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Abstract: The full potential of predictive maintenance has not yet been utilised. Current solutions
focus on individual steps of the predictive maintenance cycle and only work for very specific settings.
The overarching challenge of predictive maintenance is to leverage these individual building blocks
to obtain a framework that supports optimal maintenance and asset management. The PrimaVera
project has identified four obstacles to tackle in order to utilise predictive maintenance at its full
potential: lack of orchestration and automation of the predictive maintenance workflow, inaccurate or
incomplete data and the role of human and organisational factors in data-driven decision support
tools. Furthermore, an intuitive generic applicable predictive maintenance process model is presented
in this paper to provide a structured way of deploying predictive maintenance solutions.

Keywords: predictive maintenance; process model; interdisciplinary research; case studies

1. Introduction

Predictive maintenance is the ability to use data-driven analytics to optimise the upkeep of
capital equipment [1]. Predictive maintenance bridges the gap between condition-based maintenance
and corrective maintenance and is enabled by the advent of Industry 4.0 [2]. Value is created by
transforming the collected data from intelligent systems into predictions about the system’s health, so
that maintenance can be done exactly when and where needed. Estimates of the impact of predictive
maintenance vary widely, but in general the return of investment is deemed to be favourable [3].
Despite the favourable return on investment, implementation of predictive maintenance in practice is
still limited in many industries [4,5].

Furthermore, predictive maintenance is a key enabling technology for servitisation in smart
industries. Servitisation is an emerging trend [6] in which organisations and citizens no longer own
their assets, but rather lease their services: companies buy hours on production machineries with a
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guaranteed throughput; people lease a car rather than buying one. As a consequence, servitisation
mandates constant availability at a low cost, prescriptive (personalised) service, and full digitisation
and automation of service provision.

Although the prospective benefits of predictive maintenance are tremendous, realising the
envisioned benefits is far from trivial. While many core building blocks of predictive maintenance
(such as sensor technology, failure prediction methods, and optimisation techniques) exist,
current solutions focus on individual steps in the predictive maintenance cycle, and only work
for very specific settings. The overarching challenge of predictive maintenance is to leverage these
individual building blocks into an effective and efficient framework that supports optimal maintenance
and asset management in a complex arena. The PrimaVera project picks up this challenge through a
multidisciplinary team providing exactly these expertises.

This paper highlights two major elements of the project to synergise predictive maintenance.
First, the challenges hindering the successful application of predictive maintenance have been
identified and are presented in this paper. Secondly, this paper introduces a generic predictive
maintenance process model which provides a structured approach for deploying new predictive
maintenance solutions.

The PrimaVera project includes leading industrial partners from three major sectors of the Dutch
economy: infrastructure, high-tech and maritime. The project has been awarded a grant of five million
euros in funding from the Dutch Research Council (NWO) and co-funding from the participating
consortium members. The project has a duration of five years.

The rest of this paper is organised as follows. Section 2 presents the state of the art of each of the
six elements compromising predictive maintenance. Based on the state of the art, the PrimaVera project
has identified four obstacles to overcome in order to utilise predictive maintenance to its full potential.
These obstacles are described in Section 3, Section 4 outlines the generic process model to tackle these
obstacles. Furthermore, Section 4 describes the research approach taken for each step of the process
model. Section 5 details the methodology used during the project together with a brief overview of
the intended demonstrators. Section 6 details the constituents of the consortium and finally, the last
section contains the conclusion.

2. State of the Art

Predictive maintenance entails six steps; data acquisition, data processing and diagnostics,
prognostics, optimisation of maintenance and logistics, asset management, and human and
organisational factors. This section will outline the state of the art of each step. Later on asset
management and human and organisational factors are considered as one step as these two steps are
closely related.

2.1. Data Acquisition

Predictive maintenance or condition monitoring that goes beyond the visual inspections by a
human inspector is always data-driven. The most rudimentary form of data-driven maintenance
would be the analyses of log files and error messages [7]. A next level is using specific sensing
methods, e.g., vibrational frequency measurements at bearings [8], to assess the health of components.
More advanced methods include real-time monitoring which can raise an alarm based on predefined
criteria. Taking it further, machine learning and big data analysis of sensor data are being researched [9].

In practice, many companies struggle to incorporate data-driven workflows within their
company [4,5]. First of all, there may be no data, incomplete data, erroneous data, unaligned data or
simply not enough data. Logging of errors may be incomplete or data are not stored at all. To apply
the power of machine learning techniques to identify patterns, large amounts of data are needed,
which means longer periods of time need to be measured. Secondly, data ownership is an issue.
Even though machines log data, there is no access to the data, data are too costly or is owned by
another company [10]. Thirdly, data are not labelled [10] or is labelled inconsistently. Operators use
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different nomenclature or report all malfunctions under the same generic error code. That makes it
difficult to learn within a single company, let alone to learn from (the data of) ‘peer’ companies.

What is needed is a structured approach to gather data in a goal-oriented way. The cross-industry
standard process for data mining (CRISP-DM) [11] is a good starting point, but it describes common
approaches. Therefore, specialisation towards specific predictive maintenance problems or domains
may be valuable. Given an objective, knowing what to measure is a challenge, knowing how to
measure is even more challenging.

To overcome this challenge decision support tools which aid in the selection of an optimal sensor
strategy can be used. For instance, optimal sensor placement can be found by genetic algorithms [12]
or by using finite element models [13]. Sensor costs is another factor which can be optimised [14].
Other elements an optimal sensing strategy decision support tool should take into account are costs
of asset/component replacement, expected faults and required accuracy of the condition monitoring
system. Another factor the decision support tool should take into account is the goal of monitoring,
for instance wear or fatigue. To our knowledge no research has been done into designing an overarching
and unifying optimal sensing strategy decision support tool.

Moreover, novel measuring technologies may appear which we are not even aware of. For instance,
sensors on train axle boxes to enable the monitoring of insulated rail junctions [15]. Or mobile phones
of commuters could be used, so-called participatory sensing [16]. For instance, mobile phones have
been successfully used to monitor road conditions [17]. So new sensing technologies may show up for
predictive maintenance as well.

