Saxion University of Applied Sciences

Graduation report

Open source “Load monitor” application

Student:

Dovydas Valiulis
436254@student.saxion.nl
HBO-IT SE-track

Company supervisor:
Etto Salomons
e.l.salomons@saxion.nl
Senior lecturer

Graduation supervisor:
Fleur Oudenampsen
f.oudenampsen@saxion.nl
Docent

2021-06-13

Saxion University of Applied Sciences

Table of Contents

Table of Contents
1. Abstract

2. Definitions

3. Introduction

4. Client

5. Context
5.1 Current system

6. Research

6.1 Research questions

6.2 Research phases

6.3 Refactoring
6.3.1 Database layer refactoring
6.3.2 API refactoring
6.3.3 Front-end application refactoring
6.3.4 Machine learning connection.
6.3.5 Testing

6.4 Import system
6.4.1 Methodology
6.4.2 Import prototype 1
6.4.3 Import prototype 2
6.4.4 Prototype comparison
6.4.5 Optimization
6.4.6 Unmapped player data mapping
6.4.7 Import system testing

7. Next steps
8. Conclusion
9. Retrospective
10. Bibliography

11. Appendix
11.1 Verification testing results
11.2 Machine learning connection testing scenarios
11.3 Import system testing scenarios

o 00 N N O O A WO DN -

N DN DN MNMNNAQA A A @A aAa a - a
O N O O N © oo ~NO O O ©

W W W W
N N = ©

A B WO W
AN WO

Saxion University of Applied Sciences

1. Abstract

Over the last couple of years, an application that helps football club trainers monitor the
performance of the athletes and predict optimal training difficulty was being developed. The
main goal of this project was to combine all of the progress that was done by previous
teams, add missing functionality, and make it open source so that other organizations could
build on it further.

Over the period of this project, a lot of time was spent on refactoring and combining the code
of different teams that have worked on it, mostly changing REST API to adhere to the best
web development practices.

Another big part of the project was developing an import system where club trainers can
import athlete’s training data. Two prototypes were created and their performance compared
in five different scenarios that should represent real-life scenarios. Based on the
performance and other features a single prototype was selected. Later on, data that is
imported is used for training machine learning models and predicting the difficulty of an
athlete's training to reach optimal performance.

The basic functionality of this application could be used in the professional environment
already. Nevertheless, the expectation for this application is to be further improved on by
other developers to give even more insight into athlete’s performance.

Saxion University of Applied Sciences

2. Definitions

API - Application Programming Interface. Collection of methods that allow two systems to
communicate with each other. Usually in the form of HTTP requests.

Algorithm - Sequence of instruction of how to accomplish the desired goal.

Application architecture - Describes the patterns and techniques used to design and build
an application (Redhat, n.d.)

Augmented interactions - Methods that incorporate technology into everyday lives and
extend the capabilities of the user.

Augmented reality - Area of augmented interactions that focuses on displaying additional
objects/information on the user’s device.

Back-end - Describes part of the software system that is not seen by the users. It includes
processing logic, database access, and communication with other systems.

Big data - Describes large volumes of data and solutions for analyzing it.

Bottleneck - Part of the system that limits all other components when loaded.

Data mining - Process that gathers useful data to the business from the raw collected data
(Investopedia, n.d.)

Database - Collection of data saved/used in a software system.

Developer - Person that designs/implements software systems

Embedded systems - A computer system that is functioning in a larger
computer.mechanical system.

End-user - intended user of the application.

Front-end - Describes part of the software system that users see. Also known as graphical
user interface

Functional documentation - Document that describes functions of the application.

GDPR - General Data Protection Regulation. EU regulation that protects user data. (EU law,
2019)

Jupyter notebooks - Integrated development environment (IDE) intended for Python
development.

Machine learning - a data processing technique that creates models from existing data or
environments.

Mixed reality - Area of augmented interactions that focuses on combining virtual reality and
real-world to provide more information and/or interactiveness to the user

Node.js - Javascript runtime environment intended for creating back-end servers
Open-source - Application or code that is open to anyone to access, improve.

Scalability - Feature of the software system to increase processing capabilities and/or
functionality.

Source code - application code that is written by the developer to implement desired
functions of the system.

Technical documentation - Document that describes technical details of the application. It
includes system architecture models, class descriptions, APl endpoints, etc.

Ul - User Interface, part of the application that the user interacts with.

Virtual reality - fully simulated experience of the environment.

Vue.js - Javascript framework used to develop Ul for the web application.

Web application - Application that runs on the webserver and is reachable remotely.

Saxion University of Applied Sciences

3. Introduction

In this day and age, almost all industries encounter a problem where they have too much
data to process traditionally. No exception is the sports industry. Data collected from athletes
allows trainers and staff to accurately measure the performance and health of the athlete.
We reached a point where we gather more data than we can process using traditional
methods. So a relatively new method must be used to process an abundance of data. One
of those methods is Machine learning. By letting machines analyze and create models of the
data we can achieve much better results than by processing data in traditional methods.

This project strives to do just that. Provide trainers with additional knowledge by using
machine learning. This helps trainers adjust training intensity and time to achieve the best
performance out of the athletes.

Saxion University of Applied Sciences

4. Client

Ambient intelligence (AMI) is a research group that specializes in enabling IT for the smart
world. AMI is a research group that works within Saxion University of Applied Sciences in the
academy of creative technology (ACT) department. Ami is curated by professor Wouter
Teeuw and three associate professors. Also, many of the researchers of AMI work as
lecturers for Saxion. The main focus of the AMI is safety, sports, and the smart industry. It
specializes in developing sensors for various applications, analyzing data from them, and
providing software solutions based on that data. Based on these specializations there are
three separate research lines at AMI. connected embedded systems, applied data science,
and augmented interaction. (Ambient technologies, n.d.)

The connected embedded systems branch focuses on developing sensors for various uses.
Furthermore, it works with sensor fusion, data distribution and filtering, communication
protocols, and embedded software development. This wide field of activities allows AMI to
provide products for many different areas. Projects in this research field include a range from
energy sensors in microgrids to localization solutions for firefighters. (Ambient technologies,
n.d.)

Applied data science's main focus is to process and create models out of the collected data.
This field provides solutions for data storage and management, data mining, and machine
learning model development. With these tools, they can provide intelligent solutions in many
Big data fields. This project is part of this branch of research. (Ambient technologies, n.d.)

The main focus of the Augmented interaction branch is to incorporate technology into
everyday life. It is focused on virtual technologies such as augmented, mixed, and virtual
reality development and on physical representation like robots. These technologies have
various application possibilities. One of the biggest achievements of this branch was
developing a robot that can extinguish fires where it is too dangerous to enter for firefighters.
(Ambient technologies, n.d.)

AMI collaborates with other universities, companies on various projects. AMI provides
opportunities for students to collaborate on these projects. Some of the projects that multiple
organizations have been collaborating on were:
e Mosis project - a collaboration with firefighters on creating a fireman tracking system
inside the burning building.
e Load monitoring project - is a collaboration with some of the football clubs on creating
a machine learning model for predicting various metrics of the players based on their
performance during the training and other sources of data. One of the most used
predictions is Rated Perceived Exertion (RPE).

Saxion University of Applied Sciences

5. Context

This assignment is a continuation of the “Big Data Technologies for Load Monitoring” project.
During the last iteration of the project, the prototype was created for tracking and predicting
an athlete’s load during physical training. To predict various metrics that are valuable for
coaches, data is collected from sensors and questionnaires. According to that data, a
machine learning model was developed to predict how the following training should be
adjusted to reach optimal performance.

