
Running head: NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR

GAME

Networking implementation & optimizations for a VR-AR game with mocap, VoIP and

gameplay data

Graduation report

Aldo Leka

Q1-2 2018

Creative Media and Game Technologies

Saxion University of Applied Sciences

Enschede, The Netherlands

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

Abstract

This paper deals with the networking implementation and optimizations for a VR and AR game

with mocap suit, voice over IP and gameplay data like player information, lobby, etc. The logic

for implementing these systems in the game is studied.

First, there is a general description of the game so the reader can understand more easily what

type of data is expected to be transferred over the network.

Some techniques for compressing mocap data like deflate algorithm and delta compression are

studied and tested. The first one is a combination of huffman coding and LZ77 algorithm. Delta

compression is a custom made implementation for collecting and sending mocap data that have

changed by a given threshold. If threshold is set to 0 this technique is lossless. If it’s set to higher

than 0 it is lossy.

Then Dissonance is studied and tested for implementing VoIP in the game. Implementation

details follow. A lobby is implemented based on a choice from networking options and

architecture. A players dictionary is implemented in the server and the clients where the keys are

the IDs created by the server upon connecting to a client which are in turn broadcasted. The

values are a Player structure with various data like class, name, ready state, spawn position etc.

2

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

Then gameplay data is networked including player’s spawn positions, and player spawning is

implemented at the server and the clients. Loading the game world at the server and at the clients

is handled. After the world has loaded at the server, clients fetch tile data from the server at a

specific rate (like three times per second) based on their position in the world. Using some

hexagonal grid functions it’s possible to retrieve the tile where the player is positioned in the

server and get the tiles that are in a specific range like six, and send the total amount of tiles to all

clients with the ID of the recipient client. The client which has the same ID as the packet ID

processes the information and renders its world.

Following are some implementation details on how player movement works with running

pathfinding at the server side since the server computer has much more processing power and

better specifications than the mobile devices and can better handle player navigation and

pathfinding in the game world.

Finally a test is conducted where all these streaming data like mocap, VoIP, tile and movement

data is transmitted over the network to see whether the server can handle the network load.

In the end conclusions are derived from the tests and implementation results.

3

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

Preface

During this project I had tremendous fun and I loved most of it. I want to thank the teachers at

Saxion for making the study exciting and interesting through all this time. I’m grateful to their

assistance, especially to my supervisor, Paul Bonsma, with the weekly or biweekly meetings,

timely feedback and helpful attitude during the graduation period. I’m also thankful to my

supervisor from the company, Robin Kuiper, who was friendly during the whole time and helped

me to clarify in my head of what is expected from me during the graduation.

I have to thank Taco van Loon for suggesting me to look into Minor Immersive Media topics to

find a graduation spot and got me in touch with Matthijs van Veen who in the end helped me

secure a graduation at Twinsense which I preferred the most.

I want to thank my team members, some of whom are close friends by now. At any moment that

I needed help from them, they were ready to supply. I’m very thankful to each and everyone of

them.

Finally, I want to acknowledge and thank my family who have supported me emotionally and

also financially throughout all this time.

I’m proud that I made it this far. I couldn’t have done it by myself.

4

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

Table of contents

1. Introduction 7

2. General description 8

2.1. Graduation assignment 8

2.2. Company outline 9

2.3. Company’s objectives 10

2.4. Project boundaries 10

3. Theory 11

3.1. VR 11

3.2. AR 11

3.3. Networking options 11

3.4. Networking architecture 13

3.5. Mocap data 14

3.5.1. Optimizations 15

3.6. VoIP data 17

4. Main and sub questions 18

4.1. Sub questions 18

5. Implementation and optimizations 19

5.1. Networking options 19

5.1.1. Results 20

5.2. Mocap 21

5.2.1. Results 24

5.3. Lobby 25

5

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

5.4. VoIP 26

5.4.1. Results 28

5.5. Tiles data 28

5.6. Player spawning and movement 30

6. Conclusion 32

7. References 33

8. Appendix 35

8.1. Figures 35

8.2. Hexagonal grids 42

8.3. Server-side absolute compression code 43

8.4. Client-side absolute decompression code 45

8.5. Unity’s Low Level Networking API 49

8.6. PlayerIO Networking API 50

8.7. Blog posts and links 51

6

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

1. Introduction

Project Tabletop RPG with VR & AR is about playing classic Dungeon and Dragons

using a VR headset to create the game world that players using AR on their mobile phones can

see and interact with. This project has brought together 15 Graduation, Saxion Smart Solutions,

and Minor Immersive Media students. The client is Twinsense, an interactive media company

based in Enschede. They are doing this project to show what’s possible to achieve with the latest

technologies in VR and AR via a game which is an interactive media that they never tried

making before.

More information on the development on the game can be found on the blog below:

https://tabletoprpgblog.wordpress.com/

In this graduation paper, networking solutions are implemented for realizing the multiplayer

aspect of the tabletop VR/AR game using Unity engine. The applications include:

● Mocap data networking and optimizing

● VoIP

● Having a networking solution for a game involving a VR computer application and AR

mobile applications.

● Having basic multiplayer components like a lobby, player data synchronization etc.

7

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

2. General description

2.1. Graduation assignment

Using VR, the game master (or dungeon master, DM, VR player, server which in this

context mean the same thing) can create a world and story for the other players to experience in

AR using a hexagonal grid and hexagonal tiles. During the game each AR player (or client)

controls their own character to interact with the world, while the gamemaster controls the world

and determines the consequences of the player actions.

The gameplay of Project Tabletop can be divided into two segments, the first one being the

campaign creation. This segment would only be for the DM who can create campaign using VR.

The second segment would be about playing this campaign. In this case the DM still controls and

changes the game, but now the AR players are also involved, playing through the campaign

created by the DM.

After the dungeon master has created the campaign, the game can begin. The game is based on

rounds, every AR (mobile) player controls their own character, which has a certain amount of

energy. The players can queue up actions that consume energy (Figure 1 and 2). The actions are

executed in the order in which they were added to the queue. Once all the players have used up

their energy, or passed, the dungeon master can start the next round when they are ready.

8

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

The VR player transmits his movements in real time to AR players on their mobile phones using

a mocap suit. This serves to make the experience more immersive. By moving (mocap) and

talking (VoIP) the game master can better guide the players throughout the story. This is done

via controlling the movements of:

- a giant in the game (Figure 3) who plays the role of the game master and

- various NPCs that players meet in the game world.

This paper’s interpretation of the assignment handed in by the company concerns researching

and implementing the means of transmitting data (player, mocap, voice over IP, game state, etc.)

between the VR player in a computer and AR players in mobile phones.

