
PHP Applications:
Increasing Performance

Thesis

Kip, R.J.
1532837

May 31, 2011

Thesis submitted to Hogeschool Utrecht

Revision 1.0

Revisions

Description

1.0 Compilation for hand in May 31, 2011
0.3 Compilation for review by company supervisor May 20, 2011
0.2 Compilation for review by school supervisor May 17, 2011
0.1 Set-up of document structure March 10, 2011

Revision 1.0

Printed at May 31, 2011

Company supervisor

D. J. van Roest
Reprovinci Internetdiensten bv

School supervisor, first examiner

E. Gerlofsma
Hogeschool Utrecht

Abstract

Reprovinci is a small company targeting small to medium businesses and non-profit
organisations. They have their own content management system, which has, through
the years, become slower. Reprovinci wished to counter this drop in performance. This
was a challenge to me, as I have never had to analyse an ill-performing system. In the
past months, it has been my task to analyse the cause of these performance issues, and
propose and realise solutions.

Having set a bold goal, I did not achieve this goal, not having had enough time;
there is still a lot to be done in order to achieve that goal. I recommend Reprovinci to
implement the proces of code review to ensure future code will be of good quality, to
upgrade software and change the database design of the main feature that drives their
content management system.

This document starts with describing the situation and then mixes performance and
optimisation theory and practice to form an informative document, serving as both my
thesis and as a transferal of knowledge and recommendations to Reprovinci.

Contents

List of figures 5

List of listings 7

List of tables 9

Preface 11

1 Reprovinci 13

2 Project summary 15
2.1 Problem definition . 15
2.2 Thesis statement . 15
2.3 Goals . 15
2.4 Requirements . 16
2.5 Scope . 17
2.6 Conditions . 17
2.7 Stakeholders . 17
2.8 Assumptions . 18
2.9 Deliverables . 18

3 Management 19
3.1 Quality assurance . 19
3.2 Risks . 19
3.3 Project timeline . 19

4 Current situation 21
4.1 Functionalities . 21
4.2 Software . 22

4.2.1 Architecture . 22
4.3 Performance problems . 23

5 Performance 25
To the reader . 25
5.1 What is performance? . 25
5.2 Performance analysis . 26
5.3 Metrics . 27

5.3.1 Response times . 27
5.3.2 Resource utilisation . 29
5.3.3 Throughput . 29

5.4 Performance before optimisation . 30
5.5 When to optimise . 31
5.6 Methodology . 31
5.7 Finding bottlenecks . 32
5.8 Design and performance . 33
5.9 Query optimisation . 34
5.10 Partial objects . 38
5.11 Benchmarking . 39

3

5.11.1 ApacheBench . 39
5.11.2 JMeter . 39
5.11.3 Couchmark . 40

6 Verification & validation 43

7 Recommendations 49
7.1 Improve quality of code and maintaining performance 49
7.2 Reduce file caching . 50
7.3 Software . 50
7.4 Server architecture . 50
7.5 Alter UDO storage . 51

7.5.1 The entity-attribute-value model 51
7.5.2 Document-oriented databases . 51
7.5.3 FriendFeed . 51

7.6 Alter UDO UX . 52

8 Conclusion 55

Afterword 57

Glossary 59

Index 61

A Optimisations 65
A.1 Collection#_checkCallback() . 66
A.2 ObjectCollection#loadObjectInstances() 67
A.3 In-progress loading . 69
A.4 User permissions . 70
A.5 String::renderNameToKey() . 72
A.6 NavigationCollection#getNode() . 73
A.7 Excessive calling of getNode() . 75
A.8 PageContentHandler#grabData() . 76
A.9 PageContentHandler#returnPageContentContainer() 78
A.10 NavigationCollection buildup . 79
A.11 PublishedCollection#load() . 80
A.12 PublishedCollection#getNavigationNodeIds() 81
A.13 Investige row parsing . 82
A.14 ObjectLoader: permissions . 83

B Testplans 85

C Measurements 91

List of Figures

1 My first experiences with computer programming 11

1.1 Organisational chart . 13
1.2 The Reprovinci building. 14

4.1 Reprovinci’s website and its administration area 22
4.2 Zend’s Model-View-Controller (mvc) pattern [18] as used by the content

management system (cms), displayed in simplified form. 22

5.1 An example analytical model . 26
5.2 The multiple phases of an http request. 27
5.3 The three approaches to response time. 28
5.4 The content list’s initial performance . 30
5.5 The class Collection. 31
5.6 A ticket in Trac. 32
5.7 KCacheGrind shows Authorisation->hasAccess’s profiling information . 32
5.8 An excerpt from ObjectCollection . 34
5.9 Situation after refactoring of ObjectCollection 35
5.10 A simple B-tree indexing last names . 37
5.11 Simplified data structure for object instance rbac. 38
5.12 Partial objects illustrated. 39
5.13 An excerpt from ab’s output. 39
5.14 JMeter’s node based user interface . 40
5.15 Aggregated test data in JMeter . 40

6.1 Illustration of the sorting bug in ObjectCollection 45
6.2 A http proxy recorder records http traffic. 45
6.3 small.local ’s content list, before and after 46
6.4 medium.local ’s content list, before and after 47
6.5 large.local ’s content list, before and after 48

7.1 An example database model for the FriendFeed approach 53

A.1 Situation after refactoring of ObjectCollection 68

C.1 small.local ’s content list, before and after 92
C.2 medium.local ’s content list, before and after 93
C.3 large.local ’s content list, before and after 94
C.4 small.local ’s detail page, before and after 95
C.5 medium.local ’s detail page, before and after 96
C.6 large.local ’s detail page, before and after 97
C.7 Editing of small.local content item, before and after 98
C.8 Editing of medium.local content item, before and after 99
C.9 Editing of large.local content item, before and after 100
C.10 Viewing of several pages from small.local, before and after 101
C.11 Viewing of several pages from medium.local, before and after 102
C.12 Viewing of several pages from large.local, before and after 103

5

Listings

5.1 Permissions are joined . 37
5.2 Permissions are queried in a subquery . 37
5.3 Example of a simple test plan using Couchmark 40
6.1 Testplan for the cms’ content list . 44
A.1 Inlining of _checkCallback . 66
A.2 Direct lookup in Authorisation#hasAccess() 70
A.3 Optimisation of String::renderNameToKey() 72
A.4 Direct lookup in NavigationCollection#getNode() 73
A.5 Caching strategy in PageContentHandler#grabData() 76
A.6 The ContentCachingStrategy interface 76
A.7 Change in permissions check in ObjectLoader 83
B.1 Testplan for the cms’ content list . 85
B.2 Testplan for editing content items on the detail page 86
B.3 Testplan for viewing content items on the detail page 87
B.4 Testplan for viewing several customer website pages 88

7

List of Tables

2.1 The server requirements . 16
2.2 Stakeholders with their interests and contributions 18

3.1 Table of risks and their probabilities and impacts 20
3.2 Project timeline . 20

9

Preface

My passion with computer programming started around when I was nine or ten, creating
message boxes using VBScript, drawing spirals and the lot in logo and making dos
programs for maths exercises using QuickBasic. When I was about twelve years old, I
came in contact with Hypertext Markup Language (html) and JavaScript. Two years
later, I was creating dynamic web pages using PHP: Hypertext Preprocessor (php). I
soon decided I would study computer science.

I love the web as medium. It is a very accessible and dynamic piece of technology,
both from a technological and from a human perspective. It can be driven by a plethora
of platforms such as Java Enterprise Edition, php and Ruby. In fact, any platform that
can work with sockets can serve web pages. And through the mainly standardised mark-
up language, anyone with a browser can visit your creation. The end-user doesn’t have
to install anything but a browser to visit Google or your personal homepage.

When I started looking for a graduation internship, I applied at Studentenbureau. Studen-
tenbureau acts as an intermediary between students and companies offering internships.
They compare personal preference, experience and location, before pairing up a student
and a company. After sending in my profile, meeting with a Studentenbureau represen-
tative, speaking out my preferences and doing a php test, I was invited for an interview
at Reprovinci.

Reprovinci is a fairly small company, employing about twenty people. Due to their
size, the atmosphere is informal and the organizational structure is flat; just what I like.
I was explained Reprovinci has its own cms, which has performance issues. This seemed
like a challenge to me, as I had little experience with software optimisation.

During this project I have optimised their cms and recommended several practices to
prevent performance issues in the future. This thesis does not highlight every optimisa-
tion I have made, but tries to explain the theory behind performance issues and how I
applied these during my internship. If you’re interested, all optimisations can be viewed
in short form in the appendix.

This thesis has been written in English so I don’t have to come up with odd transla-
tions. Above all, I believe it enables me to write more interesting and readable text than
I would be able to in Dutch.

I have found this project very versatile and enjoyed seeing the results of the opti-
misations. I have gathered more knowledge on how to prevent performance issues and,
whenever they do pop up, how to find and destroy smack get rid of them.

For creating this opportunity and for guiding me, I would like to thank my company
supervisor Dirk-Jan van Roest and my school supervisor Eric Gerlofsma. They have both

Figure 1: My first experiences with computer programming

11

generated helpful input.

If you come across any terms you do not understand while reading this thesis, you may
find an explanation in the glossary on page 59.

Reinier
Schoonhoven, May 12, 2010

Chapter 1

Reprovinci

Reprovinci comprises two companies. The oldest of the two, Reprovinci bv, was founded
in the year 2000 and is responsible for designing posters, brochures, cd booklets, branding,
websites and much more. Their own printing office can print or press anything from
posters and tickets to canvases and billboards. Large runs are outsourced.

Revasa Design was founded in the year 2001 and created websites while you and me
had their evening off. Through extensive collaboration, Reprovinci bv and Revasa Design
decided to engage in a closer relationship; Revasa Design was renamed to Reprovinci
Internetdiensten bv (Reprovinci Internet Services) in 2005 and moved into the same
building.

Nowadays, Reprovinci has its own cms, and takes care of search engine optimisation
(seo) and digital newsletters, targeting the Dutch small and medium enterprises and
(Christian) non-profit organisations.

In total, Reprovinci employs twenty people, three of which are full-time employees
of Reprovinci Internetdiensten bv. Two of them are part-time employees. A fairly small
enterprise, Reprovinci is a flat organisation. This is just what I like.

Figure 1.1: Organisational chart

13

CHAPTER 1. REPROVINCI

Figure 1.2: The Reprovinci building.

14

Chapter 2

Project summary

2.1 Problem definition

Reprovinci Internetdiensten bv (from now on referred to as Reprovinci) decided to build
its own cms both out of stubbornness and out of want to keep full control of its fea-
tures1. Even though it’s object oriented and was initially well designed, the cms has
had may features added through the years, breaking its design. It now houses inefficient
algorithms, performs too many database queries and suffers, to some degree, from clone-
and-modify programming. Consequently, the performance of the system has decreased
to such a level that customers started to complain. Additionally, the servers experience
more stress than necessary.

To illustrate the performance of the system: a paginated list of the customer’s content
is shown in the administration area along with some navigation. With 50 of 1700 items,
the page is generated in 5.5 seconds and reaches a peak memory usage of 40MB.

The problem definition that goes with this story reads as follows:

“As the page structure and contents grow, the content management system becomes less
usable, quickly reaching a point where it becomes unworkable.”

2.2 Thesis statement

To address this issue, Reprovinci decided to initiate an optimisation project and hire an
intern to fix the mess (just kidding). The thesis statement is:

Improve the performance of the content management system.

2.3 Goals

To solve the performance issue, I am expected to:

• determine the causes of the low performance of the system;

• advise on how to solve these issues;

• address these issues;

• and to prove the performance has improved sufficiently.

The concrete goal of the project and the definition of “sufficient performance” is:

1For a more detailed description of the cms, see chapter 4.

15

2.4. REQUIREMENTS CHAPTER 2. PROJECT SUMMARY

All pages must be generated within half a second.

2.4 Requirements
There are certain requirements that have to be met to validate the achievement of the
project’s goal. One of these requirements is the testing environment. To measure accu-
rate performance results, I’d have to commandeer one of the production servers. They
are, however, in use and indispensible. Next in line is the development server, where
customer websites are developed and new cms releases are tested. This server, however,
doubles as a file server and experiences variable load throughout the day, resulting in
inaccurate performance measurements. As accurate and repeatable measurements are
paramount, I have chosen, in agreement with my supervisor, to setup my own work-
station as testing platform. The hardware and software requirements of the server are
described in table 2.1.

Hardware
2.8GHz dual-core 64-bit processor
2GB of ram
7200rpm hard disk

Software
Apache 2.2.9
php 5.2.6
MySQL 5.0.51
Xdebug 2.0.5
Windows 7

Table 2.1: The server requirements

As the cms’ content can vary from customer to customer. They may use many different
content types, have a lot of content entries or a combination of these two. To take these
variances into account I chose to define three site blueprints. They are as follows:

• small.local ;
5 content types
200 content entries
3 versions per content entry
10 navigation nodes in a balanced binary tree with 10 content entries per node

• medium.local ;
10 content types
3 000 content entries
4 versions per content entry
30 navigation nodes, 50 content entries per node

• large.local ;
20 content types
20 000 content entries
5 versions per content entry
100 navigation nodes, 500 content entries per node

The problem with this approach is that complex, relational data has to be generated
that fits the database design. Generating such data is prone to error, be it with or without

16

CHAPTER 2. PROJECT SUMMARY 2.5. SCOPE

tools. The data is also less representative than real data as provided by customer use.
We therefore chose to steal borrow use the content of existing websites. These websites
have similar characteristics to the blueprints described before. These use cases are as
follows:

• small.local ;
19 content types
approx. 200 content entries
approx. 1.5 versions per content entry
35 navigation nodes

• medium.local ;
26 content types
approx. 7 500 content entries
approx. 3 versions per content entry
800 navigation nodes

• large.local ;
14 content types
approx. 15 000 content entries
approx. 3.5 versions per content entry
75 navigation nodes

As you can see, small.local is quite a small website. medium.local has a large naviga-
tional structure and a lot of content types. large.local implements a web shop and offers
many products, whose content has changes a lot, resulting in relatively many versions.

2.5 Scope
The concrete goal of generating all pages within 0.5 seconds narrows the scope consid-
erably on one hand. On the other hand, pursuing this goal and this goal only would be
very naïve. I have therefore chosen to draw up a wider scope.

To the scope will belong:

• researching the performance of the system on all fronts, focusing on response time;

• and increasing the response time of the system.

2.6 Conditions
To consider the project a success, the following conditions must be observed:

• the project’s goal should be achieved before May 31, 2011;

• the thesis must be handed in before 12 am on May 31, 2011;

• any changes made to the codebase should be backwards compatible;

• any changes that are not backwards compatible must be accompanied with docu-
mentation and/or up- and downgrade scripts;

• any changes must not be accompanied by an increase in server stress;

• and any changes must not result in an increase in memory usage.

2.7 Stakeholders
Multiple parties are involved with the project. You can see the parties and their interests
and contributions in table 2.2.

1Just observations, not remarks.

17

2.8. ASSUMPTIONS CHAPTER 2. PROJECT SUMMARY

Interests Contributions
Reprovinci Reduced maintenance time Knowledge of cms

Satisfied customer Intern(ship) supervision
Less server capacity needed Internship compensation
Project success

Customer Reduced maintenance time Opinion/complaints1
Less frustration Money

Intern Knowledge and experience Knowledge and experience
Project success Performance improvements
Internship success Cheap employee1

Table 2.2: Stakeholders with their interests and contributions

2.8 Assumptions
During this project I assume the cms’ processes are deterministic and not subject to
arbitrariness2. Any arbitrariness in output after (sound) optimisations I consider a pre-
existing bug and is, after reporting a bug, declared backwards compatible.

2.9 Deliverables
Considering the previous sections, the following deliverables will be the result of this
project:

• a performance-wise optimised content management system which is backwards com-
patible;

• and a thesis describing

– applied theories and practices;

– validity;

– recommendations;

– a conclusion;

– and an appendix of causes, solutions and proof per optimisation.

2Except when arbitrariness is called for, like in functions that are expected to return a (pseudo)random
integer.

18

Chapter 3

Management

3.1 Quality assurance
To ensure the project is kept within scope and adheres to its conditions:

• I meet with my company supervisor on a weekly basis;

• I meet with my school supervisor on a monthly basis;

• I evaluate made optimisations with my company supervisor;

• I work with the version control system (vcs) Subversion (svn);

• I work in a separate branch, which was branched from the trunk;

• and I merge the trunk with my performance branch on a frequent basis to keep
from straying too far from the main development branch.