One of the main goals of this project is to make the whole system open source so that other
organizations could use it freely, improve it, and help sports clubs get a better understanding
of the data they are collecting. Unfortunately, some design mistakes were made during
previous projects that prevent further development of this product.

5.1 Current system

The current version of the application is scattered among many different parts. The main
parts of the application are:

1. Front-end (Vue.js) - Responsible for displaying information about clubs, teams, and
players to the end-user.

2. Node.js server - Responsible for providing data to the front-end application and
managing the majority of the entities in the system like clubs, teams, and trainers.

3. Flask server (Python) - Responsible for managing athlete’s training data, managing
machine learning functionality, and mapping player data among databases.

4. MongoDB - Responsible for storing data. In this application, there are many database
instances. There is one general-purpose database that is mostly used by the Node.js
server. Also, many smaller databases are created for each club to store their athlete’s
training data and machine learning predictions.

Saxion University of Applied Sciences

Figure 1
System model diagram of the original system

Vue.js ——> Node. js —> Flask

MongoDB

MongoDB

Besides all these parts there are some separate scripts for various functions that can not be
executed by the end-user, like athlete's training data import that can only be imported by the
developer.

Because this application is so scattered it is not possible to open source it. Therefore, it is
desirable to have at least the main functionality working for the end-user. Also, have a more
coherent and better-documented structure so it is easier to continue development for others.

6. Research

6.1 Research questions

How should data input/processing methods be designed to provide football organizations
with easy, open-source, data import solutions using any format they like?

1.

How should the application be refactored to improve stability, performance, security,
and cohesion?

Which features are needed to collaborate with “Sport Data Valley”?

What features should be implemented to improve communication with the machine
learning model?

What features and design changes are required for implementing data sharing
functionality?

These sub-questions should provide a reasonable impact in answering the main research
question. The first subquestion directly impacts open-source requirements as it is important
that open source applications should be stable and clear for whoever continues the work.

Saxion University of Applied Sciences

The second subquestion is mostly concerned with integration with another company’s
product. It is also a good indicator if the software can be open-sourced if integration is
successful.

The third subquestion is connected with implementing the missing functionality of the
application that is one of the most crucial parts.

The final question describes additional functionality of this application that would provide
more accurate data processing in a machine learning model by having the opportunity to
gather more data.

6.2 Research phases

Due to different activities being required to answer all the research questions this project is
divided into several different research and development phases. These phases provide a
good amount of activities to answer research questions.

The first phase is Refactoring. Refactoring is the first phase because it allows us to explore
the system and find troublesome parts. In this phase, the previous application was refactored
to have a more coherent structure and to meet best programming practices. This phase
answers the first and the third research sub-questions.

The second phase is developing/refactoring a generic import system that can be used by
any football club that wants to. In this phase, research will be conducted on what import
methods are available and how to implement them. This phase answers the main research
question.

The third phase is research on data sharing solutions so that smaller clubs can contribute
and collaborate to improve the system and use results to improve their training
effectiveness. Also, it includes collaboration with the “Sport Data Valley”. This phase
answers the second and the fourth research sub-question

6.3 Refactoring

In this phase, several parts of the application were refactored to make it possible to open
source it. With the previous solution, it was not possible to open source it because the
structure of the project was scattered and several systems were connected to achieve a
somewhat working product (more details in the following chapter). Also, several crucial parts
weren’t implemented at all into the final web application. For instance, the data import
functionality was never implemented and only the placeholder component was created to
show where the functionality was supposed to be. To import data to the system “Jupyter
Notebook” was used. The main reason why this project is so scattered is that several teams
have already worked on different parts of the application and probably did not communicate
properly. Therefore each team has designed different parts of the application and used
different technologies to implement them.

Saxion University of Applied Sciences

Table 1
Refactoring phase requirements (Sorted by priority)

1. | The system must be refactored to optimize resources used, simplify underlying
architecture, and conform to the Open API standards

2. | Load the data in separate parts, only when the data is needed. Instead of one big request

3. | Update the REST API request to adhere to best web development practices

4. | Functionality that is already developed must be preserved.

In this phase, the main objective was to make a single backend server with all the
functionality that was required for the front-end application.

6.3.1 Database layer refactoring

As it was previously mentioned, the whole application was scattered into separate services
that have different responsibilities. One problem that occurs using multiple systems like that
is that, at some point, entities have to be mapped from different systems.

Furthermore, with the previous version of the database model, some entities were described
twice in separate databases and had different IDs but had almost the same information. For
instance player representation in the system was being saved in multiple databases. In the
first database general information about the player was saved and in the other database
information about physical training performance and machine learning predictions. This
makes managing these entities a lot more difficult because they are recognizable only by
their name and not by immutable property like entity identifier (ID).

Finally, there was some inefficient way of connecting entities with each other. Mostly the
name of the object was used to represent connection and not the id. This made having
objects with the same name impossible. For instance, the system could not handle a
scenario where two players have the same name. In the real world, this of course is possible
and should be expected on the system level.

Figure 2

Saxion University of Applied Sciences

Class diagram of the original system

=

Mode.js

B InputSource

= Club

+ _id: String
+ label: String

+ lkey: String

= User

+ _id: String

+ Image: String

+ role: Number

+ usemame: String

+ password: String

+ email: String

0.*

-

+ _id: Siring

+ name: String

= Team

+ _id: Siring

+ name: String

+ Image: String

+ zeroToTenRating: boolean

L
1

1 o
»> + Image: String
a.- P
L
= Player
+ _id: String

+ name: String

+ Image: String

+ position: String

m

Python

B players

+ _id: String

+ Player Mame: String

+ Club: String

C training

+ _id: String

+ Timestamp: Siring

+ Player Mame: String
+ Duration: Double
+ Avg Speed: Double
+ High-speed Distance: Double
+ RPE: Double
+ RPE_Prediction: Double

Other fields based on the club

Therefore the first step in refactoring is to create a new database model that can provide all

the possibilities of the previous systems and fix some of the issues from the previous

architecture.

For this reason, two possible solutions have been created that solve some of the problems
with the previous system.

10

Saxion University of Applied Sciences

Model 1
Figure 3
Class diagram of model 1
= General
B User = Club
+ _id: String +_id: String
+ Image_url: String | + name: Siring
+ role: Mumber + Image_url: String
+ password: String + database_url: string
+ email: String
= Club
= Team = Player
+ _id: String + _id: String
o..* i .=
| + name: Sitring # + name: String
+ Image_ur: String + Image_url: String
+ position: String
1
= training
+ _id: String ;E'

+ Timestamp: String

+ Player Mame: String

+ Dwration: Double

F

+ fvg Speed: Double

+ High-speed Distance: Double
+ RPE: Double

+ RPE_Prediction: Double

Other fields based on the club

The first model is split into two parts. The first part is a general database that is used for all
clubs. In this database, user information and basic club information are saved. Also, the
“Club” entity has a connection that refers to the other database.

Another part of the model is a separate database where more detailed information about the
club is stored. Each club has its own information stored in a separate database.

11

Saxion University of Applied Sciences

Advantages:

1.

2.

Club data is stored separately for each club. Therefore there is less chance that
clubs could access sensitive data of another club.

Because each club database only contains records of a single club, the database
itself is smaller in size and easier to manage.

Because the club database is separated from the general database, clubs can
choose where they want to store data itself. So the club can store their data on an
entirely separate machine from the general database.

It also provides better security because clubs can be responsible for their own data.
Furthermore, it helps to comply with GDPR.

Each club can have different entity fields. Therefore separating club data helps to
keep specific data of the club more organized and less probable that some of the
unrelated data from other clubs will leak into the system.