2.2. Company outline

Twinsense B.V., online brand - was founded in 2005 and is a specialist in the field of online

communication. They help their clients by doing virtual reality films, interactive (online) video

or 360-degree films.

They are doing this project to showcase what is possible to accomplish with today’s technology

to their current and new clients using a game setting. Because of that there is a social benefit to

society in the sense of innovation.

9

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

2.3. Company’s objectives

According to company’s wishes, there must be a 3D RPG Tabletop game which features virtual

reality, augmented reality, full body mocap, and asynchronous multiplayer. Ideally, VoIP should

be implemented as well. Expected deliverables include game master application, player

application and server application.

2.4. Project boundaries

The project boundaries include:

- Using Unity engine for the VR/AR application development.

- Using a local area network for the networking of the game.

- Using Noitom Perception Neuron mocap suit provided by school.

- Using Dissonance for VoIP provided by the company.

10

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

3. Theory

3.1. VR

Virtual reality means using a headset to immerse in a simulated world. When you move

your head the simulation changes to adapt to your movement. For that reason there are multiple

factors that induce nausea like low framerate of the simulation or high latency of the networked

data and these factors have to be taken into account when making a multiplayer VR game.

3.2. AR

Augmented reality (AR) alters one’s ongoing perception of the real world environment

while virtual reality completely replaces the user’s real world environment with a simulation.

Much like VR which is a great simulation tool, AR is a novel human-computer interaction tool

that overlays computer-generated information on the real scene (Nee, Ong, 2013).

In the context of this paper, AR means using augmented reality features using a mobile phone

which is pointed at a marker (page).

3.3. Networking options

- Unity Networking High Level API

11

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

Unity’s networking has a “high-level” scripting API (HLAPI). Using this means you get access

to commands which cover most of the common requirements for multi-user games without

needing to worry about the “lower level” implementation details. The HLAPI allows for:

Controlling the networked state of the game using a “Network Manager”.

Operating “client hosted” games, where the host is also a player client.

Serializing data using a general-purpose serializer.

Sending and receiving network messages.

Sending networked commands from clients to servers.

Making remote procedure calls (RPCs) from servers to clients.

Sending networked events from servers to clients.

- Unity’s Networking Low Level API

In addition to the high level networking API, Unity also provides access to a lower-level

networking API called the Transport Layer. It allows for building custom networking systems

with more specific or advanced requirements for the game’s networking.

The Transport Layer is a thin layer working on top of the operating system’s sockets-based

networking. It can send and receive messages represented as arrays of bytes, and offers a number

12

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

of different “quality of service” options to suit different scenarios. It is focused on flexibility and

performance, and exposes an API within the NetworkTransport class.

- Third party solution

PlayerIO runs dedicated server code, where clients connect to the server and send messages, and

the server processes game logic (Stagner, 2013). PlayerIO also includes a variety of other

features such as login/account systems, databases, leaderboards, and so on. PlayerIO is cloud

hosted that is, the game runs on a cluster of shared servers. Additionally PlayerIO is room based:

Upon connecting to PlayerIO, you specify a room to connect to, and players are segregated into

different rooms. For instance, in an MMO there might be different “rooms” for regions in the

world. Without a dedicated cluster, rooms are limited to 45 players. PlayerIO supports TCP only

as it was originally designed for Flash applications which do not support UDP. They support

different platforms including Unity engine via a DLL Unity plugin.

3.4. Networking architecture

In the client-server model, the majority of the logic of the game runs on a single server.

Multiple clients can connect to the server in order to take part in the multiplayer game. The client

is basically a “dumb” rendering engine that also reads user input and controls the local player

character, but otherwise simply renders whatever the server tells it to render (Gregory, 2009).

13

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

3.5. Mocap data

Motion capture (sometimes referred as mo-cap or mocap, for short) is the process of

recording the movement of objects or people and translating it into other mediums such as video

games and movies. It has a variety of uses: from game creation, sports analysis and medical

application to robotics and military use (Alexal, 2016).

Noitom’s Perception Neuron mocap suit seeks to redefine the motion capture industry by using

the world’s smallest inertial measurement unit (IMU), or, "neurons," as they call them. Neurons

are tiny wireless sensors that actors place on their body (Figure 4) and which connect to a hub.

The hub is in turn connected to a computer via WiFi or USB port.

Perception Neuron is delivered with AXIS Neuron, their in-house software that is designed to

manage and calibrate the mocap system as well as perform basic motion capture. One of the

most important feature of AXIS Neuron is the ability to stream the BVH (Biovision hierarchical,

(n.d.)) data stream as well as export files to FBX for use in the most popular 3D software

programs. The BVH data stream contains the movement and rotation of neurons.

There are 60 bones in total according to the Neuron API for Unity and 2 float 3D vectors (one

for position and one for rotation) are captured for each bone. That means that there are 1440

14

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

bytes (60 bones x 2 vectors x 3 float values x 4 bytes per float) transferred per one frame of

mocap data. The server sends this data on each Update tick to all the clients which are connected.

There are actually 31 sensors in total (Figure 5), but the data received from the BVH stream from

Axis Neuron comes per bone and not per sensor. That is because the data from the sensors is

optimized and calibrated and converted to bone data for 60 bones.

According to the API, the position received is in centimeters and rotation is in Euler angles. The

format of the data, converted to Unity Engine’s coordinate system, is:

Position 1 (float -X, float Y, float Z) → Rotation 1 (float Y, float -X, float -Z) → Position 2 →

Rotation 2 → … → Position 60 → Rotation 60

The setup that I am using, is a local area network with one computer application that optimizes

and sends the mocap data and multiple mobile phone applications that receive the data, all

connected to a Wi-Fi router.

The speed limit of data transmission for the router that I am using is 0.7 Mb/s.

3.5.1. Optimizations

In order to reduce the bandwidth of the mocap data over the network, multiple optimization

techniques are available.

15

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

- Deflate algorithm (Huffman coding/LZ77)

In Huffman coding, the basic idea is that a binary tree is built where the bytes (or bits) with

higher frequencies are stored higher in the tree than bytes with lower frequencies. Frequencies

are occurrences of the same bytes (or bits) over the data or file that needs to be compressed.

That’s why Huffman coding is called a minimum redundancy algorithm and it is a lossless

compression algorithm (Huffman, 1952).

LZ77 algorithms achieve compression by replacing repeated occurrences of data with references

to a single copy of that data existing earlier in the uncompressed data stream. A match is encoded

by a pair of numbers called a [​length-distance​] pair, which is equivalent to the statement "each of

the next [​length​] characters is equal to the characters exactly [​distance​] characters behind it in

the uncompressed stream" (Ziv, Lempel, 1977).