Additionally, I have advised to set up Trac, which is a web-based software project
manager that manages tickets1, keeps an integrated wiki and offers tight integration with
the version control system. I manage all optimisations and their progress and result in
this system. This keeps me organised and “records” my work at the same time.

3.2 Risks
There are risks involved with every project. To stay ahead of these risks, a summary can
be found in table 3.1.

3.3 Project timeline
The project timeline can be found in table 3.2.

1A ticket can be any task, including a bug or an optimisation.

19

3.3. PROJECT TIMELINE CHAPTER 3. MANAGEMENT

Risk and measure Probability Impact
Reprovinci terminates the project early. Very small Very high
No measures can be taken to prevent such an event, except for de-
livering good work.

Prolonged illness delays the project. Very small Very high
No measures can be taken to prevent such an event. Except for
eating broccoli, maybe.

The thesis is not completed within time. Medium Very high
Weekly meets with my company supervisor. Monthly meets with my
school supervisor.

Proposed performance improvement cannot be achieved. High Low
Achieving a maximum response time of 0.5 seconds for 100% of the
requests in a load-free environment is virtually impossible. In case
this occurs, an explanation must be provided in the conclusion.

Table 3.1: Table of risks and their probabilities and impacts

Date
Phase I: Orientation Tue Feb 1
Finish orientation assignment Fri Feb 11

Phase II: Optimisation Mon Feb 14
Hand in project plan Fri Mar 11

Phase III: Performance and advisory report Mon May 9

Phase IV: Thesis Mon May 16
Hand in thesis Tue May 31
End of internship Thu Jun 30

Table 3.2: Project timeline

20

Chapter 4

Current situation

In this chapter we look more closely into how the cms came into being and how it works,
both functionally and technically.

As told before, the cms was developed both out of stubbornness and out of want to keep
full control of its features. By developing your own system you can fully customise it to
your needs. One must still ensure the system is stable and performs on a satisfactory level.
Reprovinci could also have chosen other methods to offer their clients unique features. By
extending an existing cms through plugins, you can rely on a stable, evolving codebase.
However, depending on their plugin system, not all customisations may be possible. More
profound changes in functionality can be achieved by forking1 a project and adding or
changing its features. Then again, keeping up with the original project’s changes may
be a time-consuming and difficult process. All approaches have their merits, but the fact
remains Reprovinci have developed their own system.

4.1 Functionalities

The cms is built around several concepts, these include:

• the structure;

• content in the form of user defined objects (udos) and user defined forms (udfs);

• e-commerce (pricing, stock management);

• mailing;

• templates;

• users and user rights;

• and keeping udo content safe through versioning.

All customer websites are built from templates, as is the administration area itself.
Generally speaking, these templates suffice for most websites. If this is not the case,
there’s always the option of creating a custom content handler, which can implement
other business logic.

Virtually every page contains one or more of the previously mentioned udos. These
udos can range from a news message to a shawl. They can be related (like a travel and a
destination are related), they can have a special Christmas price and/or only run during
a specific period (the life cycle). udfs, on the other hand, can be created directly from
the cms’ administration area.

1Forking is both the act of inflicting damage upon someone with a fork and the act of (legally) copying
a project’s source code and starting development on one’s own.

21

4.2. SOFTWARE CHAPTER 4. CURRENT SITUATION

Figure 4.1: Reprovinci’s website and
its administration area

Both udos and udfs can be inserted into
the website structure. This structure is made
up out of nodes, which form a tree structure.
Each node can have one or more assorted con-
tent items and each content item can be at-
tached to multiple nodes.

4.2 Software

The cms has been built on php. php is a
widely adopted interpreted language, which
many consider slow, just because it’s an inter-
preted language. Also, the platform is predom-
inantly used by beginner programmers due to
its simplicity. The truth is that php is quite
light-weight and a hassle-free language, which
can, let me stress, in the right hands, produce
professional, well performing web applications
that scale well, both horizontally2 and verti-
cally3. If you’re not convinced, remember that
Facebook was, until recently, a fully php-based
web application. [10]

As its backbone the cms uses the Zend Frame-
work, a collection of mainly helper classes you
may use – thus essentially more a library than
a framework – that enable a developer to more
quickly and easily develop the typical mvc based application.

4.2.1 Architecture

As I said the cms employs the mvc-pattern, which separates data, presentation and
logic, allowing for separate development and loose coupling4. Known as routing, Zend
determines which controller to use from the url. At the heart of the model layer is the
ObjectCollection class, which is able to load udos, based on an array of configura-
tion items, such as a navigation node or a search query. This construction is shown in
simplified form in figure 4.2.

Figure 4.2: Zend’s mvc pattern [18] as used by the cms, displayed in
simplified form.

2Scaling horizontally, or scaling out, means adding more nodes to a system. A web application’s load
can, for example, be distributed among more than one server. [8]

3Scaling vertically, or scaling up, means adding resources to a single node in a system. For example,
more ram can be added to a server in case of memory shortage. [8]

4In a loosely coupled system, separate components know little about other components, other than
their interface (how to address them).

22

CHAPTER 4. CURRENT SITUATION 4.3. PERFORMANCE PROBLEMS

important udos are defined through an eXtensible Markup Language (xml) file,
which is parsed by ObjectCollection. These blueprints are loaded into Objects. udo
data is also kept in Objects, but in its VersionCollection attribute Object#versions.
These data are stored in the database as follows:

• Object stores references to udo blueprints.

• ObjectInstance stores udo instances and keeps general information like creation
date and owner.

• UDO_* tables store udo-specific data, such as a title and a body for a news udo.

So as to prevent confusion, the definitions will be referred to as udo definitions or object
definitions, and the actual instances will be called udos, objects or content items.

To make sure the right people access the right data, the cms implements a role-based
access control (rbac) system. This system assigns users certain roles, which in turn have
certain permissions. These permissions can be assigned to virtually anything through
labels. The most common use is specifying rights for udos.

4.3 Performance problems
The cms currently experiences many performance problems, especially in the backend.
The content list, a set of pages that display all of the underlying website’s content in a
list view, can become very slow (in the order of multiple seconds) as the amount of object
definitions and objects grow. The content detail page, a page where one can edit a content
item, is also quite slow. A change in the website’s structure causes a recompilation and
recaching of the navigational structure, which can take anywhere from a couple of seconds
to four minutes for the largest website.

23

4.3. PERFORMANCE PROBLEMS CHAPTER 4. CURRENT SITUATION

24

Chapter 5

Performance

Abstract
This chapter addresses the work I have done during my internship in a

didactic way, describing the theory and applying it to an exemplary optimi-
sation. It starts with explaining what performance is; how to analyse and
measure performance and then tries to address various causes that underlay
the cms’ performance issues and my solution to them.

To the reader

My school supervisor has urged me on many occasions to split this chapter into separate
chapters, describing first theory and then optimisations I have made, to simplify finding
out what I have actually done. This thesis severs both as a graduation text and as a
transfer of knowledge and recommendations to Reprovinci. I also feel that the theory
and the practice are to much interrelated to separate and have therefore not separated
them.

5.1 What is performance?

When referring to computers, performance in general can be described as the amount
of useful work accomplished by a computer system in relation to the time and resources
used. [1] This relation can be characterised by one or more of the following quantifiers:

• short response times: the amount of time in which a resource such as an html-
document is loaded;

• high throughput: the amount of resources that can be processed within a certain
time frame;

• low utilisation of computer resources such as the central processing unit (cpu) and
memory;

• high availability: a term often used in systems administration meaning the amount
of time during which a user is able to use a system;

• fast or good data compression and/or decompression;

• and high bandwidth. [1]

25

5.2. PERFORMANCE ANALYSIS CHAPTER 5. PERFORMANCE

These characteristics easily influence each other. For example, a computer system
usually resorts to paging1during high utilisation of computer memory. As disk reads
(and writes) are relatively slow [2, 3], the response time, for example, decreases.

Thus far we have discussed something called computational performance. But perfor-
mance is not just numbers; the user plays a role as well. A system may have a low
computational performance, yet be made to appear fast through the use of elements
such as splash screens or progress bars [4]. This is called perceived performance.

An example of low perceived performance is the udo detail page. This page uses, after
the html-document’s finishes loading, three synchronous ajax2 requests to load related
information, blocking the user interface. To the user, the page is unusable and has thus
“not finished loading”, even though the page is usable without the related information.

Reprovinci’s cms has high response times, low throughput, high utilisation of computer
resources and it uses no compression. Its computational performance is therefore low.
There are no elements increasing its perceived performance. Its perceived performance
is therefore low as well.

Not all of these characteristics apply to Reprovinci’s performance problems, or are not
for me to fix. Compressing and decompressing data isn’t part of the cms’ day-to-day
business. High bandwidth has not proven to be an issue and is hard to test locally.
Lastly, high availability is more of a system administration issue.

These quantifiers will shortly be described in more detail. But before that, it is important
to understand what approaches can be taken to analyse a system’s performance.

5.2 Performance analysis
Performance can be analysed in a number of ways. In his thesis, Chiew describes [5,
pp.31-32] three performance analysis techniques.

The first is analytical modelling. This technique is based on a mathematical model of the
system to be tested. Based on the main aspects of the system, its accuracy is the lowest
of all analysis techniques, as it cannot take details into account. The response time of
large.local ’s product page can be described as the model shown in figure 5.1.

Assuming that:
R is the time needed for routing;
a indicates whether the user is anonymous (0) or not (1);
dhit is the access time for a cache item;
dmiss is the penalty imposed in case of a cache miss;
D is the average cache hit ratio;
p is the amount of products per page;

a simple analytical model would look like:

Tproducts = R+Ddhit + a(p− 1)Ddhit + p(1−D)dmiss

Figure 5.1: An example analytical model of large.local ’s product page.
Anonymous users may see a cached page, while non-anonymous users may
see p cached products.

By modifying the parameters of this model, a quick prediction of the performance of
1When a process accesses a certain memory location, paging transparently maps this location to

a certain section (a page) in memory. This allows for non-contiguous memory allocation, but also for
storing pages on secondary storage, such as hard disks. The latter is the functionality generally associated
with paging.

2Asynchronous JavaScript and xml: a method of requesting resources from JavaScript.

26

CHAPTER 5. PERFORMANCE 5.3. METRICS

a system can be made.

The second technique is called simulation. A simulation model can be created both using
simulation software – usually tailored to a specific area, such as electronics or biology
– and a programming platform. This technique allows for the construction of a more
detailed model than using an analytical model, at the cost of time. The accuracy of its
results are still limited.

The last technique is simply measurements of existing systems. By measuring the
metrics of an existing system, you get the most accurate results. The downside to this
technique is that, for the best results, one must measure a system in a production en-
vironment. This usually means that the system be quarantined to remove influences
from other users. Additionally, it is a relatively inflexible technique, as changing of the
parameters or the behaviour of the system in a production environment are difficult to
realise.

Fortunately, Reprovinci already have an existing system, and because I decided to mea-
sure the system locally (as described in chapter 2.4) and because php code doesn’t have
to be recompiled and redeployed after modification, changing parameters and system
behaviour can be done easily.

5.3 Metrics
As determined near the beginning of this chapter, the following characteristics remain:

• response time;

• resource utilisation;

• and throughput.

5.3.1 Response times
Response times are, when using measurements of existing systems, easily measured by
requesting pages from the server the application resides on and measuring the response
time. Tools, simple and more complex, are readily available for these measurements.

But what is response time? A Hypertext Transfer Protocol (http) request is com-
prised of multiple phases: connection, request, response and rendering, as is shown in
figure 5.2. A response time can consist out of a number of these phases. I will describe

Figure 5.2: The multiple phases of an http request.

27

5.3. METRICS CHAPTER 5. PERFORMANCE

Figure 5.3: The three approaches to response time.

three approaches, illustrated in figure 5.3, having considered them during the optimi-
sation project. The first represents the time spent from the moment the users clicks
a hyperlink, for example, until the browser has finished rendering the resource. This
approach considers the entire process to be the response time. The second one is the
response time as it is typically experienced from the user’s perspective: the user clicks
on a link and is then, when the first content starts to appear, able to interact with the
content. When the user is able to interact may depend on content, download speeds and
user experience. The third and last interpretation concerns only the time it takes the
server to construct the response based on the request.

Each of these interpretations is a valid approach to measuring the response time.
In Reprovinci’s cms optimisation project we have chosen to measure the latter inter-
pretation. Measuring the first approach has to be performed from a browser. There
are extensions available for several browsers, such as Google’s Chrome3. Unfortunately,
these tools are simplistic and do not offer many options for customising the benchmark-
ing process. Also, the measurements can vary greatly with browser, hardware and even
geographic location. This makes it harder to predict how an application performs. The
second approach represents the actual user’s experience of performance. It is, however,
even more variable than the first approach. Its measurements are strongly subject to user
experience, are also time consuming to make and requires the commitment of multiple
people, not lending itself for repeated testing. Choosing such an approach results in less
repeatable and less reliable results, as people respond differently from time to time.

Response times can differ from request to request. They are dependent on environmental
factors, such as processor and disk loads), but also on system state, user variability and
cache availability. The web server may have just started up, requiring more work before
the first request can be served. Different users may have different rights, requiring more
or less content to be served. Cache misses also contribute to higher response times. So
which combination is representative?

One’s first thought may be to assume a worst case scenario: the web server has just
started, the user has many rights and the cache is empty. This way, the performance can
only turn out better than expected. But this type of request happens only now and then
and is probably not representative of the performance of the web application.

Repeatedly testing the same page results in a higher query cache hit rate than in a
real-world environment. It is very realistic that some query results may not be present
in the query cache during most of the requests, as queries vary from application to appli-
cation and from user to user. At Reprovinci we have therefore chosen to clear the query
cache of the database server at every request during the research phase. The application

3Chromium benchmark extension, http://goo.gl/SuVka

28

CHAPTER 5. PERFORMANCE 5.3. METRICS

cache, however, is not cleared, as it contains frequently used and infrequently replaced
cache entries, such as the web application’s object blueprints and navigational structure.
During the test phase, the application cache and query cache is cleared once, after which
an extensive test sequence is performed with all caches enabled, forming a representative
image of the applications true performance.

This section has mainly addressed response time based on the server’s perspective. Other
ways of response time determination are active probing, which is the periodic measure-
ment of response time by geographically distributed agents, and the approximation of
response time by server log analysis [5, pp.59-61]. An advantage of these approaches is
that the response times of the production servers are measured. Server logs are often
analysed due to their availability.

5.3.2 Resource utilisation

A highly stress resistant web application can handle large amounts of users concurrently,
while maintaining an acceptable response time. Stress resistance is primarily related to
resource utilisation. Major influencers are computational performance (cpu), usage of
primary memory (ram) and the amount of reads and writes to secondary storage (e.g.
hard disk). If any of these come short, response times will increase drastically [TODO:
prove using Couchmark].

On unix systems, the load average is a good indication of the stress the cpu is under.
It tells how many processes are using the cpu or waiting for the cpu. A load of 1.7 on
a single-core cpu indicates the cpu should be 70% faster to handle the entire workload.
On a multi-core cpu, this load is acceptable and can be handled by the cpu. The lower
the load, the better an application performs. The Windows platform appears not to have
such an indicator. In its task manager, the percentage of cpu utilisation (the inverse of
idleness) is shown. These two indicators can best be compared using the analogy of a
bank:

“The Windows value would be equivalent to the proportion of time that a teller
spends serving customers. The unix value would be the average number of
customers waiting in the queue.” – Philip Clark

While the cpu utilisation is very intuitive and easily understandable by laymen,
it becomes less meaningful as soon as the number reaches 100: the cpu is probably
overloaded, but by how much?

Luckily, Windows offers the Performance Monitor, which offers a large range of met-
rics, concerning pretty much all of the system’s components, including a metric of the
processor queue length, indicating how many threads are waiting for the cpu. This met-
ric is very similar to, but not the same as, unix’ load average. Microsoft state that, for
busy systems, “the queue length should range from one to three threads per processor.”[6]

Stress resistance is not directly related to Reprovinci’s optimisation project, as the goal
is to reduce all response times to 500 milliseconds or less. Still, I intend to keep the load
on the web server at a same level as before or at a lower level than before. Serving pages
within 100 milliseconds, yet completely hogging the server is not an option.

