Decentralized Autonomous-Agent-Based
Infrastructure for Agile Multiparallel Manufacturing

Leo van Moergestel, Erik Puik and Daniél Telgen

Dep. of microsystem technology
Faculty of Science and Technology
Utrecht University of Applied Sciences
Utrecht, the Netherlands
Email: leo.vanmoergestel @hu.nl

Abstract—This paper describes an agent-based software in-
frastructure for agile industrial production. This production is
done on special devices called equiplets. A grid of these equiplets
connected by a fast network is capable of producing a variety of
different products in parallel. The multi-agent-based underlying
systems uses two kinds of agents: an agent representing the
product and an agent representing the equiplet.

I. INTRODUCTION

The requirements of modern production systems are influ-
enced by new demands like time to market and customer-
specific small quantity production. In other words the tran-
sition time from product development to production should
be minimal and small quantity production must be cheap. To
fulfill these requirements we need to develop new production
methods. This new approach means new production hardware
as well as co-designed software. At the Utrecht University
of Applied Science we have developed special production
platforms that are cheap, agile and easily configurable [13].
These platforms can operate in parallel. We call these plat-
forms equiplets and a collection of these equiplets is called a
production grid. The idea behind this concept is that we need a
production system that is capable of producing many different
products in parallel. This is what we call multiparallel man-
ufacturing. The software infrastructure for such a production
grid is highly responsible for this agile and diverse way of
production. In this paper we will propose a software model
based on agent technology. Though we based our model on
our own designed production hardware, we expect this agent
approach to be useful in other production environments.

II. EQUIPLET-BASED PRODUCTION

The basic production platform is the equiplet. An equiplet
has a standard basis and can be equipped with one or more
frontends. These frontends give the equiplet the capability
of production. This means that the moment the frontend
is attached to the equiplet, certain production steps can be
accomplished. Every frontend has its specific set of produc-
tion step capabilities. These production steps are needed to
build microdevices with a three dimensional structure. An
equiplet has a local computer for running control software
depending on the applied frontends. The equiplets in a grid

John-Jules Meyer
Intelligent Systems Group
Dep. of Information and Computing Sciences
Utrecht University
Utrecht, the Netherlands
Email: jj@cs.uu.nl

do not necessarily have the same frontend. Some frontends
are unique, some frontends are available on several equiplets.
The equiplets are connected by a transport system to move the
products from equiplet to equiplet and to serve as a temporary
storage for unfinished products during the production.

III. THE STANDARD AUTOMATION APPROACH

Standard production software is mostly designed for batch
production or continuous production. Continuous production
can be considered as an endless batch. These production ap-
proaches are characterized by the fact that it is bulk processing.
A lot of the same products are produced.

A. Standard Automation Software

The software for standard production systems is based on
a layered model [15]. This model is mostly referenced as the
automation pyramid (figure 1).

Business
Management

Production management
MES

Process Management
SCADA

Process control

Fig. 1. Automation pyramid

We will give a short explanation of the layers in this pyramid:
o At the top, we find the business management software.
This is the software level where the orders for production
come in and where the connection with clients, suppliers,

etc. is handled.

e The production management layer software is mostly
covered by software systems called MES [9]. MES is an
abbreviation of Manufacturing Execution System. This
software enables high level control over production facil-
ities in a broad sense.

o The process management layer is the software that su-
pervises the process control devices. It will also collect
production data. The software in this layer is mostly

referred to as SCADA, which is an abbreviation of
Supervisory Control And Data Acquisition [16].

o The process control layer is responsible for the actual
production process itself. In an automated environment
it is the software that controls all kind of actuators like
motors, heating devices, robot arms etc.

