
 

 
 
 
 
 
3D product configurator 
A guide to mass customization 
 
Ruud Peters 
 
Creative Media and Game Technology 
 
Saxion University of Applied Science 
 
October 27, 2020 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



2 

Abstract 
 

A configurator on the web is key to mass customization. Unfortunately, it is difficult to 
develop one due to its inherent complexity. This is especially true when the product requires 
realistic visualization. Until recently, only dedicated software companies could make these 
kinds of applications. Even then, the concept used to be far too expensive to be viable for 
small to medium sized companies. But, with recent developments in open source software, it 
has become increasingly viable to develop a custom configurator in an affordable manner. 
This report aims to provide an efficient and effective manner to build a custom configurator 
on the web using 3D technologies for product visualization. It achieves this through 
answering four supporting questions that represent the fundamental challenges that were 
encountered during the development of an online configurator. The answers are found 
through a literature review and case study. The literature review serves as a theoretical 
foundation, while the case study describes the development process of the paper’s client in 
detail.  
 
Using the literature review and experience from the development process, it has been 
determined that the company’s and product’s fit for mass customization are the most 
important factors to a configurator’s success. Products that do not require mass 
customization to be viable, but do benefit from personalization, are a particularly good fit. 
Companies that have a low sales volume and high amount of revenue per sale are also 
suitable; it allows some of the configurators work to be done manually by employees, of 
which the cost does not substantially raise the product’s price. 
 
In the case study, Lean Startup Methodology (LSM) has successfully been applied to 
increase customer value and decrease wasted resources. LSM achieves this through the 
build-measure-learn loop; an iterative approach to product development. It uses a Minimal 
Viable Product (MVP) to test a product concept through early customer validation, ensuring 
that a concept is viable before investing in its further development. 
 
The requirements for a configurator are determined by distinguishing between functional 
requirements (i.e. what actions the customers should be able to perform), and non-functional 
requirements (i.e. which requirements ensure the quality of a configurator on the web). The 
functional requirements must be based on the needs of the project owner and target 
audience, while the non-functional requirements should be based on the current best 
practises of software development on the web. 
 
A configurator’s technology stack should be based on the functional and non-functional 
requirements. The report provides an example of a technology stack that can serve multiple 
purposes in terms of product configuration. The technology stack generally consists of 
Google Cloud Platform (GCP) for hosting, React and Material design for the user interface 
(UI), Node and Webpack for building the web application, Gitlab and Docker for continuous 
deployment, FreeCAD and Blender for CAD model conversion, and finally ThreeJS for 
rendering 3D models in the web browser. 
 
 

 



3 

 

Preface 
 

This report is a graduation thesis that serves to learn more about 3D product configuration 
on the web. It has been written for a Dutch company called Kachelbouwer, which directly 
translates to “stove builder”. Run by Ewald and Bernadette Ten Hagen, they seek to build 
highly efficient, wood burning stoves that can heat homes in a carbon neutral manner. Two 
years ago, Ewald came to me with the idea of customers building their own stove from 
modular parts. He imagined a digital playground, in which people could experiment with 
different designs that could be easily translated to reality. What started as an experiment, 
has now turned into a business concept. This is where our goal to build a product 
configurator began. 
 
First and foremost, I would like to thank Ewald and Bernadette Ten Hagen for their support 
over the years. It has been a great experience to work with them. I would also like to thank 
Henri Bruel for being a great graduation coach. His feedback, together with that of Lukas 
Malec, was very helpful for writing this report.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



4 

Glossary 
 

 

2D, 3D Two dimensional, three dimensional. 

Configurator A software application for designing products exactly matching 
customers' individual needs (cyLEDGE Media, 2008). 

Combustion chamber The part of a wood burning stove in which wood is burned. 

C# Programming language used by Unity3D. 

CAD Computer Aided Design. 

Exhaust ducts The part of a wood burning stove that connects the combustion 
chamber to the chimney. It acts as a heat sink to improve 
efficiency and radiate heat over long periods of time.  

E-commerce Electronic commerce. 

Facade The part that encapsulates the exterior of a stove for the sake 
of appearance. 

GAE Google App Engine. 

GCP Google Cloud Platform. 

glTF Graphics Library Transmission Format. 

HTML Hypertext Markup Language. 

IAP Identity Aware Proxy. 

JavaScript Programming language on the web. 

LSM Lean Startup Methodology 

Mantle The part of a stove that encapsulates the exhaust ducts. 

MMP Minimal Marketable Product. 

MVP Minimal Viable Product. 

Pivot A change of strategy without a change of vision (Ries, 2012). 

SEO Search Engine Optimization. 

Stove Wood burning stove, used for generating heat. 

USP Unique Selling Point. 

UV 2D coordinates of a texture on a 3D mesh. 

https://twitter.com/ericries/status/221318901018017792?lang=en


5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

UX User Experience. 

WebGL Web Graphics Library. 

Web apps Web Applications. 



6 

Table of contents 
 

Abstract 2 

Preface 3 

Glossary 4 

Table of contents 6 

1. Introduction 8 
1.1 Goal 8 
1.2 Objective of the client 8 
1.3 Problem statement 9 
1.4 Main and supporting questions 9 

2. Literature review 9 
2.1 Mass customization through configuration 9 
2.2 Lean methodology 11 

3. Methodology 12 

4. Conceptualization 13 
4.1 Minimal Viable Product 13 
4.2 Minimal Marketable Product 15 
4.3 Establishment of requirements 17 

4.3.1 Functional requirements 17 
4.3.2 Non-functional requirements 18 

5. Implementation 20 
5.1 Front-end 20 

5.1.1 3D rendering 20 
5.1.2 User interface 21 

5.2 Back-end 21 
5.2.1 Hosting 21 
5.2.2 Database 21 

5.3 Building tools 22 
5.3.1 Runtime and package management 22 
5.3.2 Bundling and minification 22 

5.4 Devops tools 22 
5.4.1 Version control 22 
5.4.2 Project management 23 
5.4.3 Continuous deployment 23 

5.5 Auxiliary tools 23 
5.5.1 CAD model conversion 23 
5.5.2 Browser support 24 

 



