
Graduation Report
Project Avro ComMA

April 5, 2020

Robin Kuiper

Version 1.0
April 5, 2020

Summary
During the graduation project for the HBO-ICT education, the student has worked on a project
commissioned by Thales Group. Thales uses Apache Avro to specify the API they use. Based
on this specification, empty methods are generated and filled out by Thales developers.

However, they want to specify more than just the API: they want to specify the behaviour
as well. This behaviour specification would be used to validate whether the program behaves
as is intended. Interface Description Languages (IDLs) were researched to find a candidate
with such functionality, and the result was Component Modelling and Analysis (ComMA), a
proprietary IDL developed by TNO and Philips. However, ComMA doesn’t support all features
Apache Avro does.

This project involved preparing the transition from an IDL Thales currently uses, Apache
Avro, to the ComMA IDL. For every feature of Thales’ current IDL Apache Avro that isn’t sup-
ported by ComMA, a feature proposal has been created for ComMA. These proposals have been
approved by Thales and a proof-of-concept implementation has been created for all proposals.

Robin Kuiper
Graduation Report

1

Version 1.0
April 5, 2020 CONTENTS

Contents
Summary 1

1 Change log 4

2 Glossary 5

3 Introduction 6

4 What is ComMA 7
4.1 Purpose . 7
4.2 Code example . 7
4.3 Behaviour validation . 9
4.4 Availability . 9

5 Project definition 11
5.1 Current situation . 11
5.2 Problem . 12
5.3 Desired situation . 12
5.4 Scope . 13

6 ComMA alternatives 14
6.1 Requirements . 14
6.2 Alternatives research method . 15
6.3 Franca . 15
6.4 Usability . 17

7 Xtext 18
7.1 Overview . 18
7.2 Workflow . 18
7.3 Issues . 20
7.4 Alternatives . 20

8 ComMA change proposals 22
8.1 Design goals . 22
8.2 Feedback . 22
8.3 Proposals . 23

9 Implementation 25
9.1 Method . 25
9.2 Proposals implemented . 25

10 Conclusion 31

11 Evaluation 32
11.1 Process . 32
11.2 Schedule . 33

Appendix 36

A ComMA Proposals 37

Robin Kuiper
Graduation Report

2

Version 1.0
April 5, 2020 CONTENTS

B Apache Avro, ComMA and Franca feature comparison 44
B.1 Types comparison . 44
B.2 Class signature comparison . 46
B.3 Interface comparison . 48
B.4 Meta comparison . 50
B.5 Decision matrix . 52

C ComMA start-up guide 54

Robin Kuiper
Graduation Report

3

Version 1.0
April 5, 2020 1 CHANGE LOG

1 Change log
Version Changes Date
0.1 Initial Version 2019-11-15
0.2 Rewrote Planning 2019-12-09

Added Appendix Planning
Added Appendix Proposals
Added ComMA change proposals section

0.3 Split ComMA explanation and problem explanation into two sections 2020-01-06
Added glossary
Moved planning from appendix to in-line and added comparison to
original planning
Rewrote process into a coherent story
Added template code changed appendix item
Added ComMA availability piece
Expanding on Franca usability explanation
Added ComMA start-up guide Appendix

0.4 Moved introduction back down, expanded it, and added a Summary 2020-01-08
Renamed research sections, added ComMA to Franca comparisons
Renamed Execution to Evaluation
Moved ComMA proposals from appendix to main body
Added feedback section and expanded proposal section

0.5 Added table comparing Apache Avro, ComMA and Franca 2020-02-21
Added decision matrix for choosing between ComMA and Franca
Updated ComMA start-up guide
Added implementation planning
Added documentation for range and Type annotations code additions
Updated planning

0.6 Updated type annotations section to reflect latest work 2020-03-18
Processed feedback from version 0.4 and 0.5
Added signature annotation implementation
Full document read through and general clean-up
Added Xtext Section
Added Franca code examples
Added story points to feature planning

0.7 Fixes based on feedback from company mentor: 2020-03-22
Mention that visual DSL is possible with Xtext
Expand upon the background for Thales’ motivation for this change
Added implementation for immutable, dynamic array & templates

0.8 Misc spelling and grammar fixes 2020-03-30
Specified in section 8.3 that only one proposal will be discussed
Added range to planning in section 9.1
Specified in the research section why no other candidates were viable
Expanded the summary a bit
Split implementation specification into feature description, process
and result
added monthly split headers to section 11

1.0 Spelling, grammar & formatting changes after review 2020-04-05
Added short and long implementation
Updated planning
Expanded summary

Robin Kuiper
Graduation Report

4

Version 1.0
April 5, 2020 Glossary

2 Glossary
Apache Avro An open source IDL developed by Apache used to define a class signature. 1,

4, 6, 11, 12, 13, 14, 15, 17, 18, 26, 31, 32

AQL Acceleo Query Language. 25

Behaviour How an interface processes and responds to a signal.. 1, 6, 7, 8, 9, 12, 15

Behaviour validation Method of verifying whether the behaviour definition is adhered to. 6,
7, 9, 12, 13, 15, 17, 25, 31

Behaviour definition Specification of the state flow diagram for a class signature, and timing
requirements. 6, 7, 8, 9, 12, 14, 15, 16, 31

Class signature A list of methods for a class, that can be used as an API. 7, 11, 12, 14, 15,
22, 23, 27, 28, 29, 30

ComMA Component Modelling and Analysis. 1, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 18, 20,
22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33

DSL Domain Specific Language. 18

Flow diagram A (literal) diagram used to describe the states and state transitions. see state
flow, 12

Franca An open source IDL used to define a class signature and behaviour definition. 4, 15,
16, 17, 18, 33

Function A method with optional input and output parameters, used in the description of an
class signature. 7, 14, 15, 17, 23

IDE Integrated Development Environment. 18, 20, 21

IDL Interface Description Language. 1, 6, 7, 11, 12, 13, 15, 17, 23, 31, 33

Interface The definition of the behaviour of a class signature. 6, 7, 12, 14, 22

State The state a program can be in. see behaviour definition, 7, 8, 12

State transition The method of changing from one state to the other in a flow diagram. 7, 8

State flow The way a program transitions through states. see flow diagram, 8, 12

Type Defined and named data type. Can be primitive data types, a collection of data types,
enumerations or arrays. 7, 14, 15, 23, 24, 26, 27, 28, 29

Xtext An open source programming language development framework. 4, 18, 19, 20, 21, 29

Robin Kuiper
Graduation Report

5

Version 1.0
April 5, 2020 3 INTRODUCTION

3 Introduction
During the graduation project for the HBO-ICT education, the student was working on a project
commissioned by Thales Group. This project involved working towards replacing the currently
used Apache Avro IDL with the ComMA IDL, a proprietary IDL developed by TNO and Philips.
ComMA’s feature set partially overlaps with Apache Avro, an open source IDL. Apache Avro
and ComMA support specifying message contents and functions. In addition to this ComMA
supports behaviour definition, which can be used to define behaviour in an interface.

Thales currently uses a modified Apache Avro as an IDL, with custom annotations enabling
support for embedded and legacy features. They want to use ComMA with its behaviour
validation capabilities, but ComMA needs to be expanded to support all features required by
Thales that the modified Apache Avro supports. The project was centred around modifying
ComMA to support all features of Apache Avro, and all of Thales’ modifications.

This document contains information pertaining to the project progression, the process doc-
umentation, and intermediate and final results. The document is structured in a mostly linear
fashion, progressing along with the progression of the project.

One comment about the document structure: this document starts with an explanation of
ComMA, of which some basic understanding is required to read the rest of the document.

Robin Kuiper
Graduation Report

6

Version 1.0
April 5, 2020 4 WHAT IS COMMA

4 What is ComMA
This section contains an in-depth explanation of one of the major components of this report.
At first the abstract idea behind ComMA will be explained, followed by an example project.
Finally ComMA’s behaviour validation method is discussed, and the availability of ComMA for
interested parties.

4.1 Purpose

Component Modelling and Analysis (ComMA)[5] has two major components: an Interface
Description Language (IDL) used to describe message types, class signature and their behaviour
definition, and a tool set used to validate the behaviour definition. ComMA can be used to
define message contents in a .types file, and a class signature in a .signature file. Additionally,
ComMA can be used for behaviour definition in a .interface file, which is called an interface. The
interface contains various states, with each state representing a possible status of the system.
Moving between states is called a state transition. state transitions are defined based on a
function defined in the class signature, and triggered by that function begin called. Triggers for
state transitions can have certain requirements to activate, these requirements are called state
transition guards. state transition guards check whether requirements are met using variables
defined in the interface. During a state transition, certain actions can also be defined, such as
changing the values in variables or defining the response to the function call which triggered
the state transition. Lastly an interface can also define time limits for the duration between
receiving a function call and sending its response.

The tool set of ComMA has multiple functions as well:

• Compare a generated log for behaviour validation to expected behaviour defined in the
interface,

• Generate a UML diagram which displays the state flow diagram defined in the interface,

• Generate empty C++ classes based on the class signature, and

• Generate documentation based on in-line documentation, similar to Javadoc[4].

ComMA is designed as a client-server model, with the class signature and interface applying
to the server that a client communicates with. This design is relevant for two types of messages
that ComMA supports: signals and notifications. Signals are messages that the clients send to
the server, where the server doesn’t respond. Notifications are messages that the server sends
to a client, where the client doesn’t respond.

4.2 Code example

To understand ComMA, an example case file was used: defining the class signature and interface
for a vending machine (server), which communicates with a user-facing client (client). This
vending machine has water, juice, and cola in its inventory, can be switched on and off, and the
vending machine can be bought from and restocked.

Figure 1 shows a .types file that defines records and enums for the vending machine project.
Records and Enums get named, as do their children. Records can have children that are other
Records or Enums.

Figure 2 shows a .signature file that is used to define the class signature. The functions
within the class signature are divided into three categories: commands, which get a response
(return value), signals, which are received but get no reply, and notifications, which are sent,
and the receiver doesn’t respond. Signals al notifications are similar, but the inverse of each
other: from the perspective of one entity in a network, signals are received and notifications

Robin Kuiper
Graduation Report

7

Version 1.0
April 5, 2020 4 WHAT IS COMMA

1 record Product {
2 productName name
3 i n t c o s t
4 }
5
6 enum r e s u l t {
7 DELIVERED
8 NOT_ENOUGH_MONEY
9 NOT_ENOUGH_SUPPLIES

10 }
11
12 enum switchOnResult {
13 SWITCH_ON_OK
14 LOAD_PRODUCTS_FIRST
15 }

Figure 1: "VendingMachine.types" - ComMA object and enum definition

1 import " VendingMachine . types "
2 signature IVendingMachine
3
4 commands
5 r e s u l t orderProduct (productName prodName)
6
7 switchedOnResult switchOn
8
9 signals

10
11 s w i t c h O f f
12
13 n o t i f i c a t i o n s
14
15 i n v e n t o r y I n f o (i n t items)
16
17 outOfOrder

Figure 2: "IVendingMachine.signature" - ComMA messages definition

are sent, and neither are replied to by the receiver. Functions can have an argument, which is
defined after the function name within the parentheses. Functions can also have a return value,
which is defined before the function name.

The ComMA .interface file is used to define the program’s behaviour, which encompasses a
state flow description, time and data constraints, and behaviour definition for state transitions.
Figure 3 shows the start of the .interface file, where variables are defined and initial values
are assigned. These variables are used by state transition guards and for transition behaviour.
Figure 4 shows multiple state transition definitions. State transitions can be executed from all
states and the defined initial state will be the state at the start of execution. When a ’switchOn’
command is received in the initial state and there is stock in the inventory, the current state
will transition to state ’Operational’. Figure 5 shows time and data constraints for transitions.
It specifies that the time between receiving a call to ’orderProduct’ and sending the reply for
that call may not take longer than 10 milliseconds.