5.3.3 Throughput

Throughput is defined as the amount of resources that can be processed within a certain
time frame. This metric is dependent on virtually all performance characteristics. The
one influencing this number the most is stress resistance. Even though response times
are sky high (say, a minute) and if the server can handle the concurrency of, say, 200
users, while sustaining the same response time it can still put through 200 requests per
minute.

29

5.4. PERFORMANCE BEFORE OPTIMISATION CHAPTER 5. PERFORMANCE

5.4 Performance before optimisation

Now that we have a good idea what quantifiers may be used to portray the performance
of the cms, let’s give these quantifiers a value. The performance of the cms per use
case as it was before I started my internship can be found in figure 5.4. This figure only
shows the performance of the content list. More measurements can be found in appendix
chapter C.

Sample

R
es

po
ns

e
tim

e
(s

)

0 10 20 30 40

0.
0

0.
5

1.
0

1.
5

2.
0

0
0.

2
0.

4
0.

6
0.

8

before − small.local − content list

Response time (s)
Processor queue (mean over 30s)
Response time (QCC, s)
Processor queue (QCC, mean over 30s)

Page 1 Page 2

Sample

R
es

po
ns

e
tim

e
(s

)

0 10 20 30 40

0
2

4
6

8

0
0.

4
0.

8
1.

2
1.

6

before − medium.local − content list

Response time (s)
Processor queue (mean over 30s)
Response time (QCC, s)
Processor queue (QCC, mean over 30s)

Page 1 Page 2

Sample

R
es

po
ns

e
tim

e
(s

)

0 10 20 30 40

0
2

4
6

8
10

12

0
0.

4
0.

8
1.

2
1.

6
2

2.
4

before − large.local − content list

Response time (s)
Processor queue (mean over 30s)
Response time (QCC, s)
Processor queue (QCC, mean over 30s)

Page 1 Page 2

Figure 5.4: The content list’s initial performance across all three websites.
Thirty samples for each page.
QCC = query cache clear

30

CHAPTER 5. PERFORMANCE 5.5. WHEN TO OPTIMISE

5.5 When to optimise

Now that you’ve determined your application is really quite slow, you feel like you should
optimise your application. But should you? One of the many pitfalls beginning program-
mers fall into is premature optimisation. While one should always work dryly4 and keep
an eye out for obvious slowdowns, one should typically not optimise before the applica-
tion (or dependency-less module, for that matter) has been realised as it was designed.
One may come across unforeseen design problems in the future with so-called code or
design optimisations one has implemented in the past. Only when the application has
been realised as designed can one solve performance problems correctly.

The second issue to address is that, once performance problems have been solved on
the design level, optimisations on other levels are needed to increase the performance of
the application.

Collection
_members: array
_onload: mixed
addItem(obj: mixed, key: string): void
replaceItem(obj: mixed, key: string): void
removeItem(key: string): void
getIterator(): CollectionIterator
keys(): array<string>
length(): int
exists(key: string): boolean
setLoadCallback(func: string, obj: mixed)
checkCallback(): void
(6 more...)

Figure 5.5: The class Collection.

One such a level is the optimisation
of the source code. These optimisations
easily reduce legibility and maintainabil-
ity. This raises the question whether an
optimisation is justified. An example: in-
stead of regular php arrays, the cms uses
the class Collection (see figure 5.5), which
provides an object oriented interface to ar-
rays and essentially transparently allow ar-
rays to be passed around by reference5, in-
stead of by value6. It also offers the feature
of lazy loading by checking if the collec-
tion has been loaded and whether there’s
an onload function available. If so, it ex-
ecutes this method before accessing the
member array. This functionality was im-
plemented through the method Collec-
tion#_checkCallback(). As collections are used throughout the cms, this method was
called up to 33,000 times per request. For each call, php performed a context switch7

which reduced performance significantly. By inlining this method8 wherever _check-
Callback() was called, performance was increased by almost 10%, but it also decreased
maintainability, as the same block of code was present in 10 different places. Because it
is a small code block which is repeated only in one class, Collection, I determined that
this change was justified.

Other levels of optimisation include the compile, assembly and run-time level. All of
these are hard to apply to high-level programming languages9 such as php and Java
without changing their compiler or interpreter.

5.6 Methodology

Through the optimisation process, I have exercised a simple methodology. This method-
ology comprised seven phases:

1. Determine a page is slow.

2. Determine the cause.
4Don’t Repeat Yourself (dry) is a principle that states that “every piece of knowledge must have a

single, unambiguous, authoritative representation within a system” [7]. To work dryly is to conform to
this principle.

5Pass by reference: a reference to the value is passed when leaving a context, such as a method body.
Changes made to the value are reflected throughout other contexts.

6Pass by value: the value is copied when leaving a context, such as a method body.
7Passing around parameters and return values.
8More about this optimisation can be found in appendix chapter A.1.
9High-level programming languages are languages which generally abstract computer-specific details,

hide memory management and/or are easier to use than lower-level programming languages.

31

5.7. FINDING BOTTLENECKS CHAPTER 5. PERFORMANCE

3. Draw up a solution.

4. Estimate how much performance can be gained (using a quick fix, for instance).

5. Implement the solution if the estimated gain is more than 5

6. Perform comparative measurements.

7. Evaluation: compare the estimated and measured performance gain.

All resulting information is kept in a Trac ticket (see chapter 3.1). This way, the
entire process is kept with the actual changes in the svn repository. In the following
sections, I describe the practices I applied during the optimisation process.

Figure 5.6: A ticket in Trac.

5.7 Finding bottlenecks

So, we’ve determined our application is slow and that we actually want to optimise. The
next step is to determine why an application performs poorly. To determine this, one
may want to look into the software’s execution path. Profilers record how many times a
method or function is called and how long it takes to execute. Figure 5.7 illustrates this.

Figure 5.7: KCacheGrind shows Authorisation->hasAccess’s profiling
information

The table shows the cumulative time the method itself takes to execute (Self), the
cumulative time the method takes including the execution times of method it itself calls
added up (Incl.) and how many times it was called (Called). From this table we can

32

CHAPTER 5. PERFORMANCE 5.8. DESIGN AND PERFORMANCE

infer that the application spends approximately 28% of the request in the database10.
Additionally, there is the method Authorisation >hasAccess() that is called 242 times,
takes 9% to execute and calls other methods, which add 11% to its total execution time.
This method is interesting, as it performs a seemingly simple, almost atomic task of
checking whether a user has access to a certain udo.

I have found that methods that are suboptimal often share one or more of these profiling
characteristics:

• The method’s Self value is equal to or more than 10%. This probably means the
method is overly complicated or too long, or contains repeated code.

• The method is supposed to do something simple or an almost atomic task, yet its
Incl. value is equal to or more than 10%.

• The method is called a lot. This may indicate redundant calls. A lot is a very
relative term and it very much depends on the functionality of the method.

A lot of performance issues should become apparent by following these guidelines.
But remember, always use your common sense; if something looks suspicious, you should
investigate further.

5.8 Application design and its influence on performance

Very early in the project, ObjectCollection turned out to be a major culprit in the
cms’ performance issues. A request for the content list (see chapter 4.1) at medium.local
took [3.0s/5.5s]†, of which, after a query cache clear, fifty percent of the time was spent in
ObjectCollection#loadObjectInstances(). Fifty percent doesn’t have to be a prob-
lem, but in this case, that’s about 2.8 seconds for just 50 objects. On inspection, it
turned out that ObjectCollection had, through time, become the fat, omnipotent king
of the model layer. Whenever you needed udos, you went to him. It was responsible for:

• holding Objects (it is a Collection, after all);

• loading Objects;

• the configuration of which Objects to load;

• keeping the Object blueprints and the caching thereof;

• and other minor tasks.

If separation of concerns (SoC)11 were a law, the king would be sentenced to behead-
ing.

When designing a feature, the designer should always keep SoC in classes in mind. Ad-
ditionally, SoC stimulates object composition12. This results in smaller, loosely coupled
classes and methods, which makes them the more understandable and thus maintainable.
The inverse is also true: if one does not separate concerns, it typically results in large,
tightly coupled classes and methods, which – you guessed it – are hard to understand
and maintain. When the latter is the case, the class is prone to clone-and-modify pro-
gramming, as abstraction possibilities become less obvious and more time-consuming. In
the end, it consisted of an array of if-elses, which, query by query, narrowed down the
udos to load.

Before optimising the loading of objects, I decided to:
10PDO, PHP Data Objects, is a generic software interface for accessing different databases, such as

MySQL and Oracle.
†[x/y]: response time (x) versus response time with query cache cleared (y).

11Separation of concerns is a paradigm that, in summary, states code should typically be responsible
for one task only.

12Object composition is the act of combining simple objects into a more complex structure to perform
a complex task.

33

5.9. QUERY OPTIMISATION CHAPTER 5. PERFORMANCE

ObjectCollection
objectdefinitions: Collection<Object>
objects: ObjectInstanceCollection
config_type_conditions: array<int>
config_type_query: string
(40 more...)
setConfigTypeConditions(conditions: array<int>): void
getConfigTypeConditions(): array<int>
(82 more...)
loadObjectInstances(pagenumber: int = null): void
getObject(): ObjectInstanceCollection

Figure 5.8: An excerpt from ObjectCollection

• separate it from ObjectCollection into ObjectLoader#load();

• let ObjectLoader#load() return an ObjectLoaderResult;

• and let ObjectCollection implement ObjectLoaderConfiguration.

ObjectCollection’s interface is still backwards compatible, but the loading im-
plementation has been separated and expects an implementation of ObjectLoader-
Configuration. Further separation of concerns is difficult without breaking compat-
ibility. In the future, further separation of concerns should be strived for. The results
can be seen in figure 5.9.

In summary, bad design leads to large blocks of code, which are difficult to understand
and maintain. Inversely, good design generally leads to a more understandable and more
maintainable codebase.

5.9 Query optimisation

note This chapter addresses query performance issues as they appeared using the
MySQL database management system (dbms) and the MyISAM and InnoDB storage
engines. While chances are the same issues and optimisations apply to other dbmss,
each dbms uses different storage engines and employs different (internal) optimisation
techniques.

The king of the model layer has been on a diet, but it’s still performing badly. The
evildoers here are the queries performed. As I explained before, ObjectCollection-
#loadObjectInstances() operates by filtering objects query by query. Depending on
its configuration, it may filter on:

• rights;

• navigation node;

• whether an object is published or not;

• type(udo);

• life cycle;

• and more.

After that, sorting is applied. The resulting array with sorted object ids is used
for pagination and to load a certain amount of objects. Afterwards, additional data
like prices, items in stock and related objects and files are loaded and attached to their
objects.

34

CHAPTER 5. PERFORMANCE 5.9. QUERY OPTIMISATION

ObjectCollection
objectdefinitions: Collection<Object>
objects: ObjectInstanceCollection
config_type_conditions: array<int>
config_type_query: string
(40 more...)
loadObjectInstances(pagenumber: int = null): void
getObjects(): ObjectInstanceCollection

ObjectCollectionLoader
config: ObjectLoaderConfiguration
objectDefinitions: Collection<Object>
ObjectCollectionLoader(config: ObjectLoaderConfiguration, objectDefinitions: Collection)
load(...): ObjectLoaderResult
parseRows(statement: Zend_Db_Statement, ...): void
createIdQuery(objectDefinitions: Collection<Object> = null

ObjectLoaderResult
objects: ObjectInstanceCollection
paginator: Zend_Paginator
(...)
ObjectLoaderResult(objects: Collection, ..., paginator: Zend_Paginator = null)
getFetchedObjects(): int
getPaginator(): Zend_Paginator
(...)

<<interface>>

ObjectLoaderConfiguration

setConfigTypeConditions(conditions: array<int>): void
getConfigTypeConditions(): array<int>
(82 more...)

uses

returns

Figure 5.9: Situation after refactoring of ObjectCollection. The ellipses
replace details that would only confuse. A more detailed description of this
project can be viewed in appendix chapter A.2.

35

5.9. QUERY OPTIMISATION CHAPTER 5. PERFORMANCE

Unnecessary data

It goes without saying that you shouldn’t query for data you aren’t actually going to use.
To some extent, this is inevitable and something you don’t have to fix, but this wasn’t
the case with the administration.

Each object can have up to three types of versions: a published version, a version that
is in progress (ie. being edited, may soon be published) and history items. The published
versions had the flag published set to 1 and the in-progress version was the version with
a later creation date than the published version. For the content list and detail page
in the administration the in-progress version is used when available. Otherwise, the
published version is shown.

ObjectCollection’s loading procedure had two options for versioning: loading pub-
lished versions or just all versions. Thus, all versions were loaded. To determine whether
there was an in-progress version available and loading the published version otherwise
would query-wise be difficult and very expensive, as object versioning takes place on the
udo table level. To counteract this, I concluded we needed to query only the in-progress
versions and fall back to a published version if necessary. This would need extra joins to
be made per udo table. For medium.local, this would have meant extra joins for twenty
tables. This resulted in the conclusion that I had to add an in-progress flag. This way
I could query for versions that were published or in-progress. Implementing an in-query
in-progress-to-published fallback would also need extra joins, so I decided to query both
in-progress and published versions and handle the fallback programmatically.

Multiple queries

Using multiple queries has disadvantages. For each query the query string is sent, the
query cache is consulted, the query is performed or the cache read, and the result is sent
back; you may be transfering a lot of data for what may eventually be just a short list
of objects. Secondly, the database doesn’t have many chances to optimise. Lastly, data
integrity may be at risk; data may change in between queries, which may result in cor-
rupt data or data the user doesn’t actually have access to. It also has some advantages.
For example, the query cache hit rate is generally higher with multiple queries; if only
one query’s cache entry is invalidated due to a mutation, the others still “hit” the cache.
To improve the performance of object loading I merged the independent queries into a
single query using JOINs and the lot.

As queries get larger and more complex, query time is affected more and more easily.
The addition of a JOIN, aggregate function or an ORDER BY clause can bring a query to a
multi-minute crawl. There is never a single solution to a specific performance problem;
each query needs to be individually treated.

The execution plan

Of interest to anyone creating complex queries is MySQL’s execution plan. This plan
can be inspected by prefixing the query with the keyword EXPLAIN and has proven itself
to be very useful during the optimisation of ObjectCollection’s object loading. It can
be quite cryptic, but the plan provides a lot of information about the approach MySQL
takes to executing the query, such as the join order and use of indexes. For instance, a
missing index is very evident, indicated by the join type ALL and the key NULL.

The profiler

Another feature of interest MySQL’s profiler. One time during the optimisation of Ob-
jectCollection, I had one large query. I was having problems with sorting. The
addition of a ORDER BY clause would slow the query down to 8 seconds, or in some cases
even 30 seconds. This was unacceptable. The profiler exposed the thread state (states
during query processing) copying to tmp table on disk as the culprit. This was either due
to the data set containing TEXT fields, forcing MySQL to writing the temporary table to

36

CHAPTER 5. PERFORMANCE 5.9. QUERY OPTIMISATION

disk for sorting [21], or due to a too large a result set [22]. To resolve this issue and,
coincidentally, the issue of pagination (the need to know how many objects are available
in total without querying all their data), I separated the query into two queries, the
id query and the data query. The id query applied all configuration options, such as
permissions and sorting as well, returning all udo ids and names. This query performed
significantly better, as the data needed to sort was much smaller than before, fitting into
the system’s memory.

Indexes

Figure 5.10: A simple B-tree indexing last names. Smith refers to record
3.

The first thing to check is whether you have indexes in place (you’ll see why later on).
The dbms uses indexes to quickly find rows with specific column values [11]. Without
indexes, the dbms needs to perform a full table scan13. Indexes are usually stored in
B-trees14 [11], which allow for quick look-ups of a value (see figure 5.10). The index
record in turn refers to the complete record.

Indexes are useful when the cardinality is high, i.e. the values indexed are uncommon.
An index on the column city which always contains the text New York is pretty much
useless when querying for city=‘New York’, as the index returns all rows. On the other
hand, an index on the column id can be very useful, as querying for id=3 immediately
returns the associated row. In general, an index should only be placed on columns used
in JOINs and on columns where the index is expected to significantly limit the amount
of results.

Almost all indexes were in place in the cms’ databases.

Subqueries

Subqueries are commonly used in the cms. They are easy to read and understand, as
they seem to perform the task step by step. However, they are often despised, as they
are thought to perform badly (as did I).

The ObjectLoader makes sure only those objects are loaded the user has READ per-
mission for. The (simplified) database structure is shown in figure 5.11. A common
alternative to subqueries is joining. I decided to try a JOIN approach and, reluctantly,
an approach using a subquery, as shown in listings 5.1 and 5.2.