Request for product - Feedback

Planning resources

Product batch Feedback

Controlling production process

o

Fig. 2. Layers in the automation pyramid at work

Controlling
production
equipment

We will use figure 2 to describe in short what will happen
when an order for a certain quantity of products is received.
The top layer will issue a production request to the MES
layer. This layer makes an inventory of the resources needed to
make the product and checks for availability. At the time the
resources are available, a product batch command is issued
to the SCADA layer. This layer will control the production
process by issuing commands to the production equipment. All
layers send their feedback to the layer they receive commands
from. So the MES layer will inform the top layer (sales) when
the product batches are ready for shipment. This description is
a simplification, but gives an idea about the production process
as a whole.

B. Properties and problems of Standard Automation

In this section we will describe two problems of standard
automation that make it inadequate for agile production. One
problem is switching to a different product. Standard produc-
tion automation is designed for producing large quantities of
the same product. Normally these products are produced in
batches. A batch is a quantity of products produced without
interruption. The size of a batch should be big enough to be
cost-effective but should be limited because of maintenance
and production supply fill up. The transition from one batch
to the next one is called a batch switch. There are two types
of batch switches:

1) a switch between batches of the same product;

2) a switch to a batch of a different product.

The overhead of a switch of the first type is not so big, but still
some time is required. This time is used for preventive main-
tenance of the production equipment, for filling up component
trays, etc. A switch of type two takes a longer time because in
addition to the normal batch-switch time we also need time to
reconfigure the software on the lower two layers and perhaps
the hardware of the lowest layer. As a consequence batch
switching of this type introduces a lot of overhead.

Another problem is the fime-to-market. The time-to-market
is the time that it will take for a newly developed product to

go into mass production. From an economic point of view,
this time should be minimal. Normally new products are
developed at the Research and Development department. Then
the production automation team will search for ways to make
the transition to mass production. This phase is sometimes
referred to as upscaling. To test this upscaling we also need
to use the production floor equipment for test batches. The
aforementioned steps are visualized in figure 3.

Research and
Development (R&D)

Production
Floor

Upscaling to :
> Real Production |— 3
Equipment i

New
Product

Test
Batch

¢ Adjust
. \Parameters,

Time to Market

Production
Batch

Fig. 3. Steps involved for a new product

Summary of properties of standard production automation:

« huge batches for cost-effective production;

o small overhead introduced by batch switching;

« large overhead introduced by switching to another prod-
uct;

e hard transition from product development to product
production;

o most SCADA and MES implementations are not suited
for decentralization.

C. Solutions Offered by Equiplet-Based Production

To produce small scale batches or even unique single
products, standard batch production automation is inadequate
because of the properties mentioned and summarized in the
previous subsection. When we use the concept of equiplets
one should think of multiple production systems capable of
producing a lot of different products in parallel. At any
moment we can start the production of a new or different
product. In the following sections we will explain in more
detail how the equiplet-based approach will result in cheap
small quantity production without batch switching overhead.

To make the transition from product development at the
Research and Development department much easier, we use
the equiplets in the product development as well as in the final
production process. So we combine development, production
automation and testing. This alleviates the aforementioned
time-to-market problem. In figure 4 this approach is visualized.

Research and
Development (R&D)

Production Floor

Integrate new
frontend in
production grid
Start production

IF (new;frontend)
New Product : >
made by Equiplets :
using existing and/or (g g :

new frontends Start production

Fig. 4. Developing a new product using equiplets

IV. SOFTWARE INFRASTRUCTURE

Before we investigate possible software architecture solu-
tions, let us first take a closer look at the hardware model and
the basic software for the equiplets.

A. Hardware

Figure 5 shows the hardware setup of our production
system. Only three equiplets are shown, but one could think
of a grid of 64 or even more equiplets. These equiplets are
connected by a standard (fast) ethernet infrastructure based on
switches. These switches are standard hardware data commu-
nication devices that connect all attached systems. To monitor
the grid we have a system that is a standard personal computer.
The storage of production information and necessary software
components and the control of the several parallel production
processes is done by a central server system.

equiplet A equiplet B equiplet C
D RS
central server system production grid monitor
Fig. 5. hardware infrastructure

B. Software Infrastructure Requirements

Considering the software infrastructure we come to these

requirements:

« cfficient use of the equiplets. We need load balancing
over all the available equiplets because this will lead to
more parallelism and also prevents us from overusing a
small subset of equiplets;

o small-scale production in parallel;

« the time to market of a newly developed product should
be minimal.