In the deflate algorithm, which is basically a combination of the two methods discussed above, a

compressed data set consists of a series of blocks, corresponding to successive blocks of input

data. The block sizes can be defined by the user. Each block consists of two parts: a pair of

Huffman code trees that describe the representation of the compressed data part, and a

compressed data part. (The Huffman trees themselves are compressed using Huffman encoding.)

The compressed data consists of a series of elements of two types: literal bytes (of strings that

have not been detected as duplicated within the previous 32K input bytes), and pointers to

16

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

duplicated strings, where a pointer is represented as a pair <length, backward distance>

(​Deutsch​, 1996).

- Interpolation

In case that the rate of sending mocap data is lower than thirty or sixty frames per second,

interpolation methods are needed to make the animation of the model based on mocap data

smooth.

Linear Interpolation or lerp is a mathematical function which interpolates between two values.

The interpolation amount depends on the passed weight factor along with the start and end

values (Glazer, Madhav, 2015). The distance between each step is equal across the entire

interpolation in case of positions from the mocap data.

Spherical linear interpolation or slerp is mapped as though on a quarter segment of a circle so

there is the slow out and slow in effect. The distance between each step is not equidistant. Slerp

can be applied to rotations from mocap data.

3.6. VoIP data

VoIP is short for Voice over Internet Protocol. Voice over Internet Protocol is a category of

hardware and software that enables people to use the Internet as the transmission medium for

17

https://en.wikipedia.org/wiki/L._Peter_Deutsch

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

telephone calls by sending voice data in packets using IP rather than by traditional circuit

transmissions of the PSTN (public switched telephone network).

- Dissonance

Dissonance is a realtime Voice over IP (VoIP) system designed to be built directly into Unity

engine games and it provides:

● Low latency/real-time voice communications.

● Efficient Opus encoding (lossy audio coding format)

● Voice Activation and Push To Talk

● Positional Audio

● Echo cancellation

4. Main and sub questions

How do you implement and optimize a networking solution for a VR-AR game with

mocap, VoIP and gameplay data?

4.1. Sub questions

- How can one transmit mocap suit data over the network?

- How can one reduce the bandwidth of mocap data?

18

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

- How can one transmit VoIP data over the network?

- What kind of gameplay data is transmitted over the network?

- How is the gameplay data transmitted over the network?

The question on how mocap data and the rest of the data is transmitted over the network is

answered in section 5.1.1. The results of reducing the bandwidth of mocap data are discussed in

section 5.2.1. How to transmit VoIP data using Dissonance is explained in section 5.4. and the

results in section 5.4.1. The type of gameplay data that are transmitted over the network and the

way they are transmitted together with optimizations available (with explanations) can be found

in section 5.3, 5.5, and 5.6.

5. Implementation and optimizations

5.1. Networking options

There were five test demos prepared to test the different networking technologies. The

first uses the transport layer of UNet or low level API. It synchronizes player movement and

names. There is no interpolation applied on the movement. See appendix 8.5. for code related to

this demo.

Second demo uses UNet high level API. It uses the NetworkManager to control the HLAPI and

NetworkManagerHUD for UI to host, join the game and debug networking. This demo is a

19

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

first-person shooter game where players can shoot each other, die and respawn at preset spawn

locations.

The next demo uses a custom server provided by PlayerIO. This demo is very similar to the one

above but it differs in the networking technology used, namely using PlayerIO instead of Unity’s

networking API. The code for synchronizing player movement, rotation and shooting is custom

made.

The fourth demo is a network lobby implemented with a custom server provided by PlayerIO.

Here players can create rooms with names which are synchronized between all players that

connect to the server. See appendix 8.6. for code related to the API used.

The last demo is a test demo for both PC and Android. The server code is uploaded on

PlayerIO’s servers. After entering their name the players can connect to the same world from

mobile or PC. The goal of the game is to collect as much items as possible and the one who has

more items by a time mark wins the game. Every iteration of the time mark for example two

minutes, the game resets. The players can also chat from PC and view chat from mobile.

5.1.1. Results

Due to the third-party solution using strings for message identification it was discarded in

favor of Unity’s networking API which uses shorts and uses less bandwidth. Also generally

20

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

speaking native solutions are preferred to third party solutions in case the latter isn’t much better

is some way. And it’s relatively easy to setup games that connect in a local area network using

Unity’s networking API.

Due to the low level API needing more code to set up for our general networking needs which

were easily fulfilled by Unity’s high level API, it was discarded in favor of the latter.

The host uses the UNet HLAPI ​NetworkServer.Listen(port) and the clients use

NetworkClient.Connect(ipAddress, port)​. MessageBase is used to construct the

packets that go through the network. There is already network serialization available for

Vector3s, Quaternions and other structures. A dictionary can be serialized using an array of keys

and an array of values. See appendix 8.7. for link to the demos prepared for the networking

options.

5.2. Mocap

- Deflate algorithm

System.IO.Compression from the .NET framework was found which uses Huffman coding with

LZ77 algorithm and is open source.

In my good PC at the workplace (Intel Xeon E5-1650 v2 @3.5GHz, 24 GB RAM), compression

using this method took 0 ms or 1200-5000 clock ticks (10,000 ticks is 1 ms in the computer)

21

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

(measured with System.Diagnostics.Stopwatch) and mocap data is compressed from 1440 bytes

to 580 bytes. Decompression took 0 ms or 200-1000 ticks.

On my average laptop (Intel Core i5 2.2-2.7GHz, 4 GB RAM) compression took 2-3 ms and

decompression took 0-1 ms where data is also compressed from 1440 bytes to 580 bytes (same

compression algorithm from System.IO.Compression).

Only decompression is needed on mobile, and it took around 0-8 ms to decompress the Deflate

algorithm and less than 1 ms to decompress the bone movement change algorithm discussed in

the section below.

- Delta compression: Sending only the bones that moved

Another compression method is to manually send the bones data that changes by a given

threshold. Setting the threshold to 0 makes this technique lossless because all bones that move

are sent over the network and no data is lost. But making the threshold higher than 0 makes this

technique lossy because movement that is below the threshold is cut off. So, if a bone didn’t

move “that much” it doesn’t need to be synchronized anyway.

For this method, a byte needs to be sent for the bone id (example Hips) alongside with a byte for

either changing rotation, position or both and after that either 1 or 2 float Vector3s for the bone

new rotation and/or position.

22

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

So, if only the hand moves, there are in total 18 bones which means that instead of sending 1440

bytes over the network, only 18 * (byte-bone_id + byte-position_or_rotation + 2 * 3 * 4 bytes

(floats)) or 468 bytes are sent over the network. Worst case scenario is when most bones move.