7 

6. Results 24 
6.1 Design validation 24 
6.2 Technology validation 26 
6.3 Approach validation 27 

7. Conclusion 27 
7.1 supporting questions 27 
7.2 main question 28 

8. Discussion 28 

9. Recommendations 29 

Bibliography 29 

Appendices 33 
Minimal Viable Product 33 

Implementation 35 
Unity 35 
Github 35 

Results 36 
Customer validation 36 
Technology stack 37 

Conclusion 38 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



8 

1. Introduction 
 

As computer graphics technologies on the web (WebGL) matures, new opportunities arise 
for innovative solutions. Using WebGL, it is possible to create applications on websites 
(web-apps) that visualize realistic looking three dimensional (3D) environments. An 
interesting commercial use case of this technology is a webshop in which customers can 
customize a product. Such an app is called a configurator, which is an upcoming trend in 
e-commerce. Utilizing WebGL for a configurator on the web opens up new possibilities in 
terms of interactivity, customization and visualization. Compared to traditional two 
dimensional (2D) configurators, WebGL provides more opportunities for businesses. It not 
only enhances user experience; it enables the creation of new services that were previously 
deemed infeasible.  
 
Client Kachelbouwer, the company for which this report has been written, wants to develop 
such a service. The client wants customers to be able to design their own wood burning 
stove from modular components on a website in an easy manner; a feat that requires 
WebGL. Developing a configurator with WebGL is a significant challenge due to the inherent 
complexity of the technology stack. It requires a substantial investment, making the 
development a risky venture. This report addresses this problem by explaining the 
developmental process of the use case of the client. 
 

1.1 Goal 
This report aims to serve as a guide for creating a product configurator that allows for mass 
customization in 3D. By substantiating the design choices of a real use case, the reader is 
taken through a configurator’s design and development process. The given methods act as a 
foundation for developing a web-based solution from the ground up in an efficient and 
effective manner. The methods are, at the time of writing, a compound of the current best 
practices. Moreover, they are suitable for many purposes, including: 
 
● Lean design and development of software. 
● Creating web apps using an extensible and scalable technology stack. 
● The application of WebGL for commercial purposes. 
 

1.2 Objective of the client 
Client Kachelbouwer is a small company in the east of the Netherlands that focuses on 
custom built wood-burning stoves. Due to each customer’s situation and wishes being 
different, every house requires a different heating solution to achieve optimal efficiency. 
Deciding the best solution requires expertise, and is therefore a costly process. 
 
To provide a more scalable solution, the client wants a web configurator in which customers 
can easily design their own stove from modules. The client desires a web-app to guide 
customers through the design and order process to ensure a user friendly experience and 
optimal end result. 
 

 



9 

As the design of a modular stove gets quite complex, a configurator utilizing 2D images 
wouldn’t suffice. Hence, the client wishes for a more sophisticated solution for customers to 
easily visualize and customize the product. Consequently, the client came up with the idea of 
utilizing a 3D configurator on the web. However, the client has no experience with 
developing software. Due to the inherent risk of developing a new product, the client wishes 
to spend minimal funds until the concept is deemed valid. 
 

1.3 Problem statement 
The first and foremost problem is that the client lacks customer validation of the product 
concept. This applies to both the product and its configurator. Therefore, every development 
is a risky investment. If a feature turns out to be undesirable, it is not only costly; it also 
delays the product launch. The problem is compounded by the fact that the client has a huge 
wishlist that describes the ideal solution. There is no plan on how to gradually grow to the 
ideal solution, making it difficult to establish criteria and prioritize requirements to test the 
validity of the concept.  
 
Another challenge is to choose the most suitable technology stack for the solution. As the 
stack is not easily changed mid development, it is important that it is future proof in terms of 
features and scalability. Its implementation will greatly influence the user experience (UX) 
and development costs. Therefore, it is critical to developing a successful solution in the long 
run. 
 

1.4 Main and supporting questions 
Based on the problems stated above, the main question of this report is; 
 
● How to efficiently and effectively develop a product configurator on the web that allows 

for mass customization in 3D? 
 
Which can be divided in the following supporting questions; 
 
1. What are the preconditions for a company to successfully utilize a product configurator 

for mass customization? 
2. How to approach the development of a product configurator so that it is efficient and 

effective? 
3. How to determine the requirements of the project owner and target audience for the 

product configurator? 
4. Which technologies and platforms should a product configurator on the web utilize to 

meet the requirements and support mass customization in 3D? 
  

2. Literature review 
 

2.1 Mass customization through configuration 
A product configurator is a tool for customising a product to meet the needs of a particular 
customer (cyLEDGE Media, 2008). Usually, this tool takes the shape of a software solution 

 

https://www.configurator-database.com/definitions/configurator


10 

in which the customer can co-design a product (Franke & Piller, 2003). Configurators come 
in many varieties; ranging from simple ones that can customize the colors of a product to 
complex ones in which a complete product can be built from modular components 
(Combeenation, 2019). Note that a configurator’s complexity greatly influences its benefits 
and downsides. One considerable benefit is its key role to mass customization. An advanced 
configurator allows a product to be visualized, customized, assessed, represented and 
priced in real-time (Wankel, 2007). In the case of business-to-consumer setting, this can 
provide the following advantages (Cyledge, n.d.); 
 
1. Differentiation through individuality. 
2. Reduced capital commitment and less overproduction. 
3. Better knowledge of customers' needs. 
4. Higher customer loyalty. 
5. Shopping as experience. 

A precondition to customer satisfaction from co-design is that the process is felicitous and 
successful. The customer has to be capable of performing the task, making user friendly 
design a must. Other key factors to a successful configurator are its technological 
capabilities, its integration in the sales environment, its ability to allow for learning by doing, 
its ability to provide experience and process satisfaction, and its integration into the brand 
concept (Wankel, 2007). 
 
