT 
Width (psd)         ML 
Width (psd)         AP 
LDE/stride           VT 
LDE/stride           ML 
LDE/stride           AP 

1.17 ± 0.20 
0.15 ± 0.05 
0.18 ± 0.04  
0.17 ± 0.04 
0.48 ± 0.18 
0.38 ± 0.21 
0.51 ± 0.15 
0.47 ± 0.12 
0.40 ± 0.15 
0.42 ± 0.11 
0.98 ± 0.01 
0.95 ± 0.02 
0.95 ± 0.02 
0.98 ± 0.19 
0.89 ± 0.18 
0.87 ± 0.19 

1.07 ± 0.20 
0.14 ± 0.03 
0.21 ± 0.05 
0.19 ± 0.05 
0.39 ± 0.16 
0.50 ± 0.25 
0.52 ± 0.15 
0.40 ± 0.09 
0.50 ± 0.19 
0.46 ± 0.17 
0.99 ± 0.02 
0.95 ± 0.03 
0.95 ± 0.01 
1.02 ± 0.19 
0.90 ± 0.20 
0.90 ± 0.21 

1.71 ± 0.19 
0.14 ± 0.20 
0.16 ± 0.40 
0.14 ± 0.30 
0.64 ± 0.12 
0.34 ± 0.13 
0.57 ± 0.11 
0.56 ± 0.09 
0.36 ± 0.08 
0.42 ± 0.09 
0.95 ± 0.01 
0.95 ± 0.01 
0.94 ± 0.01 
0.92 ± 0.15 
0.71 ± 0.08 
0.72 ± 0.10 

1.39 ± 0.24 
0.14 ± 0.02 
0.17 ± 0.04 
0.15 ± 0.04 
0.56 ± 0.13 
0.25 ± 0.15 
0.52 ± 0.09 
0.58 ± 0.11 
0.36 ± 0.08 
0.41 ± 0.08 
0.94 ± 0.01 
0.95 ± 0.01 
0.93 ± 0.01 
0.94 ± 0.16 
0.78 ± 0.11 
0.78 ± 0.11 

Table 3.2, Quantitative and qualitative gait characteristics for all four groups expressed as means and 
standard deviations.  Abbreviations: WB is walking bouts, Freq. Variability is the stride frequency 
variability, IH is the Index of Harmonicity, Amplitude (psd) is the amplitude of the dominant peak in 
the power spectral density,   Width (psd) is the width of the dominant peak in the power spectral 
density, LDE/stride is the local divergence exponent per stride. VT is the vertical direction, ML is the 
medio-lateral direction and AP is the anterior-posterior direction. Significant associations derived from 
logic regression (table 3.3) are printed in bold. 
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Table 3.3: Binary logistic regression.     

 Gait characteristic Health status Interaction 

Quantitative measures OR (p) OR (p) OR (p) 

Gait activity (min/day)   1.01 (.94) 0.82 (.63)  
WB/day 0.94 (.74) 0.85 (.69)  
Short WB (%) 1.17 (.43) 0.88 (.76)  
Short WB epochs(%) 1.48 (.06) 0.99 (.99)  

Qualitative measures    

Gait speed (m/s) 0.64 (.06) 1.17 (.71)  
Stride time (seconds) 1.71 (.07) 1.19 (.68)  
Harmonic Ratio  VT 0.54 (.02) 1.61 (.33)  
Harmonic Ratio  ML 1.23 (.31) 0.71 (.41)  
Harmonic Ratio  AP 
Freq. Variability  VT 
Freq. Variability  ML 
Freq. Variability  AP 
IH                          VT 
IH                          ML 
IH                          AP 
Amplitude (psd) VT 
Amplitude (psd) ML 
Amplitude (psd) AP 
Width (psd)         VT 
Width (psd)         ML 
Width (psd)         AP 
LDE/stride           VT 
LDE/stride           ML 
LDE/stride           AP 

0.34 (<.01) 
0.81 (.34) 
1.45 (.08) 
1.41 (.12) 
0.46 (<.01) 
1.64 (.05) 
0.84 (.40) 
0.44 (.02) 
1.54 (.04) 
1.04 (.83) 
1.11 (.63) 
0.98 (.94) 
0.87 (.51) 
1.31 (.21) 
1.16 (.54) 
1.54 (.06) 

2.72 (.06) 
0.81 (.59) 
1.01 (.94) 
1.08 (.86) 
1.81 (.23) 
0.65 (.37) 
0.87 (.73) 
1.21 (.70) 
1.05 (.91) 
0.90 (.81) 
0.09 (.04) 
0.82 (.62) 
0.81 (.61) 
1.02  (.97) 
2.23 (.13) 
1.31 (.55) 

 
 
 
 
 
0.22(<.01) 
 
2.76 (.04) 
 
 
0.01 (.02) 
 
 
 
4.86 (.03) 
 

Quantitative and qualitative gait characteristics association with a history of falls. Health 
status includes stroke survivors versus older adults. Data was z-transformed prior to logistic 
regression. Significant associations are printed in bold. 
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Discussion 
The main purpose of the study was to test whether fall-prediction 

models that have been used in healthy older adults can also be used in 

a population of stroke survivors, or if modifications are needed, either in 

the regression coefficients, or in the gait characteristics of interest.  

Previous studies assessing gait in older adults have shown that gait 

speed[111], gait variability[32], local dynamic stability [35, 46, 47] and 

symmetry[45] provide valuable information concerning fall risk in older 

adults. Our results are partly in line with these findings as we found 

several similar gait characteristics that were able to predict falls in both 

groups. However the limited number of participants in our study reduced 

statistical power in comparison to previous work [46, 47], which could 

explain that not all findings are reproduced in this study. For instance 

gait speed and stride time showed only a trend of predictive ability in 

both groups, respectively (p=.06 and p=.07).  

Interestingly, we found four interactions indicating a different relation 

between gait quality and fall history in stroke survivors compared to the 

group of healthy older adults. In addition gait symmetry in the AP 

direction was predictive for falls in both groups, but health status 

showed a trend (p=.06) indicating a different cut off value in the 

regression. Thus, since we found gait characteristics that were 

predictive for falls in both groups but we also found gait characteristics 

with a interaction or different cut off value the overall results indicate 

that predicting falls in stroke survivors based on daily-life gait 

characteristics is possible but requires a stroke specific fall-prediction 

model.  
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Surprising results were found for the index of harmonicity, which is 

calculated by dividing the power of the fundamental frequency by the 

power of the first six harmonics. This measure is thought to reflect the 

smoothness of gait. Interestingly, based on mean and standard 

deviations between groups the F-SS group had the highest index of 

harmonicity in the ML direction but the lowest in the AP and VT 

directions. This different relation between ML and AP, VT direction for 

the index of harmonicity can possibly be explained by a more 

pronounced and rapid shift of the center of mass between both legs in 

this group, to reduce the time standing on the paretic leg. Such fast 

movement results in a high peak in the acceleration signal at the stride 

frequency. Therefore the index of harmonicity in the ML direction, 

measured at the pelvis might reflect more a rigid gait pattern and loss of 

control in the paretic leg rather than smoothness of gait. Considering the 

present differences between groups, it is a gait characteristic of interest 

in the stroke population. Moreover, this opposite relation between ML 

and AP, VT direction for the index of harmonicity was confirmed by our 

findings on the amplitude of the dominant peak in the power spectrum. 

The amplitude of the dominant peak was highest for the F-SS group in 

the ML direction but lowest in the VT direction, which is in line with the 

findings by Weiss et al [44].  

Although none of the gait quantity characteristics were associated with a 

history of falls, gait activity and the number of walking bouts seems to 

be reduced in stroke survivors, see also table 3.2. Since most falls 

occur during gait[21], this reduced gait activity could be a fall risk 

avoidance strategy. However reduced gait activity may cause further 

deconditioning and subsequently increased fall risk in the long-term.  
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Study limitations 

To divide our groups of interest into fallers and non-fallers we have used 

self-reported retrospective fall incidents. Retrospective fall reports can 

be influenced by recall bias and their relation with gait quality may 

slightly differ from prospective fall reports[47]. These differences may 

have influenced our classification. Second, the identification of gait 

epochs for estimating gait characteristics was accomplished by a gait 

detection algorithm[108]. Although validity and reliability was good for 

slow and fast walking, it still remains unknown to what extent the 

algorithm identified other forms of cyclic movements such as biking. 

Misclassifications of gait activity or for instance wearing the 

accelerometer away from the midline of the lower back will result in 

deviating estimations of gait characteristics for those epochs. Yet the 

error in our final estimating gait characteristics is limited by taking the 

median value over all epochs rather than the mean. Third, the results 

showed differences in percentages of short walking bouts between 

groups. This suggests that the median value for the qualitative gait 

characteristics were estimated based on slightly different environmental 

circumstances. This is an important finding, because for example gait 

symmetry may be affected by bends and shorter walking bouts are 

probably performed in a more complex setting, which contains more 

bends. To examine whether this finding influenced our results we 

compared gait characteristics between groups including only walking 

bouts lasting 16 seconds or more. Mean values were somewhat 

different but no consistent changes were found and the main findings 

would have been the same as presented here. In addition we 

reanalyzed our statistical models taking weight and BMI as covariates, 



54 
 

since both variables were nearly significant different between groups. 

OR were slightly different yet the same interactions were still present. 

Conclusion  
In conclusion, due to the present interactions found, several gait 

characteristics are differently associated with a history of falls in stroke 

survivors as in older adults. This suggests that specific models are 

needed to predict fall risk in stroke survivors. 
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Abstract 
Background. At present it remains unknown if gait characteristics predict falls 
in stroke survivors and whether they perform better than existing, current 
used fall risk assessments. 

Objective. This exploratory study investigated to what extent gait 
characteristics and clinical physical therapy assessments predict falls in 
chronic stroke survivors. 

Methods. Gait characteristics were collected from 40 participants. Participants 
walked on a treadmill with motion capture, to collect steady state gait 
characteristics, such as spatio-temporal, variability, and stability measures. 
Moreover, we used an accelerometer to collect daily-life gait characteristics 
during seven days. Six physical and psychological assessments were 
administered. Fall events were determined using a ‘fall calendar’ and monthly 
phone calls over a six-months period. After data reduction through principal 
component analysis, the predictive capacity of each method was determined 
by a logistic regression. 

Results. 38% of the participants were classified as fallers. Laboratory based 
and daily-life gait characteristics predicted falls acceptable well, with an area 
under the curve (AUC) of respectively 0.73 and 0.72, while fall predictions 
from clinical assessments were limited (0.64).  

Conclusion. Independent of the type of gait assessment, qualitative gait 
characteristics are better fall predictors than clinical assessments. Therefore 
clinicians should consider gait analyses as a alternative to identify fall prone 
stroke survivors.  
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Introduction 
Falls are common among chronic stroke survivors [22, 28] and can lead to 

injuries [112, 113]. Predicting falls may help in assigning stroke survivors to fall 

prevention interventions, and may aid in the development of tailored fall 

prevention. Clinically, physical performance tests have been used to assess fall 

risk in stroke survivors [29, 97, 114, 115]. While some studies reported that 

these tests were associated with falls [114, 115] other studies did not confirm 

such an association [29, 116]. In addition, several studies attempted to predict 

falls based on psychological factors such as depression [28, 29]. Again, some 

studies did [28], while others did not [29] find an association between 

depression and falls in stroke survivors. Since most falls occur during dynamic 

activities such as walking or transfers [22, 29] and current used fall risk 

assessments lack in consistency, it has been suggested to explore gait 

characteristics in relation to fall risk in stroke survivors [7].  

Interestingly, in healthy older adults several studies were successful in 

predicting falls by estimating gait characteristics in a laboratory setting [35, 

117]. In addition, several studies were able to predict falls based on gait 

characteristics determined from daily-life accelerometry [44, 47]. Despite the 

different approaches in estimating gait characteristics, both methods 

demonstrated that gait characteristics like gait speed [117], variability of gait 

[35, 47] and local divergence exponents (LDE)[35, 47] of gait kinematics 

predict falls in healthy older adults.  

Gait characteristics in stroke survivors differ from those in healthy older 

adults. For instance, gait speed is reduced, and gait is more asymmetrical 

[118] in stroke survivors. Nevertheless, gait characteristics of stroke survivors 
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have also been shown to predict falls [39]. Moreover, with regard to gait 

stability, it has been shown that the local divergence exponent (LDE) was 

larger in stroke survivors than in age matched healthy peers [38], indicating 

less stable gait. Still, stroke survivors had equal Margins of Stability (MoS) [38] 

probably accomplished by a larger step width [15]. Although there are 

profound differences in gait between stroke survivors and healthy older 

adults, a recent study indicated that the same gait characteristics measured in 

daily-life are related with fall history in stroke survivors [119]. However, this 

study also found that several gait characteristics had different associations 

with fall history than in healthy older adults [119].  

It is currently unknown whether gait characteristics yield better fall 

predictions than current clinical assessments in stroke survivors. It is also not 

known which method of gait characteristic estimation, i.e., from daily-life or 

laboratory measurements, yields the most meaningful information regarding 

fall predictions, or whether these two methods are even complementary in 

this regard. Therefore, the aim of this exploratory study was two-fold. Firstly, 

we examined whether gait characteristics predict fall incidences in chronic 

stroke survivors better than current clinical assessments. Secondly, we 

examined how well both gait characteristic estimation methods predict falls 

and if a combination of both gait characteristic estimations yield better 

predictions of falls.  
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Methods 
Participants 

Stroke survivors were recruited via flyers in hospitals, general practitioners 

and physical therapy practices and through various national peer group 

meetings in the Netherlands. We included participants with a self reported 

stroke who were at least six months post-stroke, were living independently in 

the community and were older than 18 years of age. Stroke survivors were 

excluded from the study if they were institutionalized in, for instance, a 

nursing home, if they had a functional ambulation category (FAC) of 2 or less 

[84], a mini mental state examination (MMSE) of 24 or lower [85] and or 

severe cardiovascular, respiratory, musculoskeletal or neurologic disorder 

other than stroke that affected gait performance. The research protocol 

(NL49126.028.14) was approved by the medical ethical committees of “Noord 

Brabant”, The Netherlands. All participants signed informed consent prior to 

testing and treatment of the participants was according to Good Clinical 

Practice. 

Measurement protocol 

Twenty-four hours prior to clinical and laboratory testing, participants were 

asked not to drink any alcoholic beverages and to avoid any other activities 

that could affect physical and psychological performance during testing. All 

measurements were performed during a single visit at the rehabilitation 

center Revant, Breda, The Netherlands. Depending on the number and length 

of the breaks that a participant needed, the measurement protocol took from 

two up to three and a half hours. Demographic and stroke specific 

characteristics were obtained including; sex, age, body length and weight, 



60 
 

time since stroke, hemiparetic side, daily use of a walking aid for inside and or 

outside use and use of prescribed medication.  

Clinical assessments  

Participants were asked to perform several physical performance assessments 

and questionnaires commonly used in rehabilitation practice. First, over 

ground preferred gait speed was assessed with a 10 meter walk test (10MWT, 

performed twice and mean was calculated) [120]. Second the ability to make a 

transfer was measured in seconds by the Time Up and Go Test (TUGT) [121], 

the test was repeated three times and mean was calculated. Third, static and 

dynamic balance was measured with the 14-item Berg Balance Scale (BBS) 

[122]. In addition, the 30-item Yesavage Geriatric Depression Scale (GDS) [123] 

, the Fall Efficacy Scale (FES) [124] and the Longitudinal Aging Study 

Amsterdam questionnaire (LASA, a questionnaire aimed to identify subgroups 

with highest fall risk) [125] were administered. See table 4.2 for an overview 

of all physical and psychological assessments.  

Laboratory gait assessment 

Laboratory-based gait analysis was conducted using a Gait Real-time Analysis 

Interactive Lab (GRAIL, Motekforce Link bv, Amsterdam). The GRAIL consists of 

a dual-belt treadmill with two embedded force platforms (Motekforce Link bv, 

the Netherlands), a motion-capture system (Vicon, Vicon Motion Systems, 

Oxford, UK) with ten infrared cameras (Bonita B10, Vicon Motion Systems, 

Oxford, UK) and synchronized virtual environments. Time series of ground 

reaction forces were sampled at 1000 samples/s and the infrared cameras 

were sampled, synchronized at a frame rate of 100 samples/s, both using 
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Vicon Nexus Software 1.8.5. The GRAIL was controlled by a custom designed 

application in D-flow (Motekforce Link b.v. the Netherlands).  

Each participant wore black tight fitting clothes provided by the researcher 

and any jewelry was removed. We used 47 reflective passive markers (15 mm) 

[126] placed on anatomical points. Markers were placed by the same 

investigator to maximize consistency between participants.  

During treadmill testing, participants wore a safety harness at all times. This 

harness was attached to the ceiling and prevented falls, while participants 

were still able to move freely on the treadmill. Participants walked without 

the use of a walking aid, except for an ankle-foot orthosis or orthopedic shoes. 

After familiarization to the treadmill steady state, gait characteristics were 

obtained at preferred gait speed. Preferred gait speed was determined by 

slowly increasing the treadmill speed until the participant reported a 

comfortable gait speed. If necessary, participants were allowed to hold on to 

the handrail for the first minute. As soon as handrail support was no longer 

needed and participants were familiarized with the treadmill, data recording 

started. A minimum of 60 consecutive strides was recorded and used for 

further analysis.  

The gait data were recorded in Vicon Nexus and transferred to Matlab 2013B 

(The MathWorks Inc., Natick, MA) to extract gait characteristics. The gait 

events foot contact (FC) and foot off (FO) were determined using the Center 

of Pressure (CoP) [127]. Briefly, force plate data were first converted to 

center-of-pressure data i.e. time series of the point of application of the 

resultant ground reaction force, which shows a characteristic butterfly pattern 
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over time. Then FC and FO were detected from this profile using peak 

detection. The left and right upper angles of the butterfly corresponded with 

right and left FO respectively and the left and right lower angles of the 

butterfly corresponded with the left and right FC. 

All steady state gait characteristics during preferred gait speed were 

determined over 60 consecutive strides. Spatio-temporal gait characteristics 

included gait speed, stride time, step width, paretic and non-paretic step 

length, and step time. 

 Spatio-temporal gait symmetry index (SI) was determined based on 

difference in step length and step time between paretic and non paretic limb 

using equation 1. 

 1)                            
        

        
  

    

Where PL is the step length / time of the paretic limb and NPL is the step 

length / time of the non paretic limb, determined and averaged over i till n 

strides. An SI deviating from 1 reflects a more asymmetrical gait.  

Gait smoothness was based on the velocity time series of the three averaged 

sacrum markers. Subsequently the index of harmonicity (IH) was determined 

by dividing the power of the spectral analysis of the ground frequency by the 

power of the sum of the first six harmonics [40]. Variability of gait was 

determined by calculating the standard deviation of stride time and of step 

time and step length for the paretic and non-paretic limb separately.  

Two types of gait stability characteristics were determined. First, local 

dynamic stability, expressed as the local divergence exponent (LDE) was 
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calculated from the velocity time series of the averaged three sacrum 

markers. Time series were time normalized towards, on average, 100 samples 

per stride, so that time-normalized time-series had a length of 6000 samples. 