1 INNER JOIN Permission ON Permission.labelid = ObjectInstanceLabel.labelid
2 INNER JOIN RolePermission ON RolePermission.permissionid = Permission.id
3 INNER JOIN Role ON Role.id = RolePermission.roleid
4 INNER JOIN UserRole ON UserRole.roleid = Role.id
5 WHERE UserRole.userid = ? AND Permission.rights & 2 = 2

Listing 5.1: Permissions are joined

1 WHERE ObjectInstanceLabel.labelid IN (
2 SELECT DISTINCT Permission.labelid
3 FROM Permission
4 INNER JOIN RolePermission ON RolePermission.permissionid = Permission.id
5 INNER JOIN Role ON Role.id = RolePermission.roleid

13A full table scan means all rows are read sequentially.
14A B-tree is a form of binary search tree that allows more than two children [12].

37

5.10. PARTIAL OBJECTS CHAPTER 5. PERFORMANCE

6 INNER JOIN UserRole ON UserRole.roleid = Role.id
7 WHERE UserRole.userid = ? AND Permission.rights & 2 = 2
8)

Listing 5.2: Permissions are queried in a subquery

The JOIN approach clearly outperformed the subquery, finishing in 0.59 seconds, over
the subquery’s 0.87 seconds. After some further research into how subqueries work and
when to use and when not to use subqueries, I concluded the JOIN approach was the
way to go. However, during the writing of this chapter, I stumbled on these two pieces
of MySQL documentation [13]:

(...) for a statement that uses an IN subquery, the optimizer rewrites it as a correlated
subquery. Consider the following statement that uses an uncorrelated subquery:

SELECT ... FROM t1 WHERE t1.a IN (SELECT b FROM t2);

The optimizer rewrites the statement to a correlated subquery :

SELECT ... FROM t1 WHERE EXISTS (SELECT 1 FROM t2 WHERE t2.b = t1.a);

UPDATE t ... WHERE col = (SELECT * FROM (SELECT ... FROM t...) _t);

Here the result from the subquery in the FROM clause is stored as a temporary table, so
the relevant rows in t have already been selected by the time the update to t takes place.

By combining these two pieces of information, I concluded that for each object,
MySQL performs the permissions subquery. By wrapping these in a SELECT, the re-
sults of this query would be stored in a temporary table. This temporary table is then
queried for each object. After this adjustment, the subquery approach finished in 0.37
seconds, outperforming the JOIN approach.

5.10 Partial objects
An approach I often choose during the loading of interrelated objects, is the application
of partial objects. In short, a partial object is inserted whenever the data required to fill
it is not yet available. It typically only contains an id and a type identifier, which can
be the class the object is of.

Partial objects are heavily used in the new ObjectLoader. A udo has several users
related to it, among which an “owner”. The owner is the person who created the object.
It is very common for that person to have created other objects. If one were to load these
owners along with the objects in the same query, all related data needed to create a User

ObjectInstance

ObjectInstanceLabel
Permission
rights: INT

RolePermission

Role

UserRole
userid: INT

objectinstanceid

0..*

labelid
0..*

permissionid

0..*

roleid

0..*

roleid

0..*

Figure 5.11: Simplified data structure for object instance rbac.

38

CHAPTER 5. PERFORMANCE 5.11. BENCHMARKING

object would be retrieved multiple times. In this case, it increased the number of rows
dramatically, decreasing ObjectLoader’s performance. To counteract this, I decided to
query only the user ids. I then created a partial User object for each new id, stored it
centrally and attached it to the object (figure 5.12(a)). This way, the same User object
is attached to multiple objects. When I loaded the users afterwards , I filled the existing
User objects (5.12(b)). All objects then had complete User objects attached (5.12(c)).

(a) Load objects and partial users (b) Load com-
plete users

(c) Objects have complete users

Figure 5.12: Partial objects illustrated.

5.11 Benchmarking

After optimising a single feature, you may want to prove that the system’s performance
has actually improved. To do this, one can employ one of the many benchmarking tools
available for this purpose.

5.11.1 ApacheBench

ApacheBench, more commonly known as ab, is a command line benchmarking tool that
is suitable for simple tests. It can make multiple concurrent requests and report statistics
such as error rate, throughput, bytes transferred and mean response times, as can be seen
in figure 5.13. However, when devising more complex tests that involve, for example,
authentication, ab comes short, as configuring cookies or http authentication on the
command line is troublesome. For such more complex tests other, more flexible tools can
be used.

Concurrency Level: 10
Time taken for tests: 7.042 seconds
Complete requests: 100
Failed requests: 0
Write errors: 0
Total transferred: 455400 bytes
HTML transferred: 389100 bytes
Requests per second: 14.20 [\#/sec] (mean)
Time per request: 704.240 [ms] (mean)
Time per request: 70.424 [ms] (mean, across...)
Transfer rate: 63.15 [Kbytes/sec] received

Figure 5.13: An excerpt from ab’s output.

5.11.2 JMeter

JMeter is an Apache project that allows for complex test plans that are typically created
through its node-based user interface.

39

5.11. BENCHMARKING CHAPTER 5. PERFORMANCE

Figure 5.14: JMeter’s node based user interface

JMeter’s interface realises these test plans using controllers, which allow for repetition,
logic, only-once-execution et cetera. The raw sample data, containing response times,
bytes transferred and more, can then be saved to several output formats for later review.
For a quick insight, the aggregated data can also be displayed in several tabular and
graphical formats.

Figure 5.15: Aggregated test data in JMeter

This has been the most commonly used tool during my endeavour to optimise the
cms, as it allows for both quick and complex tests. Unfortunately, JMeter does not allow
for the measurement of custom metrics, such as processor or disk loads or php’s memory
usage. Measuring these metrics separately results in difficult to interpret test results. In
the perfect situation, all this data is collected by the same tool. To do this, we can make
use of the tool described in the next section.

5.11.3 Couchmark
My motto is: when all else fails, create it yourself (waefciy?). Derived from the word
benchmark, Couchmark is a Java tool I have been developing myself that essentially pro-
vides a little framework to perform benchmarks, which automagically collects samples.
The test writer can create both simple and complex tests in the concise, but powerful
Ruby language using simple constructs. Most importantly, the framework can be ex-
tended to, for example, allow for the measurement of php’s memory usage through http
headers, which can then be incorporated in the resulting sample data.

1 include Couchmark
2
3 class Float
4 def round_to(x)
5 (self * 10**x).round.to_f / 10**x
6 end
7 end
8
9 # Connect to metrics agent, residing on the web server

10 agent :localhost, 4300
11
12 # Defaults
13 http_defaults :host => ’medium.local’, :port => 80
14
15 # Collection of user metrics
16 default_metrics do |response, sample|
17 headers = response.headers
18 sample.set_metric ’php-memory’,
19 (headers[’X-Metric-Memory-Usage’].to_f()/1024/1024).round_to(2) # MB
20 sample.set_metric ’php-memory-peak’,
21 (headers[’X-Metric-Memory-Usage-Peak’].to_f()/1024/1024).round_to(2) # MB
22 sample.set_metric ’parse-time’,
23 headers[’X-Metric-Parse-Time’].to_f().round_to(2) # s
24 sample.set_metric ’cpu-load’,
25 get_sample(’cpu_load’, 30)
26 end
27
28 # One user
29 users 1 do |user_id|
30

40

CHAPTER 5. PERFORMANCE 5.11. BENCHMARKING

31 # Login
32 POST ’login’, ’/admin/auth/login’, {:username => ’*****’, :password => ’***********’}
33
34 # Load the content page fifty times, clearing MySQL’s query cache
35 50.times { |i| GET ’content-list’, ’/admin/content/content’, {:MYSQL_CLEAR_CACHE => 1} }
36
37 end

Listing 5.3: Example of a simple test plan using Couchmark

Listing 5.3 shows an example Couchmark script. I first specify where the metrics agent
is located. This agent is able to monitor cpu load, disk usage, you name it. Secondly,
I specify http defaults, such as host and portname. The next step is to specify extra
data that is added to every sample taken. In the example, I add php’s memory usage
and parse time, and the web server’s cpu load to the sample. Finally, I start one user
that logs in and requests the cms’ content list fifty times, clearing the query cache every
time.

As you can see, Couchmark is a very flexible, easy to use tool. I believe it has potential
and I intend to maintain this project in the future.

41

5.11. BENCHMARKING CHAPTER 5. PERFORMANCE

42

Chapter 6

Verification & validation

One of the main conditions to the success of this project was ensuring backwards com-
patibility as to ensure customer website templates and custom modules don’t break. The
code base and database has remained mainly backwards compatible.

One thing that has changed, though, is the sorting in ObjectLoader, due to a bug in
sorting logic. Every object is versioned. The previous object loader, ObjectCollection,
applied sorting over all versions. Each object can thus appear in different locations. The
first instance found is also the location of the object in the sorted list. This is shown in
figure 6.1. This bug is less apparent in the optimised version, as this version loads less
versions (see chapter A.3).

The other condition was that all pages must be loaded within half a second. To test
this, I created a test plan. A test plan often simulates a user as it browses a website. If
you’re interested in more aspects than just pure response time, you can use a http proxy
recorder. Such a recorder sits between the browser and the website (hence, a proxy) to
test and record every http transaction, including images, scripts and the lot, that takes
place. The benchmarking tool can then replay these actions using high concurrency
(simulating one or many users), creating an overall picture of the web application’s
performance and its impact on the server.

I am only interested in pure response time, while keeping an eye on server stress. To
validate we’ve met our condition, I have created four smaller test plans that measure
specific parts of the cms that were ill-performing. These four areas are:

• the content list;

• the detail page: editing and viewing;

• and viewing pages that list objects, such as large.local ’s product lists.

I wish to:

• make sure server stress has not increased at the cost of performance increase;

• memory usage has not increased dramatically at the cost of performance increase;

• compare the optimised cms’ performance to the original’s;

and to:

• simulate a worst case scenario by clearing the query cache repeatedly;

• simulate a a common scenario by clearing the query cache once, simulating a first
visit;

• while measuring:

– parse time as response time;

– and memory usage, to make sure it has not increased.

43

CHAPTER 6. VERIFICATION & VALIDATION

To do this, I have created a test plan in Couchmark. This test plan, listed in listing 6.1
applies for the content list. The test plans for the other three cases are very similar, and
can all be viewed in appendix chapter B.

1 include Couchmark
2
3 debug false
4
5 class Float
6 def round_to(x)
7 (self * 10**x).round.to_f / 10**x
8 end
9 end

10
11 # Connect to metrics agent, residing on the web server
12 agent :localhost, 4300
13
14 # Collection of user metrics
15 default_metrics do |response, sample|
16 headers = response.headers
17 sample.set_metric ’php_memory_peak’,
18 (headers[’X-Metric-Memory-Usage-Peak’].to_f()/1024/1024).round_to(2) # MB
19 sample.set_metric ’parse_time’,
20 headers[’X-Metric-Parse-Time’].to_f().round_to(2) # s
21 sample.set_metric ’cpu_load’,
22 get_sample(’cpu_load’, 30)
23 end
24
25
26 http_defaults :port => 80
27
28 for version in [’cms’, ’cms-trunk’] do
29 for host in [’small.local’, ’medium.local’, ’large.local’] do
30
31 # Defaults
32 http_defaults :host => host
33
34 # One user
35 users 1 do |user_id|
36
37 user_cookie ’CMS_VERSION’, version
38 user_cookie ’OVERRIDE_MODE’, ’prod’
39
40 # Clear query cache
41 GET "#{host}-admin-login_#{version}", ’/admin/’, {:MYSQL_CLEAR_CACHE => 1}
42
43 # Login
44 POST "#{host}-admin-login_#{version}", ’/admin/auth/login’, {:username => ’******

’, :password => ’******’}
45
46 sleep 30
47
48 # Load two content pages twenty times, no cache
49 for page in (1..2)
50 20.times do
51 response = GET "#{host}-admin-content-list-nc_#{version}", "/admin/

content/content/viewstate/page/value/#{page}", {:
MYSQL_CLEAR_CACHE => 1, :filter => ’udo’}

52 if response: response.sample.set_metric ’page’, page end
53 end
54 end
55
56 sleep 30
57
58 Load two content pages twenty times
59 for page in (1..2)
60 20.times do
61 response = GET "#{host}-admin-content-list_#{version}", "/admin/

content/content/viewstate/page/value/#{page}", {:filter => ’
udo’}

62 if response: response.sample.set_metric ’page’, page end
63 end
64 end
65
66 end
67
68 end
69 end

Listing 6.1: Testplan for the cms’ content list

Using R, a programming language specificly designed for (graphical) statistics, the
test plan’s result set produces the graphs in figures 6.3 through 6.5:

The content list is the area where the greatest improvements were made, something
Reprovinci’s customers will be very happy with.

44

CHAPTER 6. VERIFICATION & VALIDATION

Figure 6.1: Illustration of the sorting bug in ObjectCollection

Figure 6.2: A http proxy recorder records http traffic.

45

CHAPTER 6. VERIFICATION & VALIDATION

Sample

R
es

po
ns

e
tim

e
(s

)

0 10 20 30 40

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0
0.

2
0.

4
0.

6
0.

8
1

before − small.local − content list

Response time (s)
Processor queue (mean over 30s)
Response time (QCC, s)
Processor queue (QCC, mean over 30s)

Page 1 Page 2

Sample

R
es

po
ns

e
tim

e
(s

)

0 10 20 30 40

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0
0.

2
0.

4
0.

6
0.

8
1

after − small.local − content list

Response time (left, s)
Processor queue (mean over 30s)
Response time (QCC, s)
Processor queue (QCC, mean over 30s)

Page 1 Page 2

Figure 6.3: A comparison of small.local ’s content list, before and after
optimisation.

46

CHAPTER 6. VERIFICATION & VALIDATION

Sample

R
es

po
ns

e
tim

e
(s

)

0 10 20 30 40

0
2

4
6

8

0
0.

4
0.

8
1.

2
1.

6

before − medium.local − content list

Response time (s)
Processor queue (mean over 30s)
Response time (QCC, s)
Processor queue (QCC, mean over 30s)

Page 1 Page 2

Sample

R
es

po
ns

e
tim

e
(s

)

0 10 20 30 40

0
2

4
6

8

0
0.

4
0.

8
1.

2
1.

6

after − medium.local − content list

Response time (left, s)
Processor queue (mean over 30s)
Response time (QCC, s)
Processor queue (QCC, mean over 30s)

Page 1 Page 2

Figure 6.4: A comparison of medium.local ’s content list, before and after
optimisation.

47

CHAPTER 6. VERIFICATION & VALIDATION

Sample

R
es

po
ns

e
tim

e
(s

)

0 10 20 30 40

0
2

4
6

8
10

12

0
0.

4
0.

8
1.

2
1.

6
2

2.
4

before − large.local − content list

Response time (s)
Processor queue (mean over 30s)
Response time (QCC, s)
Processor queue (QCC, mean over 30s)

Page 1 Page 2

Sample

R
es

po
ns

e
tim

e
(s

)

0 10 20 30 40

0
2

4
6

8
10

12

0
0.

4
0.

8
1.

2
1.

6
2

2.
4

after − large.local − content list

Response time (left, s)
Response time (QCC, s)
Processor queue (mean over 30s)
Processor queue (QCC, mean over 30s)

Page 1 Page 2

Figure 6.5: A comparison of large.local ’s content list, before and after
optimisation.

48

Chapter 7

Recommendations

The cms has already become a lot faster than it was and with some effort, its performance
level can be maintained and even raised further.

7.1 Improve quality of code and maintaining perfor-
mance

Many of the cms’ late performance issues were due to problems with design and algorithm
inefficiencies. A couple of guidelines should be followed while developing for the cms.

• When designing a particular function, strive for separation of concerns and object
composition.

• Strive to keep methods small. This improves readability, understandability and
thus maintainability. Also, debugging tools like Xdebug will provide more useful
information.

• Prevent repeated execution of deterministic methods or code blocks.

• Prevent look-ups through looping, but ensure there’s an indexed array for a direct
look-up. This concept is similar to placing indexes in dbmss. If you must loop,
don’t forget to break out of the loop when you’ve found what you’re looking for.

• Reuse objects, don’t create multiple objects with the same data. This reduces
memory usage and makes sure changes to the object in one place are reflected in
other places. It also enables for post-loading. One way of implementing this is
through the use of a so-called identity map, which contains all objects by id and
type.