Disadvantages:

1.

2.

Due to the multiple databases that the system has, it might be difficult to manage all
the connections.

Before each request that the user is making, the correct database needs to be
resolved. This introduces some overhead on the back-end server itself to have a
method to resolve these connections effectively.

Club databases need to be dynamically added or deleted when a new club is created
or an old club is deleted. A new database has to be created because it is not known
what clubs will be registering and data of each club should be stored in separate
databases. The database is also deleted when the club itself is deleted to comply
with GDPR and ensure the safety of sensitive data.

This model provides a couple of benefits over the previous solution. First of all, club data
(other than basic information) is stored in a different database from the general information.
Therefore each club can manage their own database and not be concerned that their data is
accessible by the other clubs. Another advantage of this model is that there is no need of
mapping the same entity with each other there for saving computation power, also it provides
better mapping. It uses IDs to map entities with each other (the previous model was using
entity names). Therefore this solution provides a better and more stable solution to the same
problem.

12

Saxion University of Applied Sciences

Model 2

Figure 4
Class diagram of model 2

= Club = Team training
+ _jd: String + _id: String + _id: String
o."
1
+ name: String * + name: String + Timestamp: String
a..
+ Imiage_url: String + Image_url: String + Player Mame: String
-
a..- T 1 + Dwration: Double
.-

+ Avg Speed: Double

+ High-speed Distance: Double

o." + RPE: Double
= User o + RPE_Prediction: Double

+_id: String = Player Other fields based on the club
+ Image_url: String + _id: String
0. _ 1
+ role: Mumber + name: String —
+ password: String + Image_url: String
+ email: String + position: String

The second model which is considered had a single database to store all the information of
the system. This provides an easier way to manage the database layer because the
application only needs to manage a single connection to the single database. Some benefits
that it has over the previous version of the application are: no mapping is needed between
the same entities of the system, all mapping between entities are using IDs instead of the
entity names.

Advantages:
1. The system requires only one database.
2. Easier database connection management
3. Does not need to dynamically add or delete databases.
4. Easier to manage entities in the program itself. For instance, ODM/ORM solutions
could be used to provide easier entity management.

Disadvantages:
1. Club data does not have a strict separation from the model perspective.
2. Some club-specific fields can be mixed up and added to the wrong club.
3. In a case of a database breach, all data of all clubs can be accessed.
4. Clubs can be concerned that their data is saved in a general database.
5. Over time database size can increase too much and require an unreasonable
amount of processing power.

Model comparison
Overall both models are suitable candidates to replace the current implementation. To select

the most applicable model of this system, advantages and disadvantages have to be
evaluated.

13

Saxion University of Applied Sciences

After considering the advantages and disadvantages of each model, a decision was made to
use the first model. The main reason for this choice is the separation of data that model 1
provides. But advantages provide better security and reassurance to clubs that their data will
be safer than using another solution. Furthermore, it fulfills the requirements that are
described in the first research subquestion.

New general system model

After implementing all of these changes the new system model looks like the figure below. It
has fewer moving parts and is more consistent from the entity mapping point of view. This
model does not require mapping algorithms for matching the same entities in the system
(like the “player” entity). Everything is tracked in a single, coherent, system. Multiple
databases remain, but data saved in them has changed. A single database is responsible for
saving data about user logins and basic information about clubs (also club database
connection address). Other databases are used to save specific information about the club
like trainers, teams, and information about players. It also is responsible for saving specific
physical training performance data that is imported and machine learning predictions.

Figure 5
System model diagram of the new system

Vue.js —> Flask

N~ A
MongoDB]

N MongoDB //
~—

14

Saxion University of Applied Sciences

6.3.2 API refactoring

As already discussed, the previous system was split up into several different parts. To make
this application open-source, it had to be combined into a simpler version. Because one
team was developing front-end applications and another was developing machine learning
and import systems. They used different technologies but their purpose was basically the
same; to analyze and provide data to the front-end application. The front-end team was
using Vue.js and Node.js to implement their part and the machine learning team was using
python framework Flask to implement API calls. Because both parts are responsible for the
same thing, after discussions with the supervisor, it was decided to have a single codebase.

During this phase of the refactoring, Node.js and flask servers were combined into a single
server using Flask. Flask was chosen because the machine learning part is written in python
as well, therefore it is easier to have a majority of the source code in a single programming
language.

Furthermore, some API calls needed to be updated because they did not adhere to the
professional practices of web development. Some minor changes were made to the API call
definition. For instance:

Table 2

REST API endpoint example changes
Old APl URL Old APl method New API URL New API method
/api/club/add POST [/api/club POST
/api/club/delete POST /api/club DELETE
/api/club/edit POST /api/club PUT

There were a lot of similar changes to the API calls. The main problem with calls like that is
that they don’t adhere to best programming practices in web development and do not use
proper HTTP request methods. (M-Way Solutions, 2018)

Another thing that was refactored was getting and updating the data of the front-end
application. In the previous version, all data that was needed by the application was provided
by one API call (“/api/loading”). It basically contained information about all clubs, trainers,
and players with very little regard on which user sent the request. This approach had very
large problems. First of all, every time an application updated any data all data was
requested from the server. A small amount of data is not a big problem (from the
performance standpoint) but with larger datasets the amount of data that is sent using this
API call becomes infeasible. Also, this approach introduces another problem, all data filtering
or sorting is being done on the front-end application which introduces larger loading times
compared to handling all these actions on the back-end server or even forming specific
queries that return data in the correct format. Also, it is a big security risk because data is not
filtered on what the user can see. Due to all these issues, | have created API calls for each
data entity that needs to be represented in the front-end and removed the single API call for

15

Saxion University of Applied Sciences

getting all the data. Overall twenty-two previous calls were changed or deleted and around
fifteen new API calls were added to replace bigger calls.

6.3.3 Front-end application refactoring

Because most endpoints were changed in one way or another front-end application was
refactored as well. The first data loading mechanism was changed, from loading data with a
single API call to having multiple specific API calls for getting various forms of data required
at the specific page of the application when the data is indeed required. Secondly, other API
calls were changed to match with the refactored flask REST server.

Some additional functionality was added to the application itself to provide better security
and more flexibility. Most changes were done to the new user creation and club administrator
management. For instance, users in this application are created by the system
administrators or club administrators. When a new user is created a password is displayed
for the administrator that created the new user. This approach was refactored to the process
that sends a password to the newly created users’ email and the administrator has no
information about what password was created for the user. The previous approach was very
insecure because if the administrator account was leaked or hacked, by resetting the
passwords of the users, the third party would have complete control over the whole system.
And could easily reach sensitive club data. With the new approach, there is no way that the
leaked system administrator user could access any data of the clubs.

6.3.4 Machine learning connection.

During previous iterations of the application development, the machine learning model and
corresponding classes were developed. This machine learning model uses data that is
imported into the system (described in the “6.4 Import system” chapter) and makes
predictions on desired fields like RPE, average heart rate, sprint distance, etc.

Unfortunately, it was not connected to the front-end application and could only be used
through separate scripts by the developers. Therefore it was needed to implement a basic
user interface to give a user the ability to train new models and update predictions of the
existing athlete’s training.

Table 3
Machine learning connection requirements (Sorted by priority)

1. | It must be able to create a machine learning model using GUI

2. | The user must be able to specify which period of time should be used to train the
new model

3. | Users should be able to choose to update previous predictions based on the new
model.

4. | Machine learning entry point should be configurable so that it is able to train models
for more features.