Each time-normalized time series was reconstructed in a 5 dimensional state 

space by using a fixed delay of 10 samples. See for a more detailed 

explanation Bruijn et al. [18]. Finally, the maximum local divergence exponent 

was determined for the rate of divergence from 0-1 step [18]. Second Margins 

of Stability (MoS) were estimated by estimating the Center of Mass (CoM) 

using a 14 body segment model [128]. In short, CoM location and mass of 

each segment were estimated based on gender and body segment 

circumferences as well as length of the segments [128]. The extrapolated 

center of mass (XCoM) was determined by the CoM plus the velocity of the 

center of mass times the Eigenfrequency of a pendulum with limb length as 

length [56]. To determine the MoS in both medio-lateral (ML) and anterior-

posterior (AP) directions, the marker position of the lateral malleolus in ML 

and the toe marker in AP direction at FC were subtracted from the XCoM in 

ML and AP direction respectively. See table 4.3 for an overview of steady state 

gait characteristics. 

Daily life gait characteristics 

The day after the laboratory tests, all participants started wearing a tri-axial 

accelerometer (McRoberts, The Hague, The Netherlands) during seven 

consecutive days. The accelerometer was located at the lower back so as to 

collect information of both limbs. Previous studies have clearly indicated that 

this location provides valuable information regarding fall risk [44, 47]. The 

accelerometer measured at a sample rate of 100 samples/s and was aligned in 
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the vertical (VT), ML and AP direction. The data were analyzed with a gait 

recognition algorithm [108]. The algorithm searched each second for gait 

activity with a minimum length of eight seconds or a multiple of eight 

seconds. Gait characteristics were estimated for each eight second walking 

bout, longer walking bouts were subdivided in multiple eight second parts. 

Subsequently for each characteristic the median of all bouts value was taken 

to reduce the influence of outliers, further data analysis was similar to earlier 

studies by our research group [47]. We determined daily life gait 

characteristics that have been shown to be promising in regard to predicting 

falls in healthy older adults [47] and or in stroke survivors [119]. See table 4.4 

for an overview of the daily-life gait characteristics. 

Fall status 

Falls were determined prospectively using a ‘fall calendar’ and monthly 

telephone calls over a six-month period, which is sufficiently long to identify 

recurrent fallers [114]. Participants were asked to report any falls and related 

(medical) consequences and circumstances on the calendar. During the 

monthly telephone calls the researcher decided whether reported falls 

matched the following definition: ‘any unanticipated event that results in 

participants coming to the ground, floor or lower level’ [20]. We excluded falls 

that had a clearly different cause than a loss of balance such as fainting or an 

epileptic seizure.  

Statistics 

Participants that experienced no falls during the six month follow up were 

classified as not fall prone stroke survivors (NF), the participants who 
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experienced at least one fall were classified as fall prone stroke survivors (F). 

For each variable in both groups mean and standard deviations were 

determined. We used an independent sample t-test or Mann-Whitney or chi 

square test to examine differences in participant demographics.  

Fall status (NF/F) was used as independent variable in our logistic regression 

models, gait characteristics and clinical measures were used as independent 

variables. To facilitate comparison of the results of univariate logistic 

regressions between variables, we first z-transformed all continuous variables. 

Subsequently, to determine the predictive capacity of clinical assessments and 

gait characteristics, we performed univariate logistic regression for each 

potential predictor variable. The resulting odd ratios (OR) for each 

independent variable represent the increased fall risk per unit standard 

deviation increase. OR higher than one indicate an increased fall risk.  

Predicting falls 

We created four fall prediction models, which were based on; (1) clinical 

physical and psychological assessments, (2) laboratory derived steady-state 

gait characteristics (3) accelerometry derived daily-life gait characteristics (4) 

accelerometry and laboratory derived gait characteristics.  

To reduce the number of independent variables and avoid the risk of 

multicollinearity we created new latent variables by performing a principal 

component analyses (PCA). PCA reduces high dimensional data to new 

uncorrelated latent variables (PC’s) such that variance explained by the PC’s is 

maximized [129]. PC’s were entered in the logistic regression if the PC 

discriminated between both groups with a p-value ≤.05 based on an 
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independent sample t-test. All independent variables that were significantly 

associated with fall risk were per prediction model entered into the PCA and 

loading factors per independent variable and per model for PC1 are reported. 

We conducted the PCA and the logistic regression modeling within a 10-fold 

cross validation method, thereby taking into account the variability caused by 

performing the component analysis on different training sets on the 

robustness of the  final model. The loading factor of each independent 

variable on the first principal component was averaged over the 10 folds. 

Validated model performances are reflected by the error rate (1- accuracy), 

sensitivity, specificity and the area under the receiver operating curve (AUC). 

Prediction models were compared by determining the confidence intervals 

(CI) off the AUC using a previous described method [130].  

All statistical analyses were performed using Matlab 2013B (The MathWorks 

Inc., Natick, MA). Statistical significance was established a priori at a level of p-

value ≤ .05. As this is an explorative study aimed at discovering the most 

promising fall prediction models, we did not correct for multiple comparisons.  

Results 
A total of 47 stroke survivors participated in the study. After testing we 

excluded five participants due to their inability to walk without the use of the 

handrail during the laboratory gait assessment.  
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Table 4.1: Demographic and stroke specific characteristics.NF is non fallers, F is fallers. 

 NF (N=25) F (N=15) P-value 

Age(y) 58.4 (±14.3) 64.6 (±8.5) .09 
Gender (female/male) 14 / 11 10 / 5 .33 
Time since stroke (months) 71.8 (±65) 113(±109) .11 
Hemiparetic side (right/left) 16 / 9 10 / 5 .98 
Number of strokes>1 3 0 .49 
Weight (kg) 88.0 (±17.4) 79.2 (±17.2) .13 
Length (cm) 173.8 (±10.8) 171.8 (±9.9) .55 
BMI (kg/m2) 29.1 (±5.5) 26.7 (±5.5) .19 
Use of walking aid (no / yes) 17 / 8 3 / 13 <.01 
Use of medicines (no / yes) 2 / 23 2 / 13  1 
MMSE (max 30) 27.7 (±2.8) 27.5 (±2.2) .78 
Mean ± standard deviation from demographic and stroke specific characteristics. P-values are 
based on independent sample t-test, Mann-Withney U test or chi-square tests. Significant 
differences are printed in bold. 

 

One participant was excluded from the analysis due to a technical failure of 

the accelerometer and one participant refused to wear the accelerometer. To 

avoid potential bias of having different participants for different independent 

variables, only the 40 stroke survivors that performed all tests were included 

in all further analyses. During six months follow-up, fifteen (38%) stroke 

survivors experienced at least one fall and were classified as fall-prone stroke 

survivors (F). All reported falls were due to a loss of balance, no falls were 

excluded. The remaining twenty-five (62%) stroke survivors were classified as 

not-fall-prone stroke survivors (NF). Between group demographics and stroke 

specific characteristics results are presented in table 4.1. Chi square test 

revealed a statistically significant difference in using a walking aid, where a 

greater percentage of the F used a walking aid.  
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For clinical assessments, laboratory based steady state gait characteristics and 

daily-life gait characteristics means and standard deviations are reported per 

group respectively in table 4.2, 4.3 and 4.4. In addition, predictive capacity of 

each independent variable, expressed as odds ratio (OR) determined by 

univariate logistic regression, is reported in the tables 4.2,4.3 and 4.4. Of the 

clinical assessments, LASA was able to predict falls as indicated by a significant 

OR, see table 4.2.  

Table 4.2: Clinical assessments: physical performance and psychological tests. NF is none 
fallers, F is fallers, OR is odds ratio. 

 NF (N=25) F (N=15) OR (CI) P-value 

BBS 50.2 (± 8.0) 47.5(±5.9) 0.69 (0.35 – 1.33) .27 
TUGT (sec) 10.9 (±6.9) 15.3 (±6.8) 1.92 (0.97 – 3.79) .06 
10MWT (sec) 10.4 (±4.8) 14.9 (±7.6) 2.28 (0.94 – 5.18) .07 
GDS 8.4 (±5.8) 10.1 (±7.4) 1.02 (0.93 – 1.12) .56 
LASA 4.4 (±3.6) 6.7 (±4.1) 1.23 (1.03 – 1.46) .02 
FES 29.6 (±10.8) 32.7 (±10.8) 1.02 (0.97 – 1.09) .36 
Mean ± standard deviation for physical performance and psychological tests. OR and p-values 
are based on univariate logistic regression. TUGT,10MWT and BBS variables are z-transformed. 
Significant differences are printed in bold. 

 

Of the laboratory based steady state gait characteristics, smaller step length 

for the paretic and non paretic limb, lower preferred gait speed and lower gait 

smoothness (IH) in VT and AP direction increased the odds of becoming a 

faller, see also table 4.3. Furthermore, a larger stride time variability and step 

length variability of the paretic limb increased the odds of becoming a faller. A 

larger LDE, indicating a lower local dynamic stability, and smaller MoS in AP 

direction increased the odds of becoming a faller. Several daily-life gait 

characteristics were significantly associated with falls.  
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Table 4.3: Laboratory based steady state gait characteristics.  
NF is none fallers, F is fallers, OR is odds ratio. 

 NF (N=25) F (N=15) OR(CI)  P-value 

Spatio temporal gait characteristics 
Step length PL (mm) 474 ± 116 369 ± 119 0.30 (0.11-0.78) .01 
Step length NPL (mm) 450 ± 127 316 ± 142 0.27 (0.10-0.72) <.01 
Step time PL (sec) 0.58 ± .08 0.58 ± .05  1.07 (0.53 - 2.16) .85 
Step time NPL (sec) 0.65 ± .12 0.72 ± .17 1.81 (0.87 - 3.81) .11 
Gait speed (m/s) 0.74 ± .27 0.58 ± .22 0.37 (0.15 – 0.91) .03 
Stride time (sec) 1.23 ± .19 1.29 ± .20 1.62 (0.79 – 3.30) .18 
Step width (mm) 155 ± 41 170 ± 55 1.41 (0.70 – 2.82) .33 
Symmetry gait characteristics 
Step length SI 0.91 ± .09 0.77 ± .25 0.28 (0.07 – 1.07) .06 
Step time SI 0.85 ± .16 0.76 ± .21 0.59 (0.29 – 1.22) .15 
Smoothness gait characteristics 
IH VT 0.78 ± .20 0.57 ± .31 0.38 (0.17 – 0.85) .02 
IH ML 0.93 ± .06 0.95 ± .02 1.89 (0.70 – 5.13) .21 
IH AP 0.84 ± .16 0.67 ± .29 0.43 (0.19 – 0.97) .04 
Variability gait characteristics 
Stride time  4.49 ± 2.56 7.46 ± 5.52 3.08 (1.05 – 8.99) .04 
Step length PL 32.4 ± 11.1 45.0 ± 22.4 3.76 (1.14 – 12.41) .03 
Step length NPL 35.1 ± 13.4 40.7 ± 18.4 1.52 (0.76 – 3.11) .23 
Step time PL 21.3 ± 7.94 23.7 ± 7.4 1.47 (0.74 – 2.94) .27 
Step time NPL 21.6 ± 7.2 23.1 ± 4.5 1.48 (0.73 – 2.99) .28 
Step-width 22.3 ± 7.6 23.7 ± 6.6 1.31 (0.66 – 2.58) .44 
Stability gait characteristics 
LDE VT 1.57 ± .25 1.61 ± .25 1.17 (0.58 – 2.37) .65 
LDE ML 1.62 ± .24 1.89 ± .32 3.46 (1.31 – 9.12) .01 
LDE AP 2.04 ± .30 2.21 ± .33 1.92 (0.93 – 3.98) .07 
MoS ML PL 0.18 ± .04 0.19 ± .04 1.94 (0.90 – 4.16) .09 
MoS AP PL -0.44 ±.08 -0.38 ± .07 2.56 (1.07 – 6.12) .03 
MoS ML NPL 0.18 ± .02 0.19 ± .03 1.56 (0.76 – 3.23) .22 
MoS AP NPL -0.44 ±.08 -0.37 ± .07 2.74 (1.13 – 6.69) .02 
Mean ± standard deviation for steady state gait characteristics. Odd ratio (OR)  
and p-values are based on univariate logistic regression. All variables are z-transformed. Significant 
differences are printed in bold. Abbreviations: (N) 
PL is (non) paretic limb, SI is symmetry index, IH is index of harmonicity, LDE is  
the local divergence exponent, VT is vertical, ML is medio-lateral and AP is anterior-posterior 
direction. 
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A lower gait speed, smaller standard deviation (SD) in VT and AP direction of 

the acceleration signal and lower harmonic ratio (HR) in AP direction 

increased the odds of becoming a faller. Furthermore, a larger IH in ML 

direction and a larger amplitude of the power of the dominant peak in the ML 

direction increased the odds of becoming a faller, see also table 4.4. 

Table 4.4: Daily life gait characteristics. NF is none fallers, F is fallers,  
OR is odds ratio. 
 NF (N=25) F (N=15) OR(CI) P-value 

Gait speed (m/s) 0.73 ± 0.16 0.62 ± 0.12 0.32 (0.13 – 0.79) .01 
Stride time (s) 1.34 ± 0.31 1.42 ± 0.45 1.27 (0.66 – 2.46) .47 
SD VT 1.63 ± 0.52 1.23 ± 0.39 0.23 (0.08 – 0.69) .01 
SD ML 1.37 ± 0.27 1.22 ± 0.27 0.49 (0.24 – 1.02) .06 
SD AP 1.38 ± 0.33 1.16 ± 0.23 0.36 (0.16 – 0.84) .02 
HR VT 1.25 ± 0.24 1.13 ± 0.26 0.53 (0.25 – 1.15) .10 
HR ML 1.33 ± 0.17 1.39 ± 0.21 1.41 (0.74 – 2.71) .29 
HR AP 1.13 ± 0.19 1.00 ± 0.19 0.40 (0.18 – 0.90) .02 
IH VT 0.44 ± 0.17 0.36 ± 0.17 0.55 (0.27 – 1.11) .09 
IH ML 0.42 ± 0.20 0.57 ± 0.26 1.99 (1.02 – 3.92) .04 
IH AP 0.51 ± 0.11 0.53 ± 0.17 1.16 (0.63 – 2.13) .63 
Amplitude (psd) VT 0.45 ± 0.12 0.41 ± 0.11 0.68 (0.36 – 1.29) .24 
Amplitude (psd) ML 0.44 ± 0.16 0.57 ± 0.24 1.92 (1.01 – 3.75) .05 
Amplitude (psd) AP 0.43 ± 0.14 0.52 ± 0.20 1.71 (0.88 – 3.34) .11 
Width (psd) VT 1.0 ± 0.13 1.07 ± 0.18 1.75 (0.82 – 3.75) .15 
Width (psd) ML 0.95 ± 0.02 0.95 ± 0.04 1.08 (0.57 – 2.05) .84 
Width (psd) AP 0.95 ± 0.02 0.95 ± 0.02 1.16 (0.61 – 2.21) .66 
LDE/stride VT 1.06 ± 0.38 1.11 ± 0.39 1.17 (0.62 – 2.20) .62 
LDE/stride ML 0.94 ± 0.31 1.01 ± 0.37 1.24 (0.65 – 2.35) .51 
LDE/stride AP 1.01 ± 0.65 1.02 ± 0.39 1.03 (0.55 – 1.93) .91 
Mean ± standard deviation for daily life gait characteristics. Odd ratio (OR) 
 and p-values are based on univariate logistic regression. All continuous variables 
 are z-transformed. Significant differences are printed in bold. Abbreviations: SD is the  
standard deviation, HR is the harmonic ratio, IH is index of harmonicity, VT is vertical, 
 ML is medio-lateral and AP is anterior-posterior direction, PSD is the power spectral density 
 and LDE is the local divergence exponent. 
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Independent sample t-tests revealed that for all four created fall prediction 

models only PC1 was significantly different between groups. The explained 

variance by PC1 ranged from 53.8% for model 4 up to 71.1% explained 

variance for model 2. The loading factors of all independent variables on PC1 

for models 2,3 and 4 are presented in Figure 4.1. Fall predictions ability for all 

four models are presented in table 4.5. Model 1, based on clinical 

assessments, yielded a limited ability in predicting falls, with an AUC of 0.64 

and a lower CI below 0.5. Prediction models 2, 3 and 4 based on respectively 

laboratory based steady-state gait characteristics, daily-life gait characteristics 

and a combination of both gait assessment methods, were able to predict 

falls, with AUC ranging between 0.72 and 0.73 and a lower CI above 0.5. 

 

Table 4.5: Model performances 

 Model 1 Model 2  Model 3 Model 4 
Sensitivity 0.62 0.85 0.80 0.80 

Specificity 0.66 0.65 0.65 0.66 
AUC 
AUC (CI) 

0.64  
(.46- .82) 

0.73  
(.57 - .89) 

0.72  
(.56 - .88) 

0.73 
 (.57 - .89) 

Error rate 0.32 0.28 0.28 0.28 
Model 1 is based on clinical assessments, model 2 on laboratory based  
gait characteristics, Model 3 on daily-life gait characteristics and model 4  
combines gait characteristics from model 2 and 3. CI are confidence intervals. 
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Fig. 4.1: Loading factors for prediction models 2, 3 and 4. SL: step length; PL: paretic limb; 
NPL: non-paretic limb; IH: index of harmonicity; ST:stride time; var: variability; LDE: local 
divergence exponent; MoS FW: forward margin of stability; SD: standard deviation; HR: 
harmonic ratio; 

Discussion. 
The main objective of the current study was to examine whether gait 

characteristics might improve fall predictions over current clinical 

assessments. We used two common methods of assessing gait characteristics, 

namely a standardized laboratory gait assessment and a daily-life gait 

assessment. In addition, we examined whether a combination of both 

methods yielded better predictions. 

Of the clinical assessments tests, neither the physical performance tests nor 

the questionnaires were able to predict falls. The exception being the LASA 

questionnaire which did predict falls[125], which might be explained by the 
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fact that LASA includes retrospective fall history in the final sum score while 

the other tests did not. Our results for the clinical assessments are in line with 

several other studies [29, 116] but not all [28, 114, 115].  

Our results for model 2 show that laboratory based steady state gait 

characteristics can predict falls, as was expected based on studies in healthy 

older adults [35]. Daily-life gait characteristics (model 3) predicted prospective 

falls as well as lab-based characteristics, which is also in line with earlier 

results in healthy older adults[47] and stroke survivors[119].  

Furthermore, despite a different methodological approach, both gait 

assessment methods (model 2 and model 3) were equally well able to 

discriminate between NF and F. Apparently, the disadvantages of daily-life gait 

assessment, such as more vulnerability to environmental circumstances and 

walking behavior, are compensated by a longer assessment time, and/or the 

more ecologically valid data. A combination of laboratory and daily-life gait 

assessments (model 4) did not result in a significantly more accurate fall 

prediction model. Therefore, to identify fall prone stroke survivors, one can 

choose between both gait assessment methods. Moreover, both gait 

assessments methods were able to predict prospective falls (lower CI above 

0.5), while prediction performances by the conventional clinical assessments 

was limited in predicting falls, (lower CI below 0.5). Thus, gait assessment can 

be considered as a better alternative to identify stroke survivors at risk for 

falling. Additionally, to the best of our knowledge, this was the first study 

comparing clinical assessments and gait characteristics in the same sample of 

participants, which is the most objective comparison. For practical relevance, 

it is important to note that the gait characteristics significantly associated with 
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falls are determined with just four markers located on the pelvic and one 

marker on each foot, rather than the 47 markers used in this experiment. 