We see three main opportunities, i.e., challenges for data acquisition in predictive maintenance.
First, the use of sensor fusion, in particular the combination of remote sensing (lidar, satellite,
radar, sound-arrays, etc.) with in-situ sensors [18]. Sensor fusion may compensate for data gaps
of a single sensor, leading to new sensing approaches by combining sensors at different distances.
Second, the automatic context detection of sensor data. For instance, a bridge is supposed to expand
during hot weather, but if the same expansion happens during cold weather this could indicate
an anomaly. The challenge is to automatically detect the context (situational awareness). Third,
methods for effective cross-company data interoperability are lacking [19]. These methods make it
possible to enlarge data sets to get the size needed for machine learning. In particular this includes the
definition of data quality: which quality of data is needed for which decision and how do we define
this quality?

2.2. Data Processing and Diagnostics

Automated data validation and correction for predictive maintenance requires methods that
work under realistic assumptions. Within statistics and machine learning, many different techniques
have been developed for dealing with missing data [20–22]. Most existing techniques rely on the
missing completely at random (MCAR) assumption, which does not apply to the typical sensor data
relevant for predictive maintenance. Recent approaches based on Gaussian copulas [23,24] can at least
handle the missing at random (MAR) assumption, in which whether or not a data point is missing
may depend on the values of other variables. A key challenge is to develop techniques that can further
relax these assumptions and efficiently handle streaming big data, while at the same time identifying
and correcting for outliers. Missing value imputation methods based on low-rank matrix completion
such as [25,26] provide a good starting point: they are computationally efficient and their implicit
projection of high-dimensional data into a lower-dimensional space naturally facilitates the robust
detection of outliers [27,28].

Monitoring is an essential part of condition based maintenance, since monitoring the condition
of systems allows the early identification of imminent failures. Current monitoring methods
are not yet suitable for automated use, since they fail when there is no labelled training data,
cannot handle high-dimensional data streams, do not adapt to data arriving at different time scales
or do not take into account internal dependencies [29] and are not capable of making use of physical
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models. Regression-based monitoring methods have recently been extended to obtain adaptive
detection thresholds in high-dimensional settings [30]. A first attempt to develop self-starting
regression-based monitoring methods that do not required labelled training data has been presented
in [31]. Purely statistical approaches have the advantage of providing performance guarantees,
but they are difficult to automate. A promising recent approach to overcome this, is to use deep
learning to correct for internal dependencies and use statistical approaches for monitoring [32].
The PrimaVera project will build upon these approaches by developing automated approaches with
guaranteed performance that work in realistic industrial settings. In addition to these data-driven
condition monitoring techniques, also more physics-based structural health monitoring techniques
will be developed. These techniques typically utilise the dynamic response of systems and structures
(e.g., vibrations) to detect and assess the presence, location and severity of damage [33].

To successfully design maintenance interventions, it is essential to understand why systems
fail. The rapidly growing field of causal inference (see, e.g., the recent bestseller [34]) here may
provide a solution. So-called transfer entropy [35] can be used to estimate the directed transfer
of information between the time series of two variables, e.g., from sensors at different parts of a
lithographic machine [36]. Causal discovery methods [37,38] aim to unravel the causal structure
underlying the interactions between many different variables from purely observational data. From a
methodological point of view, a key challenge is to integrate these two approaches to go from pairwise
measures of causal information flow to a graphical structure that can be efficiently queried to find the
root causes of specific failures.

Whereas causal inference has been successfully applied in various scientific domains
(e.g., climate research [39], neuroscience [40], proteomics [41], psychology [42]), its application in
industrial settings is largely unprecedented. A methodological challenge here is to estimate transfer
entropy in industrial settings.

2.3. Prognostics

The aim of prognostics is to develop accurate algorithms to predict the future failures of
components and systems. The prognostics step follows the data processing step and quantifies
relevant key performance indicators (KPI), such as the remaining useful life (RUL), time to first failure,
availability and reliability. Although a lot of research has already been done in this field, still several
major challenges remain. The first challenge is the gap between component and system level. Most of
the methods available in literature predict failures on a component level, e.g., for bearings [43], rail [44]
or vehicle tracks [45]. However, asset owners are interested in the availability and expected failure of
the complete system [46]. As developing separate models for all components in a system still takes too
much time and effort, solutions have to be found in either predicting system level failures from only a
limited number of (critical) component models, or in speeding up the component model development
process. In the former case, the selection of these critical components, especially for large and complex
systems, is not trivial and requires attention. The second challenge is that many predictive models
heavily depend on a large and complete set of failure data. As for well-maintained critical systems
failures are by definition rare, such data sets are often not available. This means that data-driven models
must be combined with domain knowledge or physics-based prognostic methods [47]. This relates
to the third challenge: only a small number of experts possess detailed knowledge on the failure
behaviour of components, which is also very application-specific. This makes it difficult to incorporate
that knowledge in generic prognostics tools. Automation of the failure or root cause analysis would
make this knowledge more accessible. The fourth challenge in prognostics is that actual application of
the methods proposed in scientific literature in industrial practice appears to be rather limited [48].
The main reason is that companies struggle to determine which approach fits with their ambition
and their data and knowledge maturity. The final challenge is human factor related: engineers are
typically reluctant to adopt advice or predictions from ‘black box’ prognostic tools. Especially fully
data-driven and AI-based methods are hard to comprehend. Adding explainability [49] to these kind
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of methods might assist in increasing trust in the predictions. To summarise, prognostic methods are
still considered to have high potential in predictive maintenance, but wide application in industry is
still hindered by both technical and organisational challenges.

2.4. Maintenance and Logistics Optimisation

The easiest way to plan maintenance is to perform it upon failure, i.e., perform corrective
maintenance. However, this leads to many failures and high downtime. For decades now,
most organisations have used some form of preventive maintenance: periodic maintenance.
Maintenance is then triggered by, for example, running time, calendar time or number of take-offs of an
aeroplane. The first models were proposed over 60 years ago by Barlow and Hunter [50]. Nowadays,
predictive maintenance is an emerging trend.

For predictive maintenance, information is used that results from data acquisition, data processing
and diagnostics, and prognostics, such as RUL estimates or failure probabilities. Typically, as asset gets
older, the RUL estimate goes down and the failure probability goes up. If these estimates would be
perfect, maintenance could be performed exactly before breakdown. However, estimates are imperfect
and an economic trade-off needs to be made. Performing preventive maintenance too early leads to
unnecessary down-time. Performing preventive maintenance too late leads to corrective maintenance,
which is typically much more costly since the maintenance has to be performed under high time
pressure, leading to high logistics costs to get a service engineer with the right parts and tools at
the asset. Furthermore, downtime of a critical component causes the complete asset to be down,
which implies high downtime costs for its owner. This means that there is an economically optimal
moment to perform maintenance that incorporates these costs and the probability of failure or RUL
estimate. This optimisation is further complicated because assets contain many (critical) components,
and grouping maintenance leads to fewer disruptions for the customer and lower logistics costs.