16

Saxion University of Applied Sciences

In the new version of the application, the user has an option to create a new machine
learning model based on the athlete’s data. Also, users can specify which date interval
should be used in creating a new model. Also, the user has an option to select if predictions
based on the previous model should be updated automatically after a new model is created.

Figure 6
Machine learning model creation entry point in GUI.

Train new machine learning model

Start date End date

D Update existing predictions CREATE NEW MODEL

This implementation directly corresponds to the third research subquestion. The new
implementation provides the user a basic way of interacting with the machine learning
module. This part of the system could be improved by adding additional ways of managing
machine learning model creation.

6.3.5 Testing

For testing refactored features tests of previous teams were used to conduct verification
tests. These test cases are described in the test report of one of the previous teams
(Berendhaus et al., 2019). To verify that previous functionality is still working, regression
testing using all test cases was executed. Overall most of the tests passed. Some tests did
not pass due to changes made during this project to improve old features. For functionality
that was refactored and no longer passes described test cases, new test cases were
created. More details on test cases and results can be found in Appendix 11.1. In total 20
test cases were used to test previous functionality and all of them passed.

Because most of the requirements in the refactoring phase were concerned about
architectural changes, functional testing is not an option. Unfortunately, due to time
constraints, this part of the application was not thoroughly tested. The main indicator that the
new design provides the same capabilities as the previous system and provides more
functions were done in functional testing while executing the aforementioned test scenarios.
Nevertheless, unit tests and integration testing would be a great way to ensure that the
back-end system is working properly and find more ways where it can be improved.

For a completely new functionality like a machine learning connection, new test cases were
created. Detailed descriptions and results can be found in Appendix 11.2. The main objective
of these tests is to ensure that requirements have been fulfilled. Overall four new test cases
were created to test machine learning functionality and all of them passed.

17

Saxion University of Applied Sciences

6.4 Import system

For an organization to use this application effectively, an import system for athlete’s training
data had to be developed. In the previous version of the application, the only way to import
data was by using python notebook scripts. These scripts could only be run by the
developers and were specialized for each organization. Therefore it was not a viable solution
and was a major hurdle for making this project open source.

Table 4
Import system requirements (Sorted by priority)

1. | Import system must be configurable so that new organizations could import their data
without changing the underlying logic of the system.

2. | The import system must be able to import at least excel (.xIsx) and CSV files. Other
formats are optional.

3. | Import system must be able to map the same player’s data from different files.

4. | Import system should have a way to map players from different files where their
names have minor differences.

Data can be imported in two formats “.csv” and “.xIsx”. Values in data sources can be one of
these types: numeric, alphanumeric, boolean, and date text representation.

Data can be imported using a few different files or a single file. Few files are usually used
when the source of data is different for each file. For instance, the club collects sensor data
of each training and collects data from daily surveys about health and /or other details that
could be useful in the machine learning model.

Therefore two new import prototypes were developed to compare them and find the best
solution.

6.4.1 Methodology

To compare the performance of different prototypes file import time was observed. Also to
get a better grasp of how the prototype performs, different scenarios were observed:

1. Scenario 1 - a single file import that maps to a single player in the database. The
database table where imported files are stored is empty so there is no mapping
among different training records. In the real world, it represents a scenario when a
single player’s training data is imported into a new system.

2. Scenario 2 - a single file that maps to a single player is used. The database table
where imported files are stored is filled with available data so that the file would map
to existing data. In the real world, it represents a scenario when a single player’s
training data is imported into an already usable system.

18

Saxion University of Applied Sciences

3. Scenario 3 - 10 files of different players are used. The database table where
imported files are stored is empty so there is no mapping among different training
records. In the real world, it represents a scenario when ten player training data is
imported into a new system.

4. Scenario 4 - 10 files of different players are used, but only two of them are available
for mapping with the specific player. The database is filled with required data for
mapping two out of ten players. In the real world, it represents a scenario when some
players already have pre-existing data and some players are newly added.

5. Scenario 5 - 10 files of different players are used. The database is full of available
data for mapping and all ten players exist in an internal system. In the real world, it
represents a scenario when ten player training data is imported into an already
usable system.

In a single file test, a file of 58kb is used filled with preprocessed sensor data of the real
player. In multiple file scenarios, 10 files of various players are used. Sizes of these files
range from 18kb to 92kb. The total size of 10 files used was 556.5kB.

These scenarios provide an overview of how a system should be expected to run in the
production environment.

Each scenario was run ten times to observe if import time is constant and does not depend
on unforeseen factors. The same files were used in testing different models to ensure that
we compare the same scenarios.

6.4.2 Import prototype 1

The first import prototype is a more static approach to the problem. Each organization needs
a specified data reader to be implemented in the system. All readers have a configuration
description of what files could be imported. This description is used in the user interface to
provide users with the ability to import their data. Based on the configuration, the reader
resolves what file is expected and how to read it. The file is first loaded into pandas
dataframe (table-like data structure frequently used in data science) and then all necessary
values are stored in a separate result dataframe. Then the mapping process begins. First
records, if possible, are mapped with players. If it is unsuccessful then the record is stored in
the unmapped training table and it will be mapped later on if a new player is created.
Otherwise, it goes to the second stage of mapping where a record is mapped to pre-existing
records based on player id and timestamp.

19

Figure 7
Class diagram of import prototype 1

Saxion University of Applied Sciences

ImpontService

connection_service: ConnectionService

club_service: ClubService

+ get_configuration{) : BaseClublmpeortConfiguration

+ import_data(configuration_id: string, files: FileStorage[J) : void

aseClublmportConfiguration

+ get_available_import_methods() : object []

+ import_data(configuration_id: string, files:FileStorage[) © void

T

ClubimportConfiguration

Results of performance testing:

Table 5

Import prototype 1 performance

run 1
run 2
run 3
run 4
run 5
run 6
run 7
run 8
run 9

run 10

Scenario 1 (s)

0.92s
0.79s
0.87s
0.78s
0.73s
0.74s
0.94s
0.79s
0.78s
0.87s

Scenario 2 (s)

0.92s
0.98s
0.94s
0.97s
0.95s
0.95s
0.94s

0.9s
1.03s

1s

Scenario 3 (s)

1.59s

1.5s
1.39s
1.48s
1.49s
1.46s
1.49s
1.52s
1.54s

1.5s

Scenario 4 (s)

1.91s
1.78s
1.79s
1.91s
1.91s

2s
2.01s
1.98s

2s
1.94s

Scenario 5 (s)

25.3s
27.26s
26.27s
27.11s
26.61s
27.65s
26.28s
27.65s
26.43s
27.29s

20

Saxion University of Applied Sciences

Figure 8
Import prototype 1 average performance chart of each scenario

30
26.785

20

Time (s)

10

0.821 0.958 1.496 1.923

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Overall this model performs adequately in all scenarios except 10 files with full 10 file
mapping in the database. Scenario 5 is an outlier but it is partially expected because it
imports the largest data sample and all records are mapped to pre-existing athlete’s training.
Nevertheless, the observed difference between scenario 5 and all other scenarios is larger
than initially expected. The reason for this kind of difference is due to mapping algorithm
insufficiency. In scenarios where data can be fully mapped, especially with larger pre-existing
data in the database, it takes longer to find pre-existing records that can be mapped to newly
imported data.

Advantages:

1. Takes less time to import a file

2. Import rules can be very specific therefore it is possible to further optimize the
performance.

3. Easier to implement. Because it is very specific it is easy to implement field mapping
as all file fields are known immediately.

Disadvantages:
1. Each organization/club needs a separate implementation of the file reader interface.
2. Not future proof, each change to the import system must be done by changing the
implementation.