Best case scenario is when few bones move. The thin line where this algorithm becomes a bad

case scenario, considering the highest size for the compressed data is: 60 * (byte + byte + 2 * 3 *

float) so the compressed is redundant by 60 * 2 * bytes or 120 bytes. In this scenario the

algorithm needs to always send a byte in the beginning of the network message to tell whether

the data is compressed or not because compression would not be needed in case most bones

move. The “magical” threshold when the algorithm becomes redundant is: 1440 bytes / (byte +

byte + 2 * 3 * float) = 55.38 bones.

So if 54 bones are moved and rotated the algorithm has a positive effect as can be seen below:

54 * (byte + byte + 2 * 3 * float) = 1404 bytes which is less than the original 1440 bytes.

To better understand this compression method, please check the Appendix 8.3. and 8.4.

- Lowering rate of sending mocap data

A third compression consideration involves lowering the rate at which mocap data is sent and

applying interpolation to the data. Currently the data is transferred at 30 times per second which

is bound by Unity’s Update tick frequency. That means that without any compression applied

23

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

there is around 1440 bytes * 30 = 43200 bytes per second or 43 Kbps which is much lower than

700 Kbps limit speed of router. In case the rate at which data is sent becomes 60 times per

second, the data would be 86 Kbps. Taking into consideration other data that need to be

transferred for the game, it is a good idea to lower the rate of mocap data transfer.

Alongside lowering the data rate, interpolation methods like linear interpolation and spherical

linear interpolation are required to make the movement of the bones (from captured mocap data)

in the animated model smooth.

5.2.1. Results

Absolute compression (sending original positions and rotations) worked very well for

compressing mocap data. Due to the mocap suit being broken through the project, I wasn’t able

to test with varying levels of thresholds to see which threshold would work best for

compression-precision. Relative compression (sending the difference in positions and rotations)

was tested and it worked fine for positions and not so well for rotations because the bones would

drift off after a while when adding the rotation difference from the last successful rotation. Doing

some testing with human perception of the precision of mocap data considering various

thresholds and both absolute and relative compression techniques discussed above would be

great if the suit would still be working.

24

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

The result is partly the code in the appendix 18.2. which describes how the Neuron API should

be changed together with two compression algorithms: Deflate and absolute compression.

5.3. Lobby

There is a players dictionary in both the server side and all client sides. The keys are unique

identifiers created by the server for all the clients upon connection, and the values are instances

of the Player class which have stats like bool ready, string name, and Role (enum) role.

The server sends these unique identifiers to all the clients upon connecting with them and the

clients take care of assigning their unique id if it’s unassigned and assign it to other players that

connect as well.

Upon connecting to a client the server sends all other players information to the new client and

the new client id to all the other players. During the demo, as clients change their name, ready

state or class, they let the server know about this change and the server broadcasts it to all the

clients.

Setting up players might take different amount of time on every peer due to lag, different

hardware, or other reasons. To make sure the game will actually start when everyone is ready,

pausing the game until all players are ready can be useful. When the server gets the OK from all

25

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

the peers, it tells them to start the game (Linietsky, Manzur, 2018). This is implemented in the

game.

5.4. VoIP

In order to fulfill client’s wish to have voice over IP in the game, Dissonance is being

used, which is a Unity store plugin. Trying to get the high level API demo working was more

difficult and required a Network Manager alongside with other player information. Luckily there

was also a low level API integration which was pretty straightforward to implement.

UNetCommsNetwork.StartAsClient alongside with IP address needs to be called at the

client and ​UNetCommsNetwork.StartAsServer needs to be called at the server. It’s

suggested to start the Dissonance client after the server has acknowledged the new client (for

example when server pings the new client with some data like the client’s server assigned ID).

It’s also needed to add four components to a gameobject in the game, namely

UNetCommsNetwork ​(low level API integration), ​DissonanceComms (Dissonance itself),

VoiceReceiptTrigger ​(to receive voice data) and ​VoiceBroadcastTrigger (to send

voice data).

In order to have a player talk to a specific other player, like the AR players will talk specifically

to the game master and not other players – otherwise we would hear an echo since AR players

26

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

are going to stand next to each other during the game session – some support code is needed to

be added to Dissonance.

The server (or the VR player) should send his Dissonance id (hash value) to the client (or the AR

player) upon connecting. Afterwards client sets the ​VoiceBroadcastTrigger.PlayerId to

the server Dissonance id. Doing that makes it possible that the AR players can talk only to the

VR player and not to each other.

Finally, a toggle is needed to be added to the game that enables or disables talking for the players

because there is no Push To Talk button on mobile. Doing that proved to be surprisingly hard

because it’s not possible to change Dissonance code to interact with our code due to project

scope issues. The issue was fixed by putting all our scripts under the Plugins folder where

Dissonance is located. For this to work, an extra check was added in the Push to Talk (that

originally only works with the Input Axis) code to check whether the toggle is activated. Now

the AR players can talk to the game master upon activating a toggle and the VR master can talk

to everyone via the toggle as well. In order that the VR player can talk to everyone, setting the

channel type in ​VoiceBroadcastTrigger​ to ​Room​ instead of ​Player​ is needed.

There was a test conducted with four instances of the player application running on mobile

phones which are connected to the game master application on the computer to see whether VoIP

data affect the framerate of the VR application in a complex scene.

27

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

According to measurements, there are 1.5-2 Kbps voice data transferred from one client to the

server. The server transfers data at 2-4 Kbps to one client (Figure 6). According to tests, in case

there are 10 clients, server sends 20-40 Kbps of data to the clients and receives 15-20 Kbps data

from the clients.

Coupled with the Mocap suit data transfer without any compression to the data the total and

maximum would be 40 Kbps (VoIP) + 86 Kbps (MoCap) = 126 Kbps.

5.4.1. Results

Although the expectation was that VoIP data being transmitted between four applications in

mobile phones and one application in the computer would affect the frame rate of the VR

application running a complex scene, the result was negative. That means that the VoIP network

data load was insignificant to the process.

5.5. Tiles data

The condition that clients need to be basic rendering engines without too much logic of their own

should be satisfied. For that reason, there needs to be networking code where the server sends tile

information to the clients based on where their player is positioned in the world. So two

“hexagonal” functions in appendix 8.2. are being used to find tile coordinates based on player

position and then find tiles in a specific range (like six) based on tile coordinates.