Moreover, wearing the accelerometer was considered as a relatively easy task 

by the participants, making both methods applicable for practical use. 

Furthermore, considering the increasing availability of sensors in for instance 

smart phones and thereby relatively low costs of applying such analysis it is 

worth further investigation. 

While we expected to find gait characteristics that were associated with falls 

[35, 44], at present it was unknown to what extent the Margins of Stability 

(MoS) in the ML direction were associated with falls in stroke survivors. 

Although maintaining MoS in ML direction is critical with respect to 

maintaining gait stability [56] and is therefore essential in fall prevention 

during gait, no differences were found between groups. This supports the 

finding that stroke survivors are able to maintain MoS in ML direction [38, 

131], probably accomplished by increasing the step width [15, 131]. While 

MoS may not be an interesting gait characteristic for identifying F during 

steady state gait, perhaps this may be different when gait is perturbed and an 

adequate reaction is required in order to maintain the MoS.  

Study limitations 

Our inclusion and exclusion criteria were aimed at including all ambulatory 

walkers who suffered from a stroke. Of the participants that met our inclusion 

criteria, five participants were not able to perform the steady-state gait 

assessment without the use of the handrail and were excluded from our 

analysis. Therefore, our sample of stroke survivors is to some extent biased 
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towards the higher functioning stroke survivors and will not reflect all 

ambulatory walking stroke survivors.  

Fall incidences were captured over a six month period. Although six months 

appear to be sufficient to identify recurrent fallers [114], the extent to which 

seasonal influences have affected fall incidences is unknown, and could have 

affected our classification of groups. 

Our sample of stroke survivors was relatively small, which may have affected 

the stability of our PCA, especially for model 4, containing 16 gait 

characteristics. On the other hand, PCA was part of our cross validation 

procedure and error rates between model 2,3 and 4 are similar, indicating 

similar stable PC determinations in model 4 as in model 2 and 3. Nevertheless, 

the present findings need replication in larger cohorts. Also due to the 

explorative nature of the study, we did not applied a correction for multiple 

comparison, which increases the chance of a type 1 error. 

We explored the value of gait characteristics relative to clinical assessments 

with respect to fall predictions. Our method covered a range of different 

commonly used [24] assessments, however, not all commonly used clinical 

assessments were explored and thus our conclusion is restricted to the 

examined assessments. Several other assessments such as the: Barthel Index, 

the Postural Assessment Scale for Stroke Patients, Functional Reach Test and 

the balance subscale of Fugl-Meyer Assessment are highly correlated with the 

Berg Balance Scale that we used [24] and as such probably have limited added 

value over the BBS in regard to fall prediction. Finally, please note that LASA 

was developed on a general older population, not specifically for stroke 
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survivors. Although having an stroke wasn’t an exclusion criteria of LASA 

either. 

 Conclusions 
This explorative study indicates that both laboratory based, as well as daily-life 

gait characteristics, showed some ability to predict prospective falls in higher 

functioning chronic stroke survivors, whereas clinical assessments such as 

physical and psychological assessments were more limited in predicting falls. 

Therefore, further investigation of gait assessment over clinical tests is 

justifiable as clinicians might enhance currently used fall prediction 

assessments in ambulatory chronic stroke survivors by applying one of both 

tested gait assessments.  
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CHAPTER 5  

UNEXPECTED GAIT PERTURBATIONS 

 

 

 

 

 

 
 

 

 
Responses to gait perturbations in stroke survivors who prospectively 

experienced falls or no falls. Michiel Punt, Sjoerd M. Bruijn, Sanne Roeles, 

Ingrid G. van de Port, Harriet Wittink, Jaap H. van Dieën, Journal of 

Biomechanics, 2017.  
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Abstract 
Background. Steady-state gait characteristics appear promising as predictors 
of falls in stroke survivors. However, assessing how stroke survivors respond 
to actual gait perturbations may result in better fall predictions. We 
hypothesize that stroke survivors who fall  have a diminished ability to 
adequately adjust gait characteristics after gait is perturbed.  

Objective. This study explored whether gait characteristics of perturbed gait 
differ between fallers and non fallers.  

Methods. Chronic stroke survivors were recruited by clinical therapy practices. 
Prospective falls were monitored over a six months follow up period. We used 
the Gait Real-time Analysis Interactive Lab (GRAIL, Motekforce Link B.V., 
Amsterdam) to assess gait. First we assessed gait characteristics during 
steady-state gait and second we examined gait responses after six types of 
gait perturbations. We assessed base of support gait characteristics and 
margins of stability in the forward and medio-lateral direction.  

Results. Thirty eight stroke survivors complete our gait protocol. Fifteen 
stroke survivors experienced falls. All six gait perturbations resulted in a 
significant gait deviation. Forward stability was reduced in the fall group 
during the second step after a ipsilateral perturbation.   

Conclusion. Although stability was different between groups during a 
ipsilateral perturbation, it was caused by a secondary strategy to keep up with 
the belt speed, therefore, contrary to our hypothesis fallers group of stroke 
survivors have a preserved ability to cope with external gait perturbations as 
compared to non fallers. Yet, our sample size was limited and thereby, 
perhaps minor group differences were not revealed in the present study.  
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 Introduction 
Fall rates are high in the chronic stage after stroke [7] and higher than in 

healthy older adults [7]. Most falls occur during gait [112] and consequently 

assessment of gait could be useful in predicting fall risk. Assessing quality of 

steady-state gait may quantify how the system handles small, internal 

perturbations like neuromuscular noise [18, 132]. Interestingly, stroke 

survivors have a more variable gait pattern and a reduced quality of gait as 

compared to healthy controls [38, 119]. Moreover, quality of gait shows 

promise as a predictor of falls in stroke survivors [39, 119].  

Other aspects than the quality of steady-state gait might contribute to the 

prediction of fall risks in stroke as well. Large, external gait perturbations 

experienced in everyday life, like trips and slips, may require a substantial 

change of the gait pattern to overcome the perturbation and prevent a fall 

[51, 53, 58]. Thus, measures of how subjects react to larger perturbations are 

interesting in relation to fall prevention. Stroke survivors appear to respond 

less effectively to external gait perturbations [58]. Thus external gait 

perturbations may provide additive information with respect to fall risk in 

stroke survivors.   

It is currently unknown if, and how, gait recovery characteristics, after a gait 

perturbation are associated with falls in stroke survivors. This study attempts 

to discover the potential of using gait perturbations to predict falling in stroke 

survivors. Therefore, our aim was to explore whether differences exist in 

responses to external gait perturbations between a group of stroke survivors 

that experienced a fall in daily life, and a group that did not.  
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We focused on gait recovery characteristics that reflect how and to what 

extent stroke survivors are able to cope with external gait perturbations. 

Perturbations of gait require adequate base of support (BoS) adjustments 

through adapting foot placement. Dynamic stability quantified by the margins 

of stability (MoS) [56, 57] provides additional information by relating the 

kinematic state of the body center of mass (CoM) to the BoS. We 

prospectively studied the relation between gait adaptations after a 

perturbation and fall risk. We hypothesized that stroke survivors who fall 

during follow-up have less effective adaptations of foot placement after gait 

perturbations coinciding with smaller MoS than stroke survivors who do not 

fall during follow-up.  

Method 
We recruited stroke survivors through flyers in physical therapy practices and 

various national peer group meetings in the Netherlands. Stroke survivors 

were recruited if they were at least six months post-stroke, aged at least 

eighteen and lived independently in the community. We excluded stroke 

survivors with a functional ambulation category lower than 3 [84], a minimal 

mental state examination(MMSE) lower than 25 [85] and or other disorders 

such as neurologic, musculoskeletal, respiratory or severe cardiovascular 

disorders that affected gait performance. The medical ethics committee 

‘Noord Brabant, The Netherlands’ approved the research protocol and 

treatment of the participants was according to good clinical practice. Prior to 

the gait analysis, demographic and stroke specific characteristics were 

collected such as; sex, age, body length and weight, time since stroke, 

hemiparetic side, use of a walking aid, use of medication. 
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 Experimental set up 

All participants walked on the Gait Real-time Analysis Interactive Lab (GRAIL, 

Motekforce Link B.V., The Netherlands). The GRAIL consists of: a motion-

capture system (Vicon, Vicon Motion Systems, UK) with ten infrared cameras 

(Bonita B10, Vicon Motion Systems, UK), a dual-belt treadmill with two 

embedded force platforms and synchronized virtual environment (Motekforce 

Link b.v. The Netherlands). A custom written application in D-flow software 

(Motekforce Link b.v. The Netherlands) controlled the GRAIL.  

Participants wore tight fitting black clothes. In order to collect full body 

kinematics we used a the human body model based on 47 passive markers 

[126] These were placed before the gait analysis by the same investigator 

throughout the study to maximize consistency between participants. 

Furthermore participants wore a safety harness which prevented actual falls. 

 Gait protocol  

Twenty-four hours prior to clinical and laboratory testing participants were 

asked not to drink any alcoholic beverages and to avoid any other activities 

that could affect physical performances. All measurements were performed 

during a single visit at the rehabilitation center Revant, Breda, The 

Netherlands. After participants became familiarized to walking on the 

treadmill, we first assessed steady-state gait characteristics during sixty 

consecutive strides at a gait speed of 0.41m/s. Subsequently, all perturbations 

were executed at the same gait speed of 0.41m/s. In pilot experiments, this 

gait speed in combination with perturbations was found to be feasible for 

most community walking stroke survivors.    
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The perturbation protocol consisted of two separate trials; each trial 

comprised 16 perturbations; each perturbation was followed by a wash-out 

period of on average 15 seconds. Perturbations were triggered by foot contact 

(FC). The sequence of the perturbations was semi random as the perturbation 

type was fixed but the triggering at the left or right foot placement was 

random. Participants were allowed to hold the handrail during the first four 

perturbations, those perturbations were not included in the analysis. Each 

trial lasted for four minutes. Between trials breaks were taken to avoid fatigue 

as much as possible.  

The first perturbation trial contained medio-lateral (ML) perturbations. More 

specifically, the walking surface of the treadmill moved either to the left or 

right side at FC of the participant (see figure 5.1 for an illustration and figure 

5.2, ML Perturbation for the perturbation intensity). Depending on whether 

right or left FC was followed by a right or left walking surface translation, the 

perturbations were classified as “ipsilateral” or “contralateral” gait 

perturbations. From a static perspective we may expect that during ipsilateral 

perturbations participants respond quickly, because the supporting limb shifts 

away from the vertical projection of the CoM, (see figure 5.1 ipsilateral 

perturbation), which requires an immediate response to maintain stability. In 

contralateral perturbations (see figure5.1 contralateral perturbation), the 

supporting limb shifts towards the vertical projection of the CoM, which may 

not require an immediate response. However, it should be noted that this 

explanation holds for static situations while gait is a dynamic activity. 

The second perturbation trial comprised anterior-posterior (AP) decelerating 

perturbations. At either right or left FC the belt speed on the side of the FC 
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decelerated towards 0 m/s and subsequently accelerated towards 0.41m/s 

(see figure 5.2, AP Perturbation for an illustration).   

 

Figure 5.1: Backward perspective at right foot contact during medio-lateral treadmill 
displacements. Left panel represents steady state gait, mid panel represents a contralateral 
perturbation and the right panel represents an ipsilateral perturbation. Horizontal arrows 
show the direction of the treadmill displacement. Due to the medio-lateral treadmill 
displacement in the mid panel, the right foot shifts towards the projected CoM (vertical 
arrow).In the right panel the right foot shifts away from the projected CoM. The shaded limb 
represents the limb that was perturbed. 

As a response with either the paretic leg or non-paretic leg could make a 

substantial difference, we subdivided the two perturbations types into 

“response non paretic leg” (NPL) and “response paretic leg” (PL). All 

perturbation types started 80 to 90 milliseconds after FC was detected. The 

maximum ML displacement was 0.045 meter and the maximum peak 

deceleration of the belt speed was 3.9m/s2, see figure 5.2 for an illustration.  

Treadmill Treadmill Treadmill 

Steady-state Contralateral Ipsilateral 
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To summarize, we explored a total of six different gait perturbations. Four ML 

gait perturbations divided into contralateral and ipsilateral and response with 

either NPL or PL. The final two AP decelerating gait perturbations were divided 

into “response non paretic leg” (NPL) and “response paretic leg” (PL).  

 

Figure 5.2: Left panel gait perturbation in medio-lateral direction relative to the gait cycle and 

anterior-posterior direction, right panel in absolute time. 

 

Data analysis 

Discrete gait events like FC were detected using a center of pressure method 

[127]. Based on these FC events and markers placed at the heel, lateral 

malleolus and toe on both feet, we calculated step time and the BoS gait 

characteristics: step length and step width. The whole body CoM was 

determined using a 14 body segment model [128]. Subsequently, dynamic 

stability expressed as the MoS in forward (FW) and ML direction was 

determined at FC [56]. A larger MoS indicates a increased dynamic stability. 



85 
 

For steady-state gait, the average of these parameters was calculated over 60 

strides. The final two perturbations were free of handrail support and were 

used for further evaluation. Response characteristics were determined at FC 

of up to six steps after the perturbation. All analyses were performed using 

custom written Matlab programs (Matlab 2013B). 

Fall status 

Falls were detected using a ‘fall calendar’ and monthly phone calls during six 

months follow-up. A fall was defined as ‘any unanticipated event that results 

in a participant coming to the ground, floor or lower level’ [20]. Falls were 

excluded if the cause was clearly different from a loss of balance, such as 

when fainting or experiencing an epileptic seizure.  

Statistics 

Participants were assigned to the fallers group of stroke survivors if they had 

experienced at least one fall during follow-up and otherwise in the non fallers 

group of stroke survivors. Demographic and stroke specific characteristics 

were compared using an independent samples t-test or for not normally 

distributed variables a Mann Whitney U test. Dichotomous variables such as 

use of a walking aid and sex were examined using a chi square test. 

Steady-state gait characteristics were compared between groups using an 

independent samples t test. Next, we examined the perturbed gait 

characteristics. We first assessed if and how many steps the characteristics 

after perturbation deviated from state steady gait. We used a dependent 

samples t test to compare each step after the perturbation, with steady-state 
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gait. Results indicated that at least one out of five examined gait 

characteristics significantly deviated up to six steps after the perturbation (see 

appendix A). For further analysis, we therefore included 6 steps. We 

performed a mixed model ANOVA with steps as our within factor, and fall 

status as our between subjects factor. The dependent variable was the 

characteristic of interest. If a main effect of group or interaction effect with 

group was found, independent samples t tests per step were performed to 

determine in which step(s) groups differed from each other. Similar analysis 

were performed with preferred steady-state gait speed as covariate, to test 

for a possible confounding effect, results are shown in Appendix B. A p-value 

of <.05 was considered significant; all statistical analysis were performed in 

SPSS version 23.  

Results 
A total of 38 stroke survivors successfully completed the gait assessments. 

Fifteen (39%) stroke survivors reported at least one fall. Demographic and 

stroke specific characteristics did not differ between both groups of stroke 

survivors, except for the use of a walking aid which was more often used in 

the fallers group, see also table 5.1. 

Steady-state gait 

Gait characteristics of the groups were similar during steady-state gait at a 

fixed speed, except for step time of the paretic leg and step length of the non 

paretic leg, which were significantly lower in the F group, see appendix A.  

  



87 
 

Table 5.1: Demographic and stroke specific characteristics. 

 NF-SS (23) F-SS (15)  

 Mean (sd) Mean (sd) P-value 

Age(y) 55.0 ± 12.2 65.4 ± 6.7  .02 
Gender (female / male) 13 / 10 7 / 8 .74 
Hemiparetic side (right / left) 16 / 7 10 / 5 1 
Time since stroke (months) 73.8 ± 53  104 ± 89 .25 
Number of strokes >1 3 0 .53 
Weight (kg) 87 ± 19 83 ± 20.1  .67 
Length (cm) 172 ± 10  171 ± 13 .73 
BMI (kg/m2) 29.5 ± 6.5 28.7 ± 6.1 .78 
FAC score  4.6 ±1.1 4.1 ± 0.9  .04 
Use of walking aid (no / yes) 19 / 4 10 / 5 <.01 
Use of medicines (no / yes) 2 / 21 2 / 13  1 
MMSE (max 30) 28.3 ± 2.1 27.6 ± 2.0 .41 
Preferred gait speed (m/s) 0.72 ± 0.3 0.5 ± 0.28 .02 
Mean ± standard deviation from demographic and stroke specific  
characteristics.P-values are based on independent sample t-test, 
Mann-Withney U test or chi-square tests. Significant differences  
are printed in bold. 

 
Perturbations 

Medio-lateral contralateral perturbations    

Overall, contralateral gait perturbations when responding with the non paretic 

leg (figure 5.3 contralateral NPL) resulted in similar gait characteristics to 

steady-state gait in the first step, but step length was increased during the 

second and third step. In addition, step width increased from the second step 

onwards. MoS ML increased in the first step, (figure 5.4 contralateral NPL, for 

statistics see appendix A). No main effects of group or interaction effects with 

group were found for any of the five gait characteristics, for this perturbation 

type (table 5.2). 
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Contralateral gait perturbations when responding with the paretic leg (figure 

5.3, contralateral PL) showed increased step times for the first step after 

perturbation, and increased step-widths from the second step onward. MoS 

values in the ML direction differed from the second step onwards except for 

the fifth step after gait was perturbed (figure 5.4 contralateral PL and 

appendix A). No main effects of group or significant interaction effects with 

group were found for any of the five gait characteristics, for this perturbation 

type, see table 5.2.  

Medio-lateral ipsilateral perturbations 

Both ipsilateral gait perturbations, (figure 5.3, ipsilateral) caused a similar 

change in BoS and step time characteristics for both legs. We found 

significantly reduced step times in comparison to steady-state step times. Step 

lengths were reduced for the first two steps and step width increased for all 

steps after the ipsilateral gait perturbations. When the NPL responded  

retributions resulted in an increased MoS in ML direction in the first, third and 

fifth step, moreover FW MoS was reduced in the second step  compared to 

steady-state values (see figure 5.4 ipsilateral NPL and appendix A). When the 

PL responded ipsilateral perturbations resulted in a increased MoS in ML 

direction for the second, fourth and sixth step after gait was perturbed. 

Furthermore MoS in FW direction was reduced in the second and third step 

compared to steady-state values (see figure 5.4 ipsilateral PL and appendix A).  

A main effect of group was found for step time when the NPL responded. Post 

hoc analyses revealed a significant by (p<.01) shorter step time in the F group 

in the first step after perturbation. In addition when the PL responded, main 
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effects for group were found for step time and step length (see table 5.2). 

Post-hoc analyses revealed a shorter step time, thus quicker response for the 

F group during the first and second step after perturbation (p=.03 and p=.01). 

Moreover step length was reduced in the F group during the first step after 

perturbation (p<.01). Furthermore, significant interactions between group and 

step were found for step width and MoS in FW direction when the PL 

responded, table 5.2. Post-hoc analysis revealed no significant differences 

between groups in step width, but did reveal a significantly lower MoS in FW 

direction in the second step in the group of fallers compared to group of non 

fallers, indicating a reduced dynamic stability (p<.001).   

Finally for all perturbation types and responding gait characteristics, results 

were the same when preferred steady-state gait speed was included as a 

covariate, see appendix B. 
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Table 5.2: Mixed model ANOVA for ML gait perturbations. With the gait 
characteristic as dependent variable. Number of steps as within factor and 
group as between effect. Significant group and interaction effects are printed 
in bold.  