21

Saxion University of Applied Sciences

6.4.3 Import prototype 2

The second import system is designed to be more configurable. This prototype constructs
import rules based on the configuration data saved in the club’s database. Full configuration
description consists out of four database entities:

1. file_import_configuration — connects all other configuration parts and have default
configuration parameters describes such as acceptable file extensions, a title for
indication in the front-end

2. file_import_field_configuration — describes how specific values should be resolved
from the provided document.

3. import_mapping_configuration - describes how constructed value should be mapped
with other pieces of training in the system.

4. import_preprocessor — describes how the initial file should be pre-processed to
efficiently resolve values later on.

Figure 9
Entity Relationship Diagram of import prototype 2

file_import_configuration

PK | _id

name

extension

fields

mapping_fields
DIEprocessors

create_new_if_not_mapped

| | x

= file_import_field_configuration = import_mapping_configuration = import_prerocessing_configuration
PK | _id PK | _id PK | _id

inner_name field_name preprocessor

outer_identifier tolerance_s method_value

use_index outer_identifier

value_resolver assign_to_column

from_body

dataframe_query

22

Saxion University of Applied Sciences

Workflow

There are several different stages in importing data into the system. The first file is submitted
to the back-end system with configuration id. Then “file_import_configuration” is resolved
and the file is loaded into pandas Dataframe. After that “file_import_field_configuration” is
retrieved from the database and one by one column values are calculated and stored in the
new Dataframe. After the result dataframe is completed (all field configurations were
executed), the mapping process is started. First of all, records are matched with the players
in the system. If a record is successfully matched with the player it goes into another
matching phase, otherwise, it is stored in the unmatched training table in the database. The
next phase in record mapping is matching with pre-existing training records. This is
necessary because some training records consist of several different files therefore it is
necessary to have mapping rules. Several records are mapped according to
“import_mapping_configuration”. Usually, records are mapped using player id and
timestamp. Some sources have different time tolerances so the mapping configuration
needs to specify values that have to be used. For instance, wellbeing survey data can be
mapped with any timestamp within a twelve-hour period. If a record is not mapped with any
other existing record, a new record is created (if not specified otherwise in the
file_import_configuration).

Table 6
Import prototype 2 performance

Scenario 1 (s) Scenario2(s) Scenario 3 (s) Scenario 4 (s) Scenario 5 (s)

run 1 1.85s 3.07s 8.67s 9.09s 32.83s
run 2 1.84s 3.04s 9.03s 9.26s 33.88s
run 3 1.92s 3.23s 8.91s 9.21s 34.54s
run 4 2.03s 3.09s 9.38s 9.36s 33.63s
run 5 2s 3.06s 8.95s 8.96s 33.68s
run 6 1.98s 3.12s 8.92s 9.38s 34.04s
run 7 1.97s 3.13s 8.78s 9.16s 34s
run 8 2.02s 3.11s 10.36s 9.14s 33.67s
run 9 2s 3.11s 9.17s 9.38s 34.27s
run 10 1.96s 3.02s 8.96s 9.03s 34.01s

23

Saxion University of Applied Sciences

Figure 10
Import prototype 2 average performance chart of each scenario

40

33.855

Time (s)

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Overall performance of this model over different scenarios is worse than the first model. This
behavior is partly because there is more information that needs to be loaded from the
database (configuration parameters), partially due to inefficient code problems (discussed
more in the “6.4.5 Optimization” chapter). Also, scenario 5 in this prototype has the same
behavior as prototype 1.

Advantages:
1. Very configurable. Possible to change specific import mapping methods without
changing underlying code.
2. Can be further developed by adding more specific value resolvers or making
configurations accessible in the front end so the user can configure it as they see fit.
3. Used a lot of reusable code therefore it can be used in other organizations.

Disadvantages:

1. Slower compared to another solution.
2. Could be hard to introduce a very specific processing method.

24

Saxion University of Applied Sciences

6.4.4 Prototype comparison

Figure 11
Import prototype performance comparison

model1 and model2

B model1 [model2

40
33.855

% 26.785
0
S 20
E
'_

9.113 9.197
10
3.098
0.8211-2%7 0.958 1.496 1.923

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

The main difference between these two prototypes is import speed and configurability. The
biggest difference between these two prototypes appears in the two scenarios. When trying
to import ten files into the system but not all of them could be mapped internally therefore no
mapping queries were executed in both cases. In these two scenarios, the difference in
speed is about 6 times. The main reason for this difference in speed is the loading of the
configuration into the server from the database and resolving column values one by one
based on the configured value resolvers. Because both of these solutions are prototypes it is
possible to optimize them to make them run quicker.

25

Saxion University of Applied Sciences

6.4.5 Optimization

Both of the solutions are prototypes therefore it is possible to optimize them to make them
run faster. It was chosen to only optimize a single prototype due to time constraints. Mode 2
was chosen because it is more configurable and it is possible to optimize it more because as
our testing showed loading times can be much quicker. Another reason for choosing the
second model is the ability to further improve this solution and the ability for any club to
create specific configurations that can work for their club with minimal knowledge of the
system and programming.

Several parts of the system were optimized. First of all, the mapping to players was
changed. Each record was mapped with a player by a separate query to the database in the
prototype version. In a new version based on the list of all records, a map of all possible
player names is created, and then with a single query, all required player ids with player
names are returned and converted to a map. This way when a record needs to be mapped
with a player it can request a player id from a beforehand created map and get the id
immediately without calling the database.

The second part of the optimization was done to the import field configuration loading. In the
prototype version, each import field configuration was loaded separately by iterating through
object ids that are stored in the file configuration object. In the optimized version, all
configuration objects are retrieved with a single database call based on the list of provided
ids.

The third part that was optimized is training mapping to already existing records in the
database. In the prototype, version mapping was done in two parts. The first part was
responsible for finding needed records for the update and the second part was assigning
additional values to those records and saving them. In an optimized version, all of this is
done using a single query to the database, therefore, decreasing import time.

Unfortunately, all of these optimizations did not achieve a significant improvement in speed
that was expected initially.

26

Saxion University of Applied Sciences

Figure 12
Import prototype comparison (Original and Optimized versions)

Original and Optomized
B Original [Optomized
40

Time (s)

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Overall all scenarios were improved. The biggest performance difference occurred in
scenarios three and four. In these scenarios, ~54% increase in speed was observed.
Unfortunately, the smallest performance gain was observed in scenario 5 with the longest
import times.

6.4.6 Unmapped player data mapping

During the development of the import system, additional functionality was implemented to
solve possible problems with player data mapping. Due to the nature of the data that is
imported, it is possible that the same player can have different names in these files. For
instance, the same player by the name “Nard van Riet” appears in two files that will be
imported (Figure 13). The first file contains the correct name, while the second file does not
contain his full name (“Nard Riet”). In this case, data only from the first file would be mapped.

27

Saxion University of Applied Sciences

Figure 13
Player mapping diagram (name in red is the same player’s name in different files)
Mard van Riet Mard Riet
File import
Nard van Riet J

Retrieve mapping data

Import System
MongoDB

f

Save training data as mapped
player (Nard van Riet)

Save training data as unmapped
player (Nard Riget)

To resolve this issue additional functionality was needed.

Table 7
Unmapped player data mapping requirements (Sorted by priority)

1. | Users must have the ability to map different names of the same player in order to
correctly map their data.

2. | Users should be able to create new players in the system from the unmapped data.

3. | Users should be able to delete imported data if a player of that name does not exist in
the system.