1 import " IVendingMachine . s i g n a t u r e "
2 interface IVendingMachine v e r s i o n " 0 . 3 "
3 variables
4 int c r e d i t
5
6 int colaSupply
7 int j u i c e S u p p l y
8 int waterSupply
9

10 i n i t
11 c r e d i t := 0
12
13 colaSupply := 1
14 j u i c e S u p p l y := 1
15 waterSupply := 2

Figure 3: "VendingMachineSpec.interface" - ComMA variable definition

Robin Kuiper
Graduation Report

8

Version 1.0
April 5, 2020 4 WHAT IS COMMA

17 machine vendingMachine {
18
19 i n a l l s t a t e s {
20 transition
21 do :
22 i n v e n t o r y I n f o (colaSupply + j u i c e S u p p l y + waterSupply)
23 }
24
25 i n a l l s t a t e s except I n i t i a l {
26 transition trigger : s w i t c h O f f
27 next s t a t e : I n i t i a l
28
29 i n i t i a l s t a t e I n i t i a l {
30 transition trigger :
31 switchOn guard :
32 (colaSupply + j u i c e S u p p l y + waterSupply) > 0
33 do :
34 reply (switchOnResult : :SWITCH_ON_OK)
35 next s t a t e : O p e r a t i o n a l

Figure 4: "VendingMachineSpec.interface" - ComMA state & behaviour definition

130 timing constraints
131 TR1 in state O p e r a t i o n a l
132 command orderProduct − [. . 1 0 . 0 ms] −>
133 reply to command orderProduct
134
135 data constraints
136 variables
137 int r e t u r n e d C r e d i t
138 DC1 command returnMoney ;
139 reply (r e t u r n e d C r e d i t)
140 where r e t u r n e d C r e d i t >= 0

Figure 5: "VendingMachineSpec.interface" - ComMA constraints definition

4.3 Behaviour validation

ComMA monitoring isn’t done whilst the program runs (known as ’online monitoring’), but it
is done post-run (known as ’offline monitoring’). Offline monitoring is done using logs from the
program. This requires the server to log all communications into a file. This file is later read
to verify the behaviour.

When verifying the behaviour, ComMA generates multiple report files based on the log:

• Statistical overview of time and data constraints

• Behaviour analysis results:

– List of constraint violations
– Transition and state coverage percentages

Offline monitoring is done with hardly any overhead, since writing logs to a file can be done
in the background. It also enabled new or updated behaviour validation for program runs that
happened in the past. A downside to offline monitoring is that any errors that occur during
the run cannot automatically be dealt with, but will need to be analysed after the program has
finished executing to see what caused the error, and how to solve it.

4.4 Availability

ComMA is a proprietary solution created by TNO-ESI, a Dutch research lab that focuses
on embedded systems, in collaboration with Philips. Philips contributed to the project by
developing the C++ generator featured in ComMA, and C++ specific grammar additions.

Currently ComMA is not publicly available, for free or otherwise. The only organisations
with access to ComMA are those with existing ties to TNO-ESI. TNO-ESI has expressed interest
in open sourcing ComMA, but this is pending legal and technical review by both TNO-ESI and
Philips.

Robin Kuiper
Graduation Report

9

Version 1.0
April 5, 2020 4 WHAT IS COMMA

TNO-ESI and Philips are willing to let Thales use ComMA, and participate in the develop-
ment of ComMA so it fits Thales’ needs.

Robin Kuiper
Graduation Report

10

Version 1.0
April 5, 2020 5 PROJECT DEFINITION

1 p r o t o c o l VendingMachine {
2 record Product {
3 productName name ;
4 i n t c o s t ;
5 }
6
7 enum productName {
8 WATER, COLA, JUICE
9 }

10
11 enum r e s u l t {
12 DELIVERED, NOT_ENOUGH_MONEY, NOT_ENOUGH_SUPPLIES
13 }
14
15 enum switchOnResult {
16 SWITCH_ON_OK, LOAD_PRODUCTS_FIRST
17 }
18
19 r e s u l t orderProduct (productName prodName) ;
20
21 switchedOnResult switchOn () ;
22 }

Figure 6: "VendingMachine.avdl" - Apache Avro IDL object, enum, and message definition

5 Project definition
This section explains the problem and objective definition, the end result and the quality require-
ments of the project. The problem and objective definition contain a description of the problem
experienced by the client, and the intended result that will be used to solve the problem. Finally,
the scope of the project is described.

5.1 Current situation

Thales provides sensor solutions which require server clusters for data processing. Inter-server
message structures are currently formatted according to the Apache Avro IDL. This message
structure defines messages and their contents.

The same case study is used as in section 4 to explain the way Apache Avro IDL works.
A vending machine class signature is defined, which can be communicated with by a user-
facing client. Figure 6 shows an .avdl file, defining records (objects), enums, and messages
with parameters and return values. The message definitions can use the defined records and
enums. Notable is the fact that, in contrast to ComMA, Apache Avro defines all these aspects
in a single file. Using an .avdl file, template files for any supported programming language can
be generated, which eases implementation and prevents minor errors. Apache Avro also uses
annotations for some basic features, but doesn’t limit annotation usage. Thanks to this Thales
uses custom annotations to support legacy and embedded features.

One of the reasons Thales uses Apache Avro is to simplify the development process. A benefit
of Apache Avro is that it manages the APIs of all the components and keeps the versions of
the APIs used in sync. For example, a system of micro services need precisely defined APIs
to communicate. In classic development structure, a technical document is created specifying
the API. Once this is created, it’s up to the developers to implement the API according to this
document. When the API needs to be changed, the technical document is updated and the
developers are tasked with updating each process.

This method has a lot of room for error. For example, a developer could forget to implement
an API point, or incorrectly read the documentation and implement something not in accordance
with the specification. If a version update of the API is released, each service needs to be
manually verified whether it’s still in accordance with the specification.

When using Apache Avro, these potential issues are mitigated. The API for every service is
still defined as it is in the classical scenario, but implementation phases occur differently. The
class signature templates are generated, and the developers are only responsible for the body
of the generated class signature. This prevents issues with missing or incorrect APIs. When a

Robin Kuiper
Graduation Report

11

Version 1.0
April 5, 2020 5 PROJECT DEFINITION

new version is released, the Apache Avro generator can generate the new templates, and the
tooling can identify which implementation doesn’t comply with the specification and needs to
be updated.

5.2 Problem

Apache Avro helping with implementing APIs and managing the different versions isn’t enough.
An API simply defines the input and output of a method. What the method does can still
differ, without Apache Avro tooling warning the developers. A more complex definition can be
an acceptable trade-off, if this provides a more specific API by also defining the behaviour. The
downside that comes with dealing with a more complex definition can be managed by having
just a small team responsible for the development and upkeep of this API specification. The
upside presented by a more specific API can prevent large-scale trouble when implementing the
proposed API with a large team of developers.

To enable this, Thales wants to be able to define, monitor, and verify system behaviour.
Two examples of system behaviour are the state flow and the system call timings. Based on the
system behaviour definition, Thales wants to be able to deduce whether the functioning system
adheres to pre-specified requirements, also known as behaviour validation. These requirements
are:

• correctly following the flow diagram that specifies what state a system must be in at that
moment, and

• time limits that specify how long one or multiple calls may take to complete.

Thales also wants to expand the range of target languages generated. Currently they use a
custom generator to generate C++ header and class files based on the .avdl files. They want the
generator to support other output languages, and this could be a good opportunity to enable
that goal.

5.3 Desired situation

The behaviour definition system that Thales wants already mostly exists, in the form of ComMA.
In ComMA you can define message contents and functions just like in Apache Avro, although
not as extensively as in Apache Avro. Additionally ComMA allows you to define an interface
which contains the behaviour definition.

Thales specified ComMA as the best tool to solve their issues, but also requested researching
alternative tools, to make sure there is no better alternative available.

Whatever tool will be chosen, it will be implemented as a separate system, since adapting
Apache Avro isn’t an option. Using two separate systems will mean that files containing the
behaviour definition need to be changed in two places, once for Apache Avro, and once for the
chosen tool. This dual system would be very error-prone, and these simple mistakes cost time
and money. Therefore Thales considers it preferable to phase out Apache Avro entirely, and
rely on the chosen tool to define both the class signature and the behaviour.

If the chosen tool currently doesn’t support all features of Apache Avro, and Thales does
not require every feature of Apache Avro, the objective is to:

• Research which Apache Avro features are missing in the chosen tool,

• Discuss which Apache Avro features are required by Thales in the chosen tool, and

• Expand the chosen tool to support all missing features required by Thales of Apache Avro.

Once completed, the end result should be an IDL grammar that can be used to describe
any class signature currently described using Apache Avro, and the ability to expand upon the
class signature with a behaviour definition.

Robin Kuiper
Graduation Report

12

Version 1.0
April 5, 2020 5 PROJECT DEFINITION

5.4 Scope

• The focus of this project is on re-defining the chosen tool’s grammar to support Thales’
needs, mainly by porting over select Apache Avro features.

• Implementing all the grammar changes isn’t expected for this project. However, a proof
of concept is required, with more than 50% of the proposals implemented.

• A functioning behaviour validation implementation isn’t required in the deliverable, this
would be a separate project. This project’s focus is on finding and refining and IDL that
suits Thales’ needs.

Robin Kuiper
Graduation Report

13

Version 1.0
April 5, 2020 6 COMMA ALTERNATIVES

6 ComMA alternatives
In this section, alternatives to ComMA are researched. First, an overview is presented of the
requirements that need to be met. Subsequently alternatives are researched and listed. Finally,
these alternatives are compared and a suitable candidate is selected.

6.1 Requirements

Currently Thales uses Apache Avro, so its feature set needs to be supported at a minimum. Some
Apache Avro features aren’t used and are excluded from this overview. A complete overview
of all features ComMA offers can be found in appendix B. As in the rest of this document,
this overview uses ComMA nomenclature: ’class signature’ is the collection of methods, and
’interface’ is the behaviour definition of that class signature.

Apache Avro supports importing other Apache Avro files, which can contain defined types
and/or a defined class signature. These defined items can be used in the definition of new types
and class signatures. It supports defining a namespace for the Apache Avro file, which can help
differentiate similar types and functions in different files. @-Style annotations can be used to
modify types and functions, and there isn’t a definitive list of annotations: you can use any name
for an annotation, and pass any value, since the handling of annotations is done at the generator
level, not in the grammar. Lastly there is no official documentation system, but Thales extracts
javadoc-style comments from Apache Avro files to generate HTML documentation.

Types

Primitive Types

int 32-bit signed integer

long 64-bit signed integer

float Single precision (32-bit) IEEE 754 floating-point number

double Double precision (64-bit) IEEE 754 floating-point number

boolean A binary value

byte Sequence of 8-bit unsigned bytes

string Unicode character sequence

null No value

Object Types

record A collection of fields, each field is a type

enum A collection of symbols

array A collection of items, all of the same type

fixed A collection of bytes, with a declared size.

Class signature
Apache Avro supports annotations that apply to the entire class signature or just one function.
You can also annotate argument types and return types.

Robin Kuiper
Graduation Report

14

Version 1.0
April 5, 2020 6 COMMA ALTERNATIVES

Functions

name Custom identifier for the function

arguments Arguments given when calling the function

return value Resulting value from calling the function

error Error returned when an function call goes wrong

signal Receive a function, without needing to reply

6.2 Alternatives research method

To get a list of alternatives, the most popular IDLs were sourced from Wikipedia[6]. IDLs were
additionally sourced from the results of the internet search engine DuckDuckGo1, querying the
first 50 results of the terms IDL and Interface Description Language. For each item on this
list it was manually verified whether it supported the functionality required for this project.
This was done by reading the documentation and comparing the documented features to the
requirements.

This method of researching IDLs did not uncover ComMA, since it is a closed-source solu-
tion. This could mean there are other proprietary solutions created by businesses that haven’t
been widely publicised. However, since these solutions aren’t publicised, it’s not a realistic
expectation to find them.