Contralateral perturbation First response Non Paretic Leg  

Gait characteristic Effect F P-value 

Step time Steps 5.21 .01 
 Group 0.35 .56 
 Steps*Group 0.73 .45 
Step length Steps 2.33 .11 
 Group 2.12 .15 
 Steps*Group 0.17 .83 
Step width Steps 8.94 <.01 
 Group 0.01 .96 
 Steps*Group 0.25 .69 
MoS FW Steps 4.64 .02 
 Group 0.21 .65 
 Steps*Group .792 .43 
MoS ML Steps 1.20 .29 
 Group 1.45 .24 
 Steps*Group 0.94 .36 

Contralateral perturbation First response Paretic Leg  

Step time Steps 30.6 <.01 
 Group 0.15 .69 
 Steps*Group 0.37 .63 
Step length Steps 4.89 .02 
 Group 0.14 .70 
 Steps*Group .61 .51 
Step width Steps 3.95 .04 
 Group 0.11 .73 
 Steps*Group 1.48 .23 
MoS FW Steps .59 .45 
 Group 0.08 .77 
 Steps*Group .26 .62 
MoS ML Steps 6.45 <.01 
 Group 1.61 .21 
 Steps*Group 000 .99 

Ipsilateral perturbation First response Non Paretic Leg  

Step time Steps 24.3 <.01 
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 Group 7.34 .01 
 Steps*Group .022 .96 
Step length Steps 27.2 <.01 
 Group 3.61 .07 
 Steps*Group .212 .76 
Step width Steps 25.3 <.01 
 Group 0.11 .73 
 Steps*Group .03 .96 
MoS FW Steps 28.6 <.01 
 Group 3.06 .09 
 Steps*Group 0.87 .39 
MoS ML Steps 8.10 <.01 
 Group 3.01 .09 
 Steps*Group 3.0 .08 

Ipsilateral perturbation First response Paretic Leg 

Step time Steps 10.8 <.01 
 Group 4.35 .05 
 Steps*Group 2.84 .07 
Step length Steps 34.9 <.01 
 Group 4.35 .04 
 Steps*Group 1.35 .26 
Step width Steps 17.3 <.01 
 Group 0.60 .44 
 Steps*Group 5.54 <.01 
MoS FW Steps 19.3 <.01 
 Group 3.01 .09 
 Steps*Group 5.98 <.01 
MoS ML Steps 5.26 <.01 
 Group 0.13 .71 
 Steps*Group 1.41 .25 
GG is Greenhouse Geiser correction. MoS is margin of stability. P-value for 
main effect of steps and interaction (Steps*Group) is Greenhouse-Geiser 
corrected. 

Anterior-posterior decelerating gait perturbations 

After gait was perturbed with a deceleration of the split belt, (figure 5.5) 

independent from which leg responded, the first step response was a shorter 

step (both in terms of time and length). Moreover step width was increased 
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for all consecutive steps after the perturbation. MoS did not differ compared 

to steady-state values when the NPL responded. MoS in the ML direction 

increased for the first and second step if the PL responded and MoS in FW was 

reduced in the third step (figure 5.6 decelerating PL and appendix A). No main 

effect of group was found for neither responding leg. Two significant 

interaction effects between steps and group on step width were found for 

both perturbation types (see table 5.3). However post hoc analysis revealed 

no differences in step widths between groups. 

 

Figure5.5: Step time and base of support (BoS) gait characteristics  during steady state (SS) 
and after gait was anterior-posterior perturbed for the paretic leg (PL) and non paretic leg 
(NPL). 
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Figure 5.6: Margins of Stability (MoS) in the forward (FW) and medio-lateral (ML) direction 

during steady state (SS) and after gait was anterior-posterior perturbed for the paretic leg (PL) 

and non paretic leg (NPL). 

 

Table5.3: Mixed model ANOVA for AP gait perturbations. With the gait 
characteristic as dependent variable. Number of steps as within factor 
and group as between effect. Significant group and interaction effects are 
printed in bold. 

Decelerating FW perturbation First response Non Paretic Leg 

Gait characteristic Effect F P-value  

Step time Steps 0.86 .40  
 Group 0.77 .39 

.94 

.02 

.79 

.17 

.61 

.99 

.04 

.01 

.53 

.49 

.10 

.33 

 
 Steps*Group .026  
Step length Steps 5.04  
 Group .08  
 Steps*Group 1.91  
Step width Steps .383  
 Group .001  
 Steps*Group 3.88  
MoS FW Steps 4.81  
 Group .406  
 Steps*Group .704  
MoS ML Steps 2.60  
 Group 1.02  
 Steps*Group 2.07 .15  
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Decelerating FW perturbation First response Paretic Leg 

Step time Steps 6.18 .01  
 Group 0.48 .49 

.69 
<.01 
.17 
.86 
.55 
.80 

<.01 
.44 
.88 
.55 
.55 
.11 

 
 Steps*Group .26  
Step length Steps 8.53  
 Group 2.01  
 Steps*Group .08  
Step width Steps .55  
 Group .06  
 Steps*Group 6.15  
MoS FW Steps .75  
 Group .02  
 Steps*Group .48  
MoS ML Steps .47  
 Group 2.73  
 Steps*Group .48 .54  
GG is Greenhouse Geiser correction. MoS is margin of stability. P-value 
for main effect of steps and interaction (Steps*Group) is Greenhouse-
Geiser corrected. 

 

 

Discussion 
Our aim was to explore whether differences exist in responses to external gait 

perturbations between a group of stroke survivors that experienced a fall in 

daily life, and a group that did not. The gait perturbations resulted in 

significant deviations in gait characteristics, which indicates that gait 

adjustments were made. We found that both groups of stroke survivors react 

largely similar to the gait perturbations. More specifically, the strategy of 

reacting with longer/shorter steps to certain gait perturbations was similar, as 

step times did not differ between groups. In addition, those responses were 

similar to what we expected for ML perturbations illustrated in figure 5.1. 

Furthermore, BoS characteristics showed similar decreasing trends over 

consecutive steps between groups. However, for ipsilateral ML perturbations 
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the F group reacted quicker and with a reduced step length in the first step. 

Nevertheless, MoS values between groups were similar and MoS values did 

not deviate from steady-state MoS values (table 5.2 and figure 5.4 and 5.6). 

Therefore, it seems that both groups of stroke survivors were able to 

adequately respond to the gait perturbations. However, after gait was 

perturbed with an ipsilateral perturbation and the paretic leg (PL) responded 

fallers showed a significantly lower MoS in FW direction during the second 

step, suggesting lower stability. This is somewhat puzzling, because this 

perturbation disturbs gait in the ML direction. Possibly, widening the step 

while maintaining FW MoS when stepping with the paretic leg was challenging 

for this group.  

To better understand this finding, we extended our analysis by studying the 

velocity of the center of mass in FW direction and the trunk angle for this 

particular gait perturbation in the FW direction. While the fallers group were 

able to increase their step width sufficiently and thereby restoring ML MoS, 

this came at the expense of a reduced step length, due to constant treadmill 

speed. This led to a more rearward position on the treadmill. To compensate 

for this change in position on the treadmill, fallers group attempt to regain 

speed by creating a larger forward momentum by a more forward shifted 

trunk during the second step, which then led to a smaller FW MoS. Although 

MoS in FW direction was decreased in the F group it may not be 

representative for everyday life situations where we would expect that one 

would try to slow down or even stop during the second step rather than trying 

to speed up. Thus, gait characteristic responses from the second step onward 



98 
 

when the perturbations are applied on a treadmill with a constant belt speed 

may not be representative for real-life situations. 

At present, only a few studies have applied larger external gait perturbations 

in stroke survivors [51, 53, 58]. While Krasovsky et al (2013) found a larger 

global response in terms of strategy and timing of gait rhythm after gait was 

perturbed in stroke survivors compared to healthy older adults [58], Kajrolkar 

et al (2014) concluded that stroke survivors have a preserved ability to adjust 

gait characteristics and maintain dynamic stability [51]. Our AP decelerating 

perturbations tended to cause a backward fall, however, contrary to the 

studies of Kajrolkar et al. (2014) and Kajrolkar and Bhatt (2016) our 

participants did not make a backward step, instead all participants were able 

to continue to move forward. It is interesting to see that apparently small 

differences in onset and magnitude of the perturbation can result in such 

different responses. 

Our study is not comparable to any previous study executed in stroke 

survivors, since to the best of our knowledge this was the first study assessing 

differences in responses to larger external gait perturbations between fallers 

and non fallers in stroke. Our results indicate that perturbation responses are 

not useful as predictors of fall risk, which is different from perturbations 

during standing [39]. This suggests that priority should be given the study of 

steady-state gait characteristics in stroke survivors are more promising 

regarding predicting fall risk [39, 119].  Nevertheless, gait perturbations might 

be useful in fall prevention programs, as perturbation based gait training 

appears to be effective in fall prevention in older adults and in people with 

Parkinson’s disease [70].  
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 There is a number of possibilities that might explain our limited findings. First, 

perturbations applied might lack ecological validity.  Second, the perturbation 

magnitude may have been too small. MoS in the first step after gait 

perturbations were equal or even slightly increased in comparison to steady-

state values, which may indicate that the perturbation magnitude was not 

challenging enough to differentiate between groups.  Each perturbation type 

was repeated four (ML perturbations ) and eight (decelerating perturbations) 

times, however due to handrail grasping we analyzed only the final two 

perturbations and thereby gathering the average response. From a different 

perspective, we may argue that perhaps only the response to the first gait 

perturbation is relevant for fall risk, as during a perturbation in daily life, 

people have only one chance to respond adequately and thereby prevent an 

actual fall incidence. Finally, it may be that small differences between groups 

are present, yet not found in this study due to the limited sample size. 

Another methodological consideration is the gait speed during the 

perturbations. We used a fixed speed thereby making sure that the applied 

perturbations were similar across participants. Changing the treadmill speed 

to somebody’s preferred speed means that the applied perturbation is 

executed over another percentage of the gait cycle as the duration of the gait 

cycle will change with speed while the duration of the ML displacement does 

not. Adjusting gait speeds would thus actually result in different gait 

perturbations, which makes it unfair to compare between participants. 

However, perturbing gait at preferred speed is more ecologically valid, since 

most perturbations experienced during gait in daily life will occur at preferred 

speed. Nevertheless, in this case it would remain unclear whether differences 



100 
 

between groups would be due to how they respond or due the fact that 

perturbations were different. However, given the problems associated with 

designing “matched” perturbations at subjects preferred speeds, we choose 

to perturb subjects at a fixed speed. Finally our sample of stroke survivors may 

not be representative of the entire population based on the ratio male/female 

participants.    

Conclusion 
In conclusion, this study found limited differences in gait perturbation 

responses between stroke survivors that fell and that did not fall during 

follow-up. Although step length after an ipsilateral perturbation when the 

paretic leg responded was reduced in our group of fallers, this did not result in 

smaller MoS values than in non-fallers. Furthermore the FW MoS during the 

second step after a medio-lateral ipsilateral gait perturbation where the 

paretic leg responded differed between fallers and non-fallers, but this was 

most likely not directly caused by the perturbation itself but rather by the 

need to keep up with the belt speed. Our results do not support the use of 

gait characteristic responses to predict fall risk. However, our sample size was 

limited, and a larger cohort might reveal differences which were not found in 

the present study. 
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Appendix A. Between group comparison 

Steady state gait characteristic T value P value 

Step time non paretic leg 1.4 .16 
Step time paretic leg 3.8 <.01 
Step length non paretic leg 2.5 .02 
Step length paretic leg 1.2 .25 
Step width -0.8 .43 
MoS FW non paretic leg 0.3 .78 
MoS FW paretic leg -0.1 .91 
MoS ML non paretic leg -0.8 .42 
MoS ML paretic leg -1.7 .09 

Variability of steady-state gait characteristics   

Step time non paretic leg -1.8 .07 
Step time paretic leg -2.5 .02 
Step length non paretic leg -1 .31 
Step length paretic leg -2.1 .04 
Step width -1.7 .1 
MoS FW non paretic leg -1.9 .07 
MoS FW paretic leg -2.1 .04 
MoS ML non paretic leg -3.2 <.01 
MoS ML paretic leg -2.4 .02 
Comparison of steady state gait characteristics and variability  
of steady-state gait characteristics between groups. 
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Appendix B. Mixed model ANCOVA for ML gait perturbations. Similar to table 
5.2 in the manuscript the effect of ML gait perturbations on gait with the gait 
characteristic as dependent variable, number of steps as within factor and 
group as between effect. Furthermore, steady-state gait speed was insert as 
a covariate to adjust for differences in preferred steady-state gait speed. 
Significant group and interaction effects are printed in bold.  

Contralateral perturbation First response Non Paretic Leg  

Gait characteristic Effect F P-value 

Step time Steps 5.46 <.01 
 Group 0.25 .62 
 Steps*Group 0.96 .44 
Step length Steps 1.22 .27 
 Group 0.56 .45 
 Steps*Group 0.10 .99 
Step width Steps 0.34 .88 
 Group 1.27 .26 
 Steps*Group 0.60 .70 
MoS FW Steps 0.70 .62 
 Group 0.01 .99 
 Steps*Group 0.32 .89 
MoS ML Steps 3.85 <.01 
 Group 0.16 .70 
 Steps*Group 0.40 .85 

Contralateral perturbation First response Paretic Leg  

Step time Steps 5.55 <.01 
 Group 0.01 .91 
 Steps*Group 0.73 .59 
Step length Steps 3.24 <.01 
 Group 0.03 .88 
 Steps*Group 0.17 .97 
Step width Steps 0.83 .53 
 Group 0.81 .37 
 Steps*Group 0.76 .58 
MoS FW Steps 1.19 .32 
 Group 0.01 .99 
 Steps*Group 0.32 .89 
MoS ML Steps 5.91 <.01 
 Group 1.12 .29 
 Steps*Group 1.31 .26 
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Ipsilateral perturbation First response Non Paretic Leg  

Step time Steps 8.28 <.01 
 Group 1.96 .17 
 Steps*Group 0.51 .76 
Step length Steps 2.43 .04 
 Group 0.93 .34 
 Steps*Group 0.09 .99 
Step width Steps 2.71 .02 
 Group 0.03 .85 
 Steps*Group 0.17 .97 
MoS FW Steps 1.56 .17 
 Group 0.79 .38 
 Steps*Group 0.67 .64 
MoS ML Steps 9.60 <.01 
 Group 1.32 .26 
 Steps*Group 0.26 .93 

Ipsilateral perturbation First response Paretic Leg 

Step time Steps 15.0 <.01 
 Group 2.1 .16 
 Steps*Group 0.62 .68 
Step length Steps 7.04 <.01 
 Group 0.96 .33 
 Steps*Group 0.73 .61 
Step width Steps 1.11 .36 
 Group 0.06 .79 
 Steps*Group 3.64 <.01 
MoS FW Steps 11.4 <.01 
 Group 0.19 .67 
 Steps*Group 1.62 <.20 
MoS ML Steps 3.20 <.01 
 Group 1.20 .28 
 Steps*Group 1.10 .36 
GG is Greenhouse Geiser correction. MoS is margin of stability. P-value for 
main effect of steps and interaction (Steps*Group) is Greenhouse-Geiser 
corrected. 
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Abstract 
Background. Stroke survivors often fall during walking. To reduce fall risk, gait 
testing and training with avoidance of virtual obstacles is gaining popularity. 
However, it is unknown whether and how virtual obstacle crossing is 
associated with fall risk.  

Objective. The present study assessed whether obstacle crossing 
characteristics are reliable and associated with fall risk in community dwelling 
chronic stroke survivors.  

Method. We recruited twenty-nine community dwelling chronic stroke 
survivors. Participants crossed five virtual obstacles with increasing lengths. 
After a break, the test was repeated to assess test-retest reliability. For each 
obstacle length and trial, we determined; success rate, leading limb 
preference, pre and post obstacle distance, margins of stability, toe clearance, 
and crossing step length and speed.  Subsequently, fall incidence was 
monitored using a fall calendar and monthly phone calls over a six-month 
period.  

Results. Test-retest reliability was poor, but improved with increasing 
obstacle-width. Twelve participants reported at least one fall. No association 
of fall incidence with any of the obstacle crossing characteristics was found.  

Conclusion. Given the absence of height of the virtual obstacles, obstacle 
avoidance may have been relatively easy, allowing participants to cross 
obstacles in multiple ways, increasing variability of crossing characteristics and 
reducing the association with fall risk. These finding cast some doubt on 
current protocols for testing and training of obstacle avoidance in stroke 
rehabilitation. 
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Introduction 
About 30 to 50% percent of all chronic stroke survivors report at least one fall 

each year [7] and these falls often result in injuries and medical costs[103]. 

One of the causes of a fall may be unsuccessful negotiation of an obstacle, 

resulting in a trip. Indeed, it has been found that obstacle crossing is 

challenging for elderly and for stroke survivors, as it often results in tripping 

[23, 133]. 

 Crossing obstacles demands adequate gait adjustments. Several gait 

adjustments during obstacle crossing in a over ground setting were found to 

be different in stroke survivors compared to age matched controls [59, 63, 

65]. For instance, stroke survivors showed a reduced toe clearance of the 

affected limb while crossing the obstacle and they also placed their foot at a 

less favorable position behind the obstacle[59]. Moreover, during over ground 

obstacle crossing, the peak velocity of the center of mass (CoM) in the medio-

lateral (ML) direction was higher in stroke survivors as compared to 

controls[63, 65]. These gait changes may reduce safety, and it has been shown 

that  the ability to negotiate obstacles successfully is reduced in stroke 

survivors compared to age matched control groups [60, 62, 65, 134]. Although 

these differences in over ground obstacle crossing may to some extent explain 

the higher fall rates in stroke survivors compared to the general older 

population [62, 63, 65, 66], at present it remains largely unknown whether 

measures derived from  over ground obstacle crossing are associated with 

falls in stroke survivors. Only one study did find that fall prone stroke survivors 

were indeed less successful in obstacle crossing as compared to non-fallers 

[64]. 
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In recent years, obstacle crossing using a virtual environment has gained 

popularity for testing and training  during rehabilitation after a stroke [135, 

136]. Training generally aims to enhance the ability to perform stepping 

adjustments and thereby the ability to walk safely through more complex 

environments and as such perhaps prevent falls. However, little is known 

about the reliability and validity of virtual obstacle crossing as a diagnostic tool 

for fall risk, or as a model for daily life gait. Finally, results found in over 

ground obstacle crossing may be not transferable to virtual obstacle crossing 

due to the differences in the experimental set up. For instance, virtual 

obstacles are two dimensional, and there is no penalty when hitting the 

obstacle whereas hitting a real obstacle will result in a trip. Therefore, the 

main aims of the present experiment were to assess test-retest reliability of 

characteristics of virtual obstacle crossing and their association with fall risk. 

We note here that the data reported were obtained from participants of a 

previous study that found that steady-state gait characteristics were 

associated with fall risk [137]. 