Because it is of key importance to perform maintenance at the right time, there has been a lot of
research on making optimal predictive maintenance decisions(for recent reviews, see, e.g., [5,51]).
However, most of the research has been on single-item problems (i.e., one type of component).
Exceptions, so papers focusing on multi-item problems, are those of Zhu [52] and Arts and Basten [53].
There has been some research on integrating maintenance and the service logistics needed to have
the right parts, people, and tools available at the moment maintenance is planned [54,55] and on the
usage of condition monitoring information to adapt operations [56]. Further integration of the topics
of operations, maintenance, and service logistics is required. Another trending research area is making
decisions with limited information. Since the prognostics and other information are often far from
perfect, models and decision making need to take these imperfections into account. One way to do
that is by modelling problems with partially observable Markov decision processes [57]. Such models
are often hard to solve, but research on solving such models is ongoing [58].

2.5. Asset Management and Organisational Factors

Predictive maintenance is an active research area that has seen significant progress over the past
decade, both in industry and in academia. Progress is much related to advancements in the area of
big data analytics [59]. While many core building blocks of predictive maintenance (such as sensor
technology, failure prediction methods, and optimisation techniques) exist, current solutions focus
on individual steps in the predictive maintenance cycle and only work for very specific settings as
discussed in the introductory chapter of this paper. Developing advanced maintenance techniques is
therefore only useful if they are well integrated into an organisation [60].

A quote of a Maintenance Engineer at the Netherlands Railways who recently studied the use of
predictive strategies illustrates these organisational challenges:

“Preventive water filling based on real-time water level data and a predictive model seems to be an
appropriate maintenance strategy; however, this requires the dynamic usage of human resources and
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filling stations . . . Trains move, making the logistic puzzle more complicated . . . Our overall goal is to
maximise the availability of trains with functioning toilets in a cost-effective way.”

Traditionally organisational aspects regarding the implementation of data-driven maintenance
have been mentioned by other authors and have often been neglected [48,60–63]. Therefore,
the PrimaVera project specifically studies the impact of data-driven maintenance on organisational
processes where data-driven maintenance is being introduced. Procedures for the effective
implementation of data-driven maintenance systems within organisations need to be designed in a
timely way to allow effective use of its predictions in operational maintenance planning processes.

Furthermore, earlier research shows that the implementation of predictive maintenance should
include ambition levels, available data [64] and a fit of predictive maintenance with the organisational
maturity of the organisation [60]. The following organisational interfaces have been identified by [60]:
strategy and goals, decisions, structure, budget and capacity, and documentation. It can be debated
that early integrated decision making is needed to evaluate the impact on these interfaces.

Because asset management is a multi-disciplinary discipline, the organisational impacts expected
by the introduction of data-driven maintenance systems on the aforementioned interfaces should
therefore be approached from multiple perspectives. The perspectives mentioned by [65], e.g., technical,
economic, commercial, compliance, and organisational aspects seem relevant to be used here,
especially because asset management aspects are rarely limited to a one-dimensional perspective.

The most critical organisational impacts should therefore ideally be identified and assessed before
the introduction of data-driven maintenance by studying the use of the aforementioned perspectives
in this specific asset management area. Because of the complexity of the associated systems, processes,
and people there will always remain a number of organisational decisions that need to be identified
and addressed before data-driven maintenance of individual components can actually be implemented.
As [66] pointed out there are always trade-offs between maintenance costs, availability and efficiency
in (multi-component) systems.

It can be argued based on the outcomes of the work of Koochaki [66] that organisational processes
need to become more flexible to make data-driven maintenance on a multi-component system more
feasible. Therefore, the PrimaVera project will also investigate how organisational readiness and
resilience in processes can be developed before or during the introduction of these systems. The use of
high-reliability theory and anti-fragility in organisations can be seen as emerging fields [67] besides
the needed attention for cultural aspects [60].

For the development of appropriate decision making support tools an iterative design science
research (DSR) approach [68] is envisioned in which artefacts are iteratively evaluated and improved.
A DSR strategy focuses on developing artefacts as well as knowledge creation, and aims to produce
improvements based on a thorough understanding of problems or opportunities [68]. Therefore,
the outcome of DSR is not only relevant to the practical application domain, but is also explicitly aimed
at the creation of theoretical knowledge [69].

2.6. Human Factors

Human beings are critical to the functioning and performance of the majority of operating systems.
However, human behaviour traditionally has been ignored in the field of operation management
(OM). That is, most models in OM assume that agents who participate in operating processes are
either fully rational or can be induced to behave rationally [70,71]. More specifically, these models
assume that people have stable preferences, are not affected by cognitive biases or emotions, and have
the ability to disregard irrelevant information by only responding to relevant information when
making decisions [72]. The emerging field of Behavioural Operations Management departs from
these (rather unrealistic) assumptions by acknowledging that human decision-makers are guided
by emotions, cognitive biases or irrelevant situational cues that may affect the adoption and usage
of operating systems [73]. More specifically, transforming maintenance systems and operations
into ones that rely on data-driven technologies bring many challenges. One important challenge
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concerns the design of (data-driven) maintenance systems that organisational members are willing
to trust and use [74,75]. That is, in order to successfully integrate these promising technologies into
organisations, it is of critical importance to understand when and why users are hesitant to adopt
these new technologies in their daily working routine and how we can stimulate its effective usage.
As such, the goal and novelty of PrimaVera is to develop key insights into (i) what factors impacts a
person’s acceptance and use of data-driven failure predictions and maintenance recommendations and
(ii) how to effectively combine human judgement with the solution of a system. These insights will
be used to design novel, user-centred maintenance tools that make the user–system interaction more
effective and efficient.