• Document classes, methods and the actual code. If done correctly, documentation
can be generated for all classes and their methods. Code should be self-documenting
(i.e. tell a story through correct naming and flow of data using parameters and
return data), but comments are often very informative. Take this as a rule of
thumb: if you have to think about a piece of code, it probably merits explanation
through comments.

To ensure these and other programming guidelines are followed, peer reviewing should
be implemented at Reprovinci. Provided it appears to perform its duty, virtually all code
is currently committed to the vcs unchecked. This has led to poorly designed systems
and poorly written code finding its way into the cms. There are many forms of code
review, but chiefly due to Reprovinci’s size, I recommend over-the-shoulder code review,
a lightweight method where a developer literally looks over the author’s shoulder as he
walks through the code [14]. Design and implementation should be open to discussion.

To ensure the same performance level is maintained, performance of new releases should
be compared with previous, proven releases.

49

7.2. REDUCE FILE CACHING CHAPTER 7. RECOMMENDATIONS

7.2 Reduce file caching

Currently, the file cache is large and contains many items that can be stored for a long
time. Placing these items in a memory cache would need a lot of memory or cause items
to be continuously discarded as they make place for other items. Improvements can be
made in many of the cms’ compontents, which could reduce the need for caching, making
it possible to move to a memory cache, improving performance and reducing disk usage
(reducing wear and tear and the risk of disk failure).

7.3 Software

Some of the server software used is outdated. Newer releases of software, such as Apache
HTTP Server and MySQL, often perform better and are more secure than previous
releases. Reprovinci is a relatively small company and can easily transition to newer
software.

For example, php can be upgraded from version 5.2 to 5.3 with minor changes. Bench-
marks show a possible 5-20% increase in performance. [19, 20]

7.4 Server architecture

Currently, Reprovinci has two production servers. One server is responsible for the largest
website, which is a large webshop. The other serves all other websites. The following
characteristics apply to this approach:

• Low reliability — if one server crashes, all websites residing on that server will
be inaccessible for hours or days (reliability through redundancy [15]).

• Low maintainability — upgrading software or hardware means downtime for all
websites residing on that server.

• Not stress-resistant — if one website attracts a lot of visitors, all websites’
performance and availability will suffer.

• Ease of persistence — data and sessions can be stored locally.

I believe Reprovinci should transition to load balancing. With load balancing, all
websites reside on all servers. Load is distributed automatically. Scaling horizontally has
the following characteristics:

• High reliability — if one server crashes, another takes over.

• High maintainability — software can be upgraded on one server, while the other
takes over.

• Stress-resistance — if one website attracts a lot of visitors, load will be spread
among all server.

• Persitence is difficult — data and sessions could be stored on a single server,
but this would again lower redundancy. Implementing load-balancing often requires
more than database servers configured in a master-slave configuration.

To ensure a good performance is delivered to Reprovinci customers and to assess the
servers’ health, I believe metrics should be collected. Such metrics include load; memory
usage; availability; and request and query throughput. There are a great many tools
available for Linux-based systems.

50

CHAPTER 7. RECOMMENDATIONS 7.5. ALTER UDO STORAGE

7.5 Alter storage of user defined objects
Reprovinci’s cms is able to handle user defined objects. The database design is currently
highly normalised. Normalisation ensures low data redundancy and high data consis-
tency, as data is kept only in once place. Because of this, each user defined object has
its own table, containing its data. When a website, like medium.local, has many differ-
ent user defined objects, querying these objects becomes a heavy task for any relational
dbms, as many tables have to be joined (around 30 for medium.local.

The content of these objects is primarily of interest to the customer and the end-user,
to humans. The queries performed on the data are generally not “interested” in “human
content”, like blog post texts. If we were to perceive all these objects as just objects with
different attributes, we can allow ourselves to approach this matter in a different way.

Each of these approaches should be checked for compatibility with Reprovinci’s udo-
approach, allowing for sorting, searching, indexing of attributes, and perform better than
Reprovinci’s current approach.

7.5.1 The entity-attribute-value model

The entity-attribute-value (eav)-model is one of these approaches. This approach, like
the name suggests, separates entities, attributes and value. Every entity can have any
number of attributes it wants, each of any type it wants. All this data is then selected
in a vertical form: each row contains an attribute and its value for a certain entity. I
have yet to form a reasoned opinion about this approach, but on first sight it seems like
a very worrisome approach and which seems hard to query (e.g. sorting).

7.5.2 Document-oriented databases

Document-oriented databases like Apache’s CouchDB and MongoDB are unstructured by
nature. They allow the storage of every type of “document”, a container for data. These
documents are still queryable through, for example, simple comparisons or map/reduce
functions, which filter and group results.

This seems like a viable alternative to the normalised approach. The downside to
this approach is, first of all, having a second database to worry about, secondly, I and
Reprovinci have no expertise on these databases, and lastly, being unable to directly join
the documents from MySQL.

7.5.3 FriendFeed

In a 2009 blog post, FriendFeed, a social sharing site, explained how they solved their
database design problem [16]. They store millions upon millions of entries, comments
and “likes”. Making structure changes to a table with millions of records could, they
claim, lock their database for hours as it modified the table. They were happy with
the proven relational dbmss and didn’t have too many confidence in document-based
databases. They decided to build a non-relational storage on top of MySQL. While this
issue doesn’t apply to Reprovinci’s cms, their solution may.

FriendFeed stores all data in serialised, compressed form in a table called entries.
To still be able to find entities by a specific attribute, they make an artificial “index”. To
find entities by a title, they make a table called index_title, which contains a reference
to all entities with a title attribute and the title string. These indexes are kept as entities
are modified.

Integrity between indexes and entity data is kept by what FriendFeed calls “the
Cleaner”. While it’s typically not necessary, indexes and entities may become out of
sync in transaction-less storage engines like MyISAM, as they are accessed sequentially
using separate queries. The Cleaner is designed to fix this.

The same can be done for Reprovinci’s udos. Sorting and searching can be done
by keeping sortable and searchable attributes in one or two separate index tables. The
database model could look like the on in figure 7.1. Attention should be paid to the
storage of the entity data, as writing temporary tables to disk during querying should be
prevented, and the storage of user defined collection (udc) attributes.

51

7.6. ALTER UDO UX CHAPTER 7. RECOMMENDATIONS

7.6 Alter user interaction with user defined objects
udos are currently shown to the user in a large mixed list. This is the default view.
The user can then choose to show only one type of udo. I suggest making the latter the
default, ie. moving the udo choice to the side menu, with the option of showing them
all in one mixed view. I believe this improves user interaction, but also performance, as
only one udo table has to be joined.

52

CHAPTER 7. RECOMMENDATIONS 7.6. ALTER UDO UX

Figure 7.1: An example database model for the FriendFeed approach

53

7.6. ALTER UDO UX CHAPTER 7. RECOMMENDATIONS

54

Chapter 8

Conclusion

The cms’ performance has come a long way, but, even though I and Reprovinci see it
as a success, has unfortunately not achieved the set goal of 500 millisecond page loads.
This is due to both the four month time limit and due to the general issue underlying
the cms’ code base, namely code quality. There’s just a fraction too many algorithm
inefficiencies, which, all added up, account for a couple of hundred milliseconds. Luckily,
the limits of what can be achieved through further optimisation have been reached.

In chapter 7 I highly recommend, in order for the performance to be maintained in the
future, code review should be implemented. Code should not be committed unreviewed
by another developer. Furthermore, server software should be upgraded for more security
and better performance; Reprovinci should implement load balancing; and Reprovinci
should change the database design behind the concept driving their cms: udos.

Reprovinci have a better performing cms a lot of customers will be very happy with.

55

CHAPTER 8. CONCLUSION

56

Afterword

This project has been quite the endeavour. Optimising the loading of objects was es-
pecially arduous. In the end, all this effort did pay off and I am happy to see the cms
has become a lot faster, especially for Reprovinci’s direct customers. I have learnt a lot
about code profiling and optimising queries, how application design has an impact on
performance in the long run, and many more things.

In retrospect, I wished I would have explored more areas other than profiling code,
analysing queries and the odd database design change, and I think I would have, had I
had more time. I would have liked to do more research into the cms’ design, perform
static code analysis and delve into the database design. I would also investigate Zend’s
contribution to the parse time (e.g. what is the minimum request time for a simple
controller and view?).

I have much enjoyed my internship and I would again like to thank Reprovinci for
the opportunity to tinker with their cms and allowing me to spend time working on my
thesis.

57

AFTERWORD

58

Glossary

Glossary

cms content management system. 5, 11,
13, 15, 16, 18, 21–23, 25, 26, 28, 30,
31, 33, 37, 40, 41, 43, 49–51, 55, 57

cpu central processing unit. 25

dbms database management system. 34,
37, 49, 51

dry Don’t Repeat Yourself. 31

eav entity-attribute-value. 51

html Hypertext Markup Language. 11,
25, 26

http Hypertext Transfer Protocol. 5, 27,
39–41, 43, 45

mvc Model-View-Controller. 5, 22

php PHP: Hypertext Preprocessor. 11,
16, 33, 40, 41

ram (random-access memory) is a form of
primary storage that is often volatile
(loses its state on loss of power) and
can be accessed in a random – i.e.
non-sequential – manner. 16, 22, 29,
60

rbac role-based access control. 5, 23, 38,
84

seo search engine optimisation. 13

svn Subversion. 19, 32

udc user defined collection. 51

udf user defined form. 21, 22

udo user defined object. 21–23, 26, 33,
34, 36–38, 51, 52, 55, 67–69

url uniform resource locator. 22

vcs version control system. 19, 49

xml eXtensible Markup Language. 23

B-tree A B-tree is a form of binary search
tree that allows more than two chil-
dren [12]. 37

clone-and-modify programming is
where a piece of working, proven
code is cloned to another location and
modified only slightly. While this is
a simple and inexpensive short-term
solution, bugs can be hard to solve
as they probably (but might not, or
differently) affect the cloned code as
well. 15, 33

database management system is a
system that offers the ability to ma-
nipulate the structured data stored
in its storage engine. Many database
management systems support differ-
ent storage engines. 34, 37, 49, 51

Don’t Repeat Yourself is a principle
that states that “every piece of knowl-
edge must have a single, unam-
biguous, authoritative representation
within a system”[7]. 31

forking is the act of (legally) copying a
project’s source code and starting de-
velopment on one’s own. 21

full table scan A full table scan means all
rows are read sequentially while look-
ing for a certain column value. 37

high-level programming language
High-level programming languages
are languages which generally ab-
stract computer-specific details, hide
memory management and/or are eas-
ier to use than lower-level program-
ming languages. 31

horizontal scaling Scaling horizontally,
or scaling out, means adding more
nodes to a system. A web applica-
tion’s load can, for example, be dis-
tributed among more than one server.
[8]. 22

interpreted language A language which
is interpreted and converted to ma-
chine instructions (opcodes) on ev-
ery execution. Interpreted language
are often considered slow, because of
the overhead created by interpreta-
tion. 22

59

GLOSSARY GLOSSARY

loose coupling In a loosely coupled sys-
tem, separate components know little
about other components, other than
their interface (how to address them).
22, 33

object composition is the act of combin-
ing simple objects into a more com-
plex structure to perform a complex
task. 33, 49

role-based access control is a system
where individual rights, like ‘edit-
ing content’, are attached to roles,
like ‘webmaster’. Whenever content
needs to be edited, access is granted
or denied based on these rules.. 5, 23,
38

separation of concerns is a paradigm
that, in summary, states code should
typically only be responsible for one
task only. 49

SoC separation of concerns. 33

user defined object A custom object,
specified by an xml file, that can
be edited in the cms’ administra-
tion area and included in the website
structure. 51

vertical scaling Scaling vertically, or
scaling up, means adding resources
to a single node in a system. For
example, more ram can be added to
a server in case of memory shortage.
[8]. 22

60

Index

active probing, 29
ApacheBench, 39

cardinality, 37
clone-and-modify programming, 15, 33
computational performance, 29
content management system, 15
Couchmark, 40

data integrity, 36

forking, 21

horizontal scaling, 22

index, 37

JMeter, 39

load balancing, 50, 55

partial objects, 38, 79
peer reviewing, 49

R, 44
routing, 22

scaling
horizontal scaling, 22, 50
vertical scaling, 22

server log analysis, 29
stress resistance, 29

thread state, 36

url, 22

vertical scaling, 22

Zend Framework, 22

61

INDEX INDEX

62

Bibliography

[1] “Computer performance”, Wikipedia, accessed April 8, 2011, http://en.wikipedia.
org/wiki/Computer_performance

[2] “Random access memory (ram)”, ATIS Telecom Glossary, accessed April 8, 2011,
http://www.atis.org/glossary/definition.aspx?id=2189

[3] “Random-access memory: Swapping”, Wikipedia, accessed April 8, 2011, http://en.
wikipedia.org/wiki/Random-access_memory#Swapping

[4] “Perceived performance”, Wikipedia, accessed April 12, 2011, http://en.wikipedia.
org/wiki/Perceived_performance

[5] Chiew, Thiam Kian, “Web page performance analysis”, University of Glasgow,
2009

[6] “Observing Processor Queue Length”, Microsoft TechNet, accessed May 9, 2011,
http://technet.microsoft.com/en-us/library/cc938643.aspx

[7] “Don’t Repeat Yourself”, Cunningham & Cunningham, Inc., February 24, 2011, ac-
cessed May 9, 2011, http://c2.com/cgi/wiki?DontRepeatYourself

[8] “Scalability”, Wikipedia, accessed May 13, 2011, http://en.wikipedia.org/wiki/
Scalability#Scale_horizontally_vs._vertically

[9] “Preface“, php, accessed May 13, 2011, http://nl.php.net/manual/en/preface.
php

[10] Haiping Zhao, “HipHop for PHP: Move Fast”, Facebook Developers, February 2,
2010, accessed May 13, 2011, http://developers.facebook.com/blog/post/358

[11] “How MySQL Uses Indexes”, MySQL Documentation, accessed May 18, 2011, http:
//dev.mysql.com/doc/refman/5.0/en/mysql-indexes.html

[12] “B-tree”, Wikipedia, accessed May 18, 2011, http://en.wikipedia.org/wiki/
B-tree

[13] “Restrictions on Subqueries”, MySQL Documentation, accessed May 19, 2011, http:
//dev.mysql.com/doc/refman/5.0/en/subquery-restrictions.html

[14] “Code review”, Wikipedia, accessed May 20, 2011, http://en.wikipedia.org/
wiki/Code_review

[15] “Load balancing (computing)”, Wikipedia, accessed May 20, 2011, http://en.
wikipedia.org/wiki/Load_balancing_(computing)

[16] “How FriendFeed uses MySQL to store schema-less data”, Blog of
Bret Taylor, accessed May 19, 2011, http://bret.appspot.com/entry/
how-friendfeed-uses-mysql

[17] “General thread states”, MySQL Documentation, accessed May 29, 2011, http://
dev.mysql.com/doc/refman/5.0/en/general-thread-states.html

63

BIBLIOGRAPHY BIBLIOGRAPHY

[18] Thorsten Ruf, “Dispatch process overview”, Nethands, accessed May 30, 2011,
last modified November 19, 2008, http://nethands.de/download/zenddispatch_
en.pdf

[19] Sebastian Bergmann, “Benchmark of PHP Branches 3.0 through 5.3-CVS”, ac-
cessed May 30, 2011, last modified February 7, 2008, BenchmarkofPHPBranches3.
0through5.3-CVS

[20] Sean Michael Kerner, “PHP 5.3 Accelerates PHP”, internetnews.com, ac-
cessed May 30, 2011, last modified June 30, 2009, http://www.internetnews.com/
dev-news/article.php/3827756/PHP-53-Accelerates-PHP.htm

[21] “The BLOB and TEXT types”, MySQL Documentation, accessed May 30, 2011,
http://dev.mysql.com/doc/refman/5.0/en/blob.html

[22] “How MySQL Uses Internal Temporary Tables”, MySQL Documenta-
tion, accessed May 30, 2011, http://dev.mysql.com/doc/refman/5.0/en/
internal-temporary-tables.html

64

Appendix A

Optimisations

65

A.1. COLLECTION#_CHECKCALLBACK() APPENDIX A. OPTIMISATIONS

A.1 Collection#_checkCallback()

Description
Collection#_checkCallback() is called up to 30 000 times per request, performing a
context switch – passing around parameters and return values – every time.