This search resulted in only one viable candidate: Franca[1]. Franca is the only candidate
that came close to meeting the requirements put forth by Thales. All other options found were
at varying levels of compatibility in its ability to define types and a class signature. But none
of these options, besides Franca, includes any kind of behaviour modelling.

6.3 Franca

Franca is a framework that uses its own custom IDL. In this IDL class signature and behaviour
can be defined. The Franca framework supports transforming files based on a supported IDLs
to a Franca file. Based on a Franca file, Franca can generate class signature and behaviour
validation code. The Franca IDL is intended to be a superset of all IDLs. Transformations take
place in two different ways: one can transform from an IDL to the Franca IDL, or transform
from the Franca IDL to a different IDL. Generation is done based on the Franca IDL file.

However, whilst Franca is a framework to build transformers and generators with, it does not
provide many of these components by default. The only first party components are transformers
for the IDLs D-BUS, OMG-IDL and Google Protobuff. There are third party generators, the
most promising of which is the open source Joynr [2], which can generate C++, Java and
JavaScript class signatures based on a Franca IDL definition, but Joynr doesn’t generate any
behaviour validation code.

Franca’s feature set is mostly a superset of Apache Avro and ComMA. An example of Franca
type definition is shown in figure 7, a partial class signature in figure 8 and some behaviour
definition in figure 9. The features that are required but are missing are mostly behaviour
validation features that ComMA does support. Most importantly, using ComMA one can
extensively specify transition actions, but many of these actions aren’t definable using Franca.
Defining data and time constraints, as is possible with ComMA, isn’t possible at all with Franca.
A complete overview of missing features can be found in appendix B.

1http://duckduckgo.com

Robin Kuiper
Graduation Report

15

http://duckduckgo.com

Version 1.0
April 5, 2020 6 COMMA ALTERNATIVES

1 struct Product {
2 productName name
3 UInt32 c o s t
4 }
5
6 enumeration r e s u l t {
7 DELIVERED
8 NOT_ENOUGH_MONEY
9 NOT_ENOUGH_SUPPLIES

10 }
11
12 enumeration switchOnResult {
13 SWITCH_ON_OK
14 LOAD_PRODUCTS_FIRST
15 }

Figure 7: "VendingMachine-types.fidl" - Franca type definition

1 import model " VendingMachine−types . f i d l "
2 interface VendingMachine {
3
4 method orderProduct {
5 in { productName prodName }
6 out { r e s u l t r e s u l t }
7 }
8
9 method switchOn {

10 out { switchOnResult r e s u l t }
11 }
12
13 method s w i t c h O f f fireAndForget {}
14
15 broadcast i n v e n t o r y I n f o {
16 in { UInt32 i tems }
17 }
18
19 broadcast outOfOrder {}
20
21 }

Figure 8: "VendingMachine-interface.fidl" - Franca messages definition

17 import model " VendingMachine−i n t e r f a c e . f i d l "
18 contract {
19 PSM {
20 vars {
21 UInt32 colaSupply ;
22 UInt32 j u i c e S u p p l y ;
23 UInt32 waterSupply ;
24 }
25
26 i n i t i a l i d l e
27 state i d l e {
28 on c a l l switchOn [colaSupply + j u i c e S u p p l y
29 + waterSupply > 0] −> O p e r a t i o n a l
30 }
31
32 state o p e r a t i o n a l {

Figure 9: "VendingMachine-contract.fidl" - Franca state & behaviour definition

Robin Kuiper
Graduation Report

16

Version 1.0
April 5, 2020 6 COMMA ALTERNATIVES

6.4 Usability

One of the incompatibilities with Franca is that it allows a function to define multiple out
parameters. One of the design goals is language independence, as specified in section 8.1.
Multiple output values is a feature not natively supported by modern languages such as Java
and C#, therefore to comply with the design goal it will require this to be solved by using a
wrapper. In C and C++ multiple output values is a common design paradigm, by passing a
pointer to the values as an argument. Thales has deprecated this method of getting output
values, and as such doesn’t want this feature in the IDL.

To use Franca, it would need to be expanded to support all the missing features from
ComMA and Apache Avro. To support existing Apache Avro files, an Apache Avro to Franca
transformer can be built. For code generation the existing Joynr generator can be used as a
starting point, but it would need to be expanded to support behaviour validation. However, this
is a moot point since Thales has indicated they want to use their own code generator, regardless
of which framework (ComMA or Franca) is used.

ComMA and Franca are both missing features used by Thales with Apache Avro. Since
the code generator still needs to be adapted for both ComMA and Franca, this doesn’t impact
the decision. Meanwhile Franca supports transforming existing Apache Avro files, which means
that these files won’t have to be re-written for the new tool. Franca’s documentation is also far
superior, with ComMA hardly having any documentation. These advantages caused my initial
advice to be to use Franca.

To make comparing the viability of ComMA and Franca more measurable, a decision matrix
was created. This decision matrix can be found as appendix B.5. Each feature of Apache Avro,
ComMA and Franca that is considered relevant by Thales was listed. With input from the
company mentor each feature had a weight assigned according to the MoSCoW scale. Must
features were weighed very heavily, since these features represented the bare minimum for a
usable product.

For every feature, every language had a score assigned from zero to one, where zero means
the feature is completely unavailable, and one is the feature is entirely present. The feature
weight and score are multiplied to get a total compatibility score for that feature. Each total
score for a language is summed up to get the final score, which can be compared to the other
languages to quantify viability.

Based on this final score, Franca is the most viable candidate.
However, Thales currently values using ComMA due to the value of collaborating with

TNO-ESI. Based on this additional value, they decided to choose ComMA over Franca.

Robin Kuiper
Graduation Report

17

Version 1.0
April 5, 2020 7 XTEXT

1 V a r i a b l e E x p r e s s i o n :
2 v a r i a b l e 1 = [Variable] "==" v a r i a b l e 2 = [Variable]
3 ;

Figure 10: Example of Xtext rule definition with cross-references

7 Xtext
Since both ComMA and Franca are developed using Xtext, this section explains the Xtext frame-
work. First, an overview of the framework is outlined. Then the workflow is described, along
with the issues Xtext has. Finally competing technologies are discussed.

7.1 Overview

Xtext is an open-source software framework used for developing programming languages and
Domain Specific Language (DSL) like Apache Avro, ComMA and Franca, supported by the
Eclipse foundation. Xtext uses ANTLR2 for generating a parser and lexer, but its strength
is with the Eclipse integration. Languages defined using Xtext automatically integrate into
the Integrated Development Environment (IDE) with features like code completion, syntax
highlighting, rename refactoring, custom help pages and more. This integration is very valuable,
since it significantly speeds up development compared to developing without any IDE support.
Xtext is coupled with Xtend3, a Java dialect which compiles into Java. Xtext by default uses
Xtend to write code like parser rules, tests and generators. The grammar is compiled to an
object-based representation of the grammar, which the code can easily traverse. This method
of traversal encourages Object Oriented (OO) grammar definition, with many small re-usable
parts.

Another unique feature of Xtext is the fact that you can define cross-references in the
grammar. For example, you can define that expressions can reference pre-declared variables.
This is displayed in figure 10, which shows a comparison expression that compares two declared
variables.

With Xtext, you can define your language using the Xtext grammar, combined with valida-
tion and scoping rules that are expressed using Xtend. Validation rules are used when certain
requirements need to be met for grammar to be valid, like type checking when adding a type to
an array. Scoping is used to define which reference is referable in the given location, for example
in a function the scope could be all global and certain function variables.

7.2 Workflow

When creating a language, you start by creating a new project. This generates five fresh
components, as shown in figure 11. The base component contains the grammar definition,
validation and scoping rules, and any generators. The other components contain tests, IDE
module definitions, UI code for those IDE models and UI tests.

The most important aspect is the grammar component, shown in more detail in figure 12.
The contents of this component is a dedicated folder for validators, scoping. generators, and a
folder for the grammar, build file, and two files of boilerplate code. The build file is the .mwe2
file, that generates code based on the grammar, validators etc.

The Xtext file contains some sample grammar, as shown in figure 13. It can be used to define
0 or more greetings. Notice that for each greeting the variable ’name’ is assigned using the equals
(=) symbol to the rule ID, which is a default rule that matches most text. This variable can
be accessed and used in validators and generators when traversing the code. Similarly, the

2https://www.antlr.org/
3https://www.eclipse.org/xtend/

Robin Kuiper
Graduation Report

18

https://www.antlr.org/
https://www.eclipse.org/xtend/

Version 1.0
April 5, 2020 7 XTEXT

Figure 11: A new Xtext project, called ’example’

Figure 12: The contents of the grammar component

Robin Kuiper
Graduation Report

19

Version 1.0
April 5, 2020 7 XTEXT

1 Model :
2 g r e e t i n g s+=Greet ing ∗
3 ;
4
5 Greet ing :
6 ’ Hel lo ’ name=ID ’ ! ’
7 ;

Figure 13: Xtext rules used to define greetings

greetings variable contains the greetings. This time, greetings is assigned using a plus sign and
an equals symbol (+=), which means the variable it is assigned to will be a list. The final
method of assigning a variable which is not displayed in this example, is using a question mark
and an equals symbol (?=). This assigns a boolean value based on whether or not the rule is
consumed.

A project like shown above can be used to define one component of your language. Once
done, newly defined projects can use grammar from this project to build upon your code. This
enables you to quickly build complex grammar structures with simple base components. A good
example is creating expressions by using simple base components like defining types, defining
variables, and assigning values to variables.

7.3 Issues

One of the major issues with Xtext is the split between grammar and validation files. In large
projects, this causes developers to quickly lose overview of what rules are defined, and where
they are defined. The way ComMA solved this is by adding a comment in the grammar file
that specifies that there is a validation rule for the defined parser rule. However, this solution
certainly has flaws: it’s dependent on the developer remembering to add the comment, and the
description of what happens during validation needs to be updated every time the validation
rule is changed.

The second problem is related to the first: project organisation. As shown in figure 11,
by default a new Xtext project creates five Eclipse projects. Since Xtext encourages creating
lots of small components, this means creating lots of projects. And every Xtext project creates
five Eclipse projects, which in the end really adds up. ComMA clocks in at over 100 Eclipse
projects, which makes it hard to quickly find any part of the project.

The final problem is documentation. Documenting code in Xtext is made unnecessarily
hard. When writing code for validators or generators in Eclipse, you can ctrl-click a class to
go to its definition. In the case of parser rules, those definitions are generated Java classes.
These generated Java classes contain generated documentation, an example being figure 14.
The documentation in figure 14 is for the getName method user by the Greeting parser rule.
The generated documentation is superficial, and explicitly states that if it isn’t enough, more
documentation should be written. One would expect that the documentation can be written
along with the grammar in the .xtext file. However, there currently is no way in Xtext to
generate documentation from the grammar file. What makes this even worse is that any manual
documentation in the generated file is overwritten when the project is built using the .mwe2
file.

7.4 Alternatives

Since one of the valuable features of Xtext is the Eclipse integration, alternatives need to support
similar levels of integration. The one candidate is JetBrains MPS (MetaProgrammingSystem),
developed by the same JetBrains who develop the IntelliJ suite of IDEs. Because of this MPS
is deeply integrated with IntelliJ.