28

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

With a range of six, a total of a hundred twenty seven tiles need to be transferred over the

network (five – ninety one, seven – a hundred sixty nine and so on). The tile data message

contains this data as of the latest:

public​ ​class​ ​TileDataMessage​ : ​MessageBase
{

// recepient

public​ ​int​ Id;
// tile data

public​ ​int​[] TilesXZ;
public​ ​float​[] TilesScaleY;
public​ ​int​[] TilesMaterial;
// objects data...

}

So for 127 tiles there would be 4 bytes (Id) + 127 * 2 * 4 bytes (Tile coordinates) + 127 * 4 bytes

(Tile material) = 1528 bytes sent over the network. If this data is send every frame, assuming a

frame rate of 30 frames per second then there would be 30 * 1528 bytes = 45840 bytes

trespassing over the network or 91680 bytes in case of 60 frames per second.

Together with mocap and VoIP there are 126 Kbps + 92 Kbps = 218 Kbps of data transfer over

the network.

Although the total is lower than the router’s bandwidth limit, it’s again a good idea to optimize

the code. Among optimizations that can be utilized is lowering the rate of sending tile data to a

smaller number like three times per second and limit the speed of the player movement so he

doesn’t appear at a location before tile information is retrieved from the server for that location.

29

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

Also saving the current tile where the player is positioned in the server and sending tile data only

when the current tile changes to a new tile, is a good idea in case the player isn’t moving

constantly.

5.6. Player spawning and movement

First players need to spawn at a tile. Tiles are hexagon objects in the game and they are

accessible by two coordinates, namely tile x and y. The game master sets the spawn locations in

the level creation mode. The spawn locations are saved in the level file and they’re loaded and

parsed by the server and stored in an array. Upon connecting or when spawn points are parsed,

players get assigned a spawn point which they use to spawn when the game has loaded in both

the server and the client.

Unity’s own path-finding navigation system is used to calculate the path that players need to

take. In the end reinventing the wheel and writing pathfinding code from scratch while taking

into account higher steps like hills in the game, would be time-consuming and not as good as

Unity’s own solution.

Player movement packets look something like this:

public​ ​class​ ​MoveMessage​ : ​MessageBase
{

public​ ​int​ Id;
public​ Vector3 Position;
public​ ​float​ RotationY;
public​ Vector3[] Path;

30

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

}

According to the original design of the game movements among other actions need to go through

a queuing mechanism that the game master needs to approve before the movement is executed.

The players are able to see the path that they or other players want to take but don’t move until

the action has been approved by the game master via a window (Figure 7).

According to the original design of the networking architecture, the server would create a local

client to serve as a host (as can be seen in the demo at Appendix 8.7. Lobby). The local client

would interact with the UI elements and the server would only do server logic with complete

separation to graphics or UI. But because of this queuing mechanism - the server would need to

send a list of the actions that are queued to the local client otherwise called the host, and the host

would send back his response.

But this added a layer of unnecessary complexity to the game so there was a decision to drop the

host concept and have the server interact with UI elements and other gameplay aspects directly.

Server or the VR player interacts with UI elements to approve, interrupt or deny a movement

action. These options remove the current queued movement action from the array and broadcast

it to all the other players.

31

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

6. Conclusion

Unity’s HLAPI was chosen as the favorite option to implement the networking for the

game due to using less bandwidth than PlayerIO for message identification and for being the

native solution of Unity. For that reason it already serializes multiple common used objects. Also

it was chosen for being more straightforward to use than Unity’s LLAPI which had more

customization than needed.

Tests showed that the “absolute” delta compression method which was developed alongside with

Deflate algorithm compression worked very well together on both the compressing and

decompressing end. Due to the fact that the suit was broken through the project, further

optimizations got low priority.

Changing the networking from having a host of the game which is just a client with privileged

commands to having the server directly be the host proved to facilitate a lot of the code that deals

with queuing of the AR player actions.

Although the expectation was that VoIP data being transmitted between 4 applications in mobile

phones and 1 application in the computer would affect the frame rate of the VR application

running a complex scene, the result was that the VoIP data network load was insignificant to the

process.

32

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

7. References

Ong, S. K., & Nee, A. Y. C. (2013). Virtual and augmented reality applications in

manufacturing. Springer Science & Business Media.

Biovision BVH. (n.d.). Retrieved from

https://research.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/BVH.html.

Alexal. (2016, May 06). MOCAP 101. Retrieved from

https://neuronmocap.com/content/mocap-101.

Glazer, J., & Madhav, S. (2015). Multiplayer game programming: Architecting networked

games. Addison-Wesley Professional.

Huffman, D. A. (1952). A method for the construction of minimum-redundancy codes.

Proceedings of the IRE, 40(9), 1098-1101.

Ziv, J., & Lempel, A. (1977). A universal algorithm for sequential data compression. IEEE

Transactions on information theory , 23 (3), 337-343.

Deutsch, P. (1996). DEFLATE compressed data format specification version 1.3 (No. RFC

1951).

Gregory, J. (2014). Game engine architecture. AK Peters/CRC Press, 333-334.

33

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

Linietsky, J., & Manzur, A. (2018). High level multiplayer - Synchronizing game start. Retrieved

from https://docs.godotengine.org/en/3.0/tutorials/networking/high_level_multiplayer.html

Stagner, A. R. (2013). Unity multiplayer games: Build engaging, fully functional, multiplayer

games with Unity engine. Birmingham: Packt Pub. pp. 127.

Mixamo - Demon T Wierzzorek character. (2018). Retrieved from https://www.mixamo.com/

Perception Neuron by Noitom. (2018). Retrieved from ​https://neuronmocap.com/

Red Blob Games. (2018). Hexagonal Grids. Retrieved from

https://www.redblobgames.com/grids/hexagons/

34

https://neuronmocap.com/

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

8. Appendix

8.1. Figures

Figure 1 AR Player user interface with the actions that they can queue on the right like attack,

inspect, talk to NPC…

35

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

Figure 2 Queuing of actions that require game master’s input.

36

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

Figure 3 A concept of the game world and the giant behind being controlled by the VR player

using a mocap suit (Mixamo, 2018).

37

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

Figure 4 Neuron Perception mocap suit (Noitom, 2018).

38

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

Figure 5 Sensor/neuron map for Neuron Perception mocap suit.

39

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

Figure 6 VoIP traffic over the network with 1 server and 1 client connected.

40

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

Figure 7 A window at game master’s application for approving or denying a movement action of

the player.

41

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

Figure 8 Pointy top hexagonal tiles (left) vs flat top hexagonal tiles (right) (Red Blob Games,

2018).

42

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

8.2. Hexagonal grids

Hexagonal grids in the game are composed of hexagons which are 6-sided polygons.

Regular hexagons have all the sides the same length. All the hexagons in the game are regular

and pointy top hexagons (Figure 8).