Use case Gain
all 5%

Expected performance gain for optimisation A.1.

Process
• Inlined method’s content in those places where it is called, as seen in listing A.1.

• Duplication is justified as code is duplicated in one small file.

1 <?php
2 \# Replaced instances like:
3 public function addItem(\$obj, \$key = null) {
4 \$this->_checkCallback();
5 (...)
6 }
7
8 \# With:
9 public function addItem(\$obj, \$key = null) {

10 if(isset(\$this->_onload) \&\& !\$this->_isLoaded) { \$this->_isLoaded = true; @call_user\
_func(\$this->_onload, \$this); }

11 (...)
12 }

Listing A.1: Inlining of _checkCallback

Result

Use case Gain
all 10%

Achieved performance gain for optimisation A.1.

66

APPENDIX A. OPTIMISATIONSA.2. OBJECTCOLLECTION#LOADOBJECTINSTANCES()

A.2 ObjectCollection#loadObjectInstances()

Description
Rewrite the object loading process in ObjectCollection#loadObjectInstances().

Use case Gain Argumentation
small.local 30% Not much content and not many different udos.
medium.local 40% Many different udos.
large.local 50% Not many different udos, lot of content.

Expected performance gain for optimisation A.2.

Process
• Rewriting of multiple queries into one single query.

• Sorting is problematic, postpone until all logic is implemented.

• Realisation of need for reliable, independent testing environment to produce con-
sistent benchmarking results.

• Specification of own workstation as basis for measurements.

• Refactoring into four separate entities, as seen in figure A.1.

– Separation of concerns.

– “Abstraction space”.

– Requires object-definition-specific cache entry, instead of ObjectCollection
cache entry. “Normal” instantiation of ObjectCollection is then possible.

• Separate loading of object ids and actual data.

– Allows for sorting on smaller result set.

– Allows for pagination (determine how many objects in advance, then load
actual data for page subset).

• Applying user permissions very slow.

– Fixing of some indexes.

– Subselect performs badly.

– Joining of derived table, which selects permissions seems fastest.

• Joining of related users is very slow.

– User data includes an order history, row count through the roof.

– Post-load users.

• Loading of related objects through recursion of ObjectLoader

– Keep all loaded objects, partial objects and partial users in identity map across
recursions for reuse and integrity of associations.

– Configuration is partially passed on (not everything applies to related objects)

Result

67

A.2. OBJECTCOLLECTION#LOADOBJECTINSTANCES()APPENDIX A. OPTIMISATIONS

ObjectCollection
objectdefinitions: Collection<Object>
objects: ObjectInstanceCollection
config_type_conditions: array<int>
config_type_query: string
(40 more...)
loadObjectInstances(pagenumber: int = null): void
getObjects(): ObjectInstanceCollection

ObjectCollectionLoader
config: ObjectLoaderConfiguration
objectDefinitions: Collection<Object>
ObjectCollectionLoader(config: ObjectLoaderConfiguration, objectDefinitions: Collection)
load(...): ObjectLoaderResult
parseRows(statement: Zend_Db_Statement, ...): void
createIdQuery(objectDefinitions: Collection<Object> = null

ObjectLoaderResult
objects: ObjectInstanceCollection
paginator: Zend_Paginator
(...)
ObjectLoaderResult(objects: Collection, ..., paginator: Zend_Paginator = null)
getFetchedObjects(): int
getPaginator(): Zend_Paginator
(...)

<<interface>>

ObjectLoaderConfiguration

setConfigTypeConditions(conditions: array<int>): void
getConfigTypeConditions(): array<int>
(82 more...)

uses

returns

Figure A.1: Situation after refactoring of ObjectCollection. The ellipses
replace details that would only confuse.

Use case Gain Argumentation
small.local TODO Not much content and udos.
medium.local TODO Many udos.
large.local TODO Not so much udos, lot of content.

Achieved performance gain for optimisation A.2.

68

APPENDIX A. OPTIMISATIONS A.3. IN-PROGRESS LOADING

A.3 Administration: load only in-progress with pub-
lished fallback

Description
All versions of objects are loaded in many parts of the administration area, such as the
content list and the content detail page. Load only in-progress versions or fallback to
published versions.

Use case Gain
small.local 12%
medium.local 5%
large.local 24%

Expected performance gain for optimisation A.3. Based on loading of only
published versions compared to loading of all versions.

Process
• Concluded loading through deduction (determining if there’s an in-progress version

and falling back to published if necessary) is difficult and adds joins for each udo
table.

• Addition of ObjectLoaderConfiguration#configLoadLatestVersions.

• Addition of in-progress flag.

• Loading of in-progress and published versions, perform fallback programmatically.

Result

Use case Page Gain
small.local content list 7.6%
medium.local content list 25.9%
large.local content list 13.8%
small.local detail page 1.0%
medium.local detail page 7.9%
large.local detail page 32.3%

Achieved performance gain for optimisation A.3.

69

A.4. USER PERMISSIONS APPENDIX A. OPTIMISATIONS

A.4 User permissions

Description
User permissions are tried using Authorisation#hasAccess(). This method loops the
user’s roles and permissions on each call. Create possibility for direct lookup. Currently
takes up 20% of requests (registered users only).

Use case Gain
small.local 18%
medium.local 6%
large.local 8%

Expected performance gain for optimisation A.4. Based on quick fix.

Process
• Created direct lookup array on first call, which is “cached” in a static variable for

subsequent use.

1 <?php
2 # Replaced instances like:
3 $roles = $objUser -> getRoles();
4 foreach ($roles as $role) {
5 foreach ($role -> getPermissions() as $permission) {
6 if ($permission -> getLabelId() == $labelid && (intval($rights) & intval($permission ->

getRights()))) {
7 return true;
8 }
9 }

10 }
11 return false;
12
13 # With:
14 $accessCache = self::getLabelRights($objUser);
15 return isset($accessCache[$labelid]) && ($accessCache[$labelid] & (int) $rights);
16
17 # And:
18
19 /**
20 * Returns the additive rights per label per user. Sorted on label.
21 * @return array<int label, int rights>
22 */
23 public static function getLabelRights(User $user) {
24 $_userId = $user->getId();
25 if(isset(self::$accessCache[$_userId])) {
26 return self::$accessCache[$_userId];
27 } else {
28 $accessCache = array();
29 $roles = $user -> getRoles();
30 foreach ($roles as $role) {
31 foreach ($role -> getPermissions() as $permission) {
32 if(isset($accessCache[$permission->getLabelId()])) {
33 $accessCache[$permission->getLabelId()] |= (int) $permission->

getRights();
34 } else {
35 $accessCache[$permission->getLabelId()] = (int) $permission->

getRights();
36 }
37 }
38 }
39 ksort($accessCache);
40 return self::$accessCache[$_userId] = $accessCache;
41 }
42 }

Listing A.2: Direct lookup in Authorisation#hasAccess()

Result

70

APPENDIX A. OPTIMISATIONS A.4. USER PERMISSIONS

Use case Page Gain
small.local content list 19.9%
medium.local content list 19.5%
large.local content list 15.8%
small.local detail page 0.0%
medium.local detail page 4.1%
large.local detail page 0.8%

Achieved performance gain for optimisation A.4.

71

A.5. STRING::RENDERNAMETOKEY() APPENDIX A. OPTIMISATIONS

A.5 String::renderNameToKey()

Description
String::renderNameToKey() is a method that turns a regular string in to a so-called
slug. A string like "Fifa suspends Bin Hammam & Warner" becomes: "fifa-suspends-
bin-hammam-warner". This method takes up 8-19% of all requests, as it is extensively
used by the navigational structure and rendering of templates.

Use case Gain
all 2-7%

Expected performance gain for optimisation A.5. Based on profiling report.

Process
• Replacing calls to ereg_replace() with a regular str_replace() is an option,

but this isn’t a very nice solution as it doesn’t handle all characters.

• Using the iconv library is an option.

• Fixed some difficulties with iconv library on Windows.

1 <?php
2
3 ## Replacing:
4 $key = strtolower($name);
5 $key = trim($key);
6
7 $key = ereg_replace("([é])+", "e", $key);
8 $key = ereg_replace("([è])+", "e", $key);
9 $key = ereg_replace("([ë])+", "e", $key);

10 # (...)
11 return $key;
12
13 ## With:
14 # Replace many special characters with their ASCII counterpart
15 $key = iconv(’UTF-8’, ’ASCII//TRANSLIT//IGNORE’, $name);
16
17 # Remove any other non-ASCII characters
18 $key = preg_replace(’/[^␣\-a-z0-9]/i’, ’’, $key);
19
20 return $key;

Listing A.3: Optimisation of String::renderNameToKey()

Result

Use case Gain
all 2%

Achieved performance gain for optimisation A.5

Somewhat of a disappointment, this one. The profiling tool has proven to be inac-
curate, with values adding up to a total execution time of 102%, for example. Due to
measurement errors, this optimisation was largely a waste of time. However, being able
to handle more characters, the functionality of String::renderNameToKey() has been
improved.

72

APPENDIX A. OPTIMISATIONSA.6. NAVIGATIONCOLLECTION#GETNODE()

A.6 NavigationCollection#getNode()

Description
large.local ’s product pages utilises a lot of calls to NavigationCollection#getNode().
This method is very inefficient, looking up a path down the navigational structure tree.
The lookup can be converted to a direct lookup, using a flat, unstructured Collection
of ids pointing to NavigationNodes. Method accounts for 8 to 25% of a typical product
list request on large.local. Other use cases are largely unaffected.

Use case Gain
large.local 5-10%

Expected performance gain for optimisation A.6.

Process
• Modified build-up of NavigationCollection to also create a flat, unstructured
Collection of ids pointing to NavigationNodes.

• Modified NavigationCollection#getNode() to employ this Collection.

1 <?php
2 # Replaced:
3 $nodes = $this -> findPath($id);
4 $nodes = array_reverse($nodes);
5 $node = null;
6
7 $coll = $this -> structure;
8
9 foreach ($nodes as $key => $value) {

10 if ($coll -> exists($value)) {
11 $node = $coll -> getItem($value);
12 $coll = $node -> getChildren();
13 }
14 }
15
16 return $node;
17
18 # With:
19 return $this->allNodes->getItem($id);
20
21 # Where the build-up process is modified:
22 while ($value = $result -> fetch()) {
23 $row = $value;
24
25 $_nodeId = (int) $row[’navigationnode_id’];
26 if($allNodes->exists($_nodeId)) {
27 $node = $allNodes->getItem($_nodeId);
28 } else {
29 $node = new NavigationNode();
30 $node->setId($_nodeId);
31 $node->setPartial(true);
32 $allNodes->addItem($node, $_nodeId);
33
34 if($rootNode === null) {
35 # Nodes are sorted by parentid, assume first record is the root node
36 $rootNode = $node;
37 }
38 }
39
40 # (...)
41 }

Listing A.4: Direct lookup in NavigationCollection#getNode()

Result

73

A.6. NAVIGATIONCOLLECTION#GETNODE()APPENDIX A. OPTIMISATIONS

Use case Page Registered user? Gain
small.local page w/ list view n 0.3%
medium.local page w/ list view n 0.1%
large.local page w/ list view n 0.1%
small.local page w/ list view y 0.3%
medium.local page w/ list view y 0.1%
large.local page w/ list view y 6.6%

Achieved performance gain for optimisation A.6.

74

APPENDIX A. OPTIMISATIONS A.7. EXCESSIVE CALLING OF GETNODE()

A.7 Excessive calling of NavigationCollection#getNode()

Description
large.local ’s product pages utilises a lot of calls to NavigationCollection#getNode().
This introduces unnecessary overhead. Remove any unnecessary calls. Method accounts
for about 10% of a typical product list request on large.local. Other use cases are largely
unaffected.

Use case Gain
large.local 5-10%

Expected performance gain for optimisation A.7.

Process
• Removed unnecessary calls to NavigationCollection#getNode().

Result

Use case Page Registered user? Gain
large.local page w/ list view y 7.2%

Achieved performance gain for optimisation A.7.

75

A.8. PAGECONTENTHANDLER#GRABDATA()APPENDIX A. OPTIMISATIONS

A.8 PageContentHandler#grabData() is slow

Description
PageContentHandler#grabData() is quite slow for registered users. This is especially
noticeable on large.local ’s product lists.

Use case Registered user? Gain
large.local y 65%

Expected performance gain for optimisation A.8. Based on difference be-
tween parse time for anonymous user and parse time for registered user.

Process
• Determined page caching is used for anonymous users. A simple, but inadequate

solution is to create caching for registered users as well.

• Created concept of “caching strategy”.

• Created two caching strategies: a default and an “aggressive one”. The latter also
caches for registered users.

• Complication here is that registered users can have different permissions, meaning
the page can be different for each user. The aggressive content strategy is therefore
only useful in environments with little roles and permissions (such as large.local).

• Replaced all cache calls in PageContentHandler#grabData() with calls to a caching
strategy.

• The caching strategy determines whether to cache or not and how to cache.

1 <?php
2 # In the constructor:
3 $_cacheConfig = $registry->config->cache;
4 if(isset($_cacheConfig->contentcache)) {
5 $this->cacheStrategy = new $_cacheConfig->contentcache;
6 } else {
7 $this->cacheStrategy = new DefaultContentCachingStrategy();
8 }
9

10 # On various places, replaced calls like:
11 if ($this -> anonymous && ...) {
12 $cache -> save(...);
13 }
14 # With:
15 $strategy->savePaginatorInfo(...);

Listing A.5: Caching strategy in PageContentHandler#grabData()

1 <?php
2
3 /**
4 * Contains the strategy used for loading, parsing and caching object instances for
5 * a PageContentHandler. This allows for switching strategies that can be less or more
6 * efficient, depending on the site’s characteristics.
7 * @author Reinier Kip <rkip@reprovinci.nl>
8 */
9 interface ContentCachingStrategy {

10
11 /**
12 * Implementation should implement no-argument constructor, as the strategy is
13 * constructed automagically from the config.xml.
14 */
15 public function __construct();
16
17
18 /**
19 * Loads a paginator from cache. If no paginator was found, this method returns null.
20 * @param NavigationNode $node
21 * @return Zend_Paginator|null
22 */
23 public function loadPaginator(NavigationNode $node);

76

APPENDIX A. OPTIMISATIONSA.8. PAGECONTENTHANDLER#GRABDATA()

24
25 /**
26 * Saves paginator info to cache in the form of:
27 * array(’items’ => array(int objectinstance, ...), ’itemsperpage’ => int)
28 * @param NavigationNode $node
29 * @param array<int> $items
30 * @param int $itemsPerPage
31 */
32 public function savePaginatorInfo(NavigationNode $node, array $items, $itemsPerPage);
33
34
35 /**
36 * Returns whether the caching of rendered content is enabled.
37 * @return boolean
38 */
39 public function contentCachingEnabled();
40
41 /**
42 * Saves rendered list or detail content to cache.
43 * @param NavigationNode $node
44 * @param string $type list|detail
45 * @param int $page
46 * @param string $content
47 * @param array $tags
48 */
49 public function saveContent(NavigationNode $node, $type, $page, $content, array $tags);
50
51 /**
52 * Loads rendered list content from cache.
53 * @param NavigationNode $node
54 * @param string $language Usually $registry->currentlanguage
55 * @param int $page
56 */
57 public function loadListContent(NavigationNode $node, $language, $page);
58
59 /**
60 * Loads rendered detail content from cache.
61 * @param NavigationNode $node
62 * @param string $language Usually $registry->currentlanguage
63 * @param int $page
64 */
65 public function loadDetailContent(NavigationNode $node, $language, $page);
66
67 }

Listing A.6: The ContentCachingStrategy interface

Result

Use case Page Registered user? Gain Caching strategy
small.local page w/ list view y 0.0% default
medium.local page w/ list view y -0.0% default
large.local page w/ list view y 74.3% aggressive

Achieved performance gain for optimisation A.8.

77

A.9. PAGECONTENTHANDLER#RETURNPAGECONTENTCONTAINER()APPENDIX A. OPTIMISATIONS

A.9 PageContentHandler#returnPageContentContainer() very
slow

Description
large.local ’s product pages for registered users are very slow (in the order of 3-5 seconds).
This is caused by multiple issues.

Use case Registered user? Gain
large.local y 65%

Expected performance gain for optimisation A.9. Based on estimations for
optimisations stated below.

Process
• Implemented optimisations A.4, A.6, A.7 and A.8.