3. Obstacles to Overcome

To reap the fruits of predictive maintenance and leverage individual building blocks into an
effective solution, the PrimaVera project has identified four cross-cutting obstacles that need to
be overcome. These obstacles have been established based on our own expert interviews from
people within academia and industry and are backed by recent insights from major consultancy
firms [76,77]. The obstacles that thus far have hindered effective solutions are lack of orchestration,
lack of automation, data uncertainty and the role of human and organisational factors. The justification
of these obstacles is supported by an empirical Delphi-based scenario planning study conducted
within the area of maintenance in digitalised manufacturing [78]. Each of these obstacles are detailed
in the following sections.

3.1. Orchestration

Current predictive maintenance solutions often focus on a single step in the predictive
maintenance chain, with poor alignment to the rest of the workflow. This is suboptimal, since locally
optimal solutions do not usually lead to overall optimal solutions. Thus, effective maintenance
requires novel optimisation techniques that work across different aggregation levels. In particular,
asset management involves supply chain optimisation, orchestrating the planning of maintenance
personnel, equipment and groups of assets.

Bokrantz et al. envision that effective maintenance will lead to optimised performance of entire
manufacturing systems [78]. To achieve this the challenge is to develop methods and algorithms
which are useful in practice [78]. Implementing predictive maintenance solutions which focus on a
single failure mode are non-optimal, solutions must be implemented which consider the interaction
of components with their operating environment [79]. Kipper et al. suggest that researchers need to
develop studies to improve the understanding of how Industry 4.0 technologies and concepts impact
processes, products and services [80].

3.2. Automation

Current applications of predictive maintenance usually consist of a large number of non-automated
procedures. This is not only inefficient, but also error prone. Automating these steps into systematic
procedures is challenging, because they involve a wealth of domain knowledge. In particular, accurate,
scalable and robust algorithms for data cleaning, causal discovery of failures and root cause analysis
are currently lacking, and the same holds for prediction algorithms for software and electronics, as well
as for algorithms to optimise the supply chain logistics.

Bokrantz et al. underline this obstacle by noting that developing maintenance management
systems that automatically transform big data into decision support is still challenging [78]. Kipper et al.
recommends future research should be carried out in order to develop frameworks for deploying
Industry 4.0 in real applications, such as predictive maintenance, not only in large companies but also
in Small Medium Enterprises (SMEs) [80].
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3.3. Data Uncertainty

Data from sensors or other sources is often inaccurate or incomplete. Obtaining accurate
prognostics and maintenance decisions despite imperfect and uncertain data requires sophisticated
methods that are capable of handling real world uncertainties [81]. Since uncertainties propagate
along the predictive maintenance workflow, these techniques play a role in each step of the predictive
maintenance cycle. Methods which evaluate the effectiveness and accuracy of predictive maintenance
solutions with regards to uncertainty are required [81].

3.4. Human and Organisational Factors

The transition towards the Industry 4.0 requires organisations to embed the data-driven
culture into their workflow. A key issue is the trust in data-driven decision support tools:
maintenance decisions that are automatically computed by tools must be acted upon by maintenance
engineers. This requires a user-centric design of these decision support tools. In addition, the project
team responsible for successfully deploying a predictive maintenance solution is often confronted with
reluctance and reservations [10]. The lack of communication between between theory developers and
practitioners in the area of reliability and maintenance is also an issue [82].

Besides the right presentation of information, the right process information needs to be made
available at the right moment to allow data-driven maintenance activities. Often there is limited
information available on expected organisational impacts of data-driven maintenance actions.

4. Predictive Maintenance Process Model

To overcome the before mentioned obstacles and to orchestrate the different steps in the predictive
maintenance workflow a generic applicable process model is proposed to facilitate this (Figure 1).
The proposed model is similar to existing models [83–87], which are in essence all based on the generic
model of Jardine et al. [82]. The model of Jardine et al. has three distinct stages; data acquisition,
data processing and maintenance decision-making. As the goal is to define a generically applicable
process model for predictive maintenance, not only should it be applicable at system level but also
at fleet level [88,89]. To ensure this genericity, the proposed model will also be based on the generic
model of Jardine et al. To highlight the significance of diagnostics and prognostics within predictive
maintenance, the proposed model explicitly breaks down the data processing step into these two
elements. The importance of human and organisation factors is commonly overlooked by engineering
disciplines [48,61–63] but is well rooted within information systems research [90,91]. Technology and
behaviour are not dichotomous [90], therefore human and organisational factors have been added
to the proposed model. This element is placed at the very centre of the model as it affects all other
stages of the model. It is exactly this addition which sets the proposed model apart from the previously
proposed models. The usability and applicability of the proposed model will be evaluated by applying
it to the demonstrators described in Section 5.1.

The generic model consists of five stages: (1) data are acquired from assets using sensors or
other sources, (2) these data are then processed and turned into meaningful diagnostic information
through data selection, cleaning and interpretation, (3) from this information predictions are made
about the system’s health (prognostics), (4) based on these prognostics, maintenance and associated
logistics are optimised, (5) all information has to be incorporated into a strategic asset management
plan. Decisions listed in the asset management plan are transformed into actions which will affect the
asset being managed, hence closing the cycle. An asset management plan documents the activities,
resources and timescales required to achieve the organisation’s asset management objectives for an
individual asset or group of assets [92]. Note that each of the stages relate to one or more of the before
mentioned obstacles of predictive maintenance to overcome.

The starting point within the predictive maintenance cycle depends on the motivation for asset
management [93]. This motivation can be initiated by a technology push; existing technology is
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available which needs to be management, in this case the cycle would start with data acquisition.
On the other hand motivation can be initiated by a decision pull; there is a certain economic necessity,
in this case the cycle would start with an asset management plan.

Human and organisational
factors

Assets

Data

Information

Performance
indicators

Asset management
plan

Data acquisition

Data processing
and diagnosis

Prognostics

Maintenance and
logistics optimisation

Decisions

Figure 1. Predictive maintenance management process model.

4.1. PrimaVera Approach

The subsequent sections will focus on each individual stage of the proposed process model and
will describe the envisaged scientific outcome for this stage. Once again it should be stressed that the
project’s main endeavour is to enrol a holistic, cross-sectoral approach, thus explicitly addressing the
observed obstacle of a lack of orchestration.

4.1.1. Data Acquisition

In practical settings selection of suitable sensors for implementing a predictive maintenance
solution pose a challenge [10]. To overcome this, a decision support tool will be realised that advises
on the most appropriate sensing techniques, spatial sensor placement and optimal sensing strategy to
monitor an asset. Though there is a lot of work on optimal sensor placement [12,13,94], an overarching
decision support tool which takes all facets of predictive maintenance into account is still lacking.
Input to such a decision support tool will include critical components together with their failure
modes, required accuracy and resolution, cost factors and expert domain knowledge. Implementing
an optimal sensing strategy will aid in the mitigation of data uncertainty.