Methods 
Participants were community dwelling persons after stroke in the chronic 

phase, recruited via flyers in hospitals, physical therapy practices, general 

practitioners and national peer group meetings. Prior to the study, all 

participants gave written informed consent and the medical ethical committee 

‘Noord Brabant’, The Netherlands approved the research protocol 

(NL49126.028.14).  
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Participants were excluded if their Functional Ambulation Category (FAC) was 

lower than three [84], Mini Mental State Examination (MMSE) was lower than 

24 [85] and if they had severe cardiovascular, respiratory, musculoskeletal or 

other neurological disorders that could affect gait performance. Furthermore, 

stroke survivors who were institutionalized in for instance a nursing home 

were excluded as well. The measurements were performed during a single 

visit at the rehabilitation center Revant, Breda, The Netherlands.  

 

Experimental set up 

Data collection was performed using the Gait Real-time Analysis Interactive 

Lab (GRAIL, Motekforce Link b.v., The Netherlands). The GRAIL is equipped 

with ten infrared cameras (Bonita B10, Vicon Motion Systems, Oxford, UK), a 

dual belt treadmill with two embedded force platforms (Motekforce Link b.v., 

The Netherlands) and a synchronized virtual environment. A custom-

developed application to control the GRAIL was written in DFlow software 

(Motekforce Link b.v., The Netherlands). Light planes projected on the 

treadmill, created with the DFlow software, functioned as obstacles to be 

crossed. Full-body kinematics were collected by tracking forty-seven markers 

on anatomical landmarks [126].  

Obstacle crossing protocol 

For safety reasons, participants wore a fall harness that did not restrict 

motion, nor provided body weight support. All participants first familiarized 

themselves with treadmill walking, and were instructed to walk without 

support of the treadmill sidebars and a walking aid. The obstacle crossing task 
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was executed at a gait speed of 0.41m/s (1.5km/h)  to make sure that the 

perturbation size was the same among all participants, moreover, 0.41m/s 

was feasible for all participants.  

The obstacle crossing task contained five virtual obstacles. The virtual 

obstacles were two-dimensional, and had no height. The width of the obstacle 

was equal to the width of the treadmill, the length of the first out of five 

obstacles was 7cm, each of the subsequent obstacles increased in steps of 7 

cm towards 35 cm. The appearance of the obstacle (in both time and position) 

was determined by the mid-swing phase position of the right limb, plus three 

times the stride time and stride length based on three previously performed 

strides, see figure 6.1A. Given the provided time and space between obstacle 

appearance and actual obstacle crossing, participants were free to decide 

whether to cross the obstacle with their paretic or non-paretic limb. To 

improve the ecological validity of our experiment, the only instruction given 

was to cross the obstacle, no instruction was given on how to cross the 

obstacle. Finally, after a break of ten minutes the experiment was repeated to 

assess test-retest reliability. To assess associations with fall risk, we used data 

from the first set of 5 obstacles.  

Data analysis 

Gait events (foot contacts (FC), foot off) were detected based on the 

trajectory of the center of pressure [127]. The whole body CoM was 

determined using a 14 body segment model [128]. Subsequently dynamic 

stability expressed as the Margin of Stability (MoS) in forward (FW) and 

mediolateral (ML) directions, was determined at FC [56]. All crossing attempts 
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were included for all analysis regardless of whether the attempt was 

successful or not.   

We calculated several measures that reflect how, and how well, participants 

performed the obstacle crossing tasks, further referred to as crossing 

characteristics. First, we determined two dichotomous variables; 1) lead limb, 

i.e. the limb which first crossed the obstacle (paretic or non-paretic limb) 

further referred to as ‘Leading Limb Preference’(LLP) and 2) success rate. Since 

some participants placed their foot in the middle of the obstacle, it was not 

always clear whether an unsuccessful foot placement was intended as a 

crossing step, or a last step before crossing. We defined a crossing step, as a 

step wherein the anterior-posterior (AP) position of the toe marker was 

beyond the mid-line of the obstacle. A crossing step was defined unsuccessful 

if the position of the virtual obstacle in the progression direction overlapped 

with the position of the foot during the stance phase. Both dichotomous 

variables were determined for each obstacle length. Second, we determined 

seven continuous crossing characteristics, (Figure 6.1B): (1) toe clearance (i.e. 

vertical distance between lead limb toe and the ground halfway crossing the 

obstacle), (2) pre-obstacle-distance (i.e. the distance between the toe marker 

of the final foot placement prior to obstacle crossing and the beginning of the 

obstacle), (3) post-obstacle-distance (i.e. the distance between the end of the 

obstacle and the heel marker of the leading limb). (4) crossing length (i.e. the 

step length of the lead limb, when crossing the obstacle) (5) crossing speed 

(i.e. the crossing step length divided by the step time of the leading limb), (6 

and 7) MoS in ML and FW direction at FC directly after obstacle crossing. 
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Figure 6.1A: Time and place of the appearance of the obstacle. SL is stride length.  Figure6. 1B: 

spatial crossing characteristics.  

Fall status 

For six months after the lab visit, fall status was determined by monthly phone 

calls, and a fall diary was used to report when, and how the fall occurred. We 

defined a fall as ‘any unanticipated event that results in a participant coming 

to the ground, floor or lower level’ [20]. We excluded falls that had a clearly 
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different cause than a loss of balance, such as fainting or an epileptic seizure. 

Participants that experienced at least one fall were classified as fall prone 

stroke survivors. 

Statistics 

For all crossing characteristics, we determined the test-retest reliability. For 

both dichotomous crossing characteristics, Kappa statistics were used. 

Reliability of continuous crossing characteristics was determined through 

intra-class correlation (ICC), absolute agreement [102], single measures. 

Reliability of dichotomous crossing characteristics was defined as moderate 

for kappa between 0.41 – 0.6, substantial for kappa between 0.61 – 0.8, or 

almost perfect for kappa between 0.81 - 1 [138] and reliability for continuous 

crossing characteristics was considered adequate if ICC was ≥ 0.75 [139].  

Demographic and stroke specific characteristics between fallers and non-

fallers were compared using a Mann Whitney U test. Between group 

differences for the dichotomous variables LLP and success rate were examined 

using a Chi square test. Normality of the continuous variables was examined 

using a Kolmogorov-Smirnov test. We used a mixed model ANOVA with group 

as between and obstacle length as within factors. If an interaction with group 

was found, independent samples t tests were used to determine which 

condition(s) differed between groups. 

Results 
A group of twenty-nine stroke survivors derived from a larger cohort [137] 

participated in the obstacle crossing task. After a six-month follow up, twelve 

stroke survivors (41%) reported at least one fall, and were classified as fall 
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prone stroke survivors (F). The remaining seventeen stroke survivors (59%) 

were classified as non-fall prone stroke survivors (NF). None of the reported 

falls were excluded due to the fall exclusion criteria. The participants in the fall 

prone group were significantly older and used a walking aid more often, see 

table 6.1 for statistics. Due to missing marker data, we were not able to 

estimate center of mass position for all participants, therefore results 

regarding the MoS are based on twenty-four participants, including nine 

participants with prospective falls.  

 

 

 

 

 

 

Reliability of crossing characteristics 

Dichotomous crossing characteristics LLP and success rate were not reliable 

(Table 6.2). Test-retest reliability of pre- and post-obstacle distance was 

inadequate for the smaller obstacles but was adequate (0.65- 0.78) for 

obstacles with a length of 21cm or higher. Reliability of crossing step length, 

and crossing speed was inadequate with ICC values around 0.4. Test-retest 

reliability of toe clearance was around 0.7 across the obstacle lengths. 

Reliability of MoS in the ML direction ranged between 0.6 and 0.8, while 

reliability for MoS in FW direction was inadequate. 

Table 6.1: Mean and SD and between group differences in  
demographic and stroke specific characteristics. Significant  
between group differences are printed in bold. 
Demographic characteristics NF-SS (17) F-SS (12) p-value 

Age (years) 55.5 (12.3) 64.6 (8.2) .03 
Length (cm) 171.8 (10) 169.9 (11) .64 
Weight (kg) 90.2 (20) 76.9 (16) .07 
Male (%) 50% 66% .39 
Use walking aid (%) 25% 66% .03 
Use of medication (%) 87% 83% .75 
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Association with falls 

Dichotomous crossing characteristics LLP and success rate were not different 

between groups (see table 6.3 for percentages and table 6.4 for p-values per 

obstacle length). No interaction effect with group or main effect of group was 

found for any of the crossing characteristics. Pre-obstacle-distance decreased 

and step length and FW MoS increased when obstacle length increased (main 

effect of obstacle length, Table 6.4).  

Table 6.2: Test-retest reliability for  dichotomous and continuous obstacle crossing 
characteristics for all five obstacle lengths. MoS is margins of stability, FW is forward, ML is 
medio-lateral. 

Obstacle 7cm 
obstacle 

14cm 
obstacle 

21cm 
obstacle 

28cm 
obstacle 

35cm 
obstacle 

Crossing 
characteristics 

Kappa Kappa Kappa Kappa Kappa 

Success rate   .32 .51 .81 .51 .31 
Leading limb  .40 .17 .26 .51 .24 

Crossing 
characteristics 

ICC (CI) ICC (CI) ICC (CI) ICC (CI) ICC (CI) 

Pre obstacle 
distance 

.41  
(0 -.71) 

.57  
(.24 - .79) 

.70 
(.41 - .86) 

.65  
(.33 - .84) 

.72  
(.42 - 87) 

Post obstacle 
distance 

.39  
(0 - .69) 

.48  
(.12 - .74) 

.67  
(.36 - 85) 

.79  
(.57 - .91) 

.78  
(.57 - 90) 

Step length .39 
(-.01-.69) 

.16  
(-.26 - .5) 

.28 
 (-.15-.62) 

.16 
(-.24 -.52) 

.36  
(0 - .66) 

Crossing speed .46  
(.06 - .73) 

.21  
(-.2 - .55) 

.26  
(-.1 - .6) 

.21  
(.01 - .54) 

.63  
(.3 - .82) 

Toe clearance .74  
(.45 - .88) 

.71  
(.43 - .86) 

.74  
(.49 - .88) 

.62 
(.30 - .82) 

.76  
(.52- .89) 

MoS ML .59  
(.21 - .81) 

.80  
(.56 - .91) 

.63 
(.24 - .84) 

.62  
(.25 - .83) 

.66  
(.29 -.85) 

MoS FW .45  
(.05 - .73) 

.14  
(-.25-.52) 

.22  
(-.19-.58) 

.26  
(-.22-.62) 

.40 
(-.05-.72) 
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Table 6.3. Mean and standard deviation (SD) from continuous crossing characteristics for both groups. Success 
rate as percentage of successful crossings attempts per group for each LPO size. In addition Leading limb 
preference (LLP) as percentage of crossing attempts leading with the paretic leg per group for each LPO size. 
Significant differences for dichotomous crossing characteristics based on Chi Square statistics are printed in bold. 
NF is the none fall prone group. F is the fall prone group. cm is millimeter. Dis is distance. 

Obstacle 7cm 
obstacle 

14cm obstacle 21cm obstacle 28cm obstacle 35cm obstacle 

Group NF F NF F NF F NF F NF F 

Success 
rate (%) 

50 50 62 41 68 50 68 41 68 41 

LLP (%) 50 33 44 50 44 33 25 41 31 41 

Crossing characteristic 

Pre-
obstacle 
 

33 
±14 

29.1 
±13.7 

23.3 
±14.2 

21.2 
±9.1 

17.7 
±6.7 

21.1 
±14.2 

14.5 
±7.7 

11.8 
±10.6 

12.7 
±6.3 

10.7 
±9.1 

Post-
obstacle 
 

-4 
±7.2 

-2 
±8.9 

4.5 
±7.6 

3  
±9 

5.1 
±6.2 

-1 
±12.9 

2.7  
±6 

-3.0 
±12.9 

1.4 
±7.0 

-1.9 
±11.5 

Step 
length  

59.3 
±10 

46.8 
±15.2 

60.3 
±7.7 

51.2 
±14.3 

65.2 
±12 

53.1 
±17.1 

67.7 
±8.2 

57.8 
±15 

70.7 
±9.6 

60.5 
±13.4 

Crossing 
speed 

63.4 
±18.9 

63.7 
±33.8 

72.7 
±22.8 

59.5 
±22.3 

76 
±13.8 

60.7 
±24.5 

70.2 
±14.5 

69.1 
±25.8 

71.7 
±16 

66.6 
±24.1 

Toe-
clearanc
e 

11.9 
±4.1 
 

12.3 
±4.3 

11.3 
±4.3 

11.3 
±2.9 

11.5 
±3.9 

12.1 
±3.9 

11 
±3.5 

10.7 
±2.4 

12 
±3.7 

11.1 
±3.1 

MoS ML 0.19 
±0.05 
 

0.20 
±0.04 

0.19 
±0.04 

0.22 
±0.05 

0.18 
±0.04 

0.21 
±0.05 

0.19 
±0.03 

0.20 
±0.05 

0.19 
±0.03 

0.20 
±0.05 

MoS FW 0.53 
±0.07 

0.44 
±0.09 

0.51 
±0.04 

0.51 
±0.11 

0.54 
±0.05 

0.57 
±0.11 

0.53 
±0.04 

0.48 
±0.10 

0.56 
±0.05 

0.50 
±0.07 
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Discussion 
As virtual obstacle crossing has gained popularity in stroke rehabilitation for 

training and testing, and since falls occur during obstacle negotiation in daily 

life[23, 133], we explored whether a virtual obstacle crossing task can function 

as a diagnostic tool for fall risk. Specifically, the main purpose of the present 

experiment was to determine test-retest reliability of obstacle crossing 

characteristics and their association with fall risk in community dwelling 

chronic stroke survivors. Contrary to our expectations, the results indicated no 

differences between groups, neither for the dichotomous, nor for the more 

reliable continuous crossing characteristics. This is in contrast with results 

from an previous study which found that fall prone stroke survivors were 

more likely to fail an over ground obstacle crossing task [64]. Additionally, 

previous studies found a greater ML velocity of the CoM during over ground 

obstacle crossing in fallers than in non-fallers [63, 65]. This greater velocity 

Table 6.4. Chi square p-values per obstacle length for success rate and leading limb preference. Main and 
interaction effects for continuous crossing characteristics. Significant  
Values are printed in bold. 
Obstacle length 7 cm             14 cm              21 cm             28 cm            35 cm 

Success rate (P-value) .87     .22          .26              .12            .12  
LLP (P-value) .46     .64          .18              .30                             .49  

Main effects Obstacle length group Interaction 

Crossing characteristic F-value P-value F-value P-value F-value P-value 

Pre-obstacle-distance 29.2 <.001 0.19 .66 0.97 .41 
Post-obstacle-distance 2.80 .04 1.79 .19 2.47 .07 

Step length 16.3 <.001 0.15 .69 0.35 .79 
Crossing speed .95 .42 0.99 .33 1.87 .14 
Toe clearance 1.59 .20 0.0 .99 0.65 .58 

MoS ML 0.54 .65 1.51 .23 1.08 .36 
MoS FW 3.47 .03 1.48 .23 2.84 .07 
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requires a greater deceleration after obstacle crossing, which may hamper 

safety. However, we found that despite this greater velocity, fall prone stroke 

survivors were equally able to regulate their MoS in ML direction compared to 

non-fallers. While stroke survivors generally compensate their increased ML 

trunk displacement by an increased step width compared to a general older 

population[15, 131], these differences were not found between fallers and 

non fallers, neither during steady-state gait [Punt 2017B], nor during obstacle 

crossing tasks as step-width after obstacle was similar between both groups 

(17.4cm versus 17.5cm for non-fallers versus fallers). 

Interestingly, test-retest reliability for pre and post obstacle distance 

improved when obstacle length increased from 21cm onwards, and these ICC 

values are similar to earlier findings [61]. Furthermore, poor reliability of 

leading limb preference and success rate has also been reported previously 

[60]. Reliability of toe clearance was lower in our study as compared to a 

previous report [61], where ICCs were around 0.8. Previous studies assessed 

real obstacle crossing in over ground walking, we assessed crossing of virtual 

obstacles on a treadmill. There are several differences between virtual and 

actual obstacle crossing which have to be taken into account when 

interpreting the results. While over ground obstacle crossing of a real obstacle 

can actually result in a trip, which may result in some degree of fear, this is not 

the case when using a virtual obstacle.  Another important limitation of a 

virtual obstacle is the absence of height of the obstacles.  This latter difference 

may explain the limited test-retest reliability of toe clearance in our study. It 

may also be that obstacle crossing was relatively easy due to the absence of 

obstacle height. Such a relatively easy task may not perturb gait enough, so 
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that participants maintain their regular gait pattern. To successfully overcome 

more challenging obstacles, participants are forced to optimize pre-obstacle-

distance, which will limit the possibility of varying crossing characteristics. This 

may lead to smaller variation within participants, and thus more reliable 

crossing characteristics. Note that in our experiment, the obstacles with 

greater length resulted in more reliable crossing characteristics. Obviously, 

more reliable crossing characteristics can be more sensitive to differentiate 

between fallers and non-fallers, because true differences do not get buried in 

noise. Moreover, our results support this suggestion as we did find a nearly 

significant interaction between group and obstacle length on post-obstacle-

distance (see table 4, p=.07). We highly recommend future studies to carefully 

read these recommendations and follow along as we still think that this 

paradigm can reveal relevant information for evaluation and diagnostic 

purposes during rehabilitation, especially because we are not the first to 

report large variance in obstacle crossing behavior[140].  

In contrast to previous studies, we did not separately analyze obstacle 

crossing with the affected and unaffected limb as leading limb. During a pilot 

experiment, we discovered that not all stroke survivors were able to follow 

instructions on which limb should be leading during obstacle crossing. This 

may be related to constraints imposed by the treadmill, as this requires the 

participant to maintain gait speed in contrast to over ground walking. 

Although this may appear to be a disadvantage, it may more realistically 

reflect daily-life situations, where time to adapt may be limited and may not 

allow crossing an obstacle with the preferred limb. Furthermore, a previous 

study indicated that obstacle crossing characteristics between affected and 



119 
 

unaffected limb appear to be small, and thus there may be no or very limited 

information to be obtained with respect to fall risk [61]. Yet, at present it 

remains unknown if a separation of paretic and non paretic limb on obstacle 

crossing characteristics revealed other insights in regard to evaluation and 

diagnostic assessments in stroke survivors. 

Despite the fact that training with virtual obstacles holds promise as a few 

pilot studies did find improvements in the ability to adjust step placements 

[135, 136], our findings suggest that caution may be needed regarding 

implementation of these interventions. More successful virtual obstacle 

avoidance or improved avoidance characteristics on the treadmill may not 

reflect reduced fall risk in daily life.  

A limitation in our study design was that we explored test-retest reliability of 

crossing characteristics during a single visit rather than two separate visits. On 

average, participants improved their success rate by 20% during the second 

trial. Although this improvement was not significant, a learning effect may 

have affected our reliability results. Another limitation is that our study did 

not explore variability of pre-obstacle distance over multiple trials, a variable 

that was recently reported to discriminate older from younger adults [141]. 

Finally, our limited sample size might have not revealed small between group 

differences. However, for the purpose of fall prediction at an individual level, 

such small group differences are not meaningful. 

Conclusion 
In conclusion, obstacle crossing characteristics in chronic stroke survivors, as 

determined in our protocol, are neither suitable for evaluation of the ability to 
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make step adjustments nor for the prediction of fall risk among stroke 

survivors, because test-retest reliability was poor and no differences in 

obstacle crossing characteristics were found between fallers and non-fallers. 