Robin Kuiper
Graduation Report

20

Version 1.0
April 5, 2020 7 XTEXT

1 /∗∗
2 ∗ Returns the value o f the
3 ∗ ’Name’ a t t r i b u t e .
4 ∗ <!−− begin−user−doc −−>
5 ∗ <p>
6 ∗ I f the meaning o f the ’Name’
7 ∗ a t t r i b u t e isn ’ t c l e a r ,
8 ∗ t h e r e r e a l l y should be more o f a d e s c r i p t i o n here . . .
9 ∗ </p>

10 ∗ <!−− end−user−doc −−>
11 ∗ @return the value o f the ’Name’ a t t r i b u t e .
12 ∗ @see #setName (String)
13 ∗ @model
14 ∗ @generated
15 ∗/
16 String getName () ;

Figure 14: Generated documentation for the getName method in the Greeting class

Besides IDE integration, MPS and Xtext have a lot of structure in common. They can
both define grammar, validation and scoping rules. However, the execution of these concepts is
entirely different for MPS. JetBrains chose with MPS to go for a more Object Oriented approach
to language definition. They define a parser rule like a class in a file, show in in figure 15. This
only defines the data aspects of a rule, including inheritance of different rules, primitive values
that are passed as properties, and child rules that it contains. How the end user will enter
this data is defined in a separate file called an editor. Here you can specify the syntax of a
statement, including static strings that are useless from the language developers perspective
like brackets around the boolean expression of an ’if statement’. MPS also supports different
ways of inputting data for the end-user other than typing text, like filling in a form, creating
a flowchart-like diagram, or a math notation. This is great if you need to develop a language
for non-tech users, who are used to tools like Microsoft Excel and Microsoft Visio for making
forms and diagrams.

Xtext can do a similar thing: Xtext’s modelling and generation framework, EMF (Eclipse
Modelling Framework), is also used by graphical editing programs like Graphiti4. Because
these programs use the same framework, they can be set up to work together to create, for
example, a diagram-based language. However, this integration isn’t native and requires manual
configuration of the components.

MPS doesn’t use plain-text files, and because of this versioning software like git can have
issues. MPS can be represented as XML, and JetBrains offers an add-on5 which helps with
merging and building the XML files.

To get a feel for MPS, a link to a good walkthrough of an MPS project can be found at the
bottom of this page6.

4https://www.eclipse.org/graphiti/
5https://www.jetbrains.com/help/mps/version-control-integration.html#vcsadd-ons
6https://www.youtube.com/watch?v=OyIj5D6ORXs

Robin Kuiper
Graduation Report

21

https://www.eclipse.org/graphiti/
https://www.jetbrains.com/help/mps/version-control-integration.html#vcsadd-ons
https://www.youtube.com/watch?v=OyIj5D6ORXs

Version 1.0
April 5, 2020 8 COMMA CHANGE PROPOSALS

Figure 15: An MPS concept, defining the attributes

8 ComMA change proposals
In this section, ComMA change proposals are discussed. First the requirements for the proposals
are listed, then the feedback system is explained. After this a proposal is discussed, including
which feedback was received and what was changed as a result.

8.1 Design goals

When proposing changes to ComMA, certain design goals need to be met:

• ComMA is intended to be programming language agnostic, so for every proposed change
there needs to be a reasonable expectation of support in most mainstream programming
languages.

• All language-specific notations, like specifying that during C++ generation the class sig-
nature needs to be generated as a C service, are left as annotations.

The intention for the first design goal is to maintain the ability to generate the class signature
and interface in any mainstream programming language. The intention of the second design
goal is that annotations will rarely be used, with the defaults being appropriate most of the
time.

8.2 Feedback

Feedback on ComMA proposals is received through feedback meetings. The company mentor
has selected multiple software architects that lead the teams that will use ComMA. This feed-
back group of software architects includes people with different software backgrounds. This is

Robin Kuiper
Graduation Report

22

Version 1.0
April 5, 2020 8 COMMA CHANGE PROPOSALS

Figure 16: Range proposals, version 1

Figure 17: Range proposals, version 2

to support the goals for ComMA that all features are language-independent, as stated in section
8.1.

These meetings have proven invaluable, since the feedback meetings uncovered many faulty
assumptions by both me, my company mentor and the selected software architects. There have
been two feedback cycles in total.

8.3 Proposals

ComMA proposals appear in the following categories:

IDL All changes related to the ComMA IDL as a whole, or multiple components of the IDL.
Fields Changes to the definition of objects and their contents.
function Changes related specifically to function.
Language specific changes Proposals for ports of language-specific annotations.

In the proposal document (appendix A), all custom annotations used by Thales have pro-
posed replacements. A lot of these proposed replacements are denied based on the fact that the
to-be-replaced annotations represent old functionality, that is no longer required. Because of
this, a total of seven proposals will be implemented, with all the proposed annotations combined
counting as two proposals: type annotations and class signature annotations. To illustrate the
process of creating a proposal, one proposal will be discussed in detail: the @range annotation
replacement proposal.

Currently, @range is used to specify the range of values a variable can be. There were
four initial proposals for adapting this to ComMA, as seen in figure 16. These proposals were
discussed, and it was agreed upon that proposal two, with min and max keywords was the
preferred proposal. An idea from one of the members of the feedback meeting was to use
inclusive [] and exclusive ()7 brackets to specify whether a range was inclusive or exclusive.

Whilst changing the proposal I realised the keyword could be simplified, since using real
implies that any min or max should be of type real. Two new proposals were made that were

7In accordance with ISO 31-11

Robin Kuiper
Graduation Report

23

Version 1.0
April 5, 2020 8 COMMA CHANGE PROPOSALS

shown during the second feedback round, as seen in figure 17. It was agreed that the simplified
min and max keywords were the best option.

There were also proposals for feature addition, such as adding signed/unsigned types. Two
example implementations were drafted, but during feedback the comment was made that this
didn’t meet the language agnostic requirement, as a major language like Java doesn’t support
unsigned variables. It was pointed out that the underlying goals of this feature were twofold:

• Limit an int to positive numbers, and

• Guarantee that an int can contain a certain size number.

The first issue was already solved by including the range feature. The second issue could
be solved by adding additional keywords short and long for larger and smaller numbers. The
exact size of these keywords could be decided later, and enforced at compile time.

This full list of proposals is extracted as a PDF from the internal wiki, and attached as
appendix A.

Robin Kuiper
Graduation Report

24

Version 1.0
April 5, 2020 9 IMPLEMENTATION

9 Implementation
This section discusses how changes are implemented, and what has been implemented.

9.1 Method

Every change proposal needs to have its grammar edited, and tests added. It is decided on a
case-by-case basis which generators need to be changed to support the added feature.

Based on experience implementing the first two features, I attributed story points to each
feature, and assigned an expected start and end date. Every feature will need a different set of
generators edited or removed, and this is factored into the assigned amount of story points.

The planned implementation time line is the following:

Start & end date Feature Story points
2020-01-20 - 2020-02-14 Range Test implementation
2020-02-17 - 2020-03-03 Annotations type 8
2020-03-04 - 2020-03-06 Annotations class signature 1
2020-03-07 - 2020-03-12 Immutable 3
2020-03-13 - 2020-03-16 Dynamic array 3
2020-03-17 - 2020-03-25 Templating 5
2020-03-26 - 2020-03-27 Add short & long 1

9.2 Proposals implemented

This section will only display diff statistics and a description of the implementation process,
since no permission was given to share the ComMA code.

Range

Feature description Thales wants to be able to specify a maximum value, a minimum
value or both for ints and reals. This value limit would be used in code generation, documen-
tation generation and potentially behaviour validation.

Implementation process A large amount of time was spent implementing the first fea-
ture, since it was a practice and research run. Everything learned during the implementation
of this first feature was documented in the ComMA start-up guide. One of the first issues I ran
into was that it wasn’t entirely clear to me what I wanted to change, so I listed all generators
that base their product on the ComMA file. Out of this list I created a list of generators I
wanted to change: in this case this was only the documentation generation.

Changing the documentation generator proved difficult, as ComMA uses a library called
M2Doc to generate documention. M2Doc generates a Microsoft Word .docx file, by changing
a template .docx file. The template .docx file contains so-called ’field codes’. These fields are
hidden by default, and contain query statements written in a unique query language called
Acceleo Query Language (AQL)8. The query statements are used to define how to extract and
display information. Using M2Doc, you can pass an object and a link to the template .docx file
to generate the final documentation document.

It took asking for clarification from TNO, getting a new version of word and much trial and
error to generate documentation about the specified range. The edited Template.docx reflects
that work, although it can’t be expressed through line changes since .docx is a binary file.

83.

Robin Kuiper
Graduation Report

25

Version 1.0
April 5, 2020 9 IMPLEMENTATION

Every generated file from the grammar that Xtext uses has generated documentation with a
warning, that if that documentation isn’t sufficient it should be replaced with proper documen-
tation. I spent a lot of time trying to generate proper documentation, including asking for help
on the Xtext forums and reading the Xtext source code. Eventually I gave this up as a bad job,
and accepted that the Xtext framework, even though it states that you need to replace that
documentation, simply supports no way to permanently replace the generated documentation.

Result Work done includes trial and error to edit the grammar (Types.xtext), limiting its
use to just ’int’s and ’real’s (TypesValidator.xtend) and defining basic goodweather test to see
if it properly parses (TypesParsingTest.xtend). With all code changes, a real effort has been
made to document the changes in-line as clearly as possible, without retroactively documenting
all other features. The test was in line with previous testing done (only goodweather tests) and
currently has no way to automatically run (to, for example, test all components simultaneously).

Documentation generation now also adds range information, if relevant.

Diff

Added Range
File changed Lines Added Lines Removed Hours spent
doc.template/template/Template.docx N/A N/A

120 hourstypes/Types.xtext 20 2
types/validation/TypesValidator.xtend 12 0
types/tests/TypesParsingTest.xtend 4 0

Type annotations

Feature description Thales currently uses annotations in Apache Avro to specify custom
behaviour. They want to also be able to use annotations in ComMA, for language-specific
behaviour. These annotations can be used for all types, or for specific type definitions like
custom types, records or enums. The values in records can also be annotated.

Implementation process This change was a lot simpler, since there was no research
aspect left to be done. This meant it was a lot faster to implement, even though there were
some technical difficulties. A choice was made to split up adding annotations to ComMA, by
adding it per file type. This would keep complexity low per change.

One of the first choices was architectural: arguments to annotations can be expressions. But
expressions aren’t imported or used in Types.xtext. One solution would be to import and use
expressions, but since expressions are a complex system, the effects of this change are hard to
oversee. This issue was discussed with the company mentor, and he advised re-defining the basic
types (numbers, true/false and arrays) and using these to avoid the complexity and dangers of
expressions.

After this choice, I encountered a nasty bug that entirely broke defining types. This turned
out to be related to ComMA using Xtext’s ’cross-reference’ system for types. Some work and
experimenting led me to a proper solution.

Whilst adding annotations I ran into a huge technical issue that delayed me for over a day:
every new version broke no matter what I did, and the issue didn’t want to go away. Cleaning
the build folder caused even more problems, with the build system reporting it was missing a
file in the folder with generated files. Manually replacing that file from a known-good backup
didn’t solve anything, and neither did reverting all my changes. Eventually after a third restart
of Eclipse suddenly everything worked again, but the original cause of the problem and what

Robin Kuiper
Graduation Report

26

Version 1.0
April 5, 2020 9 IMPLEMENTATION

solved it both remain a mystery. This event happening regularly could be a major issue for the
planned schedule, so hopefully it doesn’t happen often.

After I thought I was done, I realised I missed an important aspect: array validation.
Validating that the contents of an array were all the same type proved to be complicated. For
example, an array can’t contain an int and a boolean array, so multi-level arrays need an in-
depth check. An unexpected issue for array validation was that, for example, a triple-level array
could have empty members in the second level, which complicated comparison.

Writing these array validation tests uncovered the fact that to run validation, it needs to be
manually specified. Validation tests are specified in a separate folder, and a separate file was
made for the annotation validation tests.

Result Grammar for type annotations was added, and validation for array arguments.
Unit tests for the grammar and validation were added, with goodweather and badweather tests
for each case. Since array validation is so complicated and tricky, a large part of the written
unit tests are dedicated to this part.

After a significant amount of work, this is a solid foundation which should make implement-
ing class signature annotations incredibly easy. Only the grammar was implemented, with no
generator changes, since Thales has no interest in any of the existing generators/tooling from
ComMA.

Diff

Added type annotations
File changed Lines Added Lines Removed Hours spent
types/Types.xtext 40 1

56 hourstypes/validation/TypesValidator.xtend 197 90
types/tests/TypesParsingTest.xtend 31 0
types/validation/tests/Annotations.xtend 122 0

Class signature annotations

Feature description Class signature annotations serve a similar purpose as type anno-
tations, except these annotations apply to an entire class signature or a single method. Other
annotations can apply to the method argument or return value. As with type annotations, what
the annotation applies to is based on where it is written.