A new entry point in the web application was created to accommodate this functionality. On
this page, users are able to decide what should be done with the unmapped data (create a
new player with the unmapped data, add name variation to the existing player and re-import
data, delete data). This functionality ensures that all data is mapped in the correct manner
and resolves an issue of different names of the same player existing in different import files.

28

Saxion University of Applied Sciences

Figure 14
Unmapped player data mapping entry point in GUI

Unmapped player list

Nard Riet ADD NEW PLAYER CONNECT TO PLAYER DELETE RECORDS

Nard van de Riet app NEw PLAYER CONNECT TO PLAYER DELETE RECORDS

6.4.7 Import system testing

First of all performance testing was done with different scenarios to know how well the
import system performs. This testing was done with two prototypes and the results are
described in the previous chapters.

After performance testing functionality of this module was tested using functional testing.
Several test scenarios were written to test import functionality. The main parts that were
tested were mapping of the players from different files, data reading and manipulation, and
unmapped player mapping.

These tests provide high-level assurance that the system works properly. Unfortunately,
there was no time to implement unit tests and integration tests. These alternative testing
methods would provide better coverage.

More details about test scenarios and results can be found in Appendix 11.3 and 11.4. For
the import functional testing, there were seven test cases written and all of them passed.

29

Saxion University of Applied Sciences

7. Next steps

Improve mapping performance when the database is full of records. Explore other variables
ways to map records in the database with each other to achieve better import performance.

Data filtering when importing should be improved to remove some of the not viable cases.
For example, sometimes sensor data can be unreliable because some players could be
transporting turned-on sensors and that would skew data for the machine learning model as
the data would not be of the athlete’s training.

Create a user interface for configuring import fields and machine learning parameters. It
could be helpful for the end-users to be able to configure the import system themselves. The
current model of the import system allows to relatively easily achieve this functionality

It could be possible to improve import time by a significant amount by using other data
import methods (instead of pandas dataframes). Some alternative data reading methods
could work. For instance, “csv.DictReader”, “dask.dataframe”, “datatable” (Yanchev, 2020)

Improve chart rendering performance, analyze use cases to reach an optimal balance
between performance and records displayed. Currently, training dada rendering in the front
end can be performance-heavy (depending on the size of the dataset provided). It could be
optimized by having a limit of how much athlete’s training data is provided by the back-end,
or some other solution to increase performance.

Make an application more international. At this point the only language of the application is
English. It could be useful to have multiple languages like Dutch or German because it is

mostly directed at Dutch football clubs.

Create data sharing functionality so clubs could share their data to create better machine
learning models and improve accuracy.

Implement unit and integration tests to find problematic places and provide an assurance of
product quality.

30

Saxion University of Applied Sciences

8. Conclusion

Athlete’s performance and health monitoring are one of the most important activities in the
modern sport’s industry. Tools that help any club regardless of their size observe their
athlete's performance and health greatly influence their training attitude. This project’s main
goal is to provide football organizations with an open-source tool to monitor athlete’s
performance and try to predict how hard training should be to achieve optimal performance.

This assignment is a continuation of previous research. It is meant to connect scattered
parts of the previous iteration of the system, implement missing functionality, and provide
documentation so that this tool can be open-sourced. To achieve all these goals, the project
was split into three phases.

The first phase was refactoring. A large part of the system was refactored to improve
performance, security, and stability. Most of the changes in the refactoring phase were done
by changing REST API calls to adhere to best practices and splitting large calls into smaller
ones to improve performance.

The second phase was implementing missing functionality. The main functionality that was
missing is the athlete's training data import method. Two prototypes were created and tested
how they perform with real data. Another functionality that was very important to implement
was the ability to create machine learning models, based on the athlete’s training data, for a
system user. These features were monumental to implement for this application to be
open-sourced.

The last phase was creating functionality for data sharing among different clubs so it could
be possible to create more accurate models. Unfortunately due to the unexpectedly large
amount of time required to implement other functionality this part was not implemented.
Furthermore, an initial meeting with “Sport Data valley” was made but no concrete
collaboration plans were discussed, therefore it was not possible to achieve the desired goal
of this phase.

Even Though, not all phases were completed Main research question was successfully
answered. First of all, an import system, that can handle various file formats and is
configurable to accommodate a larger organization amount, was implemented. Furthermore,
the system overall was simplified, documented, and made possible for open-sourcing.

Overall basic functionality of this application could be used in the professional environment

already. Nevertheless, the expectation for this application is to be further improved on by
other developers to give even more insight into athlete’s performance.

31

Saxion University of Applied Sciences

9. Retrospective

Overall | think this project was a success. The most important functionality was implemented
and major issues with the application were fixed. It is a bit unfortunate that some of the
functionality was not implemented (data-sharing platform) due to unfortunate planning
changes. In the future project, | would like to spend more time clearing out details of the
project so the planning would be more accurate. As with most software engineering projects,
planning is one of the hardest parts because there are a lot of unknown factors that can be
missed in the beginning. Nevertheless, I'm proud of the product that was created and in my
opinion, it was a successful project.

10. Bibliography

Berendhaus, F., Mensvoort, W. v., Mentink, J., Nijland, L., & Temmink, S. T. e. R. (2019, 07
05). Project Topsport Load MonitorTestrapport.

M-Way Solutions. (2018, 06 19). 10 Best Practices for Better RESTful API - M-Way
Solutions. Medium.
https://medium.com/@mwaysolutions/10-best-practices-for-better-restful-api-cbe81b
06f291

Pagani, M. (2019, 07 23). Big Data Analysis And Machine Learning For Football Teams.

Yanchev, M. (2020, 02 07). The most (time) efficient ways to import CSV data in Python.
Medium.
https://medium.com/casual-inference/the-most-time-efficient-ways-to-import-csv-data
-in-python-cc159b44063d

Zubavicius, R. (2020, 01). Project LoadMonitor.

32

11. Appendix

Saxion University of Applied Sciences

11.1 Verification testing results

Test case ID TC-1

Test name User login

Description User should be able to login into the application using the
correct credentials

Actor Any user

Pre-conditions

User should exist in the system

Steps

1. Navigate to the login page
2. Input email and password
3. Click the “login” button

Expected result

The user is authenticated and redirected to the landing
page.

Tested by Result Additional comments

Dovydas Valiulis OK Maps to “US-1: Applicatie
opstarten” in an original test

Date 2021-06-11 report

Test case ID TC-2

Test name User logout

Description User should be able to logout

Actor Any user

Pre-conditions

The user is logged in

Steps

1. Click on the user avatar in the navigation bar
2. Click the “logout” button

Expected result

The user is logged out and redirected to the login page

Tested by Result Additional comments
Dovydas Valiulis OK Maps to “US-2: Applicatie

afsluiten” in an original test
Date 2021-06-11 report

33

Saxion University of Applied Sciences

Test case ID

TC-3

Test name User password change
Description User should be able to change his/her password
Actor Any user

Pre-conditions

The user is logged in.