However, it is worth to explore reliability of crossing characteristics and their 

association with fall risk for a set of more challenging obstacles, as more 

challenging obstacles may improve reliability and sensitivity of the crossing 

characteristics.   
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CHAPTER 7 

 IMPROVING GAIT STABILITY? 

 

 

 

 

 

 

 
 

 

 Does a perturbation based gait intervention enhance gait stability in fall 
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Abstract 
Background. Falls are a common problem among stroke survivors. Fall 
prevention training programs that have been shown to be effective for 
healthy older adults are not effective and consequences of falls are more 
severe in stroke survivors. A recent review indicated that perturbation based 
training (PBT) interventions are effective in reducing falls in older adults and 
people with Parkinson’s disease. At present, it is unknown whether this type 
of intervention is effective in stroke survivors.  

Objective. We determined whether PBT can enhance gait stability in stroke 
survivors.  

Methods. Ten chronic stroke survivors who experienced falls in the past six 
months participated in the PBT. Participants performed 10 training sessions 
over a six-week period. The gait training protocol was progressive and each 
training contained, unexpected gait perturbations and expected gait 
perturbations. Evaluation of gait stability was performed by determining 
steady-state gait characteristics and daily-life gait characteristics. We 
previously developed fall prediction models for both gait assessment 
methods. Here, we evaluated whether predicted fall risk was reduced after 
PBT according to both models.  

Results. Several steady-state gait characteristics significantly improved and 
consequently predicted fall risk was reduced after the PBT. Daily-life gait 
characteristics, however, did not change and thus predicted fall risk based on 
daily-life gait remained unchanged after the PBT. 

Conclusion. A six week PBT resulted in more stable gait on a treadmill and 
thus lower predicted fall risk. However, the more stable gait on the treadmill 
did not transfer to a more stable gait in daily life.  
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Introduction 

Falls are common in community dwelling stroke survivors [22] and patients 

after stroke are more often frequent fallers than older adults [7]. In addition, 

hip fractures resulting from a fall more often lead to immobility in stroke 

survivors [8]. Other consequences of falls are loss of independence and social 

isolation [8]. These consequences underline the importance of developing 

effective fall prevention programs for stroke survivors.  

While a recently updated review indicated that effective fall prevention 

programs exist for older adults [142], a review on fall prevention in stroke 

survivors found no effective programs [69]. Fall prevention programs generally 

aim to improve physical activity and thereby physical functioning. By 

participating in fall prevention programs, fall prone stroke survivors may be 

able to improve their physical activity level to some extent. However, this 

improvement in physical activity might lead to more falls, due to an increase 

in exposure. This may explain the ineffectiveness of fall prevention programs 

for stroke survivors. Training may need to improve gait stability in fall prone 

stroke survivors before exposure is increased by stimulating daily walking 

activities.  

In comparison to conventional treadmill training of gait stability, perturbation 

based training (PBT) may offer a more ecologically valid training approach. 

PBT has shown promise in reducing the numbers of falls in older adults and 

people with Parkinson’s disease [70]. At present, it is unknown whether this 

type of intervention is effective for decreasing falls in stroke survivors. 
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Most falls occur during walking[22, 29] and we recently found that gait 

characteristics either derived from daily life gait or from a laboratory gait 

assessment are the predictors of fall risk in stroke survivors[137] . Therefore, 

as a first step in the development of an effective fall prevention program, we 

studied whether PBT enhances gait stability in ambulatory chronic stroke 

survivors who are prone to falls. 

We assessed the effect of a perturbation based gait training on three 

outcomes. We assessed whether steady-state  and daily-life gait 

characteristics improved, whether predicted fall risk decreased and  whether 

participants were able to progressively increase training workload. 

methods 

participants 

Participants were recruited from the rehabilitation centre Revant, Breda, The 

Netherlands, through day care centers and by contacting participants that 

already participated in our previous studies [143]. Stroke survivors were 

included if they were at least 12 months post stroke, had a Functional 

Ambulation Category score of 3 or higher [84], reported at least one fall in the 

six months prior to inclusion in the study, were free of other disorders which 

could have affected gait such as Parkinson’s disease and were able to walk on 

the treadmill without handrail support.  

Intervention 
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The intervention was executed on the Gait Real-time Analysis Interactive Lab 

(GRAIL, Motekforce Link bv, Amsterdam, The Netherlands). For technical 

details about the GRAIL and perturbation characteristics see our previous 

studies [143]. The participants received ten perturbation based gait training 

sessions in a six-week period. Prior to each training session, four reflective 

markers were placed on the pelvis, and one marker one each lateral 

malleolus. The markers were use to collect gait kinematics. In addition, 

participants wore a safety harness that prevented falls but did not restrict 

motion, nor provided body weight support. Each training session lasted at 

least 30 minutes and could last up to 1 hour, depending on the physical 

condition of the participant. A custom-designed virtual reality application 

allowed us to adjust each training session to the abilities of the participant. 

Each training session started with a warming up trial without gait 

perturbations, followed by multiple trials with unexpected gait perturbations 

and multiple trials with expected gait perturbations. The length of each trial 

and the number of trials performed during a single training session depended 

on the physical condition of the participant. 

 Unexpected gait perturbations 

Unexpected, gait perturbations included simulated trips and slips (induced by 

belt deceleration or acceleration) as well as medio-lateral (ML) belt 

translations. The intensity of the perturbations was set at one of five different 

levels [143]. The interval between perturbations ranged from 4 to 2 strides. 

The perturbation was triggered at one of three moments in the gait cycle: foot 

contact, mid stance or toe off. The perturbations were applied to both the 

paretic and non-paretic limb.  
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Expected gait perturbations 

Expected gait perturbations were created by virtual obstacles, which were 

projected on the treadmill. The width of the obstacles ranged from 7 cm up to 

49 cm in steps of 7 cm. The interval between presentation of obstacles ranged 

from 4 to 2 strides. The obstacles could be targeted to one of the limbs by 

projecting the virtual obstacle on only one side of the treadmill. In some cases 

the virtual targeted both limbs, by projecting it on both sides of the treadmill, 

forcing both limbs to cross the obstacle.  

Progression of training load 

The settings within each training session for both unexpected and expected 

gait perturbations, were varied as much as possible such that participants 

were exposed to a variety of different gait perturbations. Furthermore, the 

default gait speed during the training sessions was comfortable gait speed. 

From this comfortable gait speed, gait speed was frequently increased and 

decreased by the researcher, in order to practice gait and gait perturbations at 

all kind of gait speeds.  

The settings were adjusted between training sessions, such that training load 

was progressively increased. After each training session the patient’s rate of 

perceived exertion[144] was determined and based on the judgment of the 

researcher and the performance of the participant in previous training 

sessions, gait speed, walking time, frequency and intensity of the 

perturbations were in- or decreased for the upcoming training session. Finally, 

after several training sessions, participants received an additional task, a visual 

Stroop task together with the gait perturbations. This Stroop task functioned 
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as a cognitive dual task, which made the training session more challenging and 

was aimed at establishing a more automated response after gait was 

perturbed. For a visual demonstration of the intervention see the electronic 

supplement. 

Primary outcomes gait stability 

Before and after the training period, gait stability was assessed by determining 

steady-state gait characteristics and daily life gait characteristics.  

Steady-state gait characteristics 

We assessed steady-state gait characteristics in a standardized laboratory 

setting. The assessment of steady-state gait characteristics was performed 

twice. First gait characteristics were determined at preferred gait speed. 

Second steady-state gait characteristics were determined at the same gait 

speed between pre- and post-assessments regardless of any changes in 

preferred gait speed within the participant between assessments, to eliminate 

effects of gait speed on gait variability[145] which together with gait speed is 

one of the most important predictors for fall risk [111]. 

Data analysis for determining steady-state gait characteristics was consistent 

with our previous study [137]. Briefly, participants walked on the GRAIL 

treadmill. Data were collected for 60 consecutive strides using Vicon Nexus 

and transferred to Matlab 2013B (The MathWorks Inc., Natick, MA). The gait 

events foot contact (FC) and foot off (FO) were determined using the Center 

of Pressure (CoP) [127]. Spatial, temporal, variability and local dynamic 
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stability gait characteristics were determined over the 60 consecutive strides 

[137].  

Daily life gait characteristics 

Daily-life gait characteristics were assessed using accelerometry. For daily-life 

gait stability assessment, we applied the same data collection and analysis 

method as in our previous experiment [119, 137]. Briefly, participants wore a 

tri-axial accelerometer (McRoberts, The Hague, The Netherlands) at the lower 

back during seven consecutive days. Gait episodes were detected by a 

previously validated algorithm [108]. Quantity and frequency of gait activity 

were expressed as number of walking minutes per day and number of walking 

bouts per day. Next, qualitative gait characteristics that have been shown to 

predict fall risk in older adults [47] and stroke survivors [119] were estimated. 

For a detailed explanation on how daily life characteristics were estimated see 

Rispens et al [46].  

Predicting fall risk 

Fall risk was predicted based on steady-state gait characteristics and based on 

daily-life gait characteristics using our previous established fall prediction 

models [137]. For steady-state gait characteristics only the trial at preferred 

gait speed was evaluated by the steady-state fall risk prediction model, 

because the model requires gait speed as input. Moreover, prior to entering 

the data into the prediction model, we adjusted the steady-state fall risk 

prediction model to a new model without Margin of Stability (MoS) measures 

because in our present study we were not able to determine MoS due to the 

limited marker set up. We re-evaluated the performance of this model, which 
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appeared to be exactly the same as in our previous study [137]. For our daily-

life fall prediction model, no modifications were made. 

Secondary outcomes training workload 

Training load per session was assessed by (1) determining the number of 

walking minutes per training session over the three walking conditions 

(steady-state, unexpected and expected). (2) The number of minutes walked 

combined with a visual Stroop task. (3) The average gait speed per training 

session, (4) the intensity of unexpected, expected gait perturbations and the 

(5) frequency of gait perturbations.  

Statistics 

Non-parametric Wilcoxon signed rank tests were used to assess differences 

between steady-state and daily-life gait characteristics before and after the 

PBT. In addition, if significant differences were found, we calculated the effect 

size per gait characteristic, by dividing the Z value derived from the Wilcoxon 

signed rank test divided by the square root of N. Wherein N is the summed 

number of participants in the pre- and post-assessments. Effect sizes of 0.1 

correspond with a small effect, 0.3 with a medium effect and 0.5 with a large 

effect[146].  

Changes in input parameters of the fall risk prediction models, which were 

principal component scores [137]  as well as in the predicted fall risk, the 

output of the model, were examined using Wilcoxon signed rank tests. The 

evaluation was performed for both the steady-state fall prediction model and 

the daily-life fall prediction model.   
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Finally, non-parametric Friedman tests were used to determine differences in 

the secondary outcome measures, training workload among the training 

sessions. 

Results 
 All included participants were at least 12 months post stroke, and reported at 

least one fall in the previous six months. Seven out of ten participants 

completed all training sessions. See table 7.1 for demographic detail. Two 

participants missed one training session due to the flu, and one participant 

missed a training session due to an urgent private meeting. All ten participants 

performed the steady-state gait assessments before and after the 

intervention. Due to a technical failure of the accelerometer, one participant 

(number 8) was not included in the results of daily-life gait characteristics. 

Primary outcomes  

Steady-state gait characteristics 

Gait speed and step length for both the paretic and non-paretic limb increased 

significantly with respectively large to medium effect sizes after the PBT.  

Stride time variability, step time variability for both limbs and swing time 

variability for the paretic limb significantly decreased after PBT, with large to 

medium effect sizes (table 7.2). No significant effects of PBT were found for 

local dynamic stability. Results for the steady-state gait characteristics 

measured at the same preferred gait speed between both assessments are 

reported in table 7.3. No significant differences were found. 
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Daily-life gait characteristics 

The quantity of walking, expressed as number of walking minutes per day, 

showed an increasing trend after PBT, but this did not reach statistical 

significance. The number of walking bouts did increase significantly (table 7.4). 

Of the gait quality characteristics, stride time increased and the smoothness of 

walking (index of harmonicity in the VT direction) decreased after PBT (table 

7.4).  

 

Table 7.1: Demographics. 

# gender Age Length  
 

mass 
 

BMI Paret
ic 
side 

TS
S 

FAC  Co-
morbiditi
es 

1 Male 65 190 90 23.6 Left 4 3  

2 Female 49 182 83 25.1 Right 3 4  

3 Female 64 170 113 39.1 Left 10 3  

4 Male 63 172 78 26.4 Right 2 3  

5 Female 58 163 65 24.4 Right 2 5  

6 Male 70 172 76 25.6 Right 4 3 scoliosis 

7 Male 50 190 89 24.6 Left 20 5 Broken 
hip due 
to fall 

8 Male 61 171 85 29.1 Right 4 4  

9 Male 67 168 85 29.5 Left 1.
2 

5  

10 Male 68 185 105 30.8 left 1.
5 

3 epileptic 

TSS is time since stroke.  
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Table 7.2: Laboratory based steady-state qualitative gait characteristics. Prior (T0) and  
after (T1) the perturbation based gait intervention.  Gait speed was preferred gait speed. 
 T0 T1     

Gait characteristics Mean ± SD Mean ± SD dif Z-
score 

P-
value 

ES 

Spatio temporal gait characteristics 

Gait speed  0.46 ± 0.2 0.62 ± 0.2 0.16 -2.81 <.01 0.63 
Step length PL  318 ± 73 388 ± 101 70 -2.19 .03 0.49 
Step length NPL 210 ± 109 270 ± 122 60 -2.70 <.01 0.60 
Step time PL 0.75 ± 172 0.71 ± 152 -48 -1.78 .07  
Step time NPL 0.59 ± 120 0.56 ± 101 -34 -1.78 .07  
Swing time PL  0.51 ± 149 0.47 ± 125 -34 -1.27 .20  
Swing time NPL  0.32 ± 83 0.30 ± 64 -12 -1.37 .17  
Stride time  1.35 ± 0.21 1.27 ± 0.15 -0.08 -1.88 .06  
Step width  343 ± 30 343 ± 54 0 -0.35 .72  
Symmetry gait characteristics 

Step length SI 0.25 ± 0.23 0.22 ± 0.24 -0.03 -0.06 .95  
Step time SI 0.11 ± 0.14 0.11 ± 0.15 0 -0.41 .67  
Swing time SI 0.21 ± 0.22 0.20 ± 0.21 -0.01 -1.12 .26  
Variability gait characteristics 

Stride time  0.10 ± 0.06 0.07 ± 
0.05 

-0.03 -2.59 <.01 0.58 

Step length PL 53 ± 23 51 ± 24 -2 -0.15 .87  
Step length NPL 48 ± 17 52 ± 30 4 -0.56 .57  
Step time PL 80 ± 49 56 ± 39 -24 -2.59 <.01 0.58 
Step time NPL 67 ± 37 54 ± 29 -13 -1.88 .05 0.42 
Swing time PL  83 ± 44 63 ± 39 -20 -1.98 .04 0.44 
Swing time NPL 65 ± 44 50 ± 24 -15 -1.37 .16  
Step-width 22 ± 5.7 22 ± 4.8 0 -0.76 .44  
Smoothness gait characteristics 

IH VT 0.44 ± 0.21 0.46 ± 0.22 0.02 -1.17 .24  
IH ML 0.96 ± 0.02 0.95 ± 0.04 -0.01 -0.15 .87  
IH AP 0.59 ± 0.22 0.62 ± 0.23 0.03 -0.15 .87  
Stability gait characteristics 

LDE VT 1.47 ± 0.13 1.52 ± 0.20 0.05 -1.07 .29  
LDE ML 1.82 ± 0.37 1.79 ± 0.43 -0.03 -1.07 .29  
LDE AP 1.83 ± 0.32 1.82 ± 0.47 -0.01 -0.15 .87  

PL is the paretic limb, NPL the non paretic limb. SI is symmetry index.  
LDE is the local divergence exponent. 
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Table7.3: Laboratory based steady-state qualitative gait characteristics.  
Prior (T0) and after (T1) the perturbation based gait intervention. 
 Gait speed was preferred gait speed at pre assessment. 
 T0 T1     

Gait characteristics Mean± SD Mean± SD dif Z-score P-value ES 

Spatio temporal gait characteristics 

Gait speed  0.46 ± 0.2  0.46 ± 0.2 - - -  
Step length PL  300 ± 70 334 ± 85 34 -1.27 .20  
Step length NPL 200 ± 94   198 ± 86 -2 -0.35 .72  
Step time PL 0.77 ±163 0.78 ±161 0.01 -1.07 .28  
Step time NPL 0.62 ±114 0.62 ±123 0 -0.25 .79  
Swing time PL  0.51 ±138 0.51 ±144 0 -0.35 .72  
Swing time NPL  0.33 ± 86 0.30 ± 65 -0.03 -1.48 .13  
Stride time  1.39 ±180 1.40 ±186 0.01 -0.25 .79  
Step width  342 ± 28 350 ± 46 8 -1.17 .24  
Symmetry gait characteristics 

Step length SI 0.23 ± 0.2 0.28 ± 0.2 0.05 -1.1 .28  
Step time SI 0.11 ± 0.1 0.11 ± 0.1 0 -0.76 .44  
Swing time SI 0.20 ± 0.2 0.24 ± 0.2 0.04 -1.27 .20  
Variability gait characteristics 

Stride time  102 ± 62 91 ± 49 -11 -0.86 .38  
Step length PL 54 ± 23 51 ± 17 -3 -0.05 .96  
Step length NPL 49 ± 17 52 ± 18 3 -0.45 .64  
Step time PL 82 ± 46 74 ± 41 -8 -1.1 .28  
Step time NPL 68 ± 34 64 ± 34 -4 -0.66 .51  
Swing time PL  85 ± 40 76 ± 35 -9 -0.86 .38  
Swing time NPL 68 ± 42 62 ± 36 -6 -1.1 .28  
Step-width 21 ± 5 21 ± 5 0 -0.15 .87  
Stability gait characteristics 

LDE VT 1.45 ± 0.1 1.52 ± 0.2 0.07 -1.27 .20  
LDE ML 1.81 ± 0.3 1.95 ± 0.4 0.14 -1.58 .11  
LDE AP 1.85 ± 0.3 1.88 ± 0.4 0.03 -0.25 .79  

PL is the paretic leg, NPL the non paretic leg. SI is symmetry index. LDE is the 
local divergence exponent. 
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Table 7.4: Accelerometer derived quantitative gait characteristics.  

Prior (T0) and after (T1) the perturbation based gait intervention.  