Although a configurator is the way to mass customization, it is by no means an easy venture. 
It is tricky to implement in both the shopping experience and company’s workflow (Product 
Designer, 2018). A company has to adapt its business model for a configurator’s 
implementation to become successful (Heuvelmans, 2010). An important precondition is that 
the product is well suited for mass customization. 
 
A configurator’s price should also be considered. There are affordable, pre-made solutions 
available on the market. These are usually sold on a per-license basis through a recurring 
fee. The benefit of these pre-made configurators is that there is little to no upfront 
development cost. The quality of the configurator is also ensured, as the companies which 
sell them offer demonstrations of their capabilities. They may be a viable choice for simple 
use cases, such as products that merely require their appearance to be customizable. 
However, when the required customizability necessitates complex functionality, the 
one-size-fits-all approach of pre-made solutions does not suffice without custom 
modification. At that point, the question becomes whether it is wise to build upon proprietary 
software (causing vendor lock-in), or build a custom solution (in-house or through 
outsourcing) using open-source software.  
 
Developing a custom configurator offers many advantages in the long term. Because the 
software is tailor made, it is better suited to the needs of a company and its target audience 
(Marsner, n.d.). Because the company truly owns the solution, the recurring license fees will 
be little to none (IdeaRoom, n.d.). However, developing custom software requires a 
significant initial investment, and comes with a risk of cost overrun (Flyvbjerg & Budzier, 
2011). It also takes a long time to develop.  

 

https://www.researchgate.net/publication/247832336_Key_research_issues_in_user_interaction_with_user_toolkits_in_a_mass_customisation_system
https://www.combeenation.com/en/what-are-the-different-types-of-product-configurators
https://archive.is/PBn0l
https://www.productsdesigner.com/blog/product-customization-disadvantages-challenges/
https://www.productsdesigner.com/blog/product-customization-disadvantages-challenges/
http://arno.uvt.nl/show.cgi?fid=121051


11 

 

2.2 Lean methodology 
When the validity and composition of a product concept are unknown, like in the case of the 
report’s client, it is recommended to follow Lean methodology; an approach to maximize 
customer value while minimizing waste (Lean Enterprise Institute, n.d.). This is achieved by 
iteratively improving the value proposition of a product concept using the 
Build-Measure-Learn feedback loop (Belyh, 2019). The loop revolves around the Minimal 
Viable Product (MVP); a minimum feature set (Blank, 2010) which is used as an experiment 
to explore a hypothesis about what customers really want. The MVP allows a team to collect 
the maximum amount of validated learning about customers with the least effort (Ries, 
2009). Due to this broad definition, an MVP can range considerably in complexity depending 
on the amount of previous iterations, available knowledge and resources. But fundamentally, 
an MVP is about finding a product-market fit with minimal waste through early customer 
validation. To accomplish this, an MVP has to convey its greater concept by delivering core 
features to visionary customers. These customers can be referred to as innovators (Rogers, 
2003) or earlyvangelists (Blank, 2010), and constitute a tiny but important fraction of the 
target market. Their feedback determines if the development of a concept is worth 
continuing, and if so, what changes and additions have to be made. So, not only should an 
MVP test if the proposed solution is suitable; it should test if the presumed problem is 
serious enough to justify a solution in the first place. When testing an MVP, some crucial 
questions are: 
 
● How much do customers desire the proposed product or service? 
● How willing are customers to pay for the proposed solution? 
● What unique selling points of the proposed product are the most and least interesting? 
● What changes to the product’s vision would improve the value proposition? 
 
To answer crucial questions with minimal investment through real customer feedback is the 
essence of an MVP, and the key to maximizing customer value while minimizing waste. The 
challenge of developing an MVP is determining the minimum feature set. It requires carefully 
balancing the “minimal” with the “viable” part of each MVP iteration. Too little change results 
in inefficient feedback, while too much change may result in wasted resources. Designing an 
MVP involves analyzing the product’s vision and extracting the features that best capture the 
value proposition. The features have to provide enough value for innovators to desire the 
(envisioned) solution, and should be implemented with the least effort possible. This way, a 
company can validate a concept without having to develop the whole product.  
 
In the case of software, such as a configurator, partially Implementing features and utilizing 
placeholder content can accelerate the development process. As long as the MVP can be 
tested and conveys its future utility, innovators can provide feedback. In the case of a 
negative response, a pivot (also known as a course correction) can be made before having 
spent significant resources. When the response is positive, the provided feedback can be 
used to iteratively improve the MVP. After multiple iterations have been validated and the 
solution has been deemed adequate, the goal becomes to transform the MVP into a Minimal 
Marketable Product (MMP). 

 

https://www.lean.org/whatslean/
https://www.cleverism.com/how-build-measure-learn-cycle-really-works/
https://steveblank.com/2010/03/04/perfection-by-subtraction-the-minimum-feature-set/
http://www.startuplessonslearned.com/2009/08/minimum-viable-product-guide.html
http://www.startuplessonslearned.com/2009/08/minimum-viable-product-guide.html


12 

 
An important distinction has to be made between a MVP and MMP. These two terms are 
commonly used interchangeably (Ambler, 2017), as both of them are minimal feature sets. 
The main difference lies in their focus and target audience; 
 
● The MVP focuses on validating the problem and establishing the (ideal) product-market 

fit by learning from innovators. 
● The MMP focuses on reducing the time-to-market by meeting only the essential criteria 

for market launch and targeting early adopters (Pichler, 2013). 
 
In simple terms; the MVP focuses on learning as fast as possible, while the MMP focuses on 
earning as soon as possible. The MMP can be seen as “the step after” an adequate solution 
has been found using an MVP. However, it often takes more than one MVP to achieve this. 
So, Transitioning to an MMP should be a careful consideration. It should not be the goal of 
every MVP. This is one of the biggest misconceptions of Lean startup methodology; it is not 
about being cheap and gaining revenue quickly. These two effects are a result of finding the 
right product concept by focussing on maximizing value and minimizing waste through 
customer validation. 
 