To give an idea how the production of three products will look
like, we have plotted so called production paths that these
products will follow along certain equiplets (figure 6). On
every equiplet in this production path, one or more production
steps are done. A production step is an action performed on the
product by a single equiplet. Some equiplets can perform a set
of production steps. The plotting of the paths of three products
results in a fabric of production paths along the available
equiplets. The first production step is shown as a black circle.

C. Possible Software Architectures

To meet the requirements of our software infrastructure we
can apply different models or architectures:
1) a centralized system, controlling the equiplets. The
equiplets have a minimal software configuration.
2) a distributed system where the on-board software of
the equiplet is enhanced with extra software so these

production steps product X

equiplet A (868
production steps product Z

equiplet B
production steps product Y,

equiplet C

equiplet E 4>4>

Product path fabric

Time —

Fig. 6.

equiplets can act as active nodes in this distributed
environment. Instead of sending low level commands to
the equiplets, we can now send a command to perform
a certain production step.
Solution 1 has the advantage that the equiplet software is
kept to a minimum, but it results in a complex multi-threaded
software system running on the central server. This server
software will be a single point of failure. Solution 2 should
give a better uptime because the local software on the equiplets
could continue the production process in case of temporary
failure in the central system or in one of the equiplets. We
also use the available processing power in the equiplets and
this will scale better when we add more equiplets. When we
concentrate on this solution we can again choose from two
possibilities:
2a a coherent distributed system where we have a Central
Planning System that will send all kind of different
software tasks to perform certain production steps to the
equiplets;
2b a system composed by autonomously operating parts,
working together on the production tasks as depicted
in figure 7. Every autonomous part is controlling the
production of a single product.

Single product ‘
control - |

Negotiation .
Single product ®
1 u
PP E—
control

Distributed production control by autonomous subsystems

Distributed local control ‘

Equiplet

Fig. 7.

In case of a coherent distributed software system, we still
need a complex software system. This complex central server
software system has its drawbacks:

¢ hard to maintain;

« single point of failure for the whole production process;

¢ not easy to scale;

e not easy to adapt to new situations, in other words not

agile.
However, in the grid of equiplets it is easy to separate the
production of product X from product Y. An autonomous
software component or subsystem should be able to make
a single product. The set of these product-making software
entities only share the resources or environment, but have their

own path along the equiplets. By using these autonomous
entities we get a flexible, scalable and reliable production
system as we will show in the next sections. The autonomous
software entities must fit these requirements:

o autonomy (as already stated);

o cooperative (the entities represent a production team);
« communicating (for good cooperation);

o reactive (acting on events in the production);

o pro-active (have motivation and ways to reach a goal).

This concept also fits the best in the grid concept [13], because
autonomous software entities with communication capabilities
can be easy implemented on a grid infrastructure. In the next
section, we will introduce the agent concept and show that the
agent-approach fits well in our proposed software architecture
based on autonomy.

V. AGENTS

There are many definitions of what an agent is. We use here
a common accepted definition by Wooldridge and Jennings
[18] An agent is an encapsulated computer system that is
situated in some environment and that is capable of flexible,
autonomous action in that environment in order to meet its
design objectives. In figure 8 we depicted an agent in its
environment. An agent is sensing the environment an can
perform actions on the environment. As stated in the definition,
the actions the agent performs depend on the design objectives.