Result

Use case Page Registered user? Gain Caching strategy
small.local page w/ list view y 0.0% default
medium.local page w/ list view y -0.0% default
large.local page w/ list view y 81.8% aggressive

Achieved performance gain for optimisation A.9.

78

APPENDIX A. OPTIMISATIONS A.10. NAVIGATIONCOLLECTION BUILDUP

A.10 NavigationCollection buildup

Description
The buildup of the NavigationCollection takes very long. The collection is rebuilt after
changes to the navigational structure of the underlying website. This is not a common
process; if possible, changes are mostly done in the cache entry as well.

Use case Gain
all 80%

Guesstimated performance gain for optimisation A.10.

Process
• Optimised query.

– Added inprogress flag.

– Removed subqueries, replaced with WHERE on inprogress.

• Moved creation of tree of NavigationNodes from after row parsing into the row
parsing procedure.

• Reimplemented buildup using partial objects.

• Related files for all nodes were loaded nnodes times.

Result

Use case Used to be Is now Gain
small.local ~4750ms 71ms 98.5%
medium.local ~56s 625ms 98.9%
large.local ~7m ~4800ms 98.9%

Achieved performance gain for optimisation A.10.

79

A.11. PUBLISHEDCOLLECTION#LOAD() APPENDIX A. OPTIMISATIONS

A.11 PublishedCollection#load() is very slow

Description
PublishedCollection#load() is very slow and is used on content item detail pages.

Use case Gain
all 10-50%

Expected performance gain for optimisation A.11. Based on quick query
test.

Process
• Added inprogress flag.

• Removed subqueries and add WHERE clause on inprogress.

Result

Use case Page Gain
small.local content detail 2.2%
medium.local content detail 11.3%
large.local content detail 77.2%

Achieved performance gain for optimisation A.11.

80

APPENDIX A. OPTIMISATIONSA.12. PUBLISHEDCOLLECTION#GETNAVIGATIONNODEIDS()

A.12 PublishedCollection#getNavigationNodeIds() is quite
slow

Description
PublishedCollection#getNavigationNodeIds() is quite slow, taking up roughly 50%
(inclusive) of a detail page request on large.local. Possible solutions:

• Optimise lookup. Method makes use of a couple of loops to find what it’s looking
for.

• It’s called only once per request. Replace it with a database query.

Use case Page Gain
all content detail 25-45%

Expected performance gain for optimisation A.12. Based on quick query
test.

Process
• Replaced lookup in entire PublishedCollection with database query.

Result

Use case Page Gain
small.local content detail 3.7%
medium.local content detail 24.9%
large.local content detail 25.8%

Achieved performance gain for optimisation A.12.

81

A.13. INVESTIGE ROW PARSING APPENDIX A. OPTIMISATIONS

A.13 Investigate ObjectLoader’s row parsing

Description
I had a feeling ObjectLoader’s row parsing could be optimised significantly.

Page Gain
content detail 5-10%
content list 5-20%

Expected performance gain for optimisation A.13.

Process
• Abstracted logic like filling an object’s version away into separate method for in-

crease insight through profiling.

• Object cloning is sluggish.

– Optimised deep cloning of Collection.

Result

Use case Page Gain
small.local content detail 0.2%
medium.local content detail 0.0%
large.local content detail -0.1%
small.local content list 1.9%
medium.local content list 1.4%
large.local content list 1.9%

Achieved performance gain for optimisation A.13.

Apart from a few statements concerning cloning and the optimisation of a Collec-
tion’s cloning, there wasn’t much to optimise.

82

APPENDIX A. OPTIMISATIONS A.14. OBJECTLOADER: PERMISSIONS

A.14 Checking of permissions in ObjectLoader

Description
During the writing of this thesis, I stumbled on these two pieces of MySQL documentation
[13]:

(...) for a statement that uses an IN subquery, the optimizer rewrites it as a correlated
subquery. Consider the following statement that uses an uncorrelated subquery:

SELECT ... FROM t1 WHERE t1.a IN (SELECT b FROM t2);

The optimizer rewrites the statement to a correlated subquery :

SELECT ... FROM t1 WHERE EXISTS (SELECT 1 FROM t2 WHERE t2.b = t1.a);

UPDATE t ... WHERE col = (SELECT * FROM (SELECT ... FROM t...) _t);

Here the result from the subquery in the FROM clause is stored as a temporary table, so
the relevant rows in t have already been selected by the time the update to t takes place.

By combining these two pieces of information, I concluded that for each object,
MySQL performs the permissions subquery. By wrapping these in a SELECT, the re-
sults of this query would be stored in a temporary table. This temporary table is then
queried for each object.

Use case Gain
all 35%

Expected performance gain for optimisation A.14.

1 <?php
2 # Permissions were first determined using a derived table, joined to the primary query:
3
4 $labelSelect = new Select($db);
5 $labelSelect
6 ->distinct()
7 ->from(’Permission’, array(’labelid’))
8 ->join(’RolePermission’, ’RolePermission.permissionid␣=␣Permission.id’, null)
9 ->join(’Role’, ’Role.id␣=␣RolePermission.roleid’, null)

10 ->join(’UserRole’, ’UserRole.roleid␣=␣Role.id’, null)
11 ->where(’UserRole.userid␣=␣?’, (int) $user->getId())
12 ;
13
14 $rights = (int) $config->getConfigRights();
15 if($rights) {
16 $labelSelect->where(’Permission.rights␣&␣’.$rights.’␣=␣’.$rights);
17 }
18
19 $select
20 ->join(’ObjectInstanceLabelVersion’, ’ObjectInstanceLabelVersion.objectinstanceid␣=␣

ObjectInstance.id’, null)
21 ->join(’ObjectInstanceLabel’, ’ObjectInstanceLabel.versionid␣=␣ObjectInstanceLabelVersion.id’,

null)
22 ->join(array(’ObjectInstanceLabelPermission’ => $labelSelect), ’ObjectInstanceLabel.labelid␣=␣

ObjectInstanceLabelPermission.labelid’, null)
23 ;
24
25 # Using a subquery, notice the SELECT encapsulating the subquery:
26
27 // (...)
28 $select
29 ->join(’ObjectInstanceLabelVersion’, ’ObjectInstanceLabelVersion.objectinstanceid␣=␣

ObjectInstance.id’, null)
30 ->join(’ObjectInstanceLabel’, ’ObjectInstanceLabel.versionid␣=␣ObjectInstanceLabelVersion.id’,

null)
31 ;
32 $select->where(’ObjectInstanceLabel.labelid␣IN␣(SELECT␣‘labelid‘␣FROM␣(’.$labelSelect.’)␣‘permissions‘)

’);

Listing A.7: Change in permissions check in ObjectLoader

83

A.14. OBJECTLOADER: PERMISSIONS APPENDIX A. OPTIMISATIONS

Result

Use case Page Gain
small.local content list 1.9%
medium.local content list 52.5%
large.local content list -0.4%

Achieved performance gain for optimisation A.14.

medium.local has a lot of roles and permissions in its rbac system. This may explain
the large performance gain, while the other two remain largely unaffected.

84

Appendix B

Testplans

1 include Couchmark
2
3 debug false
4
5 class Float
6 def round_to(x)
7 (self * 10**x).round.to_f / 10**x
8 end
9 end

10
11 # Connect to metrics agent, residing on the web server
12 agent :localhost, 4300
13
14 # Collection of user metrics
15 default_metrics do |response, sample|
16 headers = response.headers
17 sample.set_metric ’php_memory_peak’,
18 (headers[’X-Metric-Memory-Usage-Peak’].to_f()/1024/1024).round_to(2) # MB
19 sample.set_metric ’parse_time’,
20 headers[’X-Metric-Parse-Time’].to_f().round_to(2) # s
21 sample.set_metric ’cpu_load’,
22 get_sample(’cpu_load’, 30)
23 end
24
25
26 http_defaults :port => 80
27
28 for version in [’cms’, ’cms-trunk’] do
29 for host in [’small.local’, ’medium.local’, ’large.local’] do
30
31 # Defaults
32 http_defaults :host => host
33
34 # One user
35 users 1 do |user_id|
36
37 user_cookie ’CMS_VERSION’, version
38 user_cookie ’OVERRIDE_MODE’, ’prod’
39
40 # Clear query cache
41 GET "#{host}-admin-login_#{version}", ’/admin/’, {:MYSQL_CLEAR_CACHE => 1}
42
43 # Login
44 POST "#{host}-admin-login_#{version}", ’/admin/auth/login’, {:username => ’******

’, :password => ’******’}
45
46 sleep 30
47
48 # Load two content pages twenty times, no cache
49 for page in (1..2)
50 20.times do
51 response = GET "#{host}-admin-content-list-nc_#{version}", "/admin/

content/content/viewstate/page/value/#{page}", {:
MYSQL_CLEAR_CACHE => 1, :filter => ’udo’}

52 if response: response.sample.set_metric ’page’, page end
53 end
54 end
55
56 sleep 30
57
58 Load two content pages twenty times
59 for page in (1..2)
60 20.times do
61 response = GET "#{host}-admin-content-list_#{version}", "/admin/

content/content/viewstate/page/value/#{page}", {:filter => ’

85

APPENDIX B. TESTPLANS

udo’}
62 if response: response.sample.set_metric ’page’, page end
63 end
64 end
65
66 end
67
68 end
69 end

Listing B.1: Testplan for the cms’ content list

1 include Couchmark
2
3 debug false
4
5 class Float
6 def round_to(x)
7 (self * 10**x).round.to_f / 10**x
8 end
9 end

10
11 # Connect to metrics agent, residing on the web server
12 agent :localhost, 4300
13
14 # Collection of user metrics
15 default_metrics do |response, sample|
16 headers = response.headers
17 sample.set_metric ’php_memory_peak’,
18 (headers[’X-Metric-Memory-Usage-Peak’].to_f()/1024/1024).round_to(2) # MB
19 sample.set_metric ’parse_time’,
20 headers[’X-Metric-Parse-Time’].to_f().round_to(2) # s
21 sample.set_metric ’cpu_load’,
22 get_sample(’cpu_load’, 30)
23 end
24
25
26 http_defaults :port => 80
27
28 hosts_plan = {
29 ’small.local’ => {
30 ’edit_udo’ => {
31 ’udo’ => 82,
32 ’new’ => {’object’ => ’15’,’labelid’ => ’30’,’authorid’ => ’’,’NL_name’ => ’

couchmark-1’,’NL_intro’ => ’intro’,’NL_interview’ => ’interview’,’
lifecycle_activationdate’ => ’08-05-2009’,’lifecycle_activationtime’ => ’
20:34:00’,’lifecycle_deactivationdate’ => ’’,’lifecycle_deactivationtime’ =>
’’,’NL_metatitle’ => ’’,’NL_metadescription’ => ’’,’NL_metakeywords’ => ’’,

’sortfilesvalue’ => ’187,186,179’,’sortcategoriesvalue’ => ’␣’,’
sortcontentvalue’ => ’␣’,’contentsearch’ => ’’,’reactionvalue’ => ’’,’
structure[]’ => ’35’,’structure[]’ => ’13’,’contentid’ => ’82’},

33 ’old’ => {’object’ => ’15’,’labelid’ => ’30’,’authorid’ => ’’,’NL_name’ => ’
couchmark-1’,’NL_intro’ => ’intro’,’NL_interview’ => ’interview’,’
lifecycle_activationdate’ => ’08-05-2009’,’lifecycle_activationtime’ => ’
20:34:00’,’lifecycle_deactivationdate’ => ’’,’lifecycle_deactivationtime’ =>
’’,’NL_metatitle’ => ’’,’NL_metadescription’ => ’’,’NL_metakeywords’ => ’’,

’sortfilesvalue’ => ’187,186,179’,’sortcategoriesvalue’ => ’␣’,’
sortcontentvalue’ => ’␣’,’contentsearch’ => ’’,’reactionvalue’ => ’’,’
structure[]’ => ’35’,’contentid’ => ’82’},

34 },
35 },
36 ’medium.local’ => {
37 ’edit_udo’ => {
38 ’udo’ => 1910,
39 ’new’ => {’object’ => ’15’,’labelid’ => ’75’,’NL_title’ => ’Advies␣op␣maat’,’

NL_subtitle’ => ’subtitle’,’NL_intro’ => ’intro’,’NL_content’ => ’content’,’
NL_quicklinkname’ => ’’,’NL_quicklinkpayoff’ => ’’,’lifecycle_activationdate
’ => ’’,’lifecycle_activationtime’ => ’’,’lifecycle_deactivationdate’ => ’’,
’lifecycle_deactivationtime’ => ’’,’NL_metatitle’ => ’’,’NL_metadescription’
=> ’’,’NL_metakeywords’ => ’’,’sortfilesvalue’ => ’1105’,’

sortcategoriesvalue’ => ’␣’,’sortcontentvalue’ => ’␣’,’contentsearch’ => ’’,
’mailafriend’ => ’on’,’printobject’ => ’on’,’reactionvalue’ => ’’,’structure
[]’ => ’1259’,’structure[]’ => ’1261’,’contentid’ => ’1910’},

40 ’old’ => {’object’ => ’15’,’labelid’ => ’75’,’NL_title’ => ’Advies␣op␣maat’,’
NL_subtitle’ => ’subtitle’,’NL_intro’ => ’intro’,’NL_content’ => ’content’,’
NL_quicklinkname’ => ’’,’NL_quicklinkpayoff’ => ’’,’lifecycle_activationdate
’ => ’’,’lifecycle_activationtime’ => ’’,’lifecycle_deactivationdate’ => ’’,
’lifecycle_deactivationtime’ => ’’,’NL_metatitle’ => ’’,’NL_metadescription’
=> ’’,’NL_metakeywords’ => ’’,’sortfilesvalue’ => ’1105’,’

sortcategoriesvalue’ => ’␣’,’sortcontentvalue’ => ’␣’,’contentsearch’ => ’’,
’mailafriend’ => ’on’,’printobject’ => ’on’,’reactionvalue’ => ’’,’structure
[]’ => ’1259’,’contentid’ => ’1910’},

41 },
42 },
43 ’large.local’ => {
44 ’edit_udo’ => {
45 ’udo’ => 4488,

86

APPENDIX B. TESTPLANS

46 ’new’ => {’object’ => ’16’,’labelid’ => ’50’,’NL_articlenumber’ => ’2341234’,’
NL_title’ => ’asdfsdfaa’,’NL_width’ => ’12’,’NL_length’ => ’31’,’
NL_composition’ => ’asf’,’NL_description’ => ’<p>asdfa</p>’,’
EN_articlenumber’ => ’2341234’,’EN_title’ => ’asdfas’,’EN_width’ => ’12’,’
EN_length’ => ’31’,’EN_composition’ => ’asf’,’EN_description’ => ’<p>
asdfasfa</p>’,’lifecycle_activationdate’ => ’’,’lifecycle_activationtime’ =>
’’,’lifecycle_deactivationdate’ => ’’,’lifecycle_deactivationtime’ => ’’,’

NL_metatitle’ => ’’,’NL_metadescription’ => ’’,’NL_metakeywords’ => ’’,’
EN_metatitle’ => ’’,’EN_metadescription’ => ’’,’EN_metakeywords’ => ’’,’
sortfilesvalue’ => ’␣’,’sortcategoriesvalue’ => ’␣’,’sortcontentvalue’ => ’␣
’,’contentsearch’ => ’’,’reactionvalue’ => ’’,’structure[]’ => ’22’,’
structure[]’ => ’62’,’purchaseprice’ => ’’,’salesprice’ => ’’,’taxrateid’ =>
’3’,’priceruleid’ => ’’,’minquantity’ => ’’,’weight’ => ’’,’stockquantity’

=> ’’,’contentid’ => ’4488’},
47 ’old’ => {’object’ => ’16’,’labelid’ => ’50’,’NL_articlenumber’ => ’2341234’,’

NL_title’ => ’asdfsdfaa’,’NL_width’ => ’12’,’NL_length’ => ’31’,’
NL_composition’ => ’asf’,’NL_description’ => ’<p>asdfa</p>’,’
EN_articlenumber’ => ’2341234’,’EN_title’ => ’asdfas’,’EN_width’ => ’12’,’
EN_length’ => ’31’,’EN_composition’ => ’asf’,’EN_description’ => ’<p>
asdfasfa</p>’,’lifecycle_activationdate’ => ’’,’lifecycle_activationtime’ =>
’’,’lifecycle_deactivationdate’ => ’’,’lifecycle_deactivationtime’ => ’’,’