One of the case studies being analysed in the PrimaVera project is a sludge dredger’s propulsion
system. A limited amount of recorded failure data is available of this system, only eight clearly labelled
eminent failures are present. In order to obtain accurate prognostic models, more failure data are
required. Therefore, various methods to acquire more failure data will be evaluated. First method is
a model based approach to gather more failure data. A computational white box model is created
based on a qualitative functional decomposition of the system. Second method is the use of a scaled
physical model of a propulsion systems which purposefully has damaged components installed such
as faulty bearings. Third method is the use of public available data sets from similar systems such as
the Machinery Fault Database [95] to evaluate the feasibility of transfer learning. Transfer learning
allows the domains, tasks and distributions to be different for training and testing [96].
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4.1.2. Data Processing and Diagnostics

Novel automated methods for real-time data validation and correction will be developed,
building upon probabilistic and statistical techniques for missing value imputation [25,26] and outlier
detection [28]. Development of these methods is done under realistic assumptions reflecting the
industrial practice. This implies that methods should be able to handle high-dimensional data streams,
mixed sampling frequencies, guarantee performance and should take internal dependencies into
account [29]. Furthermore, care will be taken to incorporate effects of changing operational conditions
on the measurements, as these are directly affecting failure rates, and separate them from the direct
effects caused by failures.

Since uncertainties propagate along the predictive maintenance workflow, these techniques play
a crucial role at the beginning of the predictive maintenance cycle. Since it is impossible to eliminate
uncertainty, it is better to acknowledge uncertainty and quantify it [97]. Uncertainty is a quantitative
indication of the quality of the result, it allows decision makers to assess the reliability of predictive
maintenance process outcomes [98]. The PrimaVera project will explore methods, such as fuzzy
sets [98], Bayesian approach [97] or Dempster–Shafer theory [99], to quantify uncertainty throughout
the predictive maintenance workflow. This will contribute to overcoming the data uncertainty obstacle.

A key step in failure prevention is to understand why systems fail. While data-driven techniques
are good at finding correlations between failure modes, finding causal relations is challenging.
Causal inference graphs can be efficiently queried to find the root causes of specific failures [100,101].
The PrimaVera project will propose a framework to construct these causal inference graphs and extend
them to perform in an industrial setting. The framework will build on the advantages of Bayesian
networks [102,103], Granger causality [104] and transfer entropy [35,105].

4.1.3. Prognostics

A key innovation of the PrimaVera project is to leverage the two most prominent classes of
prognostic algorithms: data-driven and model-based methods.

Data-driven approaches, based on advanced data analytics [106,107], are fast and fully automatic.
However, they require large amounts of data and, as black box methods, their outcomes are difficult to
understand and interpret.

Model-based approaches are based on knowledge on the physics of failure [108,109]. They are
created using domain knowledge, which typically is rather time consuming. Their main advantage is
that they give insight in why systems fail, and how these failures are related to (changes in) operating
conditions. By combining data-driven and model based approaches, PrimaVera aims to obtain the best
of both worlds: automatic, versatile and understandable prognostic methods.

In particular, we plan to develop model learning techniques to automatically derive appropriate
models from empirical data sets—initial results for learning fault tree models appeared in [110,111].
Further, as data are often incomplete, domain knowledge can be incorporated to define the initial
structure of the model. Further, data analytics will be utilised to determine the model parameters in
traditional physical prognostic models, like fatigue crack growth and corrosion models, from data
collected on real systems. The other way around, simulations with physical models will be used to
generate additional data in cases where real data sets are too limited for machine learning applications.
These hybrid prognostic methods will result in considerably more accurate and efficient methods.

As many failures of today’s systems are caused by software rather than hardware, the project
will also work on predicting software failures. Again, a hybrid approach will be adopted,
leveraging model-based software reliability techniques (e.g., reliability growth models [112],
software metrics [113]) with data-driven techniques (e.g., observed failure times [114], mining the
characteristics of software failures [115]).
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4.1.4. Maintenance and Logistics Optimisation

Because data uncertainty is one of the obstacles to overcome, the project will deliver models and
methods for maintenance optimisation under partial observability, i.e., when most of the inputs have
high uncertainty. The project will work both on modelling and optimising problems from practice
using partially observable Markov decision processes [57] and on solving such models quickly [58].

As a next step, to improve orchestration, the project will work on integrating large-scale robust
maintenance optimisation and service logistics (spare parts inventory) control at asset and fleet level.
The link between maintenance optimisation and service logistics control has recently been receiving
considerable attention [54,55,116], as maintenance is unrealisable when spare parts are unavailable and
spare parts are useless if no maintenance is performed. As such, integrating the two objectives through
multi-level optimisation is expected to significantly lower costs, as the solutions to the independent
optimisation problems do not lead to a global optimum. The integration of these two objectives is
a highly complex and computational expensive task. In order to move towards a fully integrated
maintenance optimisation and service logistic framework a hybrid approach is adopted combining
elements from the fields of stochastic operations research, such as spare parts inventory theory [117],
and machine learning or artificial intelligence.

4.1.5. Decisions

Decisions arising from the asset management plan need to consider organisational and human
factors. Transforming traditional maintenance procedures into ones that rely on advanced data-driven
techniques bring many organisational challenges. One important challenge concerns the design of
data-driven maintenance tools that organisational members trust and use [118–121]. That is, users
on various levels often experience difficulties in trusting and using these systems and they therefore
frequently deviate from its advice by relying on their own judgements [122]. Further, to successfully
integrate new technical solutions into organisations, it is of critical importance to understand (i) when
and why users are hesitant to adopt these new technologies in their working routines and (ii) how
to redesign these tools in such a way that it improves the operational performance of organisations.
Furthermore, findings from this research will enable a better orchestration within the predictive
maintenance workflow.

5. Methodology

The scientific methodology in PrimaVera is action research [123], a novel and successful scientific
paradigm where theory is not developed first and validated later. Instead, innovative solutions
for challenging problems are developed together with stakeholders, through a series of short,
iterative cycles. In this way, results provide workable solutions for real issues. Action research
also fits well with research practices at the Universities of Applied Sciences (Saxion and THUAS) and
the independent research organisation (NLR).