Gait characteristics T0 T1     

Quantitative 
measures 

Mean ± 
SD 

Mean ± 
SD 

dif Z-
score 

P-
value 

ES 

Gait activity  17 ± 11 21.9 ± 9.7 4.9 -1.36 .17  
Walking bouts / day 76.5±38 99.6±37.2 23 -2.19 .02 0.51 
Monitoring time 5.9 ± 1 5.5 ± 1.6 -.4 -0.77 .44  
Qualitative measures 

Gait speed (m/s) 0.59±0.14 0.54± 0.11 -.05 -0.77 .44  
Stride time (s) 1.29±0.45 1.47±0.19 .18 -2.38 .02 0.56 
SD VT 1.35±0.51 1.31±0.36 -.04 -0.06 .95  
SD ML 1.49±0.58 1.49±0.39 0 -0.18 .85  
SD AP 1.23±0.55 1.28±0.40 .05 -0.89 .37  
HR VT 0.99±0.08 0.99±0.04 0 -0.18 .85  
HR ML 1.25±0.19 1.27±0.17 .02 -0.06 .95  
HR AP 0.98±0.11 0.91±0.07 -.07 -1.59 .11  
IH VT 0.29±0.11 0.18±0.09 -.11 -2.07 .04 0.49 
IH ML 0.51±0.21 0.59±0.20 .08 -1.12 .26  
IH AP 0.34±0.17 0.35±0.15 .01 -0.88 .37  
Amplitude (psd) VT 0.2 ±0.06 0.27±0.05 -.02 -0.53 .59  
Amplitude (psd) ML 0.49±0.26 0.51±0.21 .02 -0.41 .67  
Amplitude (psd) AP 0.36±0.11 0.39±0.16 .03 -0.53 .59  
Width (psd) VT 1.16±0.20 1.29±0.23 .13 -1.24 .21  
Width (psd) ML 1.09±0.48 0.94±0.22 -.15  -0.05 .95  
Width (psd) AP 1.15±0.39 0.98±0.39 -.17 -0.89 .37  
LDE/stride VT 1.05±0.55 1.18±0.21 .13 -1.36 .17  
LDE/stride ML 1.18±0.75 1.06±0.19 .12 -0.77 .44  
LDE/stride AP 1.14 ±0.72 1.06 ±0.24 0.08 -0.77 .44  

psd is power spectral density, LDE is local divergence exponent. 

 

  



135 
 

 

Predicted fall risk 

Nine out of ten participants significantly improved their steady-state gait after 

the PBT as reflected in the input principal component score of the fall 

prediction model (p=.005) and in the predicted probability of falling (p=.027) 

(figure7.1 upper panel). For daily-life gait, no changes after the PBT were 

observed in model input scores (p=.30) nor in predicted probability of falling 

(p=.35)(figure 7.1 lower panel).  

 

Figure 7.1:  Fall predictions based on steady-state gait characteristics (upper graph) and fall 

predictions based on daily life gait characteristics (lower graph). Participants scores compared 

to before (red circles) and after the intervention (green circles). Numbering indicate individual 

score values for each participant. For daily life prediction model, numbering on the right side 

of the prediction model correspond to the scores after the intervention(green circles).  

Participants had a reduced fall risk according to the steady-state gait characteristics based fall 

prediction model, but not according to daily life gait characteristics based fall prediction 

model.   
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Training load 

Figure 7.2 illustrates the progressively increasing training load of the PBT. As 

some participants missed a training session and a Friedman test excludes 

these participants from the analysis, we removed the three incomplete 

training sessions from our statistical analysis. For the remaining seven training 

sessions, all participants were able to increase (1) training time (p<.01), (2) 

combining gait perturbations with a Stroop task (p<.01), (3) increase gait 

speed(p<.01), (4) perturbation intensity(p<.01) and (5) perturbation 

frequency(p<.01) over the course of the PBT sessions.  

 

Figure 7.2: training load was progressively increased over training sessions. (1) Relative to the 
first training session, training time spend in steady-state gait is reduced, while time spend in 
unexpected gait and expected gait training is increased. (2)Moreover, time spend in 
unexpected and expected gait while simultaneously performing a dual task was increased. In 
addition, gait speed (3) (relative to baseline) increased, (4) perturbation intensity relative to 
the first training session was increased. (5) Fifth graph, perturbation frequency relative to the 
first training session, 100% corresponds with 4 strides between each perturbation, a increase 
in percentage is a reduction in strides between perturbations. 
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Discussion 
The main purpose of the present investigation was to explore whether a 

perturbation based intervention can enhance gait stability in fall prone 

ambulatory chronic stroke survivors. We found that several steady-state gait 

characteristics associated with fall risk in stroke survivors [137] were 

significantly improved after PBT. Additionally, our prediction model based on 

steady-state gait indicated a lower predicted fall risk. This is in line with a 

recent fall intervention study in Parkinson’s disease, which showed improved 

spatio-temporal gait parameters after a single perturbation training compared 

to a control group with regular gait training [147]. However, daily-life gait 

characteristics indicated no improvement of gait quality after the PBT. 

Consequently, the daily-life fall risk prediction model indicated a similar fall 

risk after the PBT as before the intervention. Thus it seems that PBT enhances 

gait stability in a standardized laboratory setting, yet this does not translate to 

a daily-life setting. 

There are several issues that need to be addressed to place the present results 

into perspective. We did not apply a statistical correction for multiple 

comparisons, because this was a pilot study examining whether gait stability 

improves after PBT. Thus our results require further validation in a larger pre-

registered trial. We determined gait characteristics at preferred gait speed. 

During the post-intervention assessment, preferred gait speed was higher, 

which may be related to the increase in gait speed during training over the 

intervention period (figure 7.2). The improvements in gait quality could (in 

part) be caused by the increased gait speed. For example, it is known that gait 

variability, which is an important variable in our fall prediction model [137], 
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decreases with increasing gait speed [145]. The fact that gait characteristics 

did not change when participants were tested at a fixed speed, while gait 

characteristics did change when tested at preferred speed, which was higher 

during the post assessment, raises the question to what extent changes in gait 

characteristics were fully caused by differences in gait speed. To gain a better 

understanding we determined the correlation coefficients between change in 

speed and changes in gait characteristics between pre and post assessment, 

for all significantly changed gait characteristics. Correlations ranged from -0.15 

towards 0.15, except for step length of the non paretic limb which was 

correlated 0.67. Moreover, previous literature has shown that local 

divergence exponents (LDE) in ML direction increase with gait speed over a 

specific range (0.4 to 0.6 m/s) of speeds [148]. Interestingly, our participants 

gained gait speed over this range on average, while their LDE ML values 

decreased although not significantly so. All in all, this suggests that 

improvements in gait quality were not mediated by changes in speed alone. 

In this study, we aimed to expose participants to many repetitions of as many 

different kinds of perturbations as possible, thereby improving the ecological 

validity of the training, because in daily life one may be exposed to a wide 

range of perturbation types. Pai & Bhatt (2007) indicated that, at least in older 

adults, feed forward control improves when experiencing gait perturbations in 

training sessions, thereby creating more adequate responses [149]. This 

finding is supported by our study, as we found that participants were able to 

handle more, and larger perturbations during their training sessions and even 

were able to combine these with a visual Stroop task. Actual improvement of 

gait was shown in the steady-state gait characteristics. These characteristics 
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quantify how people walk in steady-state conditions without external 

perturbations. We did not evaluate whether the quality of the perturbation 

responses was improved, because in contrast to steady-state gait 

characteristics [137], measures derived from gait perturbations were found 

not to be associated with fall risk in stroke survivors [143] & [Punt et al 2017C 

under review in G&P]. However, the lack of transfer of the improved steady-

state gait characteristics to daily-life conditions does not necessarily imply that 

PBT is not useful in fall prone stroke survivors. It may be that this type of 

intervention improves participants’ ability to deal with perturbations such as 

the ones that the PBT focused on and as such have a positive impact on fall 

incidence. Especially because previously several studies already found 

promising results that stroke survivors are able to improve their ability t 

handle expected perturbations [135, 136]. 

When interpreting  the daily-life gait characteristics results, it should be kept 

in mind that despite their value in assessing fall risk [46, 47, 119], daily-life 

assessments are prone to many confounding effects. After the PBT 

intervention, participants walked more often (significantly more bouts), and 

walked more minutes per day (although not significantly so). It may be that 

such behavioral changes coincide with more frequent walking in complex 

environments and conditions that would lead to less smooth, more variable 

and less stable walking and hence negatively affect gait characteristics. This 

might explain the lack of improvement of daily-life gait characteristics. 
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Conclusion 
In conclusion, a perturbation based gait intervention improved steady-state 

gait characteristics at preferred gait speed and reduced the predicted fall risk 

in fall prone chronic stroke survivors. These improvements did not transfer to 

gait in daily life and thus neither reduced fall risk predictions from daily-life 

gait data. The progression that could be realized during the training indicates 

that participants improved their ability to deal with expected and unexpected 

gait perturbations. The positive effects in steady-state gait and potential 

effects on perturbations responses warrant further  study to determine the 

effect of a perturbation based gait training on fall incidence in stroke 

survivors.  
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CHAPTER 8 

EPILOGUE 
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Summary 
To ultimately reduce fall incidence in stroke survivors, we first need to know 

who is at increased risk for falls. Therefore, the first aim of this thesis was to 

study the ability of a variety of gait assessments to predict fall risk in 

ambulatory chronic stroke survivors. The second aim was to explore whether 

we can improve gait stability in fall-prone stroke survivors.  

Assessing gait in daily life provides insight in the amount, frequency and 

quality of gait in stroke survivors. Quantification of gait activity in daily life by 

accelerometry may be more challenging in stroke survivors as compared to 

healthy older adults, due to the reduced gait speed and consequent smaller 

amplitudes of the acceleration time series during gait. In chapter 2, we 

investigated criterion validity and test-retest reliability of several basic 

quantitative gait characteristics like number of steps and walking distance. 

Thirty-three chronic stroke survivors participated during the first test for 

criterion validity, twenty-seven participants performed a second test to obtain 

test-retest reliability. The gait assessment was performed on a treadmill to 

determine the number of steps and distance at comfortable walking speed 

and at 15% below and above comfortable walking speed. Furthermore, over 

ground gait was detected by performing a six-minute walk test on a twenty 

meter pathway. The results indicated that the amount of gait can be 

quantified validly and reliably by using accelerometers located at the lower 

back. 

Over the past few years, fall risk assessment based on gait characteristics has 

mainly focused on healthy older adults. To determine whether fall prediction 



143 
 

models developed for older adults can also be applied to stroke survivors, 

chapter 3 explored whether the same gait characteristics are associated with 

fall risk in stroke survivors as in older adults, or whether modifications are 

needed in either the cut-off value and/or regression coefficients of fall risk 

prediction models. A total of 106 participants were recruited, including 31 

non-fall-prone stroke survivors, 25 fall-prone stroke survivors, 25 fall-prone 

older adults and 25 non-fall-prone older adults. All participants wore the 

accelerometer at the lower back during seven consecutive days. From the 

acceleration time series, quantitative and qualitative gait characteristics were 

determined. We created a binary logistic regression model to assess the ability 

to predict falls for each gait characteristic. We included health status and the 

interaction between health status (stroke survivors versus older adults) and 

gait characteristics in the model. Four interactions of gait characteristics with 

health status were found, suggesting that gait characteristics are differently 

associated with falls in stroke survivors as compared to healthy older adults. 

Given the interactions found, we concluded that specific fall prediction models 

are needed to predict fall risk in community dwelling chronic stroke survivors 

based on daily-life gait characteristics. 

 

In chapter 4, we determined to what extent clinical physical therapy 

assessments, daily-life gait characteristics, steady-state gait characteristics and 

a combination of both types of gait characteristics are able to predict fall risk 

in chronic stroke survivors. In a group of forty stroke survivors, six physical and 

psychological assessments were administered. Subsequently, gait data were 

collected in daily life and in a laboratory setting. From this data, the most 

promising gait characteristics were determined. A fall calendar and monthly 
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phone calls registered fall events over a six-months period. A total of 15 

participants reported at least one fall. Univariate logistic regressions indicated 

that only one out of six clinical assessments was significantly associated with 

falls. Furthermore, several gait characteristics derived from both steady-state 

and daily-life gait revealed a significant association with falls. After data 

reduction through principal component analysis, the predictive ability of each 

method was determined by logistic regression. Results indicated that both gait 

assessment methods were able to predict fall risk, while clinical assessments 

showed a limited ability to predict fall risk. A combination of both gait 

assessment methods revealed no improvement in predicting fall risk. 

Clinicians might enhance currently used fall risk assessments in ambulatory 

chronic stroke survivors by applying one of either tested gait assessments.  

 

Larger perturbations in gait arise from external sources like unexpected hard 

wind, slippery roads or for instance from other people walking in the same 

area. Whether people will actually fall due to such perturbations ultimately 

comes down to how adequate their response to the perturbation is. It may be 

that fall prone stroke survivors respond less adequately to unexpected gait 

perturbations, which could result in a increased risk of falls. In chapter 5, we 

addressed this hypothesis by assessing how stroke survivors respond to six 

types of gait perturbations. Thirty-eight chronic stroke survivors participated; 

fifteen experienced at least one fall during a six month follow up period. All 

participants performed multiple walking trials while medio-lateral belt 

translations and trips were applied at a fixed moment in the gait cycle. Base of 

support (BoS) gait characteristics, step time and margins of stability (MoS) 

were calculated during the first six steps after the gait perturbation. Results 
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revealed that all types of gait perturbations resulted in significantly deviating 

BoS gait characteristics compared to steady-state gait characteristics. The 

deviating BoS gait characteristics resulted in similar MoS values compared to 

steady-state values. Gait characteristics did not differ between fall-prone and 

non-fall-prone stroke survivors. Thus, as MoS values did not differ and gait 

characteristics after perturbing gait were similar in the fall-prone and non-fall-

prone groups, it seems that at least for the applied gait perturbations, fall-

prone stroke survivors have a preserved ability to respond to external gait 

perturbations. 

 

Falls may also be caused by unsuccessful negotiation of expected gait 

perturbations like obstacles. To walk safely in more complex environments 

like walking inside a home, adequate obstacle crossing is needed. In chapter 6, 

we explored whether obstacle crossing characteristics can be used as a 

diagnostic and evaluation tool for gait training, by determining associations of 

obstacle crossing characteristics with falls and by determining test-retest 

reliability. Twenty-nine stroke survivors participated in the experiment; twelve 

stroke survivors experienced at least one fall during the six-months follow up 

period. Five virtual, two dimensional, obstacles of increasing width needed to 

be crossed. After a break, the test was repeated to obtain test-retest 

reliability. The test-retest reliability was poor for most of the obstacle crossing 

characteristics, but reliability increased with increased obstacle width. No 

differences in crossing characteristics between fall-prone and non-fall-prone 

stroke survivors were found, indicating no diagnostic value for obstacle 

crossing characteristics. It is worth to further explore the reliability of crossing 

characteristics and their association to fall risk in a set up with more 
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challenging obstacles than used in our experiment, as more challenging 

obstacles perturb gait more, and subsequently may improve reliability.  

 

Fall prevention programs generally aim to improve physical activity and 

thereby physical functioning. Although fall-prone stroke survivors are perhaps 

able to improve physical function to some extent, this might be outweighed 

by the increased exposure to fall hazards and this could explain the 

ineffectiveness of current fall prevention programs. Therefore, in chapter 7 

we addressed the question, whether we can improve gait stability in fall-prone 

stroke survivors. We developed a perturbation based gait training intervention 

(PBT) using the GRAIL system. Ten fall-prone stroke survivors were recruited 

and followed a five-weeks training protocol with two training sessions each 

week. The PBT contained three parts: steady-state gait training, gait training 

with a great variety of unexpected gait perturbations and gait training with 

several expected gait perturbations like obstacle crossing tasks. Finally, the 

perturbations were combined with a visual Stroop task in order to make the 

training more challenging. Prior to, and after the PBT, gait stability was 

assessed using the fall prediction models developed in chapter 4. Steady-state 

gait characteristics were improved in nine out of ten participants and 

consequently predicted fall risk reduced. However, daily-life gait 

characteristics showed no clear improvements, and thus predicted fall risk 

remained similar after the PBT. Gait quantity, expressed as the number of 

walking bouts was increased after PBT. In conclusion, it seems that a PBT 

intervention improves gait stability in steady-state gait, yet it does not transfer 

to daily-life gait. These latter results, however, could be affected by 

confounding effects like changes in gait behavior, like for instance performing 
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more small walking bouts inside home which may have lower gait quality.  

General discussion. 
Daily-life gait characteristics 

A classification problem 

A major topic throughout this thesis is the assessment of gait of stroke 

survivors in daily life. In chapter 2, we validated a gait detection algorithm and 

applied this algorithm to determine quantity of gait and to select the episodes 

of the acceleration signals classified as gait for determining quality of daily-life 

gait in chapters 3, 4 and 7. Although the algorithm was validated, it is 

unknown to what extent the algorithm classifies other cyclic activities like 

biking, stair negotiation, wheelchair riding and so on as gait. Multiple studies 

[150, 151], similar to our study, assessed validity in terms of correct 

quantification of gait. But very few have actually determined if and to what 

extent other activities are classified as gait. Importantly, those that did so, in 

either a mock up situation [152] and or in a real-world situation [153], indeed 

indicate that other activities can be misclassified as gait. Despite of these 

misclassifications of gait activity, which may result in random errors in 

estimating gait quality, we and previous authors were able to find valuable 

information with regard to the prediction of fall risk based on daily-life gait 

characteristics [44, 47, 107, 119]. Nevertheless, future studies may greatly 

benefit from more accurate gait detection algorithms. One obvious solution 

may be changing the sensor location on the body towards one where different 

activities will result in more distinguishable acceleration time series, like for 

example the upper leg. However, it seems that accelerations are most 
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relevant with regard to fall risk when they are measured close to the center of 

mass [154]. It is therefore worth investigating more advanced algorithms 

using multiple sensors to obtain gravitational orientation, angular velocity and 

air pressure and thereby improve accuracy of activity classification  [155]. 

Differences in gait behavior  
Another potential confounder in the assessment of quality of daily-life gait, is 

the difference in gait behavior among participants. While for some stroke 

survivors qualitative gait characteristics are mainly derived from short-lasting 

walking bouts, others perform longer-lasting walking bouts as well. These 

differences of bout length will to a certain extent coincide with differences in 

the environment. Longer lasting bouts are likely performed outside, while 

shorter walking bouts are performed indoors, which often is a more complex 

environment, likely to affect those qualitative gait characteristics. To address 

this issue, we examined the relative contribution of short and long walking 

bouts to the estimation of gait characteristics in chapter 3. Interestingly, we 

found a clear difference between fallers and non-fallers and between stroke 

survivors and older adults, thus indicating that indeed gait behavior is a factor 

that needs to be taken into account. A simple solution may be comparing 

walking bouts of similar length. A recent study explored this option and used 

only walking bouts of at least 60 seconds, to minimize the risk of 

misclassification of activities, and to avoid potential confounding effects of 

gait behavior [156]. Although the results are promising, the drawback is that 

probably not all fall-prone stroke survivors perform such longer walking bouts 

on a regular basis, which makes practical application questionable. 
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Applying larger external perturbations  
 Giving the challenges of walking in the community, like avoiding obstacles or 

negotiating a slippery road, it seems insufficient to only assess steady-state 

walking, especially considering the fact that stroke survivors more often fall on 

the paretic side [21], indicating that perhaps adequate responses to 

perturbations are diminished in fall-prone stroke survivors. Moreover, as 

motor control deficits after a stroke can be quite different among stroke 

survivors, it would be naive to expect to find one single assessment that 

adequately assesses all these deficits at once, and consequently provides 

strong associations with fall incidence. Although some stroke survivors may 

perform well in steady-state gait, they may find avoiding obstacles challenging 

due to the nature of their impairments. We have tested this line of reasoning 

by determining the diagnostic value of responses to gait perturbation with 

respect to fall risk.  Unfortunately, results from chapters 5 and 6 indicate no 

diagnostic value, neither of unexpected gait perturbations, nor of expected 

gait perturbations.  

Unexpected gait perturbations 
With regard to unexpected gait perturbations, an important aspect is the 

quantification of ‘how’ adequate the response is. The number of measures 

proposed to this end appears to grow continuously [18]. The measures 

applied in chapter 5, namely the margins of stability (MoS) and base of 

support (BoS) reflect to what extent stability is restored after a perturbation. 