NL_metatitle’ => ’’,’NL_metadescription’ => ’’,’NL_metakeywords’ => ’’,’
EN_metatitle’ => ’’,’EN_metadescription’ => ’’,’EN_metakeywords’ => ’’,’
sortfilesvalue’ => ’␣’,’sortcategoriesvalue’ => ’␣’,’sortcontentvalue’ => ’␣
’,’contentsearch’ => ’’,’reactionvalue’ => ’’,’structure[]’ => ’22’,’
purchaseprice’ => ’’,’salesprice’ => ’’,’taxrateid’ => ’3’,’priceruleid’ =>
’’,’minquantity’ => ’’,’weight’ => ’’,’stockquantity’ => ’’,’contentid’ => ’
4488’},

48 },
49 },
50 }
51
52 for version in [’cms’, ’cms-trunk’] do
53 for host, in hosts_plan do
54
55 # Defaults
56 http_defaults :host => host
57
58 # One user
59 users 1 do |user_id|
60
61 user_cookie ’CMS_VERSION’, version
62 user_cookie ’OVERRIDE_MODE’, ’prod’
63
64 # Clear query cache
65 GET "#{host}-admin-login_#{version}", ’/admin/’, {:MYSQL_CLEAR_CACHE => 1}
66
67 # Login
68 POST "#{host}-admin-login_#{version}", ’/admin/auth/login’, {:username => ’******

’, :password => ’******’}
69
70 sleep 30
71
72 # Attach and detach object instance to and from navigation node
73 udo_id = hosts_plan[host][’edit_udo’][’udo’]
74 post_new = hosts_plan[host][’edit_udo’][’new’]
75 post_old = hosts_plan[host][’edit_udo’][’old’]
76 20.times do
77 POST "#{host}-admin-detail-edit_#{version}", "/admin/content/content/type/

detail/id/#{udo_id}", post_new
78 POST "#{host}-admin-detail-edit_#{version}", "/admin/content/content/type/

detail/id/#{udo_id}", post_old
79 end
80
81 end
82
83 end
84 end

Listing B.2: Testplan for editing content items on the detail page

1 include Couchmark
2
3 debug false
4
5 class Float
6 def round_to(x)
7 (self * 10**x).round.to_f / 10**x
8 end
9 end

10
11 # Connect to metrics agent, residing on the web server
12 agent :localhost, 4300
13
14 # Collection of user metrics
15 default_metrics do |response, sample|
16 headers = response.headers

87

APPENDIX B. TESTPLANS

17 sample.set_metric ’php_memory_peak’,
18 (headers[’X-Metric-Memory-Usage-Peak’].to_f()/1024/1024).round_to(2) # MB
19 sample.set_metric ’parse_time’,
20 headers[’X-Metric-Parse-Time’].to_f().round_to(2) # s
21 sample.set_metric ’cpu_load’,
22 get_sample(’cpu_load’, 30)
23 end
24
25
26 http_defaults :port => 80
27
28 hosts_plan = {
29 ’small.local’ => {
30 ’udo’ => ’blikopener’,
31 ’edit_udo’ => {
32 ’udo’ => 82,
33 },
34 },
35 ’medium.local’ => {
36 ’udo’ => ’article’,
37 ’edit_udo’ => {
38 ’udo’ => 1910,
39 },
40 },
41 ’large.local’ => {
42 ’udo’ => ’shawl’,
43 ’edit_udo’ => {
44 ’udo’ => 4488,
45 },
46 },
47 }
48
49 for version in [’cms’, ’cms-trunk’] do
50 for host, in hosts_plan do
51
52 # Defaults
53 http_defaults :host => host
54
55 # One user
56 users 1 do |user_id|
57
58 user_cookie ’CMS_VERSION’, version
59 user_cookie ’OVERRIDE_MODE’, ’prod’
60
61 # Clear query cache
62 GET "#{host}-admin-login_#{version}", ’/admin/’, {:MYSQL_CLEAR_CACHE => 1}
63
64 # Login
65 POST "#{host}-admin-login_#{version}", ’/admin/auth/login’, {:username => ’******

’, :password => ’******’}
66
67 sleep 30
68
69 # Visit detail page, no cache
70 udo_id = hosts_plan[host][’edit_udo’][’udo’]
71 30.times do
72 GET "#{host}-admin-detail-view-nc_#{version}", "/admin/content/content/

type/detail/id/#{udo_id}", {:MYSQL_CLEAR_CACHE => 1}
73 end
74
75 sleep 30
76
77 # Visit detail page
78 udo_id = hosts_plan[host][’edit_udo’][’udo’]
79 30.times do
80 GET "#{host}-admin-detail-view_#{version}", "/admin/content/content/type/

detail/id/#{udo_id}"
81 end
82
83 end
84
85 end
86 end

Listing B.3: Testplan for viewing content items on the detail page

1 include Couchmark
2
3 debug false
4
5 class Float
6 def round_to(x)
7 (self * 10**x).round.to_f / 10**x
8 end
9 end

10
11 # Connect to metrics agent, residing on the web server

88

APPENDIX B. TESTPLANS

12 agent :localhost, 4300
13
14 # Collection of user metrics
15 default_metrics do |response, sample|
16 headers = response.headers
17 sample.set_metric ’php_memory_peak’,
18 (headers[’X-Metric-Memory-Usage-Peak’].to_f()/1024/1024).round_to(2) # MB
19 sample.set_metric ’parse_time’,
20 headers[’X-Metric-Parse-Time’].to_f().round_to(2) # s
21 sample.set_metric ’cpu_load’,
22 get_sample(’cpu_load’, 30)
23 end
24
25
26 http_defaults :port => 80
27
28 hosts_plan = {
29 ’small.local’ => {
30 ’web’ => [’/’, ’/rubrieken/aan-het-woord’, ’/algemeen-forum/forum/straatvraag/

koningshuis--45.html’, ’/over-blikveld/de-redactie’]
31 },
32 ’medium.local’ => {
33 ’web’ => [’/’, ’/voor-jou/activiteiten/vakanties/hgjb-vakanties’, ’/voor-jou/

activiteiten/vakanties/algemene-info/after-summer-praise’, ’/voor-jou/activiteiten/
vakanties/contact’]

34 },
35 ’large.local’ => {
36 ’web’ => [’/sjaals/trendy-sjaals?page=1’,’/sjaals/trendy-sjaals?page=2’,’/sjaals/trendy-

sjaals?page=3’,’/sjaals/trendy-sjaals?page=4’]
37 },
38 }
39
40 for version in [’cms’, ’cms-trunk’] do
41 for host, in hosts_plan do
42
43 # Defaults
44 http_defaults :host => host
45
46 # One user
47 users 1 do |user_id|
48
49 user_cookie ’CMS_VERSION’, version
50 user_cookie ’OVERRIDE_MODE’, ’prod’
51
52 # Clear query cache
53 GET "#{host}-admin-login_#{version}", ’/admin/’, {:MYSQL_CLEAR_CACHE => 1}
54
55 # Login
56 POST "#{host}-admin-login_#{version}", ’/admin/auth/login’, {:username => ’******

’, :password => ’******’}
57
58 sleep 30
59
60 # Load front-side webpages 20 times, no cache
61 for url in hosts_plan[host][’web’]
62 20.times do
63 response = GET "#{host}-web-nc_#{version}", url, {:

MYSQL_CLEAR_CACHE => 1}
64 response.sample.set_metric ’body64’, response.body64
65 end
66 end
67
68 next
69
70 sleep 30
71
72 # Load front-side webpages 20 times
73 for url in hosts_plan[host][’web’]
74 20.times do
75 GET "#{host}-web_#{version}", url
76 end
77 end
78
79 end
80
81 end
82 end

Listing B.4: Testplan for viewing several customer website pages

89

APPENDIX B. TESTPLANS

90

Appendix C

Measurements

This appendix displays the performance of the system before and after optimisation.

Some terms:

Processor queue Shows the thread queue length of the processor. Produces a value
with a meaning similar to the load average in Linux.

QCC Query Cache Clear

91

Sample

R
es

po
ns

e
tim

e
(s

)

0 10 20 30 40

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0
0.

2
0.

4
0.

6
0.

8
1

before − small.local − content list

Response time (s)
Processor queue (mean over 30s)
Response time (QCC, s)
Processor queue (QCC, mean over 30s)

Page 1 Page 2

Sample

R
es

po
ns

e
tim

e
(s

)

0 10 20 30 40

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0
0.

2
0.

4
0.

6
0.

8
1

after − small.local − content list

Response time (left, s)
Processor queue (mean over 30s)
Response time (QCC, s)
Processor queue (QCC, mean over 30s)

Page 1 Page 2

Figure C.1: A comparison of small.local ’s content list, before and after
optimisation.

92

Sample

R
es

po
ns

e
tim

e
(s

)

0 10 20 30 40

0
2

4
6

8

0
0.

4
0.

8
1.

2
1.

6

before − medium.local − content list

Response time (s)
Processor queue (mean over 30s)
Response time (QCC, s)
Processor queue (QCC, mean over 30s)

Page 1 Page 2

Sample

R
es

po
ns

e
tim

e
(s

)

0 10 20 30 40

0
2

4
6

8

0
0.

4
0.

8
1.

2
1.

6

after − medium.local − content list

Response time (left, s)
Processor queue (mean over 30s)
Response time (QCC, s)
Processor queue (QCC, mean over 30s)

Page 1 Page 2

Figure C.2: A comparison of medium.local ’s content list, before and after
optimisation.

93

Sample

R
es

po
ns

e
tim

e
(s

)

0 10 20 30 40

0
2

4
6

8
10

12

0
0.

4
0.

8
1.

2
1.

6
2

2.
4

before − large.local − content list

Response time (s)
Processor queue (mean over 30s)
Response time (QCC, s)
Processor queue (QCC, mean over 30s)

Page 1 Page 2

Sample

R
es

po
ns

e
tim

e
(s

)

0 10 20 30 40

0
2

4
6

8
10

12

0
0.

4
0.

8
1.

2
1.

6
2

2.
4

after − large.local − content list

Response time (left, s)
Response time (QCC, s)
Processor queue (mean over 30s)
Processor queue (QCC, mean over 30s)

Page 1 Page 2

Figure C.3: A comparison of large.local ’s content list, before and after
optimisation.

94

Sample

R
es

po
ns

e
tim

e
(s

)

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

0
0.

2
0.

4
0.

6
0.

8
1

1.
2

before − small.local − detail view
Response time (s)
Processor queue (mean over 30s)
Response time (NQC, s)
Processor queue (NQC, mean over 30s)

Sample

R
es

po
ns

e
tim

e
(s

)

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

0
0.

2
0.

4
0.

6
0.

8
1

1.
2

after − small.local − detail view
Response time (s)
Processor queue (mean over 30s)
Response time (NQC, s)
Processor queue (NQC, mean over 30s)

Figure C.4: A comparison of small.local ’s detail page, before and after
optimisation.

95

Sample

R
es

po
ns

e
tim

e
(s

)

0 5 10 15 20 25 30

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0
0.

5
1

1.
5

2
2.

5

before − medium.local − detail view
Response time (s)
Processor queue (mean over 30s)
Response time (NQC, s)
Processor queue (NQC, mean over 30s)

Sample

R
es

po
ns

e
tim

e
(s

)

0 5 10 15 20 25 30

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0
0.

5
1

1.
5

2
2.

5

after − medium.local − detail view
Response time (s)
Processor queue (mean over 30s)
Response time (NQC, s)
Processor queue (NQC, mean over 30s)

Figure C.5: A comparison of medium.local ’s detail page, before and after
optimisation.

96

Sample

R
es

po
ns

e
tim

e
(s

)

0 5 10 15 20 25 30

0
1

2
3

4
5

6

0
1

2
3

4
5

6

before − large.local − detail view
Response time (s)
Processor queue (mean over 30s)
Response time (NQC, s)
Processor queue (NQC, mean over 30s)

Sample

R
es

po
ns

e
tim

e
(s

)

0 5 10 15 20 25 30

0
1

2
3

4
5

6

0
1

2
3

4
5

6

after − large.local − detail view
Response time (s)
Processor queue (mean over 30s)
Response time (NQC, s)
Processor queue (NQC, mean over 30s)

Figure C.6: A comparison of large.local ’s detail page, before and after
optimisation.

97

Sample

R
es

po
ns

e
tim

e
(s

)

0 10 20 30 40

0.
0

0.
5

1.
0

1.
5

0
0.

5
1

1.
5

before − small.local − detail edit
Response time (left, s)
Processor queue (mean over 30s)

Sample

R
es

po
ns

e
tim

e
(s

)

0 10 20 30 40

0.
0

0.
5

1.
0

1.
5

0
0.

5
1

1.
5

after − small.local − detail edit
Response time (left, s)
Processor queue (mean over 30s)

Figure C.7: A comparison of the editing of small.local content item, be-
fore and after optimisation. The content item is also connected to and
disconnected from a node in the navigational structure. This causes the
wobble.

98

Sample

R
es

po
ns

e
tim

e
(s

)

0 10 20 30 40

0
1

2
3

4
5

0
0.

25
0.

5
0.

75
1

1.
25

before − medium.local − detail edit
Response time (left, s)
Processor queue (mean over 30s)

Sample

R
es

po
ns

e
tim

e
(s

)

0 10 20 30 40

0
1

2
3

4
5

0
0.

25
0.

5
0.

75
1

1.
25

large − medium.local − detail edit
Response time (left, s)
Processor queue (mean over 30s)

Figure C.8: A comparison of the editing of medium.local content item,
before and after optimisation. The content item is also connected to and
disconnected from a node in the navigational structure. This causes the
wobble.

99

Sample

R
es

po
ns

e
tim

e
(s

)

0 10 20 30 40

0
5

10
15

20

0
0.

5
1

1.
5

2

before − large.local − detail edit
Response time (left, s)
Processor queue (mean over 30s)

Sample

R
es

po
ns

e
tim

e
(s

)

0 10 20 30 40

0
5

10
15

20

0
0.

5
1

1.
5

2

after − large.local − detail edit
Response time (left, s)
Processor queue (mean over 30s)

Figure C.9: A comparison of the editing of large.local content item, before
and after optimisation. The content item is also connected to and discon-
nected from a node in the navigational structure. This causes the wobble.

100

Sample

R
es

po
ns

e
tim

e
(s

)

0 20 40 60 80

0.
0

0.
5

1.
0

1.
5

0
0.

2
0.

4
0.

6

before − small.local − home,rubr.,forum,red.

Response time (s)
Processor queue (mean over 30s)
Response time (QCC, s)
Processor queue (QCC, mean over 30s)

Sample

R
es

po
ns

e
tim

e
(s

)

0 20 40 60 80

0.
0

0.
5

1.
0

1.
5

0
0.

2
0.

4
0.

6

after − small.local − home,rubr.,forum,red.

Response time (s)
Processor queue (mean over 30s)
Response time (QCC, s)
Processor queue (QCC, mean over 30s)

Figure C.10: Viewing of several pages from small.local, before and after
optimisation.

101

Sample

R
es

po
ns

e
tim

e
(s

)

0 20 40 60 80

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0
0.

2
0.

4
0.

6
0.

8
1

before − medium.local − home,vak.,sum.,cont.

Response time (s)
Processor queue (mean over 30s)
Response time (QCC, s)
Processor queue (QCC, mean over 30s)

Sample

R
es

po
ns

e
tim

e
(s

)

0 20 40 60 80

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0
0.

2
0.

4
0.

6
0.

8
1

after − medium.local − home,vak.,sum.,cont.

Response time (s)
Processor queue (mean over 30s)
Response time (QCC, s)
Processor queue (QCC, mean over 30s)

Figure C.11: Viewing of several pages from medium.local, before and after
optimisation.

102

Sample

R
es

po
ns

e
tim

e
(s

)

0 20 40 60 80

0
2

4
6

8

0
0.

8
1.

6
2.

4
3.

2

before − large.local − sjalen pp.1−4

Response time (s)
Processor queue (mean over 30s)
Response time (QCC, s)
Processor queue (QCC, mean over 30s)

Sample

R
es

po
ns

e
tim

e
(s

)

0 20 40 60 80

0
2

4
6

8

0
0.

8
1.

6
2.

4
3.

2

after − large.local − sjalen pp.1−4

Response time (s)
Processor queue (mean over 30s)
Response time (QCC, s)
Processor queue (QCC, mean over 30s)

Figure C.12: Viewing of several pages from large.local, before and after
optimisation.

103