Environment

\ /
Sensm g
/gr T

Fig. 8. An agent in its environment

In figure 8 the agent is a black box, so now we must
take a look at the internal software structure of an agent. To
do this we should first discuss the possible implementations
of agents, but this is too broad a field to handle here. We
will concentrate on some aspects that are important for our
final software architecture. Literature and papers about agents
introduce among others, two types of agents that seem to fit
in our software solution:

1) reactive agents
2) reasoning agents

A reactive agent senses the environment acts according to the
information its get from this sensing. There is no internal state
involved. A reasoning agent also senses its environment but
does have an internal state. Depending on the sensing input
and the internal state it will search for an action to perform,
one could say it will reason for the action to perform. The
sensing input will also change the internal state. A special
type of reasoning agent is the so called belief-desire-intention-
agent or BDI-agent. This type of agent has its backgrounds in

the philosophy of Dennett and Bratman [6] [2]. An internal
schematic of a BDI-agent can be seen in figure 9 [17].

Plans
cting
Intentions

BDI-agent

BDI- Agent

Bellefs

Interpreter
Sensing

Desires

Fig. 9.

The beliefs, desires and intentions could be viewed as the
mental states of a BDI-agent.

o from the inputs of its sensors the agent builds a set of
beliefs. Beliefs characterize what an agent imagines its
environment state to be;

o desires (or goals) describe agents preferences;

e intentions characterize the desires the agent has selected
to work on.

An agent is equipped with a set of plans. These plans have
three components:

1) the postcondition of the plan;
2) the precondition of the plan;
3) the course of action to carry out.

An agent will deliberately choose a plan to achieve its goals.

A. Multi-Agent Systems

A multi-agent system (MAS) consists of two or more
interacting autonomous agents. Such a system is designed to
achieve some global goal. The agents in a multi-agent system
should cooperate, coordinate and negotiate to achieve their
objectives. When we consider the use of a multi-agent system
we should specify abstract concepts such as:

e role: what is the role of a certain agent in a multi-agent
system. Perhaps an agent has more than one role;

o permission: what are the constraints the agent is tied to;

o responsibility: i.e. the responsibility an agent has in
achieving the global goal,

e Interaction: agents interact with each other and the envi-
ronment

Environment

agent-agent
interaction

Acting Acting

S
ensing
Sensing /

Fig. 10. Multi-agent system

When we map our system requirements to a MAS and single
agent properties we see there is a perfect match. The agent
is autonomous, reactive and can be pro-active. In a MAS
these agents can be cooperative and should communicate.
What we must do to realize our software infrastructure is
to define agents with a specific role in the system. These
agents play their role and interact with other agents. We have
interactions at two levels. First the actions of the agent within
the environment and second the interaction between agents.
When applied to our situation, these interactions and agent
actions result in an agile production system as a whole.

VI. MULTI-AGENT PRODUCTION SYSTEM

This section describes the multi-agent production system
and consists of two parts. In the first part we look at the
possibilities we should consider. In the second part we describe
the implementation.

A. Design considerations

To realize our system we define two roles. These roles are
the main roles in the system.

1) making a certain product by searching and using a set
of production steps;
2) offering and performing production steps.

We ascribe these roles to two agents. Every product is repre-
sented by a product agent and every equiplet is represented
by an equiplet agent. A similar approach is also used by
Jennings and Bussmann [8], though there are some important
differences that we will discuss later. The product agent has
the purpose of the product being produced. The purpose of
the equiplet agent is to accomplish production steps. Every
product is made by a certain set of production steps, while
every equiplet is capable to perform a certain set of production
steps. In other words: product agents know what steps are
needed to make products while equiplet agents know how to
perform these steps. Because of the complex environment and
the many possibilities to reach their goals, both types of agents
should have the capability to deliberately choose a plan. The
BDI-type of agents meets this requirement.

Equiplets get a front-end. This is part of the initial grid
hardware configuration. At that very moment it is clear what
kind of production actions, resulting in production steps, they
can perform. Let us assume that the grid offers a set Sgriq
of N production steps o;...0x5. An equiplet offers a set of
production steps that is a subset of Sy,;4. To make a product, a
certain set of production steps should be available. This means
that the set of needed production steps for a product is also a
subset of Sy,;4. Because for a product the order of production
steps is important, the product is characterized in its simplest
form by a tuple of production steps: i.e. < 04,07,02,01 >.