3. Methodology 
 

This report answers the main question by answering the supporting ones in their respective 
order. The supporting questions formulate the fundamental challenges that were 
encountered during the development of a configurator, from its inception to its 
implementation. The supporting questions are answered through the combination of a 
literature review and case study. The literature review serves as a foundation for the case 
study, by defining a theoretical basis for making grounded design decisions. The literature 
review has been conducted through qualitative research. The case study puts the reviewed 
theory in practise using the case of the report’s client. A prototype is developed and tested 
during the case study. The development is split in two parts; a conceptualization and 
implementation. In the conceptualization, the prototype’s design process is described. The 
design is determined using Lean methodology, and based on the functional requirements of 
both the report’s client and target audience. The implementation section describes the 
technology choices, based on the previously determined non-functional requirements. 
Finally, testing is achieved through real customer validation, ensuring the result’s validity. 
 
The first supporting question, “What are the preconditions for a company to successfully 
utilize a product configurator for mass customization?”, is answered using the literature 
review. By explaining the strengths and weaknesses of configurators, its preconditions for 
success are determined. The given information was acquired through secondary research. 
The sources consist of websites that explain the definitions, a research paper on mass 
customization, and a book on the benefits of co-design. The sources are reliable, as their 
conclusions correspond about the benefits of mass customization and co-design. However, 
as stated by (Franke & Piller, 2003), there is hardly any empirical evidence on the benefits of 
configurators. Therefore, the conclusions deducted from the sources may not be completely 
valid. 

 

https://www.projectmanagement.com/blog-post/61937/Defining-MVP--MMF--MMP--and-MMR
https://www.romanpichler.com/blog/minimum-viable-product-and-minimal-marketable-product/


13 

 
The second supporting question, “How to approach the development of a product 
configurator so that it is efficient and effective?”, is answered using both the literature review 
and case study. First, the literature review explains the fundamentals of Lean software 
development. Then, the concluded best practises are used to conceptualize the prototype of 
a configurator in the case study. The utilized sources for the literature study are found 
through secondary research. The sources mainly consist of the work from Ries (20xx) and 
Blank (20xx) due to their prominent connection with Lean product development. As Lean 
startup methodology is empirically proven to increase chance of success (Schwery, 2018), 
and the sources originate from its founders, it can be said that the sources are both reliable 
and valid. 
 
Supporting questions three, “How to determine the requirements of the project owner and 
target audience for the product configurator?“, is answered using the case study. By splitting 
the requirements in functional and non-functional ones, it becomes possible to distinguish 
between the needs of the client and the desired specifications for online configurators in 
general. The functional requirements are deduced from primary research on a previous 
development iteration, which was tested by real customers. The concluded functional 
requirements are therefore valid, but slightly unreliable due to the limited amount of 
individuals that tested the application. The non-functional requirements are deduced from 
secondary research on the general criteria of web applications. Its sources consist of 
multiple websites that explain the criteria and their importance. Due to these criteria being 
widely researched and coherent, the non-functional requirements can be deemed valid and 
reliable. 
 
The fourth and last supporting question, “Which technologies and platforms should a product 
configurator on the web utilize to meet the requirements and support mass customization in 
3D?”, is answered in chapter “Implementation”. It provides a suitable technology stack for 
developing the prototype of an online configurator, conforming to the requirements that have 
been established through supporting question three. The stack has been used to create a 
prototype for the report’s client. The prototype is tested using customer validation, of which 
the details can be found in chapter “Results”. The supporting question is answered using a 
combination of primary and secondary research on suitable technologies for a 3D 
configurator. The utilized sources consist of experience gained from a previous development 
iteration, documentation from different software, libraries and even fora. Therefore, the 
sources are valid and reliable. 
 

4. Conceptualization 
4.1 Minimal Viable Product 
In the case of the client, the goal of the MVP is to first gauge the desire for a stove 
configurator and then discover its desirable features. To achieve this, the features that best 
represent the core value proposition have to be implemented in the MVP. In other words; the 
features have to convey how the configurator would look, so that visionary customers can 
validate the concept and provide feedback. As stated in the “Objectives of the client”, the 
ideal solution for the client would be a configurator that enables customers to easily design a 

 



14 

stove themselves. The designing process should allow for changes in shape and materials, 
so that the resulting stove fits the needs of the customer. A configurable stove consists of 
four parts; a combustion chamber, a long exhaust duct, a mantle and an outer facade.  
 

1. The type of combustion chamber determines the amount of heat that can be created. 
It should be well suited to the customer’s living situation. 
 

2. The duct is made from dense stone that acts as a heatsink for the hot exhaust 
gasses. The heat is stored in the duct’s building material, like a natural battery. It 
then slowly radiates the heat to the outside, providing a heat source over a long 
period of time. The duct consists of modular pieces that can make straight sections 
and corners. The duct’s modularity allows it to be built into any kind of shape. It is 
suitable for different setups such as inner and outer corners of a room. The 
combustion chamber and chimney length determine the ideal length. 
 

 

Figure 1. Stove with a cross section of exhaust ducts.  
 

3. The mantle is a “concrete box” around the exhaust ducts. At the start of the MVP’s 
development, there was no design for it yet. However, it was known that the mantle 
was going to be modular to ensure that the ducts always fit inside it. The mantle is 
going to be made from square cement blocks. 
 

4. The facade is basically a layer of square panels that cover the mantle. The panels 
can be made from different materials, and are purely decorative. Customers should 
be able to choose from many materials in the configurator. 

 
Ideally, the customer should be able to customize all four parts of the stove. However, there 
are limitations to the flexibility of the stove’s design. The configuration has to follow certain 
rules (e.g ideal length of the duct) to be viable. Moreover, the configured stove should fit the 
house of the client. To approximate the ideal configuration, certain calculations have to be 
made using information on the customer’s house. Examples of these are the level of 
insulation, room size and chimney height. Not only does this make configuration process 
difficult for customers, it also makes the development of a minimal viable configurator quite 
challenging. Hence, the first version of the MVP should answer some essential questions 

 



15 

before a marketable solution can be made. Using the questions from the Lean methodology 
section as an example, the following questions can be formed; 
 
● How much do customers desire to configure a stove? 
● What features are essential for customers to design a stove? 
● How would the ideal configuration process of a stove look like? 
 