Implementation process Adding class signature annotations was an easy task, even
though it touched a lot of files. The previous work on type annotations made this a breeze,
with only the type definitions in the class signature requiring a change. The rest of the work
was simply additive, including creating tests.

Since many generators use the class signature grammar, the change affected many other
files. The changelog shows that many files required a minor tweak, but thanks to the work on
type annotations this was quick and easy.

Result Grammar and tests are implemented. No validation code was needed, which re-
sulted in relatively simple tests. Only the grammar was implemented, with no generator changes,
since Thales has no interest in any of the existing generators/tooling from ComMA.

Robin Kuiper
Graduation Report

27

Version 1.0
April 5, 2020 9 IMPLEMENTATION

Diff

Added class signature annotations
File changed Lines Added Lines Removed Hours spent
signature/InterfaceSignature.xtext 6 2

3 hours

signature/formatting2
/InterfaceSignatureFormatter.xtend 12 12

signature/validation
/InterfaceSignatureValidator.xtend 2 2

signature/tests
/InterfaceSignatureParsingTest.xtend 37 11

behaviour/generator/ResourceUtils.xtend 1 1
behaviour/generator/SMCUtilities.xtend 1 1
behaviour/generator

/StateMachineDezyneGenerator.xtend 1 1
behaviour/generator

/GenerateCustomTypes.xtend 1 1
expressions/scoping

/ExpressionScopeProvider.xtend 1 1
petrinet/generator

/GenerateCustomTypes.xtend 1 1
project/service/DocService.java 15 4

Immutable

Feature description The immutable keyword is supposed to represent an unchangeable
value, similar to const in C/C++ and final in Java.

Its function is a combination of two existing annotations: @constant was used to define a
value that can be referenced throughout the project. @const was used to declare that the fields
of a record, or the return value of a method may not be changed. It was also used to declare
that the argument of a method will not be changed.

Both functions will now be used with the keyword Immutable.

Implementation process Implementing the immutable keyword went fairly smooth.
During implementation of the grammar, I was too enthusiastic and added immutable type
definitions. This was not part of the original proposal, and this work is kept separate and will
be discussed with the company mentor.

During this task I also realised there was a way to run all existing tests simultaneously,
instead of one by one. Since TNO/ESI have created some tests for each component, this would
be useful when testing changes. Running these tests showed that many failed, mostly due to
my previous changes. Most of these tests were fixed, which luckily didn’t take too much time.
Some were left broken, since they were parts of ComMA that Thales isn’t interested in.

Result Grammar for Immutable, and validation code was created, The validation code
checks immutable type usage in records. If a record defines an immutable field, all fields have
to be immutable.

Existing broken tests due to unrelated changes (mostly type annotations) were also fixed.
Only the grammar was implemented, with no generator changes, since Thales has no interest
in any of the existing generators/tooling from ComMA.

Robin Kuiper
Graduation Report

28

Version 1.0
April 5, 2020 9 IMPLEMENTATION

Diff

Added immutable keyword
File changed Lines Added Lines Removed Hours spent
types/Types.xtext 8 4

12 hourstypes/validation/TypesValidator.xtend 27 9
types/tests/TypesParsingTest.xtend 35 0
types/tests/validation/Immutable.xtenc 58 0

Dynamic array

Feature description When declaring an array, Thales would like the distinction between
a dynamic size array and a static size array to be more explicit. This is a purely syntax change.

Implementation process This implementation wasn’t complex since it was purely a
grammatical change, no validation needed. However, I ran into the issue of failing compilations,
similar to the issue I had with the implementation of type annotations. Since that issue resolved
itself after a day with many cleans, rebuilds and restarts of both Eclipse and Windows, this
strategy was repeated. After trying multiple hours I gave up and worked on documentation for
the rest of the day. When the next day the issue persisted, I took a good look at the error log,
experimented a bit with building old build and realised the issue was due to a bug in Xtext. I
resolved this by creating a workaround, which solved the issue.

Result The grammar for dynamic arrays was added, plus relevant tests. Static arrays were
changed so they now have to specify size, as no size was the previous way to specify dynamic
arrays.

Only the grammar was implemented, with no generator changes, since Thales has no interest
in any of the existing generators/tooling from ComMA.

Diff

Added dynamic arrays
File changed Lines Added Lines Removed Hours spent
types/Types.xtext 6 2 8 hourstypes/tests/TypesParsingTest.xtend 35 1

Templating

Feature description Templates was a new feature request from Thales: being able to
declare a class signature that uses a common object, without being specific about the object.
This is similar to how Java’s List definition uses a template object for most methods.

Implementation process Implementing templates accidentally took longer due to a mis-
take I made. The feature proposals aren’t strict definitions, and are open to interpretation. The
idea is that at each stage development (proposal and implementation) these are reviewed to see
if all parties are happy with the current state. However, this vague feature proposal, written
month ago, caused me to at first misunderstand my intentions with this proposal. I wrote vali-
dation code which checked if each and every parameter and return type for the class signature
is the template type. However, the next day I realised this validation is completely unnecessary.
A good example is Java’s generic List, which implements methods whose arguments and return
types are simple primitives. So a new validation rule was implemented, which checked that the

Robin Kuiper
Graduation Report

29

Version 1.0
April 5, 2020 9 IMPLEMENTATION

only generic type allowed in a class signature is the generic type defined in the class signature
header.

Result The result is grammar, validation rules and tests for templates. When declaring
a new class signature, you can specify which template type is used. This template type is the
only template type permitted in the class signature.

Only the grammar was implemented, with no generator changes, since Thales has no interest
in any of the existing generators/tooling from ComMA.

Diff

Added templates
File changed Lines Added Lines Removed Hours spent
types/Types.xtext 8 1

12 hourstypes/validation/TypesValidator.xtend 12 0
types/tests/TypesParsingTest.xtend 22 0
types/tests/validation/GenericTypes.xtend 50 0
signature/Signature.xtext 1 1
signature/validation/SignatureValidator.xtend 46 1
signature/tests/SignatureParsingTest.xtend 37 0
signature/tests/validation/ValidationTest.xtend 22 2

Short and Long

Feature description The primitive types short and long need to be added. These func-
tion as int alternatives with different byte sizes. The exact sizes are unspecified and will be
decided when implementing in the compiler.

Implementation process Implementation was very easy: ComMA already has a list of
all primitives, so all this required was adding short and long to this list. After adding to this
list, existing type tests need to be updated to also test for the existence of short and long.
The range function, which previously only worked with int and real, needed to get updated
validation that it also works with short and long.

Result The result is the ability to specify long and short when required to use a type.

Diff

Added short and long
File changed Lines Added Lines Removed Hours spent
types/Types.types 2 0

1 hourtypes/validation/TypesValidator.xtend 3 1
types/tests/TypesParsingTest.xtend 2 0

Robin Kuiper
Graduation Report

30

Version 1.0
April 5, 2020 10 CONCLUSION

10 Conclusion
This project is a start of the larger project of Thales being able to use behaviour definition
with their IDL, and using that information for behaviour validation. A large set of IDLs were
compared to create a list of viable IDLs. Out of a list ComMA was picked to use. This IDL was
compared with the current requirements of Thales, and a list of proposed changes to ComMA
was created. This list of changes was iterated upon until it was accepted by Thales. Meanwhile
a developer guide for ComMA was written, so new developers could easily expand the IDL.
Finally a few of these proposals were implemented as a proof of concept.

The final deliverables for Thales are:

• This report, which contains a comparison of IDLs.

• A list of change proposals, which shows what has to change in ComMA’s grammar to
replace Apache Avro.

• A ComMA developer start-up guide, which will help new Thales and TNO-ESI employees
develop ComMA.

• Proof-of-concept implementations for a number of proposals (as specified in section 9),
which show that the proposals can actually be implemented.

Robin Kuiper
Graduation Report

31

Version 1.0
April 5, 2020 11 EVALUATION

11 Evaluation
This section describes how this project was executed. First the time line of the project is run
through to create an image of what the project execution was like. After this the project schedule
is discussed, and compared to the initial schedule.

11.1 Process

September At the start of the project, the first step was creating a first draft of the plan
of approach. Whilst waiting on feedback for that first draft, I started learning how ComMA is
used by following a guide and creating the sample project mentioned in section 4.2. When done
with that, I moved on for some experimenting with Apache Avro by creating the same project
in Apache Avro, as far as possible. This helped with understanding the limits of Apache Avro
compared to ComMA. With feedback and more knowledge about ComMA and Apache Avro,
the plan of approach was adjusted and finalised.

October An initial draft of requirements was made, and sent for review by the company
mentor. Upon discussing this draft it became clear that my interpretation of the project differed
from the company mentor’s intentions with the project. My initial interpretation of the project
was that I was expected to implement the changes I proposed. Additionally, I understood that
I was expected to write a converter from Apache Avro to ComMA, and a new online validation
system for ComMA, as touched upon in section 4.3.

In reality, these implementations were way too large a task (and thus out of scope). The
only task that was expected of me was to adapt ComMA to support the features required by
Thales. One major issue was that this new objective had no code aspect, something certainly
required for a successful graduation project.

A week later, a compromise was reached, and it was agreed that some proof of concept imple-
mentations of the proposals would be done, in ComMA. As a result the existing documentation
needed to be updated to reflect the new project definition.

November Once the documentation was updated, I received and started working with the
ComMA source code. The initial steps were just simple exploratory modifications to understand
how the ComMA code base is structured. There was an initial delay with this experimentation
because of set-up issues that required help from TNO-ESI to resolve.

Once those issues were resolved, I started trying a basic modification of ComMA to get to
know the code base. It took about a week to get a proper understanding of the code base.
Once I understood the technology stack used by ComMA, and how the project was organised,
I could start making informed modification proposals. A first draft was started of ComMA
change proposals that would implement missing Apache Avro functionality.

December This initial draft took about two weeks to finish. A feedback meeting was arranged
with software architects that lead the teams that would use ComMA. This feedback group
included people from different software backgrounds, since one of the goals for ComMA, as
stated in section 8.1, is that all features are language-independent.

In the period before the meeting I spent my time creating a ComMA developer guide. Since
getting ComMA to work was a troublesome journey, and hardly any documentation exists for
ComMA, I thought I could use my time spent researching ComMA to create a developer start-
up guide. This would help structure the research and support other developers in learning how
to develop ComMA. TNO-ESI also expressed interest in such a document. It is appended to
this document as appendix C.

Two meetings took place over a period of two weeks, during which the entire first draft of
the proposal was discussed. A lot of valuable and surprising feedback was received, not just

Robin Kuiper
Graduation Report

32

Version 1.0
April 5, 2020 11 EVALUATION

surprising for me but for the employees as well. This is thanks to all attendees having such
diverse software backgrounds, and such diverse needs from this project.

January Once I came back from the Christmas holiday, I was quickly advised based on my
concept graduation report to delay my project. I took that advice and started editing my report
based on the feedback I had received along with the delay advice. This took about three weeks.

Once done with that, I started implementation ’properly’: with the extra time, I could
actually solve the underlying issues instead of adding grammar features in a quick and dirty
fashion, which would be unmaintainable long-term. Implementing slower but higher quality
solutions prevented creating issues down the road.

Feburary/March The next two months were an equal split between improving the docu-
mentation, and implementing feature proposals.

11.2 Schedule

This project is iterative, and part of an iterative project is the evolution of the schedule. During
this project the schedule was updated on a weekly basis to reflect all changes in the project.
Figure 18 shows both the current schedule, and the schedule from the final Plan of Approach
document. The block "Preliminary research" in the PoA schedule has been split up into "Franca
research" and "ComMA Code research".