Because of the strong interaction with the equiplet driver
software we expect the equiplet agent to run on the equiplet
on-board system itself. These equiplet agents will publish their
possible production steps in a global agent accessible space
like a blackboard [4] or shared tuple space [7]. Then they
wait until a product agent wants to use its service.

When we want to implement the product agent, we have
two choices:

1) a product agent can run on the central server and
make the transition to other equiplets by using another
network address to reach the on-board equiplet agent as

in figure 11.
: iplet t
equiplet A o oo product agent
netwok connection
inlet B equiplet agent
equiplet frontend B
product flow
i iplet agent
fromind A central server
equiplet C equiplet agent
frontend C
Fig. 11. Product agent on central server

2) a product agent can be mobile and migrate to the on-
board equiplet hardware to interact with the equiplet
agent as in figure 12;

:
equiplet A P = 9
equiplet agent product
frontend A agent
path
equiplet B -
equiplet agent
frontend B
equiplet A
equiplet agent
frontend A
equiplet C : i
equiplet agent
frontend C
Fig. 12. Mobile product-agent

The central server based approach is easier to implement,
but this solutions does not scale well. When we add more
equiplets, both the server as well as the communication chan-
nels will be overloaded. Mobile agents are harder to implement
but use the onboard computer system of the equiplet as a
platform so this solution makes a better use of the distributed
processing power. On the other hand we have to consider the
amount of data communication when all these mobile agents
are traveling along the equiplets (figure 13a). When this give
rise to a loss of bandwidth of the network infrastructure a
solution could be the use of a modular agent design. So
most parts of the product agent software can reside on the
equiplet and only the part representing the essential product
information travels over the network (figure 13b).

Production steps can be in line so our path is a single thread
but one could think of other possibilities. Maybe a set of
steps could be replaced by another set of steps. Figure 14
shows some possibilities. When the order of subsets of steps
is irrelevant, we start two or more parallel paths. These paths
will join at some point. A special case is a structure that starts
with more parallel threads of steps. In this case it is possible to
use real parallel production steps that are joined to complete

a) [product agent]

TN
product agent

Mobile agent implementations

¢ product agent

[@GEEES)
b) product agent

Fig. 13.

the product. A special case of this situation is combining two
half-products or so called half-fabricates.

sequential steps

~O~0~--G

parallel steps

AND JOIN-1

D)
a@@ﬁﬁm

alternative steps

* L2~
~(2)

joinig halfproducts
~()—~()—~(2)
@)

Fig. 14. Different combinations of production steps

JOIN-2

T

By defining steps we have a way to find out how we could
construct a product. A step could be translated to instructions
to a human operator or could be translated to low level actions
of a part of the production system (i.e. an equiplet). This makes
it possible to make a smooth transition from a hybrid system
where a human operator interacts with the equiplet agent to a
complete software driven process. A step should be clearly
defined (just like a statement or instruction in a computer
program). A step can be performed if a set of preconditions
is fulfilled. After the step has been completed, we have a new
situation (postcondition) for the product agent.

Based on the BDI architecture [14], it is rather straightfor-
ward to construct the basic model of a product agent in case
of a single step path. Most BDI agents are capable of acting to
achieve its intentions [5]. The ultimate desire or goal of such
an agent is the product being completed.