Deriving information about fall risk from perturbation responses is challenging 

for several reasons. First, even at a fixed speed, participants’ gait 

characteristics at baseline (steady-state) already differ between fall-prone and 
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non-fall-prone groups. Thus, potential differences observed after the 

perturbation may be explained by the differences found in steady-state gait. 

Differences may also be masked by differences in the baseline; fallers may 

exhibit a more variable gait pattern during steady-state gait, which could 

obscure the perturbation responses. Second, perturbations were executed at 

a fixed gait speed, to make sure that the magnitude of the perturbation was 

equal for all participants. Yet, perhaps, handling the perturbation was ‘easier’ 

for participants whose preferred gait speed was close to the chosen fixed gait 

speed. Note that preferred gait speed differs between fallers and non-fallers 

(see table 5.1). To summarize, for unexpected gait perturbations, even if 

differences between fall-prone and non-fall-prone stroke survivors are 

present, it will be very challenging to identify these.  

A different, largely unexplored, approach may to some extent be useful in 

assessing whether fall-prone stroke survivors have a diminished ability to 

respond to external unexpected perturbations. Assessing the maximum 

manageable perturbation size avoids the issues raised in this section and 

provides an objective measure of someone’s ability to respond to 

perturbations. Research using this straightforward approach is limited. Several 

studies did perform these kinds of analyses and results are promising as they 

differentiate between younger and older adults [157] and indicate that the 

paretic leg of stroke survivors responds less adequate to perturbations [53]. 

Future studies may explore this option in greater detail, although this option 

may not be feasible for more fragile stroke survivors. 
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Expected gait perturbations 
For a large part, the concerns raised for unexpected gait perturbations do not 

hold for the measures that were applied to assess expected gait perturbations 

in chapter 6. Nevertheless, the measures that quantify ability to cross an 

obstacle are prone to different issues. The most important challenge is the 

minimization of possibilities of negotiating an obstacle. Allowing to cross an 

obstacle in multiple ways may increase the variability of these measures, 

thereby reducing test-retest reliability. More challenging obstacles perturb 

gait more, and subsequently may improve reliability, making these measures 

more sensitive to differences between fallers and non-fallers. 

Is stimulating gait activity dangerous? 
A final discussion point regarding this thesis is the paradoxical effect that 

stimulating gait may have in stroke survivors. Increasing physical activity is 

beneficial for health related outcomes like blood pressure, premature death 

and reduces risk of adverse health outcomes, such as diabetes and obesity 

[158]. Moreover, specifically for stroke survivors, physical activity is likely to 

reduce the odds of experiencing a second stroke [159] and physical activity 

increases physical functioning [159] which may enhance participation in daily 

life. However, the downside of stimulating physical activity is that it can 

indirectly increase the risk of falls.  

Van Schooten et al (2015) already reported that for people with low gait 

quality, the number of strides is a risk factor for falls [47]. Moreover, as 

mentioned, most falls occur during gait, and it has been reported that most 

falls occur in the morning [21, 22, 160]. In a post-hoc analysis based on 
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acceleration data from chapters 3 and 4, we determined how stroke survivors 

distribute their gait activity over the day. The results revealed that 50% of all 

gait activity was performed during the first few hours of the day (figure 8.1). 

To some extent falls rates appear to correspond with the amount of gait 

activity in the same timeframe. Thus, it may be beneficial to improve gait 

stability prior to actually stimulating stroke survivors to walk more in daily life. 

 

Figure 8.1: The accumulated gait activity of a group of stroke survivors over the day (blue 
line). Stroke survivors appear to be more active during the morning as their distribution line 
deviates from the green, uniform distribution. Error bars are confidence intervals.  

In chapter 7, we studied whether a perturbation based gait training can 

improve gait stability in fall-prone stroke survivors by using the GRAIL (Motek 

Forcelink b.v.). The results found are somewhat puzzling and require further 

investigation. First, we evaluated gait stability by examining how our fall-

prone stroke survivors performed in steady-state and in daily-life gait, while 

the intervention targeted the resistance against larger external perturbations. 

However, according to chapter 4, steady-state gait characteristics were 

associated with falls while chapters 5 and 6 indicated that larger external 

perturbations are not. This may raise the question why we performed such an 

intervention, and not just performed regular gait training. However, it has 

been established that regular gait training is ineffective in reducing falls 

among stroke survivors [69], while recent studies indicate that perturbation 
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based training yields promising results [70, 149]. Moreover, Pai & Bhatt (2007) 

indicated that applying a perturbation paradigm enhances adaptive skills to 

adequately respond to perturbations [149]. Finally, a perturbation based gait 

intervention may have a leverage effect in terms of reducing fear of falling, 

better concentration while walking and being able to handle a greater variety 

of environmental challenges.  

Interestingly, we found that after perturbation based gait training, fall-prone 

stroke survivors appeared to be somewhat safer walkers again (figure 7.1) i.e., 

their predicted fall risk decreased. However, at present, it is unknown whether 

this improvement will actually result in a reduced fall rate in daily life. 

Additionally, it should be kept in mind that based on daily-life gait 

characteristics, predicted fall risk did not differ between pre and post 

assessment.  

Clinical implications 
The results of chapter 4 indicate that steady-state and daily-life gait 

characteristics provide more accurate information regarding fall risk than 

currently used clinical fall risk assessments. Clinicians could start embedding a 

prediction model using gait characteristics into their clinical reasoning, to base 

their decisions on more accurate information. In order to assign all fallers to a 

fall prevention program, the cut-off values can be optimized to increase 

sensitivity at the cost of specificity and thereby detecting almost all fallers. 

Doing so would of course come at the cost of an increased number of non-

fallers assigned to the fall prevention program as well.  
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A potential intervention could be the PBT described in chapter 7. As the 

intervention enables stroke survivors to train all challenging aspects of gait in 

daily life, it appears to be an ecologically valid training method. Initial results 

were encouraging albeit inconsistent between steady-state and daily-life gait. 

No evidence exists that a perturbation based intervention actually will results 

into a reduction of fall rates in stroke survivors [70]. Hence, further study is 

needed to test whether PBT can indeed be recommended for this population.  

Future studies 
In general, this thesis has presented fall risk predictions that are promising 

and better than existing fall risk predictions. Moreover, the intervention study 

indicates that at least stability of steady-state walking can be improved in 

chronic stroke survivors after normal rehabilitation and perturbation based 

training is therefore worth further investigation.  

More specifically, we here provide evidence that quantity of gait activity as 

measured using an accelerometer is valid, but studies testing whether gait 

recognition algorithms classify other activities as gait are clearly lacking. 

Improvements in the classification of gait activity will reduce random error 

and potential bias in gait characteristics caused by misclassification by 

currently used classification algorithms. Consequently, gait characteristic 

estimates will improve, which may improve fall risk prediction. Second, larger 

studies should confirm the associations presented in this thesis and test these 

prediction models with an external validation procedure [48]. Third, as 

technology finds its way into clinical practice, new opportunities arise. 

Nowadays most rehabilitation centers in the Netherlands are capable of 
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performing a gait assessment using a motion capture system similar to the 

set-up used in this thesis. Structuring this new information across these 

centers and combining it with long-term surveillance, obtaining information 

like fall incidence, will enable us to make more accurate predictions, which 

then help in better, ’data driven’ decisions to prevent falls in the future. The 

intervention study in chapter 7 should be repeated on a larger scale to better 

understand the mechanism(s) of improvements in steady-state gait. 

Additionally, a control group and the measurement of fall incidence should be 

included to study effectiveness in the reduction of fall risk. Finally, the 

intervention could be applied earlier in the rehabilitation process, which might 

enhance its effectiveness.   

Conclusion 
This thesis aimed to determine to what extent gait characteristics are 

associated with falls. In addition, this thesis explored the potential of a 

perturbation based gait intervention to improve gait stability with the 

ultimate goal to reduce fall risk in chronic fall-prone stroke survivors. 

The results indicate that assessing quantity and quality of gait is feasible and 

that these factors yield more information about fall risk than currently used 

fall risk assessments. Moreover, fall risk predictions based on daily-life gait 

characteristics should be stroke specific in order to improve accuracy. 

Assessing expected gait and unexpected gait stability revealed no information 

with regard to fall risk. However, other, perhaps more challenging gait 

perturbations may put things into a different perspective, as more challenging 

obstacles may improve reliability of crossing characteristics and thereby 
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increase sensitivity to fall risk. Finally, a perturbation based gait intervention 

was able to significantly improve stability of steady-state gait, but this finding 

did not transfer to more stable gait in daily life.  
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Ongeveer 45% van alle mensen na een beroerte valt tenminste één keer per 

jaar. Een val kan leiden tot tijdelijk letsel zoals een gebroken heup. Ook leidt 

vallen bij mensen met een beroerte regelmatig tot chronische invaliditeit. Het 

voorkomen van vallen is daarom erg belangrijk en daarmee het uiteindelijke 

doel van dit onderzoek.  

Een eerste stap naar het voorkomen van vallen is het identificeren van 

mensen met een verhoogd valrisico. Valrisico wordt bepaald door het 

afnemen van een balans test zoals een ‘Berg balance scale’ of een ‘Time up 

and go test’. Hoewel deze testen enige voorspellende waarde hebben, zijn 

uitkomsten van verschillende studies vaak inconsistent en daarmee zeer 

beperkt bruikbaar in de praktijk.  

De meeste vallen gebeuren tijdens het lopen. Mogelijk zijn er verschillen in de 

kwaliteit van lopen tussen mensen die wel en niet vallen. Het bestuderen van 

‘hoe’ iemand loopt ofwel de kwaliteit van lopen, zou dus informatie kunnen 

opleveren over het valrisico. Deze hypothese is reeds onderzocht bij ouderen 

zonder beroerte. Het blijkt dat bij ouderen de kwaliteit van lopen voorspellend 

is voor het valrisico. Daarom heb ik in dit proefschrift het lopen bij mensen 

met een beroerte bestudeerd en onderzocht of de manier van lopen 

gerelateerd is aan valrisico.  

Tot slot heb ik onderzocht of we het lopen van mensen met beroerte en een 

daarmee gepaard gaand verhoogd valrisico hebben kunnen verbeteren door 

middel van looptrainingen. Een belangrijk onderdeel hierbij was het creëren 

van een verstoring  tijdens het lopen. Hiermee heb ik gepoogd zo goed 

mogelijk het dagelijks leven te simuleren.  
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Het meten van loopkarakteristieken 
In dit proefschrift heb ik het lopen bij mensen met een beroerte op drie 

verschillende manieren gemeten. De kwaliteit van lopen wordt in deze 

dissertatie uitgedrukt in loopkarakteristieken. Bij elke methode heb ik 

bestudeerd in welke mate loopkarakteristieken voorspellend zijn voor het 

valrisico bij mensen met een beroerte.  

Allereerst heb ik het lopen in een gestandaardiseerde, laboratoriumomgeving 

gemeten. Het voordeel van deze methode is dat alle factoren die het lopen 

kunnen beïnvloeden, zijn beperkt tot een minimum. Ten tweede heb ik het 

lopen van de deelnemers met behulp van een beweegmonitor bestudeerd in 

het dagelijks leven. Een sterk argument om deze methode te gebruiken is dat 

ik het lopen kan bestuderen op dezelfde locatie als waar de daadwerkelijke 

valincidenten plaatsvinden. Ten derde heb ik in dit proefschrift het lopen 

gemeten terwijl het lopen werd verstoord. Aangezien veel mensen met 

beroerte aangeven te zijn gevallen doordat ze struikelden of weggleden, lijkt 

het bestuderen van de reacties op een loopverstoring mogelijk informatie te 

kunnen opleveren over het valrisico. Immers, de adequaatheid van de reactie 

op een loopverstoring zal bepalend zijn of iemand daadwerkelijk valt of niet.    

Loopkarakteristieken in het laboratorium. 
Een belangrijke vraag is of loopkarakteristieken bij mensen met een beroerte 

beter het valrisico voorspellen dan de huidige conventionele testen. In 

hoofdstuk 4 hebben we onder andere loopkarakteristieken bepaald in een 

gestandaardiseerde laboratoriumomgeving. Ook hebben we een zestal 

veelgebruikte klinische testen bij dezelfde groep mensen afgenomen.  Het 
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onderzoek laat zien dat bepaalde loopkarakteristieken zoals loopsnelheid, 

variabiliteit van lopen, loopsymmetrie en de divergentie van het lopen 

voorspellend zijn voor vallen. Daarnaast blijkt uit hoofdstuk 4 dat deze 

loopkarakteristieken betere voorspellers zijn in vergelijking met de klinische 

testen. Loopkarakteristieken lijken dus een meerwaarde te hebben ten op 

zichtte van de huidige standaard testen. 

Loopkarakteristieken in het dagelijks leven. 
Het meten van loopkarakteristieken in het dagelijks leven heeft enkele 

methodologische uitdagingen. Een van deze uitdagingen is dat voorafgaand 

aan het bepalen van hoe iemand loopt in het dagelijks leven, het noodzakelijk 

is te bepalen wanneer iemand loopt. Vervolgens kunnen de als lopen 

geïdentificeerde stukken worden geanalyseerd om de loopkarakteristieken in 

het dagelijks leven te bepalen. In Hoofdstuk 2 heb ik daarom bepaald of we 

het lopen op een valide manier kunnen kwantificeren ten op zichtte van een 

gouden standaard, namelijk video-observatie. Ook heb ik bekeken of de 

bevindingen reproduceerbaar zijn door de test twee weken later te herhalen. 

De resultaten zijn valide en reproduceerbaar en daarmee bruikbaar voor het 

identificeren van loopactiviteit in het dagelijks leven. In hoofdstuk 3 en 4 zijn 

loopkarakteristieken in het dagelijks leven bepaald. In hoofdstuk 3 heb ik 

bepaald of de associatie tussen loopkarakteristieken en vallen anders is bij 

mensen met een beroerte dan bij mensen zonder beroerte. Uit de resultaten 

blijkt dat loopkarakteristieken gemeten in het dagelijks leven anders zijn 

geassocieerd met vallen dan bij mensen zonder een beroerte. Vervolgens heb 

ik in hoofdstuk 4 bepaald hoe accuraat loopkarakteristieken in het dagelijks 

leven valrisico voorspellen bij mensen met een beroerte.  Uit de resultaten 
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blijkt dat loopkarakteristieken in het dagelijks leven valrisico kunnen 

voorspellen en dat deze voorspellingen beter zijn dan de huidige klinische 

testen. Verder blijkt uit hoofdstuk 4 dat de voorspelling van valrisico op basis 

van loopkarakteristieken in het dagelijks leven even accuraat is als die op basis 

van de loopkarakteristieken gemeten in een laboratorium.   

Het verstoren van lopen. 
Een regelmatig gerapporteerde oorzaak van vallen is struikelen en uitglijden. 

Het bestuderen van de adequaatheid van reactie op een loopverstoring zou 

daarom kunnen bijdragen aan het identificeren van mensen met een 

verhoogd valrisico. Immers, mensen die adequater reageren op een 

loopverstoring zullen na een verstoring minder vaak vallen. Daarom heb ik in 

hoofdstuk 5 en 6  bestudeerd of de loopaanpassingen door een verstoring 

afwijken bij mensen met een beroerte en verhoogd valrisico, ten opzichte van 

mensen met beroerte en een laag valrisico. In hoofdstuk 5 heb ik zes 

verschillende, onverwachte loopverstoringen bestudeerd. Alle zes de 

verstoringen leidden tot een verandering van het looppatroon ten opzichte 

van onverstoord lopen. Echter, er werden geen verschillen gevonden in de 

loopaanpassingen nadat het lopen was verstoord tussen de twee groepen. In 

hoofdstuk 6 heb ik bestudeerd hoe dezelfde deelnemers als die uit hoofdstuk 

5 het lopen aanpassen wanneer zij een verwachte verstoring tijdens het lopen 

ondergaan. Voorbeelden van verwachte loopverstoringen in het dagelijks 

leven zijn: het opstappen van een stoeprand en het overstappen van een 

drempel. Uit de resultaten blijkt dat er geen verschillen zijn in 

loopaanpassingen bij mensen met een beroerte tussen hoog en laag valrisico. 

Ook is in hoofdstuk 6 bestudeerd of de loopaanpassingen reproduceerbaar 
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zijn voor evaluatieve doeleinden tijdens training. Uit de resultaten blijkt dat de 

loopaanpassingen meer reproduceerbaar worden naarmate de verwachte 

verstoringen moeilijker  worden, door het vergroten van de obstakels.     

Verbeteren van loopkarakteristieken 
Nu we beter kunnen identificeren wie een verhoogd valrisico heeft, is de 

volgende vraag of we het valrisico in deze groep kunnen verlagen? Daarom 

heb ik in hoofdstuk 7 bestudeerd of een specifieke looptraining het valrisico 

kan verlagen bij mensen met een beroerte. Tien mensen met een beroerte 

hebben deelgenomen. De deelnemers waren in de 6 maanden voorafgaand 

aan de start van de interventie tenminste één keer gevallen.  

De looptraining bestond uit een tiental trainingssessies en werd uitgevoerd in 

een periode van vijf weken. Naast de reguliere looptraining werd het lopen 

ook verstoord door middel van verwachte en onverwachte verstoringen. De 

intensiteit en frequentie van deze verstoringen werden in de loop van de 

trainingsperiode verhoogd. Tevens werd de training uitdagender doordat de 

deelnemers eveneens een visuele taak kregen in combinatie met de 

verstoringen. Voorafgaand en na afloop van de trainingssessies werd het 

lopen geëvalueerd aan de hand van de met vallen geassocieerde 

loopkarakteristieken. De resultaten laten zien dat de loopkarakteristieken 

gemeten in de laboratoriumomgeving aanzienlijk verbeterden en dat het 

voorspelde valrisico verminderde. Het lopen werd ook geëvalueerd met de 

loopkarakteristieken uit het dagelijks leven. Hieruit bleek dat de 

loopkarakteristieken in het dagelijks leven niet verbeterden en het voorspelde 

valrisico dus ook niet. Wel gingen de deelnemers meer lopen.   
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Conclusie 
De resultaten van dit onderzoek geven aan dat het meten van 

loopkarakteristieken zowel in een laboratoriumomgeving als in het dagelijks 

leven meer accuraat is in het voorspellen van valrisico dan conventionele 

klinische testen. Het voorspellen van valrisico aan de hand van 

loopkarakteristieken tijdens loopverstoringen heeft niet geleid tot het 

voorspellen van vallen. Mogelijk kunnen andere type verstoringen en of 

andere verstoringsmaten wel leiden tot accurate voorspellingen van valrisico. 

Wel blijkt uit dit onderzoek dat looptraining gecombineerd met verstoringen 

tijdens het lopen kan leiden tot een verlaging van het voorspelde valrisico, 

hoewel het valrisico niet veranderde op basis van loopkarakteristieken uit het 

dagelijks leven. 

Dit onderzoek kan het startpunt zijn voor het beter inschatten van valrisico bij 

mensen met een beroerte. Op basis van deze voorspelling kunnen 

maatregelen getroffen worden om een daadwerkelijke val te voorkomen. Een 

mogelijke maatregel zou de looptraining zoals omschreven in hoofdstuk 7 

kunnen zijn, hoewel niet bekend is of dit daadwerkelijk leidt tot minder vallen.      
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