To carry out the principles of action research, the project is centred around three application
domains, aligning with the domains of the industrial partners of the project. Each application domain
will provide several case studies that involve all stages of the predictive maintenance cycle. This way
the project will realise synergy between the research lines and leads to a careful balance between
generic and domain-specific maintenance principles.

5.1. Demonstrators

Besides case studies the project will also work on three closely interlinked large scale field
demonstrators that are aligned with the application domains of the industrial partners. The work on
these demonstrators will span the entire duration of the project and will integrate knowledge, insights,
methods and models developed during the project. The three demonstrators are:
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1. Health assessment and prognostics tool for infrastructure related equipment (PLC, e-drive).
This demonstrator tool will implement the data collection, diagnostic and prognostic methods
into a practical software tool that enables an asset owner to assess the system’s health and predict
future failures.

2. Planning and maintenance tool to optimise service logistics (high-tech). This demonstrator tool
will implement the maintenance and supply chain optimisation methods into a user-friendly
software tool.

3. Digital twin to support ship maintenance fed by real-time sensor data (maritime). The digital
twin is a computer model representing the physical components and functions of (part of) a real
ship, as well as its degradation behaviour. By feeding sensor data from the real ship into its
digital twin, the actual status can be used as starting point for the simulation of various scenarios.
User-friendly visualisation capabilities then enable to present the present and future status of
on-board critical systems, which will support maintenance decision making.

These demonstrators will also function as an important tool to evaluate the applicability and
usability of the proposed process model.

Implementation of Demonstrators

During the proposal phase it was already recognised that the work on the three industrial
demonstrators is a substantial task which can only be achieved by using existing tools and making it a
common goal, requiring a continuously collaboration between all the partners throughout the whole
project. The DevOps approach is highly suited to meet these requirements as cross-functional teams
work on continuous operational feature deliveries [124].

To manage the amount of work, one generic framework is built on which the three demonstrators
will be executed. The framework will consist of a separate building block for each of the five
stages presented in Section 4.1, i.e., Data acquisition; Data processing and diagnostics; Prognostics;
Maintenance and logistics optimisation and Decisions, forming a complete predictive maintenance
cycle. The building blocks will contain the new methodologies developed in each of these five stages as
well as existing methodologies. The five stages correspond to the first five work packages in the project.

To implement the framework, each of the five work packages is responsible for delivering their
own building block. A separate sixth work package is defined for the integration of all the building
blocks in the final framework. To guarantee the integration of the various building blocks, at the
beginning of the project already a deliverable with the definition of the building blocks content and
their interfaces is defined with input from all the partners and used for further discussion and refined
throughout the project. To enhance the quality and functionality of the framework, it will be delivered
in three stages throughout the project: a functional prototype, a working prototype and the final
version. These are separate deliverables already foreseen in the proposal stage, to which all the
partners will contribute.

Similarly, the three demonstrators to which the framework will be applied are being defined
from the start of the project. All the involved industrial partners have been visited by the various
project partners as a mutual effort, and had led to the three demonstrators mentioned above.
Next, the demonstrators will be examined in more detail, for instance for the available sensor data,
its quality, and current methods applied by the industrial partners. This reveals missing information
in an early stage that can be gathered throughout the project (for instance by applying new sensor
technologies) and act as a baseline for the development of improved methodologies throughout the
different work packages.

To minimise the effort of the framework implementation, use will be made of existing software
tools such as Python, R and Java that come with a plethora of publicly available libraries that
provide access to implementations of many advanced algorithms on which the new methods will
be build. Furthermore, Docker containers in combination with the above mentioned clear interfaces
between the building blocks will be applied to efficiently integrate the different building blocks,
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various programming languages and tools. Moreover, using Docker results in a reproducible
framework [125] which is scalable, operating system independent and easy to deploy. In addition,
using Docker containers also enables the distribution of working systems which contain a mix of
proprietary and open software. It should be noted that the PrimaVera project is committed to release
code under an open-source licence as much as possible.

6. The Consortium

The PrimaVera consortium consists of a broad multidisciplinary team from academia, industry and
an independent research organisation. Academic partners are affiliated with the University of Twente,
Eindhoven University of Technology, Radboud University, Saxion University of Applied Sciences
and The Hague University of Applied Sciences (THUAS) which are all based in the Netherlands.
The independent research organisation Royal Netherlands Aerospace Centre (NLR) is also part of the
consortium. The consortium will initiate three closely interlinked large scale field demonstrators that
are aligned with three important sectors of the Dutch economy, namely infrastructure, high-tech and
maritime. To facilitate these demonstrators the following leading industrial partners, both public and
private, have joined the consortium:

Infrastructure Rijkswaterstaat, Rolsch Asset Management, Waterboard de Dommel
High-tech ASML, Technobis, Nederlandse Spoorwegen, ORTEC
Maritime Damen Shipyards, Alfa Laval, Royal IHC, Royal Netherlands Navy

7. Conclusions

The overarching challenge of the PrimaVera project is to leverage all individual building
blocks of predictive maintenance into an effective and efficient framework that supports optimal
maintenance and asset management in a complex arena. To realise this goal, the project has identified
four cross cutting challenges to tackle that thus far have hindered effective solutions to predictive
maintenance. These four challenges are the lack of orchestration and automation of the predictive
maintenance workflow, inaccurate or incomplete data and the role of human and organisational factors
in data-driven decision support tools.

To tackle these challenges, the PrimaVera project introduces an intuitive generic process model
which provides a structured approach to predictive maintenance projects. The results of the PrimaVera
project will synergise the individual building blocks of predictive maintenance and will pave the way
towards utilising predictive maintenance at its full potential, achieving higher availability of assets at
lower cost.
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75. Efendić, E.; Van de Calseyde, P.P.; Evans, A.M. Slow response times undermine trust in algorithmic (but not
human) predictions. Organ. Behav. Hum. Decis. Process. 2020, 157, 103–114, doi:10.1016/j.obhdp.2020.01.008.

76. Manyika, J.; Chui, M.; Bisson, P.; Woetzel, J.; Dobbs, R.; Bughin, J.; Aharon, D. The Internet of Things: Mapping
the Value beyond the Hype; Technical Report; McKinsey Global Institute: New York, NY, USA, 2015.