The last two questions are essential for developing features that customers find useful. The 
answers tell what the functional requirements for the configurator should be. Note that 
questions about pricing are left out. This is because the client is already on the stove market, 
and the price of the new configurable stove will be lower than the ones currently sold (due to 
the easy assembly of modular components). However, this relies on the premise that the 
perceived value of the modular stove is the same or better. This should be tested in the next 
version of the MVP, when designing the facade. 
 
The MVP’s conceptualization, implementation, and results are further explained in the 
appendices. This is because the MVP’s development can be considered an independent 
project. It was developed by Stanislav Mutafchiev during his graduation, and co-designed by 
me, the author. The MVP’s conclusions were essential to the development of the MMP, 
which this paper will explain in the following sections.  
 

4.2 Minimal Marketable Product 
In short, The MVP concluded two things; the vision of the product configurator is legitimate, 
but the approach was wrong. The client needs a change of strategy without a change of 
vision (Ries, 2012), better known as a pivot. The changes should be based on the lessons 
learned from the MVP. In the case of the client, the MVP showed that the technology stack 
and minimum feature set were both unviable. Both of these have to be redetermined. It is 
important to start with the new minimum feature set, as “you’ve got to start with the customer 
experience and work back towards the technology” (Jobs, 1997). 
 
The most valuable lesson learned was that customers desire a user friendly configurator that 
allows for the customization of a stove’s shape and materials. The difficulty is that the design 
should be both appealing and functional. These two aspects influence each other, making 
the design process a complicated task for the user. During the development of the MVP, the 
client assumed that the functionality should be leading within the design process; first the 
combustion chamber and ducts, then the mantle and facade. This is how the client would 
manually design a stove.  
 
The main challenge is that the amount of functionality required to configure a complete stove 
conflicts with the customer’s wish for ease of use. More functionality enables more flexibility, 
but also increases complexity. It is difficult to make the design process both flexible and user 
friendly, while simultaneously guaranteeing a functional end result. It would require a lot of 
work and user testing to accomplish, which is undesirable at this stage due to the limited 
product validation of the MVP. Still, the client idealizes a configurator in which customers can 
design their own stove. 

 

https://blogs.oracle.com/today/youve-got-to-start-with-the-customer-experience


16 

 
The whole problem can be summarized to the following question: “What simple solution 
allows customers to easily design the appearance of a stove, while simultaneously ensuring 
the stove’s functionality?”. In the case of the client, this is the critical question to a successful 
pivot. After careful consideration and many discussions, the client found two wrong 
assumptions; 
 
● Functionality has to be guaranteed, but it does not have to be leading in the design 

process. It is possible to design the appearance of a stove first and then fit in the ducts. 
Not every exterior design will be functional, but it is often correctable with small 
adjustments. 

  
● Although it would be ideal for customers to design the complete stoves themselves, it is 

infeasible to accomplish in one go. The client’s vision is appropriate, but the approach 
has to be divided in steps.  

 
Dropping these two assumptions opens up a new possibility; a concierge test (Kromer, n.d.). 
This is a strategy whereby customers are provided with a manual service (bmilab, n.d.). It 
allows a feature to be tested without the need for it to be completely ready, optimized, or 
automated. A concierge test may also provide helpful insight into the future implementation. 
The strategy is particularly well suited for the case of the client; customers can design the 
appearance of the stove, and let the inner workings be handled for them by the client. The 
strategy would also significantly reduce the amount of development required. The price of 
the client’s product even allows for the manual labour cost to be included, until the service is 
automated. 
 
The first development step is to allow customers to configure the facade. The stove’s shape 
can be manually designed by the client, based on the requirements of a specific customer. 
This is not ideal, as it would require a lot of back and forth communication. It would only be 
viable for visionary customers, who are willing to invest significant effort into the product. 
Fortunately, it will result in feedback that can be used for further developments. It also 
provides initial stove designs and realisations. Pictures of these realised designs can be 
showcased inside the configurator, next to their virtual model. This way, future customers 
can see what to expect from the design process. If a particular model is liked by another 
customer, the facade can easily be adjusted. One model can thus serve multiple customers. 
This step is already enough for a viable MMP. However, the focus should still be on testing 
and iterative improvement. For example; the configurator should provide a diverse amount of 
models and materials to test what customers really want, and adjust for that in the future. 
The unique selling points should be listed and explained, to test early marketing material.  
 
The second step is to allow customers to configure the general shape of the stove. This 
would not always result in viable models, but it is great for customers to experiment with. 
The configurator should be flexible and user friendly. But, the client should be able to help a 
customer if needed. When the feedback from the first iteration step has been implemented, 
early adopters can be approached through initial marketing. It is a great moment to 
experiment with different design possibilities and marketing strategies. The focus of this step 

 

https://kromatic.com/blog/concierge-vs-wizard-of-oz-test/
https://bmilab.com/testing/cards/concierge-test


17 

should be on finding scalable practises that allow for growth. For example, finding and 
implementing the features that make the manual service effortless. 
 
The third development step would be the ideal vision of the client; a configurator that 
enables customers to design a complete stove based on the requirements of their home. 
Although this stage aims to serve the general majority of customers, not every one of them 
will be capable of using the configurator. Therefore, the client should still offer the manual 
service from step one and two. The focus of this stage should be to offer a complete 
experience to the average customer in the target market. The customer should be able to 
find and understand the product, as well as configure their ideal version. Product marketing, 
education on biomass, and guidance in the configurator are important examples for the 
customer acquisition process.  
 
The strategy that is explained in these three steps can be used to determine the minimum 
feature set. The features can then be divided in requirements, which can be used to 
determine the ideal technology stack.  
 

4.3 Establishment of requirements 
The technology stack should be chosen based on the requirements of the minimum feature 
set.  There are two types of requirements. First, there are functional requirements; these tell 
what a system should be able to do. Second, there are non-functional requirements; these 
describe in what manner the system should do it. In this section, an overview of both types 
of requirements is given. The functional requirements are based on the first development 
step of the Minimal Marketable Product, that has been determined in the previous section. 
The non-functional requirements are based on the current best practises for web 
applications in general, which have been acquired from experience, previous colleagues and 
a multitude of online sources like fora. The requirements are minimal and viable, like the 
minimum feature set they are inferred from. 
 