The four basic algorithms (pseudo-code) for hexagonal grids that we use in the game, assuming

pointy top hexagons are:

- Positioning of hexagon tiles where q and r are tile coordinates and hex radius is the

distance between the hexagon center and a corner:

var​ x = hex radius * (sqrt(​3​) * q + sqrt(​3​)/​2​ * r)
var​ z = hex radius * (​3.​/​2​ * r)

- Finding tiles in a range:

var​ results = []
for​ each -range ≤ x ≤ +range:
 ​for​ each ​max​(-range, -x-range) ≤ y ≤ ​min​(+range, -x+range):
 ​var​ z = -x-y
 results.append(center + Hex(x, y, z))

- Transforming from world position to tile coordinates:

var​ q = (sqrt(​3​)/​3​ * point.x - ​1.​/​3​ * point.z) / hex radius
var​ r = (​2.​/​3​ * point.z) / hex radius

43

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

The last 2 algorithms are used in order to find the tile corresponding the AR player position and

sending the tiles that are in “sight” or range back to him via networking.

8.3. Server-side absolute compression code

float​[] prevData;
 ​void​ ​AbsoluteCompression​()
 {

 ​var​ neuronMessage = ​new​ NeuronMessageAbsolute();
 List<​byte​> byteList = ​new​ List<​byte​>();

 ​int​ numBones = ​60​;
 ​int​ bonesChanged = ​0​;

 ​// iterate through all the bones and construct position/rotation and compare with previous
position rotation by a threshold.

 ​// send only the bones which moved by the threshold.
 ​for​ (​int​ i = ​0​; i < numBones; i++)
 {

 ​int​ offset = ​0​;
 offset += i * ​6​;

 Vector3 position = ​new​ Vector3(-neuronActor.GetData()[offset], neuronActor.GetData()[offset
+ ​1​], neuronActor.GetData()[offset + ​2​]);
 Vector3 prevPosition = ​new​ Vector3(-prevData[offset], prevData[offset + ​1​], prevData[offset
+ ​2​]);

 offset = ​0​;
 offset += ​3​ + i * ​6​;

 Vector3 rotation = ​new​ Vector3(neuronActor.GetData()[offset + ​1​],
-neuronActor.GetData()[offset], -neuronActor.GetData()[offset + ​2​]);
 Vector3 prevRotation = ​new​ Vector3(prevData[offset + ​1​], -prevData[offset], -prevData[offset
+ ​2​]);

 ​bool​ positionChanged = ​false​;
 ​bool​ rotationChanged = ​false​;

 ​if​ (Vector3.Distance(position, prevPosition) > ​0​ || Vector3.Angle(rotation, prevRotation) >
0​)
 {

 bonesChanged++;

 }

44

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

 ​if​ (Vector3.Distance(position, prevPosition) > ​0​)
 {

 positionChanged = ​true​;
 position *= NeuronActor.NeuronUnityLinearScale;

 }

 ​if​ (Vector3.Distance(rotation, prevRotation) > ​0​)
 {

 rotationChanged = ​true​;
 }

 ​// rotation changed
 ​if​ (rotationChanged && !positionChanged)
 {

 ​// 14 bytes
 byteList.Add((​byte​)i); ​// bone index
 byteList.Add(​0​); ​// what changed
 byteList.AddRange(BitConverter.GetBytes(rotation.x));

 byteList.AddRange(BitConverter.GetBytes(rotation.y));

 byteList.AddRange(BitConverter.GetBytes(rotation.z));

 }

 ​// position changed
 ​else​ ​if​ (!rotationChanged && positionChanged)
 {

 ​// 14 bytes
 byteList.Add((​byte​)i); ​// bone index
 byteList.Add(​1​); ​// what changed
 byteList.AddRange(BitConverter.GetBytes(position.x));

 byteList.AddRange(BitConverter.GetBytes(position.y));

 byteList.AddRange(BitConverter.GetBytes(position.z));

 }

 ​// both changed
 ​else​ ​if​ (rotationChanged && positionChanged)
 {

 ​// 26 bytes
 byteList.Add((​byte​)i); ​// bone index
 byteList.Add(​2​); ​// what changed
 byteList.AddRange(BitConverter.GetBytes(rotation.x));

 byteList.AddRange(BitConverter.GetBytes(rotation.y));

 byteList.AddRange(BitConverter.GetBytes(rotation.z));

 byteList.AddRange(BitConverter.GetBytes(position.x));

 byteList.AddRange(BitConverter.GetBytes(position.y));

 byteList.AddRange(BitConverter.GetBytes(position.z));

 }

 }

 ​// copy current data to previous data.
 Array.Copy(neuronActor.GetData(), prevData, neuronActor.GetData().Length);

 neuronMessage.data = Compress(byteList.ToArray());

45

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

 ​// send the newly constructed packet
 NetworkServer.SendToAll(MyMsgType.NeuronAbsolute, neuronMessage);

 }

 ​// deflate algorithm
 ​public​ ​static​ ​byte​[] ​Compress​(​byte​[] data)
 {

 MemoryStream output = ​new​ MemoryStream();
 ​using​ (DeflateStream dstream = ​new​ DeflateStream(output, CompressionMode.Compress))
 {

 dstream.Write(data, ​0​, data.Length);
 }

 ​return​ output.ToArray();
 }

8.4. Client-side absolute decompression code

void​ ​GotAbsoluteNeuronData​(NetworkMessage netMsg)
 {

 ​var​ msg = netMsg.ReadMessage<NeuronMessageAbsolute>();

 ​byte​[] decompressed = Decompress(msg.data);

 robotAbsolute.ApplyMotionAbsolute(decompressed);

 }

 ​public​ ​static​ ​byte​[] ​Decompress​(​byte​[] data)
 {

 MemoryStream input = ​new​ MemoryStream(data);
 MemoryStream output = ​new​ MemoryStream();
 ​using​ (DeflateStream dstream = ​new​ DeflateStream(input, CompressionMode.Decompress))
 {

 CopyTo(dstream, output);

 }

 ​return​ output.ToArray();
 }

 ​public​ ​static​ ​void​ ​CopyTo​(Stream input, Stream output)
 {

 ​byte​[] buffer = ​new​ ​byte​[​16​ * ​1024​];
 ​int​ bytesRead;
 ​while​ ((bytesRead = input.Read(buffer, ​0​, buffer.Length)) > ​0​)
 {

 output.Write(buffer, ​0​, bytesRead);

46

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

 }

 }

 ​public​ ​void​ ​ApplyMotionAbsolute​(​byte​[] motionData)
 {

 NeuronAnimatorInstance.ApplyMotionAbsolute(motionData, animator);