77. Haarman, M.; Mulders, M.; Vassiliadis, C. Predictive Maintenance 4.0: Predict the Unpredictable;
Technical Report; PwC Netherlands and Mainnovation: Amsterdam, The Netherlands, 2017.

78. Bokrantz, J.; Skoogh, A.; Berlin, C.; Stahre, J. Maintenance in digitalised manufacturing: Delphi-based
scenarios for 2030. Int. J. Prod. Econ. 2017, 191, 154–169, doi:10.1016/j.ijpe.2017.06.010.

79. Heng, A.; Zhang, S.; Tan, A.C.; Mathew, J. Rotating machinery prognostics: State of the art, challenges and
opportunities. Mech. Syst. Signal Process. 2009, 23, 724–739, doi:10.1016/j.ymssp.2008.06.009.

80. Kipper, L.M.; Furstenau, L.B.; Hoppe, D.; Frozza, R.; Iepsen, S. Scopus scientific mapping production
in industry 4.0 (2011–2018): A bibliometric analysis. Int. J. Prod. Res. 2020, 58, 1605–1627,
doi:10.1080/00207543.2019.1671625.

81. Sun, B.; Zeng, S.; Kang, R.; Pecht, M.G. Benefits and Challenges of System Prognostics. IEEE Trans. Reliab.
2012, 61, 323–335, doi:10.1109/TR.2012.2194173.

82. Jardine, A.K.; Lin, D.; Banjevic, D. A review on machinery diagnostics and prognostics
implementing condition-based maintenance. Mech. Syst. Signal Process. 2006, 20, 1483–1510,
doi:10.1016/j.ymssp.2005.09.012.

83. Javed, K.; Gouriveau, R.; Zerhouni, N.; Nectoux, P. Enabling Health Monitoring Approach Based on Vibration
Data for Accurate Prognostics. IEEE Trans. Ind. Electron. 2015, 62, 647–656, doi:10.1109/TIE.2014.2327917.

84. Vachtsevanos, G.; Goebel, K. Introduction to Prognostics. 2015. Available online: https://www.phmsociety.
org/sites/phmsociety.org/files/PROGNOSTICS_TUTORIAL.pdf (accessed on 23 November 2020)

85. Vachtsevanos, G.J.; Valavanis, K.P. A Novel Approach to Integrated Vehicle Health Management; Technical Report;
NATO STO: Brussels, Belgium 2018; doi:10.14339/STO-MP-AVT-305-11-PDF.

86. Benedettini, O.; Baines, T.S.; Lightfoot, H.W.; Greenough, R.M. State-of-the-art in integrated vehicle health
management. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2009, 223, 157–170, doi:10.1243/09544100JAERO446.

87. Ran, Y.; Zhou, X.; Lin, P.; Wen, Y.; Deng, R. A Survey of Predictive Maintenance: Systems, Purposes and
Approaches. arXiv 2019, arXiv:eess.SP/1912.07383.

88. Lee, J.; Jin, C.; Liu, Z.; Davari Ardakani, H. Introduction to Data-Driven Methodologies for Prognostics
and Health Management. In Probabilistic Prognostics and Health Management of Energy Systems; Springer:
Berlin/Heidelberg, Germany, 2017; pp. 9–32, doi:10.1007/978-3-319-55852-3_2.

89. Jin, X.; Siegel, D.; Weiss, B.A.; Gamel, E.; Wang, W.; Lee, J.; Ni, J. The present status and future
growth of maintenance in US manufacturing: Results from a pilot survey. Manuf. Rev. 2016, 3, 10,
doi:10.1051/mfreview/2016005.

90. Hevner.; March.; Park.; Ram. Design Science in Information Systems Research. MIS Q. 2004, 28, 75,
doi:10.2307/25148625.

91. Peffers, K.; Tuunanen, T.; Rothenberger, M.A.; Chatterjee, S. A Design Science Research Methodology for
Information Systems Research. J. Manag. Inf. Syst. 2007, 24, 45–77, doi:10.2753/MIS0742-1222240302.

92. Asset Management—Overview, Principles and Terminology; Standard, International Organization for Standardization:
Geneva, Switzerland, 2014.

93. Tiddens, W.W.; Braaksma, J.; Tinga, T. Exploring predictive maintenance applications in industry. J. Qual.
Maint. Eng. 2020, doi:10.1108/JQME-05-2020-0029.

https://www.phmsociety.org/sites/phmsociety.org/files/PROGNOSTICS_TUTORIAL.pdf
https://www.phmsociety.org/sites/phmsociety.org/files/PROGNOSTICS_TUTORIAL.pdf


Appl. Sci. 2020, 10, 8348 18 of 19

94. Gupta, V.; Sharma, M.; Thakur, N. Optimization Criteria for Optimal Placement of Piezoelectric Sensors
and Actuators on a Smart Structure: A Technical Review. J. Intell. Mater. Syst. Struct. 2010, 21, 1227–1243,
doi:10.1177/1045389X10381659.

95. Ribeiro, F. Machinery Fault Database. 2017. http://www02.smt.ufrj.br/~offshore/mfs/index.html
(accessed on 11 September 2020).

96. Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359,
doi:10.1109/TKDE.2009.191.

97. Sankararaman, S.; Goebel, K. Uncertainty in prognostics and systems health management. Int. J. Progn.
Health Manag. 2015, 6.

98. Liu, D.; Luo, Y.; Peng, Y. Uncertainty processing in prognostics and health management: An overview.
In Proceedings of the IEEE 2012 Prognostics and System Health Management Conference (PHM-2012 Beijing),
Beijing, China, 23–25 May 2012; pp. 1–6, doi:10.1109/PHM.2012.6228860.

99. Ng, K.C.; Abramson, B. Uncertainty management in expert systems. IEEE Expert 1990, 5, 29–48,
doi:10.1109/64.53180.

100. van der Hofstad, R. Random Graphs and Complex Networks; Cambridge University Press: Cambridge, UK,
2016; doi:10.1017/9781316779422.

101. Imbens, G.W.; Rubin, D.B. Causal Inference for Statistics, Social, and Biomedical Sciences; Cambridge University
Press: Cambridge, UK, 2015; doi:10.1017/CBO9781139025751.

102. Kenett, R.S. On generating high InfoQ with Bayesian networks. Qual. Technol. Quant. Manag. 2016,
13, 309–332, doi:10.1080/16843703.2016.1189182.