The schedule is divided up into blocks that represent one deliverable each:

• Graduation Report: This graduation report

• Plan of Approach: The plan of approach

• Franca Research: The report on IDLs in section 6

• ComMA Code Research: The ComMA start-up guide

• Adaptation Research: ComMA adaptation proposals

• Prototyping: Implementation of some of the change proposals, mentioned in section 9

• Presentation: The graduation presentation

Robin Kuiper
Graduation Report

33

Version
1.0

A
pril5,2020

11
EVA

LU
AT

IO
N

TODAY

2019 2020

September October November December January February March April

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Meetings Frank van Viegen

Weekly Meeting Pepijn Noltes

Graduation Report

Plan of Approach

Franka Research

ComMA Code Research

Adaptation Research

Prototyping

Presentation
Current schedule

Plan Of Approach schedule

Figure 18: Schedule overview

R
obin

K
uiper

G
raduation

R
eport

34

Version 1.0
April 5, 2020 REFERENCES

References
[1] Klaus Birken. Franca Website. 2016. url: https://web.archive.org/web/20180718093806/

https://franca.github.io/franca/ (visited on 10/23/2019).
[2] Bmwcarit. Joynr. 2019. url: https://github.com/bmwcarit/joynr/ (visited on 10/24/2019).
[3] Eclipse. Acceleo Query Language. 2020. url: https : / / www . eclipse . org / acceleo /

documentation/aql.html (visited on 03/04/2020).
[4] Oracle. ComMA. 2020. url: https://www.oracle.com/technetwork/java/javase/

documentation/index-jsp-135444.html (visited on 01/04/2020).
[5] TNO-ESI. ComMA. 2020. url: http://comma.esi.nl/ (visited on 01/04/2020).
[6] Wikipedia contributors. Interface description language — Wikipedia, The Free Encyclo-

pedia. https://en.wikipedia.org/w/index.php?title=Interface_description_
language&oldid=911211589. [Online; accessed 22-October-2019]. 2019.

Robin Kuiper
Graduation Report

35

https://web.archive.org/web/20180718093806/https://franca.github.io/franca/
https://web.archive.org/web/20180718093806/https://franca.github.io/franca/
https://github.com/bmwcarit/joynr/
https://www.eclipse.org/acceleo/documentation/aql.html
https://www.eclipse.org/acceleo/documentation/aql.html
https://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
https://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://comma.esi.nl/
https://en.wikipedia.org/w/index.php?title=Interface_description_language&oldid=911211589
https://en.wikipedia.org/w/index.php?title=Interface_description_language&oldid=911211589

Version 1.0
April 5, 2020 REFERENCES

Appendix

Robin Kuiper
Graduation Report

36

Version 1.0
April 5, 2020 A COMMA PROPOSALS

A ComMA Proposals

Robin Kuiper
Graduation Report

37

ComMA Overview
ComMA introduction
ComMA is an IDL like Apache Avro. It can be used to define interfaces, like Avro, and it can also be used to define the behavior of those interfaces.

ComMA Change Proposals
In its current state, ComMA doesn't support all the features Avro supports. This wiki page documents those missing features, and proposed
implementations.

One of the design goals is for all ComMA IDL syntax to be language independent. language specific features, like specifying a value is a pointer, should be
done using annotations. The intention is that the defaults are good enough that annotations should be rarely used.

All keywords, but existing and proposed, are bolded for emphasis.

Protocol Annotations

Marker interface

In ComMA the interface methods are defined in a separate file. I propose treating it as marked as interface if an empty file is created.

Function Avro
Annotation

Avro
Implementation

ComMA
Proposal

If a protocol that contains only types and no methods gets marked as an interface, it still generates as
an (empty) interface.

@MarkerInterface @marker-interface
(true)

 protocol
MarkerInterface {
}

import "Marker.
types"

 signature
"IMarker"

Enum Annotations

Function Avro Annotation Avro Implementation ComMA Implementation

Dynamicaly allocated enum values enum EnumTestWithValues {
 val_field1,
 val_field2,
 val_field3,
}

enum EnumTestWithValues {
 val_field1
 val_field2
 val_field3
}

Specified enum values @EnumValues @EnumValues(["val_field1=1","val_field2=3","val_field3=5"])
 EnumTestWithValues {enum

 val_field1,
 val_field2,
 val_field3,
}

enum EnumTestWithValues {
 val_field1 = 1
 val_field2 = 3
 val_field3 = 5
}

Constant Annotations

const

Const is a concept that can be applied to global variables and to parameters.

In C++ this can also be applied to functions, marking them as 'const-safe' (you can pass const arguments).

Since both C++ and Java know the concept of 'immutable', that is used as the keyword for this concept.

Function Avro Annotation Avro Implementation ComMA Proposal

Const values & parameters @const record TestRecord {
 @const() FIELD;string true
 }

@const(true)
 name();string

 equals(@const() name);boolean string true

record TestRecord {
 FIELD;immutable string
 }

 name();immutable string

 equals(name);bool immutable string

Version 1.0
April 5, 2020 A COMMA PROPOSALS

Robin Kuiper
Graduation Report

38

A conscious decision has been made to have the const field for a method be part of the ComMA syntax, even though it is C/C++ specific. This choice is
made due to it being a more consistent experience compared to it being an annotation.

constants

Constants differ from const because it refers to an IDL-level definition. An @constants defined field can be referenced through the entire .AVDL file.

In the proposal, the declared variables use the keyword like with @const. This declaration is done in the file, so it can be referenced in immutable .types
the and files..signature .interface

Function Avro
Annotation

Avro Implementation ComMA Proposal

Defined constants can be referenced throughout the
IDL.

@constants @constants()true
 constants {record

 CDT.Float LIGHT_SPEED =
"299706720";
 CDT.Float PI = "3.14159265";
}

immutable LIGHT_SPEED = real
299706720

 PI = 3.14159265immutable real

Field Annotations

Ranges

For this proposal, the keywords and must be added. These keywords will represent the largest and smallest possible values.min max

The inclusive and exclusive brackets are used to signify whether a limit is inclusive or exclusive. [] ()

Function Avro Annotation Avro Implementation ComMA Proposal

Limit the values to the specified minimum or maximum value @min

@max

record TestRecord {
 @min(-12.1234) a;double
 @max(13.432) b;double
 @min(-3) @max(4) c;int
}

record TestRecord {
 (-12.1234,] areal max
 [, 13.432) breal min
] cint[-3,4
}

Arrays

static

Arrays are a built-in feature of ComMA, including specifying a size where required. As such, specifying a size could be a way to specify a static array.

Since dynamic arrays are significantly different than static arrays, a new keyword is added to differentiate the two: . If the keyword is used to list list
declare dynamic arrays, declaring arrays of unspecified sizes ([]) needs to be disabled.int

Function Avro Annotation Avro Implementation ComMA Implementation ComMA Proposal

Default, dynamic Array record DynamicArrayTest {
 < > array1;array int
 < < >> array2;array array int
}

record DynamicArrayTest {
 [] array1int

 [][] array2int
}

record DynamicArrayTest {
 < > array1list int

 < < >> array2list list int
}

Specify an array as static @static record StaticArrayTest {
 @static(20)
 < > fixedArr1;array int

 @static([20, 30])
 < < >> staticArr2;array array int
}

record StaticArrayTest {
 [20] fixedArr1int

 [20][30] staticArr2int
}

controlled-by

Since the keyword is used to define a dynamic array, it is also used here.list

Feedback has been given that it's preferable to keep using an annotation.

Function Avro Annotation Avro Implementation ComMA Proposal

Specify a variable that sets dynamic array initial size @controlled-by record ControlFieldTest {
 size;int
 < > @controlled-by("size") array;array double
}

record ControlFieldTest {
 sizeint
 <@controlled-by(size)> arraylist
}

Version 1.0
April 5, 2020 A COMMA PROPOSALS

Robin Kuiper
Graduation Report

39

control-field

Control-field variables are serialized, but not used in the interface. Their only function is specifying the dynamic array initial size.
Since control-field is implicit (its what controlled-by refers to) it doesn't need to get added to ComMA.

Function Avro Annotation Avro Implementation ComMA Proposal

Specify the variable to be serialized, but not used in the interface.. @control-field record ControlFieldTest {
 @control-field() size;int true
 < > @controlled-by("size") array;array double
}

C/C++ Specific Annotations

Annotations

Since language specific modifiers are intended to be added as annotations (or something similar), a good annotation system is required. And because
annotations are closely related to the documentation system, this is also displayed.

Some choices for ComMA annotations:

Annotations are weakly types, so their name (and arguments) can be anything.
Annotation options are optional.
Argument types: (primitives)bool, int, real, string, array
Annotations must start by specifying the language it relates to, if it only relates to one language. This is convention, and not enforced by the
grammar.

One issue with the current solution is that in a file the difference between a file-level annotations (at the top of a file) and an annotation for the first .types
item (e.g. a record) isn't clear: both are at the top of a file.

Function Avro Implementation ComMA Implementation ComMA Proposal

Overarching annotations &
documentation

@annotation(argument)
 {protocol

import "Example.types"
@cxx-annotation(optionalArgument)

 IExamplesignature

method annotations &
documentation
argument annotations

@annotation(argument)
 method(@annotation(argument) void int

argumentName)

/*
 * Method description
 * \param methodArgument
description

 * \return returnvalue
description
 */

 method(int int
methodArgument)

/*
 * Method description
 * \param methodArgument description

 * \return returnvalue description
 */
@cxx-annotation(optionalArgument)

 method(@cxx-annotation(optionalArgument) int int
methodArgument)

record, enum etc annotation &
documentation

@annotation(argument)
 {record

/*
 * record description
 */

 {record

/*
 * record description
 */
@cxx-annotation(optionalArgument)

 {record

Argument Annotations

Function Avro Annotation Avro Implementation ComMA Proposal

1 C/C++ value types: pass by value
C complex types: pass by pointer
C++ complex types: pass by reference

void add(ComplexType c); add(ComplexType c)

2 C: pass by ptr
C++: pass by ptr

@ptr void add(ComplexType @ptr(true) c); add(ComplexType @cxx-ptr c);

3 C: ignored
C++: pass by reference

@ref void add(ComplexType @ref(true) c); add(ComplexType @cxx-ref c)

4 C: ignored
C++: pass by std::shared_ptr

@shared-ptr void add(ComplexType @shared-ptr(true) c); add(ComplexType @cxx-shared-ptr c)

5 C: ignored
C++: pass by std::unique_ptr

@unique-ptr void add(ComplexType @unique-ptr(true) c); add(ComplexType @cxx-unique-ptr c)

6 C: ignored
C++: pass by rvalue reference

@rval void add(ComplexType @rval-ref(true) c); add(ComplexType @cxx-rval-ref c)

7 C/C++: pass by value @val void add(ComplexType @val(true) c); add(ComplexType @cxx-val c)

Version 1.0
April 5, 2020 A COMMA PROPOSALS

Robin Kuiper
Graduation Report

40

cxx-includes

Proposal 1 uses the original syntax of Avro, Proposal 2 uses ComMA syntax for array instances.

Function Avro Annotation ComMA Proposal

include specified header files for a record @cxx-includes(["stdio.h","string.h"])
record Info {

@cxx-includes(["stdio.h","string.h"])
 Info {record

cpf-alias-declaration

In the ComMA project file, type mappings can be defined. A major downside is that the mapping isn't readily available in the source file. Feedback has
indicated centralising this info is very important, so this is kept as an annotation over the existing solution.

Function Avro Annotation ComMA Implementation ComMA Proposal

alias a data type against an existing C++ class @cpf-alias-declaration("AnyCxxClass")
 DummyType {record

Type Mappings {
 CppMappings {
 DummyType -> "AnyCxxClass"
 }
}

@cxx-alias("AnyCxxClass")
 DummyType {record

cpf-default-as-c

Not needed anymore, wont be ported.

Function Avro Annotation ComMA Proposal

set default use language as C @cpf-default-as-c(true)
@namespace("examples")
@version("1.0.0")

 Service {protocol

cxx-use-return-values

Not needed anymore, wont be ported.