In this paper we do not go into detail about scheduling
though it is of course a very important part of the final realiza-
tion. Figure 15 shows the way scheduling is accomplished by
the participating agents. As explained earlier, equiplet agents
publish their set of production steps. The product agents
choose the right equiplet agents to build the product they
represent. The scheduling could be realized in a multi agent
negotiation setup between the product agents.

possible steps
published by equiplet
agent from equiplet A

OC)

possible steps

published by equiplet @ @
agent from equiplet B

°°

needed steps for product agent X

Fig. 15. Selecting a set of production steps

B. implementation

For the implementation we setup a hardware infrastructure
as in figure 5. For testing our concept, the equiplet agents are
not yet connected to the equiplet frontend hardware, so there is
no real production and the production steps are virtual steps.
This means that equiplets offer production steps and when
asked to perform a production step they will enter a timing
loop, faking a real production step. We used Jade [1] as a
platform. The reasons for choosing Jade are:

« the simulation is a multi-agent-based system. Jade pro-
vides most of the requirements we need for our applica-
tion like platform independence and inter agent commu-
nication;

e Jade is Java-based. Java is a versatile and powerful
programming language;

« because Jade is Java-based it also has a low learning curve
for Java programmers;

o in this first approach at least the equiplet agents are
not that intelligent that we need special multi-agent
environments. The product agents should be capable to
negotiate to reach their goals. Jade offers possibilities for
agents to negotiate. If we need extra capabilities, the Jade
platform can easily be upgraded to an environment that
is especially designed for BDI agents like 2APL [5] or
Jadex [1]. Both 2APL as well as Jadex are based on Jade
but have a more steep learning curve for Java developers;

 agents can migrate, terminate or new agents can appear.

The Jade runtime environment implements message-based
communication between agents running on different platforms
connected by a network. In figure 16 the Jade platform
environment is depicted.

Java Java Java
EN | (o) @m &) ()
(DF) (AMS
| Container E1 Main Container | Container E2 |:
GADT (cache) GADT (cache)
""""""""""""""""""""""" JADE - Piatform ™~
Equiplet Server Equiplet

Fig. 16. The Jade platform

The Jade platform itself is in this figure surrounded by a
dashed line. It consists of the following components:

« A main container with connections to remote containers
(in our case El and E2, representing equiplets);

o A container table (CT) residing in the main container,
which is the registry of the object references and transport
addresses of all container nodes composing the platform;

o A global agent descriptor table (GADT), which is the
registry of all agents present in the platform, including
their status and location. This table resides in the main
container and there are cached entries in the other con-
tainers;

« All containers have a local agent descriptor table (LADT),
describing the local agents in the container;

o The main container also hosts two special agents AMS
and DF, that provide the agent management and the
yellow page service (Directory Facilitator) where agents
can register their services or search for available services.

The equiplet agents (EqA) and product agents (PA) run on top
of this platform. Due to performance reasons, we decided to
use our database-based blackboard instead of the DF of the
Jade platform. We will now take a closer look at the agents.

1) Equiplet agent: Every equiplet agent is residing in the
on-board hardware of the equiplet. Equiplet agents control the
equiplet hardware and perform production steps. To do this, the
equiplet agent waits for a product agent to contact the equiplet
agent. The product agent will inform the equiplet agent by a
message of the product step to perform. The equiplet agent will
inform the product agent about the actions taken and if this is
relevant the building material used. As already mentioned, the
equiplet agent is not yet connected to the equiplet hardware
and performs only virtual production steps and informs the
product agent about successful completion of the steps.

The architecture is a layered system. This approach for
our software model makes it easily maintainable, expandable,
testable and modular. The agent layer contains the main
software part of the agent and an asynchronous event handler
is used for communication events like messages from and
to other agents. It also contains a graphical user interface
or GUI that can be disabled. This GUI is nice for testing
purposes, because it can be used to check the behavior or
internal state of the agent during the simulation run. The data
layer contains a database handler. In our system the database is
used as a global publishing system, resembling a blackboard.
The equiplet agent has two behaviors or roles. It publishes
the possible production steps in its role as publisher. After
publishing it will enter the role of executor. In this role it
enters a waiting state for product agents to arrive. As we
will see in the next subsection, the product agent is a mobile
agent that will visit the equiplets according to its scheduling
in its role as walker. If a product agent arrives it wil send a
message to the equiplet agent and this equiplet agent will start
producing, thus actually performing the requested production
step(s). When the production step is finished, it will inform
the product agent about the production but keeps its role as
executor, waiting for the next product agent to arrive.