103. Nielsen, T.D.; Jensen, F.V. Bayesian Networks and Decision Graphs; Springer: New York, NY, USA, 2007;
doi:10.1007/978-0-387-68282-2.

104. Ding, M.; Chen, Y.; Bressler, S.L., Granger Causality: Basic Theory and Application to Neuroscience.
In Handbook of Time Series Analysis; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; Chapter 17, pp. 437–460,
doi:10.1002/9783527609970.ch17.

105. Duan, P.; Yang, F.; Chen, T.; Shah, S.L. Direct Causality Detection via the Transfer Entropy Approach.
IEEE Trans. Control Syst. Technol. 2013, 21, 2052–2066, doi:10.1109/TCST.2012.2233476.

106. Lee, J.; Wu, F.; Zhao, W.; Ghaffari, M.; Liao, L.; Siegel, D. Prognostics and health management design for
rotary machinery systems—Reviews, methodology and applications. Mech. Syst. Signal Process. 2014,
42, 314–334, doi:10.1016/j.ymssp.2013.06.004.

107. Schwabacher, M.; Goebel, K. A Survey of Artificial Intelligence for Prognostics; Aritficial Intelligence for
Prognostics; The AAAI Press: Menlo Park, CA, USA, 2007; pp. 108–115.

108. Tinga, T. Principles of Loads and Failure Mechanisms; Springer: London, UK, 2013;
doi:10.1007/978-1-4471-4917-0.

109. Ruijters, E.; Guck, D.; Drolenga, P.; Stoelinga, M. Fault maintenance trees: Reliability centered maintenance
via statistical model checking. In Proceedings of the 2016 Annual Reliability and Maintainability Symposium
(RAMS), Tucson, Arizona, 25–28 January 2016; pp. 1–6.

110. Nauta, M.; Bucur, D.; Stoelinga, M. LIFT: Learning Fault Trees from Observational Data. In Proceedings of
the 15th International Conference on Quantitative Evaluation of Systems; Lecture Notes in Computer Science;
McIver, A.; Horváth, A., Eds.; Springer: Berlin/Heidelberg, Germany 2018; Volume 11024; pp. 306–322,
doi:10.1007/978-3-319-99154-2_19.

111. Linard, A.; Bucur, D.; Stoelinga, M. Fault Trees from Data: Efficient Learning with an Evolutionary
Algorithm. In Proceedings of the 5th International Symposium on Dependable Software Engineering: Theories,
Tools, and Applications SETTA; Lecture Notes in Computer Science; Guan, N., Katoen, J., Sun, J., Eds.;
Springer:Berlin/Heidelberg, Germany, 2019, Volume 11951; pp. 19–37, doi:10.1007/978-3-030-35540-1_2.

112. Yamada, S.; Osaki, S. Software Reliability Growth Modeling: Models and Applications. IEEE Trans.
Softw. Eng. 1985, SE-11, 1431–1437, doi:10.1109/TSE.1985.232179.

113. Jatain, A.; Mehta, Y. Metrics and models for Software Reliability: A systematic review. In Proceedings of the
International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT), Ghaziabad,
India, 7–8 February 2014; pp. 210–214, doi:10.1109/ICICICT.2014.6781281.

114. Tian, L.; Noore, A. Evolutionary neural network modeling for software cumulative failure time prediction.
Reliab. Eng. Syst. Saf. 2005, 87, 45–51, doi:10.1016/j.ress.2004.03.028.

http://www02.smt.ufrj.br/~offshore/mfs/index.html


Appl. Sci. 2020, 10, 8348 19 of 19

115. Li, Z. Using Data Mining Techniques to Improve Software Reliability. Ph.D. Thesis, University of Illinois,
Champaign, IL, USA, 2006.

116. Heijblom, R.; Postma, W.; Natarajan, V.; Stoelinga, M. DFT Analysis Incorporating Spare Parts in Fault Trees.
In Proceedings of the 2018 Annual Reliability and Maintainability Symposium (RAMS), Reno, NV, USA,
22–25 January 2018; pp. 1–7.

117. Basten, R.J.I.; van Houtum, G.J. System-oriented inventory models for spare parts. Surv. Oper. Res.
Manag. Sci. 2014, 19, 34–55.

118. Häkkinen, L.; Hilmola, O. Life after ERP implementation: Long-term development of user perceptions of system
success in an after-sales environment. J. Enterp. Inf. Manag. 2008, 21, 285–310, doi:10.1108/17410390810866646.

119. Venkatesh, V.; Bala, H. Technology Acceptance Model 3 and a Research Agenda on Interventions. Decis. Sci.
2008, 39, 273–315, doi:10.1111/j.1540-5915.2008.00192.x.

120. Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User Acceptance of Information Technology: Toward a
Unified View. Manag. Inf. Syst. Q. 2003, 27, doi:10.2307/30036540.

121. Wiers, V. The relationship between shop floor autonomy and APS implementation success: Evidence from
two cases. Prod. Plan. Control 2009, 20, 576–585, doi:10.1080/09537280903034289.

122. Fildes, R.; Goodwin, P.; Lawrence, M.; Nikolopoulos, K. Effective forecasting and judgmental adjustments:
An empirical evaluation and strategies for improvement in supply-chain planning. Int. J. Forecast. 2009,
25, 3–23, doi:10.1016/J.IJFORECAST.2008.11.010.

123. Stringer, E. Action Research, 4th ed.; SAGE Publications, Inc.: Los Angeles, CA, USA, 2013.
124. Ebert, C.; Gallardo, G.; Hernantes, J.; Serrano, N. DevOps. IEEE Softw. 2016, 33, 94–100.
125. Boettiger, C. An Introduction to Docker for Reproducible Research. SIGOPS Oper. Syst. Rev. 2015, 49, 71–79,

doi:10.1145/2723872.2723882.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	State of the Art
	Data Acquisition
	Data Processing and Diagnostics
	Prognostics
	Maintenance and Logistics Optimisation
	Asset Management and Organisational Factors
	Human Factors

	Obstacles to Overcome
	Orchestration
	Automation
	Data Uncertainty
	Human and Organisational Factors

	Predictive Maintenance Process Model
	PrimaVera Approach
	Data Acquisition
	Data Processing and Diagnostics
	Prognostics
	Maintenance and Logistics Optimisation
	Decisions


	Methodology
	Demonstrators

	The Consortium
	Conclusions
	References