 }

 ​public​ ​static​ ​void​ ​ApplyMotionAbsolute​(​byte​[] motionData, Animator animator)
 {

 ​int​ i = ​0​;
 ​while​ (i < motionData.Length)
 {

 ​// bone id
 ​byte​ neuronBoneId = motionData[i++];

 ​byte​ rotationOrPosition = motionData[i++];
 ​// rotation
 ​if​ (rotationOrPosition == ​0​)
 {

 ​byte​[] rotationXBytes = ​new​ ​byte​[​4​];
 rotationXBytes[​0​] = motionData[i++];
 rotationXBytes[​1​] = motionData[i++];
 rotationXBytes[​2​] = motionData[i++];
 rotationXBytes[​3​] = motionData[i++];
 ​byte​[] rotationYBytes = ​new​ ​byte​[​4​];
 rotationYBytes[​0​] = motionData[i++];
 rotationYBytes[​1​] = motionData[i++];
 rotationYBytes[​2​] = motionData[i++];
 rotationYBytes[​3​] = motionData[i++];
 ​byte​[] rotationZBytes = ​new​ ​byte​[​4​];
 rotationZBytes[​0​] = motionData[i++];
 rotationZBytes[​1​] = motionData[i++];
 rotationZBytes[​2​] = motionData[i++];
 rotationZBytes[​3​] = motionData[i++];

 ​float​ rotationX = BitConverter.ToSingle(rotationXBytes, ​0​);
 ​float​ rotationY = BitConverter.ToSingle(rotationYBytes, ​0​);
 ​float​ rotationZ = BitConverter.ToSingle(rotationZBytes, ​0​);

 SetRotation(animator, boneId, ​new​ Vector3(rotationX, rotationY, rotationZ));
 }

 ​// position
 ​else​ ​if​ (rotationOrPosition == ​1​)
 {

 ​byte​[] positionXBytes = ​new​ ​byte​[​4​];
 positionXBytes[​0​] = motionData[i++];
 positionXBytes[​1​] = motionData[i++];

47

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

 positionXBytes[​2​] = motionData[i++];
 positionXBytes[​3​] = motionData[i++];
 ​byte​[] positionYBytes = ​new​ ​byte​[​4​];
 positionYBytes[​0​] = motionData[i++];
 positionYBytes[​1​] = motionData[i++];
 positionYBytes[​2​] = motionData[i++];
 positionYBytes[​3​] = motionData[i++];
 ​byte​[] positionZBytes = ​new​ ​byte​[​4​];
 positionZBytes[​0​] = motionData[i++];
 positionZBytes[​1​] = motionData[i++];
 positionZBytes[​2​] = motionData[i++];
 positionZBytes[​3​] = motionData[i++];

 ​float​ positionX = BitConverter.ToSingle(positionXBytes, ​0​);
 ​float​ positionY = BitConverter.ToSingle(positionYBytes, ​0​);
 ​float​ positionZ = BitConverter.ToSingle(positionZBytes, ​0​);

 SetPosition(animator, boneId, ​new​ Vector3(positionX, positionY, positionZ));
 }

 ​// rotation and position
 ​else​ ​if​ (rotationOrPosition == ​2​)
 {

 ​byte​[] rotationXBytes = ​new​ ​byte​[​4​];
 rotationXBytes[​0​] = motionData[i++];
 rotationXBytes[​1​] = motionData[i++];
 rotationXBytes[​2​] = motionData[i++];
 rotationXBytes[​3​] = motionData[i++];
 ​byte​[] rotationYBytes = ​new​ ​byte​[​4​];
 rotationYBytes[​0​] = motionData[i++];
 rotationYBytes[​1​] = motionData[i++];
 rotationYBytes[​2​] = motionData[i++];
 rotationYBytes[​3​] = motionData[i++];
 ​byte​[] rotationZBytes = ​new​ ​byte​[​4​];
 rotationZBytes[​0​] = motionData[i++];
 rotationZBytes[​1​] = motionData[i++];
 rotationZBytes[​2​] = motionData[i++];
 rotationZBytes[​3​] = motionData[i++];

 ​float​ rotationX = BitConverter.ToSingle(rotationXBytes, ​0​);
 ​float​ rotationY = BitConverter.ToSingle(rotationYBytes, ​0​);
 ​float​ rotationZ = BitConverter.ToSingle(rotationZBytes, ​0​);

 ​byte​[] positionXBytes = ​new​ ​byte​[​4​];
 positionXBytes[​0​] = motionData[i++];
 positionXBytes[​1​] = motionData[i++];
 positionXBytes[​2​] = motionData[i++];
 positionXBytes[​3​] = motionData[i++];
 ​byte​[] positionYBytes = ​new​ ​byte​[​4​];

48

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

 positionYBytes[​0​] = motionData[i++];
 positionYBytes[​1​] = motionData[i++];
 positionYBytes[​2​] = motionData[i++];
 positionYBytes[​3​] = motionData[i++];
 ​byte​[] positionZBytes = ​new​ ​byte​[​4​];
 positionZBytes[​0​] = motionData[i++];
 positionZBytes[​1​] = motionData[i++];
 positionZBytes[​2​] = motionData[i++];
 positionZBytes[​3​] = motionData[i++];

 ​float​ positionX = BitConverter.ToSingle(positionXBytes, ​0​);
 ​float​ positionY = BitConverter.ToSingle(positionYBytes, ​0​);
 ​float​ positionZ = BitConverter.ToSingle(positionZBytes, ​0​);

 SetRotation(animator, boneId, ​new​ Vector3(rotationX, rotationY, rotationZ));
 SetPosition(animator, boneId, ​new​ Vector3(positionX, positionY, positionZ));
 }

 }

 }

8.5. Unity’s Low Level Networking API

Check the blog post for more info:

https://tabletoprpgblog.wordpress.com/2018/10/01/networking-basics/

NetworkTransport.Init();

ConnectionConfig cc = ​new​ ConnectionConfig();
reliableChannel = cc.AddChannel(QosType.Reliable);

unreliableChannel = cc.AddChannel(QosType.Unreliable);

HostTopology topo = ​new​ HostTopology(cc, MAX_CONNECTION);

hostId = NetworkTransport.AddHost(topo, ​0​);
connectionId = NetworkTransport.Connect(hostId, ​"127.0.0.1"​, port, ​0​, ​out​ error);

private​ ​void​ ​Update​()
{

//...data types

NetworkEventType recData = NetworkTransport.Receive(​out​ recHostId, ​out​ connectionId, ​out​ channelId,
recBuffer, bufferSize, ​out​ dataSize, ​out​ error);
switch​ (recData)