4.3.1 Functional requirements 
Overview of unique selling points  
As requested by one of the users of the MVP, an overview of the USPs would be helpful. In 
the case of the client, the value proposition is not immediately obvious. Providing a simple 
and clean overview with short explanations is critical to acquire new customers who are 
unfamiliar with the concept. In a later development step, these USPs can be further 
explained on dedicated web pages. The USP overview has to be on the top of the landing 
page so it can immediately be seen by new customers. Preferably, the USPs have 
illustrations to make the content more iconic and appealing. 
 
Overview of product models 
Because customers had troubles with imagining the possibilities of the configurator, an 
overview of product models has to be provided. The overview serves an interactive 
showcase, and preferably displays both the realised and virtual version of the product. The 
overview has to allow models to be added by the client. Each model needs to have a name 

 



18 

and a price attached to it. When a customer clicks on one of the models, the customer has to 
be directed to its details. 
 
Overview of product details 
Each model gets its own details page that visualizes the 3D model, and preferably a picture 
of the realisation. The overview needs a table that contains its technical information, such as 
its weight, heat output and price. The visualized 3D model on the overview has to be 
interactive, allowing customers to rotate and zoom. Easy switching between facade presets 
would be desirable, to show the possibilities of the configurator. 
 
Product customization 
If a customer is interested, he or she has to be able to configure the facade manually. 
Changing the facade should also update the current price. A multitude of materials has to be 
available, and has to be based on customer interviews during the MMP phase. Initially, 
traditional materials such as different kinds of stone can be used.  
 
Order creation 
After a customer configures the facade of a stove, he or she has to be able to create an 
order. Initially, this can be a simple email service that brings the customer and client in 
contact. Later, the order should list all the parts and their associated prices.  
 
Contact information 
It is essential for a company’s credibility to have a contact page (Barret, 2018). It should at 
least contain a physical address, email address and phone number. Preferably, the page 
contains a map of where the company is located. When users are on their phone, it would be 
ideal if clicking on the phone number or email address directs them to the dial pad or mail 
client, respectively.  
 

4.3.2 Non-functional requirements 
Usability 
Customers may use the website on different devices. Thus, a responsive user interface is 
required (LePage & Andrew, 2019). Preferably, the UI is optimized for phone, tablet and PC 
separately. For example, the website menu has to be optimized for touch on phone and 
tablet, and mouse on PC.  
 
The web pages should load fast on all devices (Cloudflare, n.d.). Clicking on a link and 
opening a new page should not require a reload of the 3D model data, for example. Long 
reload times bring the experience to a halt, and cause users to bounce to other websites. 
The included code on the web pages should be optimized for size. Leaving unnecessary 
code on a web page leads to a slower initial load time, which should be avoided as much as 
possible. 
 
The website should also support different browsers and devices. A great example are 
iPhones; websites behave quite differently on Safari compared to Chrome, resulting in bad 
user interfaces and broken buttons if not taken into account (SiteGround, n.d.). As a large 
section of the browser market consists of safari (16,82% as of October 2020) (Statcounter, 

 

https://www.searchenginewatch.com/2018/07/20/factors-that-influence-your-websites-credibility/
https://web.dev/responsive-web-design-basics/
https://www.cloudflare.com/learning/performance/why-site-speed-matters/
https://www.siteground.com/kb/why_does_my_website_look_different_on_different_browsers/
https://gs.statcounter.com/browser-market-share


19 

n.d.), it is absolutely necessary to support it. Ignoring this can result in broken pages that 
significantly increase bounce rate (Massey, 2015). 
 
marketability 
Search engine optimization (SEO) is essential to marketing success of a website. SEO 
basically determines how high a website is ranked on web searches, such as on Google 
(WebFX, n.d.). Web pages that have a high SEO score will attract more potential customers, 
increasing the product’s exposure. It is therefore essential for increasing sales. SEO is also 
free, which saves advertising costs in the long run. However, It takes a significant amount of 
time before a search engine updates the SEO score of web pages (Google, n.d.). Website 
age also contributes to a higher SEO score, which is why the SEO should be prioritized early 
in the development of a website.  
 
Website analytics are key to the build-measure-learn feedback loop, especially at the MMP 
stage. Using analytics, the client can learn about customer behaviour and demographics 
(Thakur, 2017). Analytics are essential to reduce bounce rate and increase customer 
retention. Analytics can also be extended by AB testing, whereby different versions of a web 
page are served and tested. Tools such as Google Analytics are free, and worth integrating 
in a website. 
 
Security 
Online security is just as important as any of the other requirements. Cyberattacks are costly 
to clean-up, damage reputation and discourage visitors from coming back (Tammany, 2018) 
. Preventing them prevents unnecessary costs and even improves the SEO of a website. 
When choosing a platform or technology, it is important to take their security measures into 
consideration. A useful example is HTTPS; a protocol that secures the communication 
between a website and a user. Not every hosting service sets up HTTPS automatically and 
for free, which should be taken into account. 
 
An important security aspect is data and identity protection. Although the client does not 
need user accounts immediately, it is beneficial to consider this aspect for the future. 
Protecting customer and product data is a necessity for every company. Customer data 
leaking would be disastrous for a company’s reputation. Sensitive 3D models should not fall 
in wrong hands either, as it could spark product imitation.  
 
Stability 
Last but not least, a website needs to be stable. It cannot go offline accidently, as it would 
result in lost customers. A broken feature that goes unnoticed over a long period of time is 
even worse, as it can cause customers to never come back to the “broken” website. 
 