Function Avro Annotation ComMA Proposal

Generate interface to return values instead of error codes @cxx-use-return-values()true
 Service {protocol

template-wrap

Not needed anymore, wont be ported.

Function Avro Annotation ComMA Proposal

protocol types {
 @cxx-includes("string_wrapper.h")
 @template-wrap("CapStringWrapper<{}>")
 CapStr(1);fixed
}

ComMA Additions
Proposed items that currently don't exist in either Avro or ComMA, but would be useful.

Templating

The proposal uses the ComMA feature of defining types, and using the keyword to signal the generator to generate a generic interface. Since generic
having a generic type in an object makes no sense, it would need to fail on adding this type to a record.

Function ComMA Proposal

Version 1.0
April 5, 2020 A COMMA PROPOSALS

Robin Kuiper
Graduation Report

41

1.
2.
3.

Template classes and methods function with a generic type

It requires all types in an interface to be the same

in the .types file:
generic Ttype

in the .signature file:
T[] combine(T[] array1, T[] array2)

Universal container

Inspired by C++'s any keyword.

Currently not deemed useful, because a signature with any would be very messy.

Function ComMA Proposal

A container for all data types

Useful as a field in an object
Useful as an argument in a method
Useful as a return type of a method

in the .types file:
record ExampleRecord {
 namestring
 containerany
}

in the .signature file:
 any getGreaterValue(value1, value2)any int

Signed/unsigned types

Proposal one is inspired by the Franca language, proposal two is inspired by C/C++.

Currently not added, with the note to use the terms and . What these keywords mean (e.g. is short 16 bytes?) will be decided compile time.short int long

Function Type ComMA Proposal 1 ComMA Proposal 2

Default data type is signed Default (Signed) record Example {
 field1int

 field2real
}

record Example {
 field1int

 field2real
}

Unsigned data type Unsigned record Example {
 field1uint

 field2real
}

record Example {
 field1unsigned int

 field2real
}

Short and long

Based on the feedback for signed/unsigned types the and keywords need to be added. These need to be added to ComMA.short long

Function ComMA Proposal

Short type record Example {
 field1int

 field2short
}

Long type record Example {
 field1int

 field2long
}

Alias

Aliases are nice-to-have, and are documented here. Aliases for fields make sense, and already exist in ComMA. Aliases for methods could be added.

Feedback: The prime use case for aliases is to add an annotation to a type, that doesn't apply to the base type. Hence method aliases aren't required.

Function ComMA Implementation ComMA Proposal

Version 1.0
April 5, 2020 A COMMA PROPOSALS

Robin Kuiper
Graduation Report

42

Alias a field name record Example {
 namestring
 age age
}

type alias Examplebased on

type age based on int

Alias method name commands
exampleMethod(argument)int

method alias exampleMethodbased on

Version 1.0
April 5, 2020 A COMMA PROPOSALS

Robin Kuiper
Graduation Report

43

Version 1.0
April 5, 2020 B APACHE AVRO, COMMA AND FRANCA FEATURE COMPARISON

B Apache Avro, ComMA and Franca feature comparison

B.1 Types comparison

Robin Kuiper
Graduation Report

44

Function AVRO ComMA Franca Explanation Required?

Global Types annotation Shared with Signature annotations Shared with Signature annotations yes

Type annotation yes

UInt8 yes

Int8 yes

UInt16 yes

Int16 yes

UInt32 yes

Int32 yes

UInt64 yes

Int64 yes

Integer Int with optional specified range yes

bool bool Boolean yes

float Float yes

double Double yes

string string String yes

bytes ByteBuffer no

null no

decimal no

date no

time_ms no

timestamp_ms no

record record struct yes

enum enum enum yes

array vector array yes

fixed Bulkdata Bytebuffer (can't specify size) Yes, as a replacement of specifying int sizes

map map no

union (key always string) union no

error Record exclusively used for error messages no

record struct no

union no

enum no

Polymorphic structs

When base class is defined as polymorphic, child classes can be passed & auto-converted to base class.

Needs explicit definition, default = low overhead no

custom types type CustomType CustomType handled in the generator, can be based on pre-existing type. yes, grammar update more work

Logical Types

Object types

type inheritance

Meta

Primitive Types

int

Currently solved with alias

e.g. @alias Uint8_t int

long

Currently solved with alias

real

Version
1.0

A
pril5,2020

B
A

PA
C

H
E

AV
R

O
,C

O
M

M
A

A
N

D
FR

A
N

C
A

FEAT
U

R
E

C
O

M
PA

R
ISO

N

R
obin

K
uiper

G
raduation

R
eport

45

Version 1.0
April 5, 2020 B APACHE AVRO, COMMA AND FRANCA FEATURE COMPARISON

B.2 Class signature comparison

Robin Kuiper
Graduation Report

46

Function AVRO ComMA Franca Explanation Required?

Import Types import types import the secified types yes

Import Signature inherit the specified signature, with all its RPCs yes

Specify subclasses manages Specify which signatures are managed by this signature. Required for certain IPC mechanisms (e.g. D-BUS) no

Version version yes

Type Collection Can define just types, not enforced .types file type collection Can only define types (enforced) yes

Global Annotations Shared with type annotations Shared with type annotations yes

Signature Annotations yes

Argument Annotations Deprecated, officially recommended to add it to @description yes

Return type annotations yes

default An attribute is a way to easily define a value and getter/setter no

readonly no

writeonly no

noSubscriptions no

RPC name yes

RPC Arguments multiple multiple multiple yes

RPC return single multiple multiple yes

RPC error yes

RPC Receive non-blocking oneway signal fireandforget yes

RPC Send non-blocking notification broadcast selective yes

RPC Broadcast broadcast no

RPC Overloading Multiple methods, same name but differen arguments/returns no

Meta

import avdl extends interface

Annotations

Attributes

RPC

Version
1.0

A
pril5,2020

B
A

PA
C

H
E

AV
R

O
,C

O
M

M
A

A
N

D
FR

A
N

C
A

FEAT
U

R
E

C
O

M
PA

R
ISO

N

R
obin

K
uiper

G
raduation

R
eport

47

Version 1.0
April 5, 2020 B APACHE AVRO, COMMA AND FRANCA FEATURE COMPARISON

B.3 Interface comparison

Robin Kuiper
Graduation Report

48

Function AVRO ComMA Franca Explanation Required?

imports import signature yes

version version yes

interface tied to signature separate Part of signature separate - can model some basic parts once, use model multiple times

call call

respond

call signal

broadcast

update

guard Franca can compare certain values -> similar to ComMA's ability yes

manipulate variables

if/else

non-determinism Define multiple possible responses yes

send oneway yes

define response yes

transition inheritance in all states (except) Requires duplicate code Same transition in multiple states yes

Time yes

Data Sort of duplicate functionality with transition guards Can be hacked in through transition guard yes
Constraints Behavioural rules outside of transitions

yes - Unclear what is required

- will take time & experience to know

meta
Franca signature in the same file

transition trigger

transition

yes - But prefer to remove them -> prefer simple modeling

Version
1.0

A
pril5,2020

B
A

PA
C

H
E

AV
R

O
,C

O
M

M
A

A
N

D
FR

A
N

C
A

FEAT
U

R
E

C
O

M
PA

R
ISO

N

R
obin

K
uiper

G
raduation

R
eport

49

Version 1.0
April 5, 2020 B APACHE AVRO, COMMA AND FRANCA FEATURE COMPARISON

B.4 Meta comparison

Robin Kuiper
Graduation Report

50

Function AVRO ComMA Franca Required?

Server-client model Signature file per host Signature/interface for server Signature/interface for server or all hosts yes - We want to have a server-client model, with some exceptions.

namespace @namespace package Yes

documentation Inline Inline, doxygen Inline, javadoc, html generation based on javadoc yes - currently generate inline to HTML, want to continue generating to HTML

custom annotations Requires arguments Yes, but annotations are in comments -> not actually part of language YES

Version
1.0

A
pril5,2020

B
A

PA
C

H
E

AV
R

O
,C

O
M

M
A

A
N

D
FR

A
N

C
A

FEAT
U

R
E

C
O

M
PA

R
ISO

N

R
obin

K
uiper

G
raduation

R
eport

51

Version 1.0
April 5, 2020 B APACHE AVRO, COMMA AND FRANCA FEATURE COMPARISON

B.5 Decision matrix

Robin Kuiper
Graduation Report

52

TYPES Weight Avro Avro Total ComMA ComMA Total Franca Franca Total

Global Types annotation 40.00 0.80 32.00 0.00 0.00 0.60 24.00 Weights:

Type annotation 200.00 1.00 200.00 0.00 0.00 0.60 120.00 Must 200

UInt8 40.00 0.00 0.00 0.00 0.00 1.00 40.00 Should 40

Int8 40.00 0.00 0.00 0.00 0.00 1.00 40.00 Would 15

UInt16 40.00 0.00 0.00 0.00 0.00 1.00 40.00 Could 5

Int16 40.00 0.00 0.00 0.00 0.00 1.00 40.00

UInt32 40.00 0.00 0.00 0.00 0.00 1.00 40.00

Int32 200.00 1.00 200.00 1.00 200.00 1.00 200.00

UInt64 40.00 0.00 0.00 0.00 0.00 1.00 40.00

Int64 40.00 1.00 40.00 0.00 0.00 1.00 40.00

Boolean 200.00 1.00 200.00 1.00 200.00 1.00 200.00

Float 40.00 1.00 40.00 0.00 0.00 1.00 40.00

Double 200.00 1.00 200.00 1.00 200.00 1.00 200.00

String 200.00 1.00 200.00 1.00 200.00 1.00 200.00

record 200.00 1.00 200.00 1.00 200.00 1.00 200.00

enum 200.00 1.00 200.00 1.00 200.00 1.00 200.00

array 200.00 1.00 200.00 1.00 200.00 1.00 200.00

fixed 5.00 1.00 5.00 1.00 5.00 0.00 0.00

type CustomType 40.00 0.50 20.00 1.00 40.00 0.50 20.00

SIGNATURE

Import Types 40.00 0.90 36.00 1.00 40.00 0.90 36.00

Import Signature 40.00 0.90 36.00 0.00 0.00 0.90 36.00

Version 200.00 1.00 200.00 0.00 0.00 1.00 200.00

Type Collection 200.00 0.50 100.00 1.00 200.00 1.00 200.00

Global Signature Annotations 40.00 0.80 32.00 0.00 0.00 0.40 16.00

Signature Annotations 200.00 1.00 200.00 0.00 0.00 0.60 120.00

Argument Annotations 200.00 1.00 200.00 0.00 0.00 0.60 120.00

Return type annotations 200.00 1.00 200.00 0.00 0.00 0.60 120.00

RPC name 200.00 1.00 200.00 1.00 200.00 1.00 200.00

RPC Arguments 200.00 1.00 200.00 1.00 200.00 1.00 200.00

RPC return 200.00 1.00 200.00 1.00 200.00 1.00 200.00

RPC error 40.00 1.00 40.00 0.00 0.00 1.00 40.00

RPC Receive non-blocking 200.00 1.00 200.00 1.00 200.00 1.00 200.00

RPC Send non-blocking 200.00 1.00 200.00 1.00 200.00 1.00 200.00

INTERFACE

imports 40.00 0.00 0.00 1.00 40.00 0.90 36.00

version 200.00 0.00 0.00 1.00 200.00 0.50 100.00

interface separate from signature 40.00 0.00 0.00 1.00 40.00 0.00 0.00

receive call 200.00 0.00 0.00 1.00 200.00 1.00 200.00

respond to call 15.00 0.00 0.00 0.00 0.00 1.00 15.00

receive signal 200.00 0.00 0.00 1.00 200.00 1.00 200.00

send notification 15.00 0.00 0.00 0.00 0.00 1.00 15.00

send update 15.00 0.00 0.00 0.00 0.00 1.00 15.00

guard 200.00 0.00 0.00 1.00 200.00 0.80 160.00

manipulate variables 5.00 0.00 0.00 1.00 5.00 0.80 4.00

if/else 5.00 0.00 0.00 1.00 5.00 1.00 5.00

non-determinism 200.00 0.00 0.00 1.00 200.00 0.00 0.00

send oneway 200.00 0.00 0.00 1.00 200.00 0.00 0.00

define response 200.00 0.00 0.00 1.00 200.00 0.00 0.00

transition inheritance 40.00 0.00 0.00 1.00 40.00 0.00 0.00

Time 200.00 0.00 0.00 1.00 200.00 0.00 0.00

Data 40.00 0.00 0.00 1.00 40.00 0.40 16.00

META

Server-client model 15.00 0.40 6.00 1.00 15.00 1.00 15.00

namespace 200.00 1.00 200.00 0.00 0.00 1.00 200.00

documentation 40.00 0.20 8.00 0.60 24.00 1.00 40.00

custom annotations 200.00 0.90 180.00 0.00 0.00 1.00 200.00

Avro total: 4175.00 ComMA Total: 4494.00 Franca Total: 4993.00

Version 1.0
April 5, 2020 B APACHE AVRO, COMMA AND FRANCA FEATURE COMPARISON

Robin Kuiper
Graduation Report

53

Version 1.0
April 5, 2020 C COMMA START-UP GUIDE

C ComMA start-up guide

Robin Kuiper
Graduation Report

54

1.
2.

a.
b.
c.