2) Product agent: The product agent will search for pro-
duction steps published by the equiplet agent on the black-

Data Layer

Database
Handler

Agent Layer Equiplet agent

.
Behavior
Switcher

Executor
Behavior

Equiplet agent architecture

GUI

> Set info on GUI

Behavior Layer

Publicator
Behavior

Fig. 17.

board. It will schedule the production and thus claim produc-
tion steps on certain equiplets. Next it will travel along the
equiplets asking the equiplet agents to perform the needed
steps until the product is finished. The product agent has the
same layered architecture as the equiplet agent, extended with
an extra layer that is used for scheduling and optimization.
The agent layer has the same components as the agent layer
in the equiplet agent,

Schedule
Data

Data Layer |FilterMatrix SkillData

Database
Handler
Event Handler

Agent Layer

Product
Agent

Behavior Layer Behavior

Switcher

Negotiator Revisor Walker
Behavior Behavior Behavior

Schedule
Behavior

|
Default
Schedule
Filter

Filter Layer

Afilter
- ExecuteFilter

Default
Negotiation,
Filter

Fig. 18. Product agent architecture

The configuration of both the product agent as well as the
equiplet agent is given as a set of parameters during startup.
The steps are stored in SkillData. ScheduleData contains the
production scheduling. FilterMatrix is used for data that is
used during production scheduling.

The product agent comes to life at the central server and
will try to schedule its production steps in its role as scheduler.
It will check the blackboard to see if all needed steps are
available to complete the product before the deadline. If
all steps are available the scheduling will succeed and the
production will start by the product agent switching from
scheduler to walker behavior (it walks along the equiplets).
The product agent is a mobile agent, walking from equiplet
to equiplet as depicted in figure 13a. During walker behavior,

the agent is still open for messages from other product agents.
If scheduling fails due to the fact that one or more production
steps are not available, the product agent will check the
blackboard to see which product agents it should negotiate
with. It builds a list of agents to negatiate with and it will
ask these production agents with walker behavior to negotiate
about a certain production step. If a walker agent is willing to
revise its scheduling it will enter the role of revisor and try to
revise its scheduling thus making place for the step needed by
the agent with the failed scheduling. Several scenarios have
been build to test this concept and it works to our expectation
[10].

VII. RELATED WORK

Using agent technology in industrial production is not new
though still not widely accepted. Important work in this field
has already been done. Paolucci and Sacile [12] give an exten-
sive overview of what has been done in this field. This work
focuses on simulation as well as production scheduling and
control [11]. The main purpose to use agents in [12] is agile
production and making complex production tasks possible by
using a multi-agent system. Agents are also introduced to
deliver a flexible and scalable alternative for MES for small
production companies. The roles of the agents in this overview
are quite diverse. In simulations agents play the role of active
entities in the production. In production scheduling and control
agents support or replace human operators. Agent technology
is used in parts or subsystems of the manufacturing process.
We on the contrary based the manufacturing process as a
whole on agent technology.

Bussman and Jennings [3] [8] used an approach that com-
pares to our approach. The system they describe introduced
three types of agents, a workpiece agent, a machine agent and
a switch agent. There are however important differences to our
approach:

o The production system is a production line with redun-
dant production machinery and focuses on production
availability and a minimum of downtime in the produc-
tion process;

o The roles of the agents in this approach are different from
our approach. The workpiece agent sends an invitation to
bid for it current task to all machine agents. The machine
agents issue bids to the workpiece agent. The workpiece
agent chooses met best bid or tries again. In our system
the negotiating is between the product agents;

o They use a special infrastructure for the logistic subsys-
tem, controlled by so called switch agents.