The website’s deployment process should be reproducible; easy to update without the 
chance of something breaking unexpectedly. The chance of a mistake being made during a 
complicated, manual deployment process increases when a web app becomes more 
complex or when the development team grows in size. Fixing these kinds of mistakes is 
undesirable, which is why the process should ideally be automated. It is also advisable to 

 

https://gs.statcounter.com/browser-market-share
https://conversionsciences.com/what-are-some-strategies-for-reducing-bounce-rate/
https://www.webfx.com/internet-marketing/is-SEO-important-for-every-business.html
https://support.google.com/webmasters/answer/7451184?hl=en
https://medium.com/@dineshsem/10-good-reasons-why-you-should-use-google-analytics-699f10194834
https://www.sitelock.com/blog/what-is-website-security/


20 

have a test domain set up, to check the web app’s integrity before uploading it to the main 
domain.  
 
A website’s scalability is also important. When the amount of visitors grows, the hosting 
service has to scale to prevent long loading times. Preferably, this can happen dynamically 
depending on server load, as running unnecessary servers is costly. Using a good hosting 
service can also prevent DDOS cyber attacks, which try to overwhelm a website’s servers. 
 

5. Implementation 
 

An online configurator, like a physical system, consists of several components. These 
components form the technology stack, and serve as the foundation on which a configurator 
is built. This chapter explains the composition of the technology stack, and substantiates its 
design choices. 
 
To prevent reinventing the wheel in software development, it is advisable to use pre-existing 
software applications and libraries. There is a large offer of free, open-source software 
available on the internet. Without getting too far into the details, open-source software can 
prevent a lot of work and license costs, under the condition that changes to the original 
source code are given back to the open-source community. The technology stack provided 
by this report is mostly open-source, except for the back-end. This is because the back-end 
is set up in the cloud, meaning that a company does need server hardware.  
 
The technology stack has been chosen on the basis that it at least supports the functional 
requirements. In other words, it supports all the desired functionalities. The non-functional 
requirements were also taken into consideration, ensuring its effectiveness in terms of 
usability, marketability, security and stability. The chosen technology stack is therefore not 
only viable, but also suitable for many web applications. Its flexibility lies in its modularity; all 
of its components can be changed, and new modules can easily be added. It is therefore a 
strong base for any kind of (3D) configurator. 
 
For the purpose of simplicity, the provided technology stack is split into five parts; a 
front-end, a back-end, building tools, devops tools and auxiliary tools. 
 
a list of back-end and front-end technologies. The front-end meaning any technology which 
the user directly comes in contact with (i.e. the presentation layer), and the back-end 
meaning all the technologies that handle the data in the background. In practise, some of 
these technologies are somewhere in between these two terms. The list is therefore 
disputable, and only serves as a guideline.  
 

5.1 Front-end 
5.1.1 3D rendering 
ThreeJS is a JavaScript library that serves as a WebGL wrapper or API. It is used to easily 
make 3D applications in the web browser. It is therefore very suitable for the visualization of 

 



21 

products in a configurator. Its glTF loader allows for loading lightweight 3D models. It also 
comes with a smooth orbit camera, making it possible to view a product from any angle. 
 
visualizing a complete product in ThreeJS is therefore easily achieved. The library itself is 
also lightweight. Its size is currently around 700 kilobytes, which can be further reduced 
using WebPack. 
 

5.1.2 User interface 
ReactJS is a JavaScript library for building user interfaces. By rewriting the content of a 
single webpage instead of loading a completely new page, ReactJS allows for the creation of 
a single-page application (SPA). This makes it a lot easier to create websites with dynamic 
content, such as configurators. An SPA is not only fast, but also responsive, making the user 
experience close to a native app. Using an SPA framework like ReactJS ensures that a 
configurator is fast and mobile friendly. It is definitely possible to switch ReactJS for another 
SPA framework like VueJS or AngularJS. 
 
Combining ReactJS with Google’s Material Design system, otherwise known as Material UI, 
ensures a professional looking UI and UX. As Material UI offers many prefabricated 
components, creating responsive web applications ends up taking little effort. 
 

5.2 Back-end 
5.2.1 Hosting 
Google App Engine (GAE) is part of Google Cloud Platform (GCP), and serves as a platform 
to host web applications using the data centers of Google. It is completely serverless, 
meaning that the cloud takes care of running the server. GAE manages the allocation of 
resources based on demand, thereby scaling up and down automatically. This allows the 
hosting costs to be based on the application’s demand, meaning that users of the platform 
only pay for what is needed.  
 
GAE supports both single-page applications,multi-page applications, and even combinations 
thereof. It can also host multiple versions at the same time under different (sub)domains 
using Google Domains, allowing for a development version to be tested before publishing. 
GAE has many more useful features, and is very well integrated with other cloud 
functionalities. A great example is the Identity Aware Proxy (IAP) of GCP. This service can 
put certain pages or complete (sub)domains behind a password, by requiring users to login 
to their google account. Thus, only a limited number of people can be given access.  
 

5.2.2 Database 
The reason why GCP was chosen over other cloud platforms, such as Amazon Web 
Services or Microsoft Azure, was because of a specific service of GCP called Firebase. 
Firebase is basically GCP “lite”. It offers many of the same functionalities as GCP, but is 
more user friendly regarding web application development. It offers a JavaScript package 
(see section 5.3.2) that serves as an API for many GCP functionalities. This makes creating 
an MVP a lot simpler, as only one service is needed to implement a lot of different features. 

 



22 

Firebase Cloud Storage can, for example, save files such as 3D model (glTF) files, while 
Firebase Firestore serves as a traditional NoSQL database. It offers many other 
functionalities such as analytics, testing, messaging and authentication. The latter is 
especially helpful, as creating an authentication system is very difficult due to its security 
requirements. Like GCP, Firebase only bills for what is used. A major downside is that it is 
relatively expensive compared to GCP. But, for the creation of an MVP, it is an ideal 
solution. It can later be replaced by a cheaper alternative when it is financially viable. 
 
 

5.3 Building tools 
5.3.1 Runtime and package management 
Although JavaScript does work in the web browser by itself, build tools are required to 
effectively develop web applications such as configurators. NodeJS, together with the Node 
Package Manager (NPM), are a suitable option. NPM is used to install packages of build 
tools and libraries. It can even install libraries for the front-end, such as ReactJS, ThreeJS, 
Material-UI, Google Firebase and many more. NodeJS, together with NPM, make the 
developing environment very simple to set up and use. 
 