3.
a.
b.
c.

d.
4.

a.

b.
5.

a.
b.

i.
ii.
iii.
iv.
v.
vi.
vii.
viii.
ix.
x.
xi.
xii.
xiii.
xiv.
xv.
xvi.
xvii.
xviii.
xix.
xx.

6.
a.

i.
ii.

iii.

ComMA Developer Start-up Guide
This document is a simple how to for starting to develop a change for ComMA. It tries to give a high-level picture of the structure of ComMA. As a living
document, you are encouraged to expand it upon it.

Installation & Setup
ComMA project layout

Project Diagram
New project contents
ComMA Project Function

Steps to add/change the grammar
Editing grammar best practices:

Installation & Setup
Requirements:

Internet Connection
ComMA source code

Instructions:

Download Eclipse Oxygen - RCP and RAP Developers
Install Eclipse plugins:
For each plugin, go to Help Install new software Work with:

" " Select plugin "Xtext", follow install steps & restarthttp://download.eclipse.org/modeling/tmf/xtext/updates/releases/2.15.0
" " enter "mwe" into filter select MWE SDK, follow install steps & restarthttp://download.eclipse.org/releases/2018-09
" " select all, follow install steps & restarthttps://poosl.esi.nl/downloads/ide/updates/latest

Import Project into Eclipse:
File Import General Existing projects into workspace
Click Browse select your ComMA folder click next
Deselect the following packages:

nl.esi.comma.help.standard
nl.esi.comma.product.philips
nl.esi.comma.product.standard
nl.esi.comma.project.standard
all nl.esi.comma.project.standard.* and nl.esi.comma.project.standard.*.*
all nl.esi.comma.rcptt.*
nl.esi.comma.xpect.interfaces

Click Finish
Set ComMA's target

Open nl.esi.comma.target/nl.esi.comma.oxygen.target, and wait until Eclipse is done with loading & preparing. Progress can be viewed
in the bottom right corner.
In the opened file, click 'Set as active target platform' in the top right corner. Wait until Eclipse is done.

Generate DSL files
To solve build file issues, comment/remove line 5 and 12 from file 'nl.esi.comma.launch/GenerateStandardProject.mwe2.launch'
open 'nl.esi.comma.launch' right click 'Comma_GenerateAll_mwe2.launch' run as 'Comma_GenerateAll_mwe2'
A warning box titles 'Errors in Workspace' might pop up, in that case check the box 'Always launch without asking' and click 'Proceed'

 In case of generation failing (console displays a stack trace), do the following: for each of the following projects, in the On failure:
specified order, rightclick the .mwe2 file <project>/src/<project>/Generate*.mwe2 run as MWE2 workflow, and wait until the console
says 'done' before generating the files for the next project

nl.esi.comma.types
nl.esi.comma.signature
nl.esi.comma.expressions
nl.esi.comma.actions
nl.esi.comma.statistics
nl.esi.comma.behavior
nl.esi.comma.behavior.interfaces
nl.esi.comma.behavior.component
nl.esi.comma.behavior.system
nl.esi.comma.inputspecification
nl.esi.comma.branchingscenarios
nl.esi.comma.dezyne
nl.esi.comma.petrinet
nl.esi.comma.scenarios
nl.esi.comma.sscfheader
nl.esi.comma.traces
nl.esi.comma.traces.capture
nl.esi.comma.traces.events
nl.esi.comma.project
nl.esi.comma.project.philips

First start
create custom runtime launch configuration:

Run debug configurations Eclipse application right click 'New Configuration'
Set the name of the configuration

Version 1.0
April 5, 2020 C COMMA START-UP GUIDE

Robin Kuiper
Graduation Report

55

6.
a.

iii.
iv.

b.
c.

Optionally, set the workspace location to an existing ComMA workspace.
Press 'apply'

In Run Debug configurations 'Eclipse Application', select the created configuration and click 'debug' in the bottom right
In the future, this option can be reached through Run Debug History configuration name

A disclaimer: This guide specifies to exclude nl.esi.comma.project.standard. The source instructions support including this package, but require more
manual intervention because of this inclusion. Since the function of nl.esi.comma.project.standard is unclear, it was left out of this guide.

ComMA project layout

Project Diagram

All projects are prepended with 'nl.esi.comma.', but this is dropped for brevity. This is a dependency tree of the projects' grammars.

New project contents

For a new Xtext Project (for this guide called 'example'), a couple of default projects and packages are generated:

nl.esi.comma.example
nl.esi.comma.example.ide
nl.esi.comma.example.tests
nl.esi.comma.example.ui
nl.esi.comma.example.ui.tests

These projects are entirely empty, besides two files: in 'nl.esi.comma.example/src/nl.esi.comma' there is an Example.xtext file (with default 'hello world'
contents), and a GenerateExample.mwe2 file.

The .mwe2 generation file can be executed to generate boilerplate functions that can be expanded upon. The generated files are:

Project Folder Package File Function

nl.esi.
comma.
example

src nl.esi.comma ExampleRuntimeM
odule.xtend

Boilerplate code, ignore

ExampleStandalon
eSetup.xtend

Boilerplate code, ignore

nl.esi.comma.
generator

ExampleGenerator.
xtend

Empty generation method, can be expanded upon.

Version 1.0
April 5, 2020 C COMMA START-UP GUIDE

Robin Kuiper
Graduation Report

56

nl.esi.comma.
scoping

ExampleScopeProv
ider.xtend

Empty Scope provider, you can add methods to define scope of grammar rules.

nl.esi.comma.
validation

ExampleValidator.
xtend

Empty validator, you can add methods to define grammar rules in code.

src-gen Generated Files, ignore

xtend-
gen

Generated Files, ignore

model Generated Files, ignore

plugin.xml Configuration File

.antlr-generator-
3.2.0-patch.jar

Grammar jar, ignore

nl.esi.
comma.
example.ide

src nl.esi.comma.
ide

ExampleIdeModule
.xtend

Empty Class used to register IDE compontents

ExampleIdeSetup.
xtend

Boilerplate code, ignore.

src-gen Generated Files, ignore

xtend-
gen

Generated Files, ignore

nl.esi.
comma.tests

src nl.esi.comma.
tests

ExampleParsingTe
st.xtend

Test file with sample test method

src-gen Generated Files, ignore

xtend-
gen

Generated Files, ignore

nl.esi.
comma.ui

src nl.esi.comma.
ui

ExampleUiModule.
xtend

Register components for the Eclipse IDE

nl.esi.comma.
ui.
contentassist

ExampleProposalP
rovider.xtend

Extends from AbstractExampleProposalProvider. Can override methods generated for each grammar
rule, used for Eclipse content assist function (ctrl-space code suggestion). Unsure of exact function.

nl.esi.comma.
ui.labeling

ExampleDescriptio
nLabelProvider.
xtend

Used to define hover-over labels for your grammar

ExamplerLabelProv
ider.xtend

nl.esi.comma.
ui.outline

ExampleOutlineTre
eProvider.xtend

Allows you to create a custom outline view in Eclipse.

nl.esi.comma.
ui.quickfix

ExampleQuickfixPr
ovider.xtend

Allows you to implement automatic fixes for validation warnings, that users can run when encountering
these warnings.

src-gen Generated Files, ignore

xtend-
gen

Generated Files, ignore

nl.esi.
comma.ui.
tests

src Empty, JUnit tests can be added here.

src-gen Generated Files, ignore

xtend-
gen

Generated Files, ignore

ComMA Project Function

This table shows the function of each project, helping developers find the relevant grammar and xtend files they need to change. It is filled in to the best of
my ability, but is surely lacking and/or inaccurate in places.

Project Defines Grammar Function Code Function

types Types .types file

signature Interface signature .signature file

expression Variables
Expressions

actions Actions done in a method

Version 1.0
April 5, 2020 C COMMA START-UP GUIDE

Robin Kuiper
Graduation Report

57

1.

2.

3.

behaviour Statemachine
Time, data and generic
constraints
Ports

Baseclass

behaviour.system System unknown

behaviour.
interfaces

Interface behaviour .interface file

behaviour.
component

Component
Functional constraint

unknown

project Project .prj file Generator files:

Documentation
Dezyne
GraphML
Simulation and Scenarios
Monitoring
PetriNet
POOSL
UML

project.philips Generatorblock unknown, related to C++ Main.xtend, used presumably as an entry point for running a
project file?

Generator files:

CPP Stub files
Traces

traces Server
Client
Message

.traces file

traces.capture Message Alternative grammar, unused

traces.events Connection
Component

Alternative grammar, unused

scenarios Scenario unknown, possibly alternative method of defining
behavior

petrinet Statemachine
Place
Transition

unknown, possibly alternative method of defining
behavior

inputspecification Body unknown

dezyne NamespaceDeclaration
InterfaceDeclaration
ComponentDeclaration
TypeDeclaration

unknown

branchingscenarios Node
Event

Unclear: possibly tree-like structure used to define
behaviour

sscfheader Interface Unknown, related to C++

statistics Row .statistics file

Steps to add/change the grammar
Grammar Changes: Identify what file needs to change based on the overview above, and make the necessary changes. Simply changing the
Xtext files will make eclipse autocomplete support the new grammar, which can help with testing whether the grammar is properly added, without
unintended side effects.
Generator changes: Compile a list of generator changes you want based on the changed grammar. A non-complete list of generators you might
want to edit:

UML Diagram
Documentation
Simulation
Monitoring
Statistics
CPP stub files generation

Identify the relevant generator files based on the tables above, and edit it.

Editing grammar best practices:

Document grammar:
All generated code has 'add user-doc'. All changes to this file dwill be overwritten on generation, and thus should not be edited.

Version 1.0
April 5, 2020 C COMMA START-UP GUIDE

Robin Kuiper
Graduation Report

58

Version 1.0
April 5, 2020 C COMMA START-UP GUIDE

Robin Kuiper
Graduation Report

59

	Summary
	Change log
	Glossary
	Introduction
	What is ComMA
	Purpose
	Code example
	behval
	Availability

	Project definition
	Current situation
	Problem
	Desired situation
	Scope

	ComMA alternatives
	Requirements
	Alternatives research method
	Franca
	Usability

	Xtext
	Overview
	Workflow
	Issues
	Alternatives

	ComMA change proposals
	Design goals
	Feedback
	Proposals

	Implementation
	Method
	Proposals implemented

	Conclusion
	Evaluation
	Process
	Schedule

	Appendix
	ComMA Proposals
	Apache Avro, ComMA and Franca feature comparison
	Types comparison
	sign comparison
	intf comparison
	Meta comparison
	Decision matrix

	ComMA start-up guide