We have developed a production paradigm based on agent
technology in combination with a production grid. This model
uses only two types of agents and focuses on agile multi-
parallel production. The design and implementation of the
production platforms and the idea to build a production grid
can be found in Puik [13].

VIII. CONCLUSION

We have a co-design of production platforms and production
software. Using agent technology came up as the best solution
to implement the software infrastructure of our production
grid. By introducing the concept of a product agent, creating
a product agent will result in the product being produced.
Because our approach integrates readily with web technology,
new trends like e-Manufacturing are easy to implement in this
model.

When we compare our approach with the existing solutions
for production automating we have better scalability as well
as agile, multiparallel production. Though we expect a lot
of advantages, we must admit that this concept is not yet
proven technology. A Jade framework agent based distributed
simulation has already been developed and works according
to our expectation [10]. We should build a prototype with
equiplet agents that are capable of perfroming real production
steps and do research to give a proof of concept. This is left
as future work.

REFERENCES

[11 N.R. Bordini, M. Dastani, J. Dix, and A. E. F. Seghrouchni. Multi-Agent
Programming. Springer, 2005.

[2] M.E. Bratman. Intention, Plans, and Practical Reason.
University Press, Cambridge, Mass, 1987.

[3] S. Bussmann, N.R. Jennings, and M. Wooldridge. Multiagent Systems
for Manufacturing Control. Springer-Verlag, Berlin Heidelberg, 2004.

[4] D.D. Corkill, K.Q. Gallagher, and P.M. Johnson. Achieving flexibility,
efficiency, and generality in blackboard architectures. Proceedings of
the National Conference on Artificial Intelligence, pages 18-23, 1987.

[5] M. Dastani. 2apl: a practical agent programming language. Autonomous
Agents and Multi-Agent Systems, 16(3):214-248, 2008.

[6] D.C. Dennett. The Intentional Stance. MIT Press, Cambridge, Mass,
1987.

[7]1 D. Gelernter. Generative communication in linda. ACM Transactions on
Programming Languages and Systems (TOPLAS), 7(1):80-112, 1985.

[8] N.R. Jennings and S. Bussman. Agent-based control system. [EEE
Control Systems Magazine, (Vol 23 nr.3):61-74, 2003.

[9]1 J. Kletti. Manufacturing Execution System - MES. Springer-Verlag,
Berlin Heidelberg, 2007.

[10] L.J.M. van Moergestel, J.J.Ch. Meyer, E. Puik, and D.H. Telgen. Simu-
lation of multiagent-based agile manufacturing. CMD 2010 proceedings,
pages 23-27, 2010.

[11] E. Montaldo, R. Sacile, M Coccoli, M Paolucci, and A Boccalatte.
Agent-based enhanced workflow in munufacturing information systems:
the makeit approach. J. Computing Inf. Technol., (10), 2002.

[12] M. Paolucci and R. Sacile. Agent-based manufacturing and control
systems : new agile manufacturing solutions for achieving peak perfor-
mance. CRC Press, Boca Raton, Fla., 2005.

[13] E. Puik and L.J.M. van Moergestel. Agile multi-parallel micro manufac-
turing using a grid of equiplets. IPAS 2010 proceedings, pages 271-282,
2010.

[14] A. S. Rao and M. P. Georgeff. Decision procedures for bdi logics.
Journal of Logic and Computation, 8(3):293-343, 1998.

[15] J.E. Rijnsdorp. Integrated Process Control and Automation. Elsevier
Science Publishers, 1991.

[16] R.I. Williams. Handbook of SCADA systems. Elsevier Science Publish-
ers, 1992.

[17] M. Wooldridge. An Introduction to MultiAgent Systems, Second Edition.
Wiley, Sussex, UK, 2009.

[18] M. Wooldridge and N. Jennings. Intelligent agents: Theory and practice.
The Knowledge Engineering Review, (10(2)):115-152, 1995.

Harvard