49

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

{

case​ NetworkEventType.DataEvent:
string​ msg = Encoding.Unicode.GetString(recBuffer, ​0​, dataSize);
Debug.Log(​"Receiving: "​ + msg);
string​[] splitData = msg.Split(​'|'​);​// what type of message is it?
switch​ (splitData[​0​])
{

case​ ​"ASKNAME"​:
OnAskName(splitData);

break​;
case​ ​"CONNECT"​:
SpawnPlayer(splitData[​1​], ​int​.Parse(splitData[​2​]));
break​;
case​ ​"DISCONNECT"​:
PlayerDisconnected(​int​.Parse(splitData[​1​]));
break​;
case​ ​"ASKPOSITION"​:
OnAskPosition(splitData);

break​;
default​:
Debug.Log(​"Invalid message: "​ + msg);
break​;
} ​//...closure

8.6. PlayerIO Networking API

PlayerIO.Authenticate(

"rpgtabletopgame-8b8vr6ckqkqlu8eep9hn6a"​, ​//Your game id
"public"​, ​//Your connection id
new​ Dictionary<​string​, ​string​> { ​//Authentication arguments
{ ​"userId"​, playerName },
},

null​,
delegate​ (Client client) {
DebugText(​"Successfully connected to Player.IO"​);playerIOClient = client;
client.Multiplayer.DevelopmentServer = ​new​ ServerEndpoint(​"localhost"​, ​8184​);
},

delegate​ (PlayerIOError error) {
DebugText(error.ToString());

}

);

//Create and join the room

playerIOClient.Multiplayer.CreateJoinRoom(

roomId, ​//Room id. If set to null a random roomid is used

50

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

"RPGTabletopGame"​, ​//The room type started on the server
true​, ​//Should the room be visible in the lobby?
null​,
null​,
delegate​ (Connection connection) {
DebugText(​"Joined Room."​);​// We successfully joined a room so set up the message handler
playerIOConnection = connection;

playerIOConnection.OnMessage += handleMessage;

},

delegate​ (PlayerIOError error) {
DebugText(error.ToString());

}

);

playerIOClient.Multiplayer.ListRooms(​"RPGTabletopGame"​, ​null​, ​0​, ​0​, ​delegate​ (RoomInfo[] rooms)
{

for​ (​int​ i = ​0​; i < ​8​; i++)
{

GameObject buttonObj = GameObject.Find(​"Button ("​ + i + ​")"​);
Button button = buttonObj.GetComponent<Button>();

button.onClick.RemoveAllListeners();

if​ (i < rooms.Length)
{

buttonObj.GetComponentInChildren<Text>().text = rooms[i].Id;

button.onClick.AddListener(​delegate​ ()
{

roomId = buttonObj.GetComponentInChildren<Text>().text;

DebugText(​"Clicked button and setting room id to: "​ + roomId);
playerIOClient.Multiplayer.JoinRoom(roomId, ​null​, ​delegate​ (Connection connection)
{

DebugText(​"Joined Room."​);
// We successfully joined a room so set up the message handler

playerIOConnection = connection;

playerIOConnection.OnMessage += handleMessage;

}, ​// closure

8.7. Blog posts and links

Graduation deliverables (professional products, source code, videos and more):
https://drive.google.com/open?id=1k0_Wx3FlAU3tPETeXitIu2aRMdDBwBQ-

Mocap data networking first tests and video
https://tabletoprpgblog.wordpress.com/2018/10/12/sprint-2-programming-networking-mocap-dat
a-test-1/

51

https://drive.google.com/open?id=1k0_Wx3FlAU3tPETeXitIu2aRMdDBwBQ-
https://tabletoprpgblog.wordpress.com/2018/10/12/sprint-2-programming-networking-mocap-data-test-1/
https://tabletoprpgblog.wordpress.com/2018/10/12/sprint-2-programming-networking-mocap-data-test-1/

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

Game lobby with source code and executable
https://tabletoprpgblog.wordpress.com/2018/10/16/sprint-3-programming-unet-hlapi-lobby/

VoIP implementation
https://tabletoprpgblog.wordpress.com/2018/11/19/sprint-5-programming-voice-over-ip-impleme
ntation/

Running path-finding on the server demo video
https://tabletoprpgblog.wordpress.com/2019/01/13/sprint-8-programming-running-path-finding-o
n-the-server/

All my blog posts
https://tabletoprpgblog.wordpress.com/author/aldoleka/

Belle, C. (2016, April). A Closer Look at Huffman Encoding Using C#. Retrieved from

http://www.carlbelle.com/Articles/Article/2016/Apr/6/ACloserLookAtHuffmanEncodingUsingC

Sharp/95

Huffman Tree: Traversing. (n.d.). Retrieved from

https://stackoverflow.com/questions/27104535/huffman-tree-traversing

Huffman Coding - Hong Kong University of science and technology. (n.d.). Retrieved from

https://home.cse.ust.hk/~dekai/271/notes/L15/L15.pdf

Huffman Data Compression without needing the tree to decode. (2010). Retrieved from

http://code.activestate.com/recipes/577480-huffman-data-compression/

52

https://tabletoprpgblog.wordpress.com/2018/10/16/sprint-3-programming-unet-hlapi-lobby/
https://tabletoprpgblog.wordpress.com/2018/11/19/sprint-5-programming-voice-over-ip-implementation/
https://tabletoprpgblog.wordpress.com/2018/11/19/sprint-5-programming-voice-over-ip-implementation/
https://tabletoprpgblog.wordpress.com/2019/01/13/sprint-8-programming-running-path-finding-on-the-server/
https://tabletoprpgblog.wordpress.com/2019/01/13/sprint-8-programming-running-path-finding-on-the-server/
https://tabletoprpgblog.wordpress.com/author/aldoleka/

NETWORKING IMPLEMENTATION & OPTIMIZATIONS FOR A VR-AR GAME

Dissecting the GZIP format. (n.d.). Retrieved from http://www.infinitepartitions.com/art001.html

Huffman Coding: A CS2 Assignment. (n.d.). Retrieved from

https://www2.cs.duke.edu/csed/poop/huff/info/

MSFT, S. H. (2007). Network compression: Bitfields. Retrieved from

https://blogs.msdn.microsoft.com/shawnhar/2007/12/28/network-compression-bitfields/

Hitcents. (n.d.). GZipStream DeflateStream - Unity.IO.Compression (in case

System.IO.Compression doesn’t work on mobile). Retrieved from

https://assetstore.unity.com/packages/tools/integration/gzipstream-deflatestream-unity-io-compre

ssion-31902

53