Steps

Click on the user avatar in the navigation bar
Click “Edit profile”

In the dialog window input a new password
Repeat new password

Click the “save” button

aobron=

Expected result

The user’s password is changed

Tested by

Result Additional comments

Dovydas Valiulis

OK Maps to “US-3:

Wachtwoord aanpassen”

Date 2021-06-11 in an original test report

Test case ID TC-4

Test name Create club

Description The system administrator should be able to create a new
club

Actor System administrator

Pre-conditions

The user is logged in as system administrator

Steps

Click on the hamburger icon in the navigation bar
Click “Add club” in the menu

Enter club name

Upload club image (optional)

Click the “create” button

alrowonN=

Expected result

A new club is created with provided name and image (if an
image is not provided default image should be used)

Tested by Result Additional comments
Dovydas Valiulis OK Maps to “US-4: Club

aanmaken” in an original
Date 2021-06-11 test report

34

Saxion University of Applied Sciences

Test case ID TC-5

Test name Edit club

Description The system administrator should be able to edit the club’s
information

Actor System administrator

Pre-conditions

e The userislogged in as system administrator
Club already exists

Steps 1. Click on the hamburger icon in the navigation bar
2. Click “Clubs” in the menu
3. Click “Edit club” on the club card,
4. Input new information in the dialog window
5. Click “Save”
Expected result Club information is updated,
Tested by Result Additional comments
Dovydas Valiulis OK Maps to “US-5: Club
wijzigen” in an original test
Date 2021-06-11 report
Test case ID TC-6
Test name Delete club
Description The system administrator should be able to delete a club
Actor System administrator

Pre-conditions

e The useris logged in as system administrator
Club already exists

Steps 1. Click on the hamburger icon in the navigation bar
2. Click “Clubs” in the menu
3. Click “Delete club” on the club card,
4. Click “OK” on the dialog window
Expected result Club with all its users and players is deleted.
Tested by Result Additional comments
Dovydas Valiulis OK Maps to “US-6: Club
verwijderen” in an original
Date 2021-06-11 test report

35

Saxion University of Applied Sciences

Test case ID TC-7

Test name Create team

Description Club administrator should be able to create teams
Actor Club administrator

Pre-conditions

The user is logged in as club administrator

Steps 1. Click on the hamburger icon in the navigation bar
2. Click “Add team” in the menu
3. Enter team name
4. Upload team image (optional)
5. Click the “create” button
Expected result
Tested by Result Additional comments
Dovydas Valiulis OK Maps to “US-7: Teams
toevoegen” in an original
Date 2021-06-11 test report
Test case ID TC-8
Test name Edit team
Description Club administrator should be able to edit team information
Actor Club administrator

Pre-conditions

The user is logged in as club administrator
Team already exists

Steps 1. Click on the hamburger icon in the navigation bar
2. Click “Teams” in the menu
3. Click “Edit team” on the club card,
4. Input new information in the dialog window
5. Click “Save”
Expected result Team information is updated,
Tested by Result Additional comments
Dovydas Valiulis OK Maps to “US-8: Team
wijzigen” in an original test
Date 2021-06-11 report

36

Saxion University of Applied Sciences

Test case ID TC-9

Test name Add trainers

Description Club administrators should be able to add a trainer
Actor Club administrator

Pre-conditions

The user is logged in as club administrator

Steps 1. Click on the hamburger icon in the navigation bar
2. Click “Add trainer” in the menu
3. Enter trainer’s email
4. Upload trainer’s avatar (optional)
5. Click the “create” button
Expected result A new trainer is created
Tested by Result Additional comments
Dovydas Valiulis OK Maps to “US-9: Trainer
toevoegen” in an original
Date 2021-06-11 test report
Test case ID TC-10

Test name Link trainers with teams

Description Club administrators should be able to link trainers with
teams

Actor Club administrator

Pre-conditions

e The useris logged in as club administrator
e Trainer exists
Team exists

Steps

Click on the hamburger icon in the navigation bar
Click “Trainers” in the menu

Click “Control teams” on the trainer’s card

Click the “+” icon to link the trainer with a team

PN~

Expected result

A trainer is linked with the team and can view information
about that team

Tested by Result Additional comments

Dovydas Valiulis OK Maps to “US-10: Trainers
koppelen aan meerdere

Date 2021-06-11 teams” in an original test
report

37

Saxion University of Applied Sciences

Test case ID

TC-11

Test name Delete trainer
Description Club administrator should be able to delete trainers
Actor Club administrator

Pre-conditions

e The useris logged in as club administrator
Trainer exists

Steps 1. Click on the hamburger icon in the navigation bar
2. Click “Trainers” in the menu
3. Click “Delete trainer” on the trainer card,
4. Click “OK” on the dialog window
Expected result Trainer is deleted
Tested by Result Additional comments
Dovydas Valiulis OK Maps to “US-11: Trainer
verwijderen” in an original
Date 2021-06-11 test report
Test case ID TC-12

Test name Unlink trainer from club

Description Club administrator should be able to unlink trainers and
clubs

Actor Club administrator

Pre-conditions

The user is logged in as club administrator
Trainer exists

Team exists

Trainer and team are linked

Steps 1. Click on the hamburger icon in the navigation bar
2. Click “Trainers” in the menu
3. Click “Control teams” on the trainer’s card
4. Click the “V” icon to unlink the trainer with a team
Expected result Trainer no longer linked with the club
Tested by Result Additional comments
Dovydas Valiulis OK Maps to “US-12: Trainer
loskoppelen” in an original
Date 2021-06-11 test report

38

Saxion University of Applied Sciences

Test case ID TC-13

Test name Delete team

Description Club administrator should be able to delete teams
Actor Club administrator

Pre-conditions

e The useris logged in as club administrator
Team exists

Steps 1. Click on the hamburger icon in the navigation bar
2. Click “Teams” in the menu
3. Click “Delete team” on the team card,
4. Click “OK” on the dialog window
Expected result The team is deleted.
Tested by Result Additional comments
Dovydas Valiulis OK Maps to “US-13: Team
verwijderen” in an original
Date 2021-06-11 test report
Test case ID TC-14
Test name Add players
Description Club administrator should be able to add new players
Actor Club administrator

Pre-conditions

The user is logged in as club administrator

Steps

1. Click on the hamburger icon in the navigation bar

2. Click “Add player” in the menu

3. Enter players information (name, position, avatar,
team)

4. Click the “create” button

Expected result

A new player is created and added to a specified team

Tested by Result Additional comments
Dovydas Valiulis OK Maps to “US-14: Spelers

toevoegen” in an original
Date 2021-06-11 test report

39

Saxion University of Applied Sciences

Test case ID

TC-15

Test name Move players among teams

Description Club administrator should be able to move players from one
team to another

Actor Club administrator

Pre-conditions

The user is logged in as club administrator
At least 2 teams exist
Player exists

Steps 1. Click on the hamburger icon in the navigation bar
2. Click “Players” in the menu
3. Expand player’s card
4. Click “Manage player”
5. Click “Select new Team for this player”
6. Select new team
7. Click “OK”
Expected result A player is moved to another team
Tested by Result Additional comments
Dovydas Valiulis OK Maps to “US-15 : Speler
verplaatsen naar andere
Date 2021-06-11 team” in an original test
report
Test case ID TC-16

Test name Delete player
Description Club administrator should be able to delete players
Actor Club administrator

Pre-conditions

The user is logged in as club administrator
Player exists

Steps 1. Click on the hamburger icon in the navigation bar
2. Click “Players” in the menu
3. Expand player’s card
4. Click “Manage player”
5. Click “Delete this player” in a dialog
6. Click “OK”
Expected result Player is deleted
Tested by Result Additional comments
Dovydas Valiulis OK Maps to “US-15 : Speler
verplaatsen naar andere
Date 2021-06-11

40

Saxion University of Applied Sciences

team” in an original test
report

Test case ID

TC-17

Test name Player load overview
Description A trainer should be able to see player’s load in graphs
Actor Trainer

Pre-conditions

e The useris logged in as a trainer

e Player exists
The Player has training

data

Steps

Expand player’s card

e

dropdown

Click on the hamburger icon in the navigation bar
Click “Players” in the menu

Select an attribute to see in the “Physical condition”

Expected result

A trainer is able to see performance graphs of the player

Tested by Result Additional comments

Dovydas Valiulis OK Maps to “US-18 : Belastings
overzicht van een team

Date 2021-06-11 zien” in an original test
report

Test case ID TC-18

Test name Detailed player training history

Description Trainer should be able to see detailed player’s training
history with performance indicators

Actor Trainer

Pre-conditions

e Useris logged in as a trainer

e Player exists

Player has training data

Steps 1. Click on the hamburger icon in the navigation bar
2. Click “Players” in the menu
3. Expand player’s card
4. Click “Training list”
Expected result The user is redirected to the player's training history page.
Tested by Result Additional comments
Dovydas Valiulis OK Maps to “US-24 : Inzicht in

41

Saxion University of Applied Sciences

Date

2021-06-11 trainingen per speler” in an

original test report

11.2 Machine learning connection testing scenarios

Test case ID

TC-ML-1

Test name Create ML model

Description Club administrator should be able to create a machine
learning model

Actor Club administrator

Pre-conditions

e The userislogged in as club administrator
e Athlete’s training data exists

Steps

1. Click on the hamburger icon in the navigation bar
2. Click “Manage training” in the menu
3. Click “Create a new model”

Expected result

A new machine learning model is created

Tested by Result Additional comments
Dovydas Valiulis OK

Date 2021-06-12

Test case ID TC-ML-2

Test name Create ML model with date range

Description Club administrator should be able to create machine
learning model using a specific date range for included
training

Actor Club administrator

Pre-conditions

e The userislogged in as club administrator
Athlete’s training data exists

Steps 1. Click on the hamburger icon in the navigation bar
2. Click “Manage training” in the menu
3. Fillin “Start date” and “End date”
4. Click “Create a new model”
Expected result A new machine learning model is created
Tested by Result Additional comments
Dovydas Valiulis OK

42

Saxion University of Applied Sciences

Date

2021-06-12

Test case ID

TC-ML-3

Test name Create ML model and update existing predictions
Description Club administrator should be able to create machine

learning model and update existing predictions
Actor Club administrator

Pre-conditions

e The useris logged in as club administrator
Athlete’s training data exists

Steps

Click on the hamburger icon in the navigation bar
Click “Manage training” in the menu

Check the “Update existing predictions” checkmark
Click “Create a new model”

e

Expected result

A new machine learning model is created and player
predictions are updated

Tested by Result Additional comments
Dovydas Valiulis OK

Date 2021-06-12

Test case ID TC-ML-4

Test name Create ML model for configured measurements

Description Club administrator should be able to create machine
learning model for configured measurements

Actor Club administrator

Pre-conditions

e The useris logged in as club administrator
Athlete’s training data exists

Steps 1. Click on the hamburger icon in the navigation bar
2. Click “Manage training” in the menu
3. Select measurement that model will be created
4. Click “Create a new model”
Expected result A new machine learning model is created for a specific
measurement
Tested by Result Additional comments

43

Saxion University of Applied Sciences

Dovydas Valiulis ERROR At the time of testing
functionality not yet
Date 2021-06-12 implemented

11.3 Import system testing scenarios

Test case ID

TC-IS-1

Test name Import single training file

Description Club users should be able to import single player’s training
data

Actor Club administrator, Trainer

Pre-conditions

e Useris logged in as club administrator
e Import system is configured
e Player exists

Steps

1. Click on the hamburger icon in the navigation bar

2. Click “Import data” in the menu

3. Select file that will be imported in one of the entry
points.

4. Click “Submit”

Expected result

Training data is imported into the system

Tested by Result Additional comments

Dovydas Valiulis OK Checking if data was
imported correctly was done

Date 2021-06-12 by looking in the database
records

Test case ID TC-IS-2

Test name Import multiple training files

Description Club users should be able to import multiple player’s
training data

Actor Club administrator, Trainer

Pre-conditions

e The useris logged in as club administrator
e Import system is configured
e Player exists

Steps

Click on the hamburger icon in the navigation bar
Click “Import data” in the menu

N —~

44

Saxion University of Applied Sciences

3. Select multiple files that will be imported in one of
the entry points.
4. Click “Submit”

Expected result

Training data is imported into the system

Tested by Result Additional comments

Dovydas Valiulis OK Checking if data was
imported correctly was done

Date 2021-06-12 by looking in the database
records

Test case ID TC-IS-3

Test name Import multiple training files from different sources

Description Club users should be able to import multiple player’s
training data from different sources and data is mapped
correctly

Actor Club administrator, Trainer

Pre-conditions

e The useris logged in as club administrator
e Import system is configured
e Player exists

Steps

1. Click on the hamburger icon in the navigation bar

2. Click “Import data” in the menu

3. Select multiple files that will be imported in more
than one entry point.

4. Click “Submit” on both entry points

Expected result

Training data is imported into the system and mapped
correctly

Tested by Result Additional comments

Dovydas Valiulis OK Checking if data was
imported correctly was done

Date 2021-06-12 by looking in the database
records

45

Saxion University of Applied Sciences

Test case ID

TC-1S-4

Test name Import training files of player that does not exist

Description Club users should be able to import multiple player’s
training data and if a player does not exist in the system
data should be stored separately

Actor Club administrator, Trainer

Pre-conditions

The user is logged in as club administrator
Import system is configured
The player does not exist

Steps

1.
2.
3

4.

Click on the hamburger icon in the navigation bar
Click “Import data” in the menu

Select file that will be imported in one of the entry
points.

Click “Submit”

Expected result

Training data is imported into the system and stored in a
different place than mapped data. Players with unmapped
data appear on the “Unmapped player list” page

Tested by Result Additional comments

Dovydas Valiulis OK Checking if data was
imported correctly was done

Date 2021-06-12 by looking in the database
records

Test case ID TC-1S-5

Test name Create a new player from unmapped data

Description Club users should be able to create new players from

unmapped player data
Actor Club administrator, Trainer

Pre-conditions

The user is logged in as club administrator
Import system is configured
The player does not exist

Steps

PO~

Click on the hamburger icon in the navigation bar
Click “Manage training” in the menu

Click “Add new player” in the unmapped player list
Complete new player’s creation.

Expected result

New player is created and data is reimported.

Tested by

Result

Additional comments

46

Saxion University of Applied Sciences

Dovydas Valiulis OK
Date 2021-06-12
Test case ID TC-1S-6

Test name Connect unmapped data to existing player

Description Club users should be able to connect unmapped player’s
training data to already existing player

Actor Club administrator, Trainer

Pre-conditions

e The userislogged in as club administrator
e Import system is configured
The player does not exist

Steps

Click on the hamburger icon in the navigation bar
Click “Manage training” in the menu

Click “Connect to player” in the unmapped player list
In the dialog select a player that data will be
mapped to

5. Click “Connect” in the dialog

PO~

Expected result

Data of the unmapped player is imported to the connected
player.

Tested by Result Additional comments

Dovydas Valiulis OK Checking if data was
imported correctly was done

Date 2021-06-12 by looking in the database
records

Test case ID TC-1S-6

Test name Delete unmapped data

Description Club users should be able to delete unmapped player’s
training data.

Actor Club administrator, Trainer

Pre-conditions

e The userislogged in as club administrator
e Import system is configured
e The player does not exist

Steps

1. Click on the hamburger icon in the navigation bar

47

Saxion University of Applied Sciences

2. Click “Manage training” in the menu
3. Click “Delete records” in the unmapped player list

Expected result

Data of the unmapped player is deleted.

Tested by Result Additional comments

Dovydas Valiulis OK Checking if data was
imported correctly was done

Date 2021-06-12 by looking in the database

records

48