5.3.2 Bundling and minification 
Webpack is a core building tool for creating optimized web applications in an effective 
manner. It serves multiple purposes, and even allows plugins to be installed. Webpack and 
its additional plugins can be installed using NPM. First and foremost, Webpack is a module 
bundler; it can make optimized bundles of JavaScript, HTML and CSS. Bundling decreases 
the total size of the web application, and increases its load speed. It achieves this by 
removing unused code (in a process called tree shaking), and merges multiple packages. 
Webpack can also convert newer versions of JavaScript (that are not yet supported by all 
browsers) to older, more widely supported versions. It achieves this using another build tool 
called Babel, through a process called transpilation. Thus, Webpack and Babel ensure that 
web applications work on older devices and browser versions. Finally, Webpack can also 
host a development with live reloading. When a change is made during development, it can 
immediately be seen and tested locally in the web browser. This speeds up the development 
of web applications significantly. 
 

5.4 Devops tools 
5.4.1 Version control 
Git is a version-control system that tracks the changes in source code development . Git is 
helpful when multiple developers are working on the same code, as it assists with merging 
changes. It achieves this by having multiple branches that act as different stages of code 
integration. For example, the main branch should always have a stable version of 
application, while a develop branch can have a more recent but experimental version. These 
different branches can automatically be deployed to the cloud using a Continuous 
Deployment pipeline (CD, see 5.4.3). Thus, different versions of a configurator can 
continuously be tested in an online environment. A Git repository, containing all the different 

 



23 

versions and branches, can be hosted for free on GitLab. GitLab also offers free project 
management tooling and a continuous integration and deployment pipeline.  
 

5.4.2 Project management 
Gitlab offers an issue tracker and project board for free. The issue tracker can be used to 
describe desired features and bugs through referencing specific Git commits and branches. 
The project board provides an overview of all the issues and merge requests. The issues 
can be given labels, so that the overview categorizes them automatically in columns. The 
merge requests act as review points. It is therefore possible to create a semi-automated 
Kanban board. Lastly, it is possible to mention other developers, which can trigger an email 
notification. All of these tools are essential to project management and quality assurance. 
 

5.4.3 Continuous deployment 
Through Gitlab Pipeline, it is possible to automate the deployment process. It achieves this 
by automatically building the application in the cloud when a new version of the software is 
saved via Git (i.e. when a commit is pushed). After the build is finished, it is automatically 
published to the back-end (GAE in the case of the client). GitLab Pipeline achieves this 
through an application called docker; virtualization software that can create “mini” operating 
systems, which are known as containers. These containers can run alongside the main 
operating system, and copied over to other computers or servers, together with all the 
installed software inside them. Thus, Docker ensures that a build process will work on any 
computer by making the environment completely independent and fixed. Although setting up 
Docker requires knowledge and effort, it is a worthwhile investment. When implemented, it 
saves a lot of work by automating a tedious process and ensuring its reliability. It is 
especially effective in bigger teams, in which it is undesirable to give everyone access to a 
server. 
 

5.5 Auxiliary tools 
5.5.1 CAD model conversion 
An important aspect of a product configurator are the 3D models of the product. Usually, 
products are designed using Computer Aided Design (CAD) programs. The resulting CAD 
models of the product contain 3D information, but are incompatible with hardware 
accelerated rendering APIs such as WebGL. This is because CAD geometry is made of 
non-uniform rational b-splines (NURBS), while WebGL requires mesh geometry. To use the 
products made in CAD for configurators on the web, their geometry has to be converted. The 
conversion process is critical to the quality of the 3D visualization. Unfortunately, it is difficult 
to carry out the conversion process effectively, as the model's geometrical complexity has to 
be carefully balanced between visual quality and performance. After the geometrical 
conversion, materials have to be assigned to the model as well through a process called UV 
mapping. Finally, the model should be exported to the glTF file format. Previous research 
(Koster & Peters, 2020) showed that there is only one program that can effectively convert 
from CAD to glTF directly, namely a software suite called PiXYZ. Unfortunately, it can be 
considered quite expensive. There is an open source solution available; a combination of 
FreeCAD and Blender. although it is not as effective as PiXYZ, it can certainly get the job 

 



24 

done. FreeCAD can be used to convert the CAD geometry to a mesh, while Blender can be 
used to assign materials and export to glTF. Although the process is quite labour intensive, it 
might be a viable alternative. 
 

5.5.2 Browser support 
When developing a web application that aims to support a wide array of devices, it is quite 
common to encounter browsers that do not support certain JavaScript functionalities. This is 
due to the fact that the specifications of the web are constantly updated, with some browser 
developers choosing to forgo the support of every feature. A classic example is Apple 
devices not supporting WebGL 2.0 (Hackernews, 2019). These limitations have to be 
carefully considered before choosing to implement features, or it might lead to unexpected 
bugs on some devices. It is therefore recommended to regularly test across browsers and 
devices. Companies such as Browserstack allow this to be seamlessly done online. 
Sometimes, it is possible to implement these features in browsers using a Polyfill; a 
technique to retrofit JavaScript functionalities in browsers that do not natively support them. 
 
 

6. Results 
 

Although the development process of the client’s configurator is still ongoing, it was already 
possible to test a prototype of the MMP with two real customers. This was achieved through 
an interview, in which the client discussed the customized product using a 3D visualization of 
its model in the configurator. Thus, the results reflect early customer validation on the 
configurator that has been developed during the case study. The results are split in three 
sections that validate the prototype’s design, technology stack and development approach. 
These sections provide the answers to the supporting questions of this report. 
 

6.1 Design validation 
The customer validation on the configurator’s design confirmed the assumptions that were 
found in the literature review (section 2.1). The customers said that a configurator is a 
positive contribution to the complete product concept due to its ability to personalize the 
stove. Although the customers were earlyvangelists, it can be said that personalization 
creates customer loyalty and differentiation due to individuality, as the customers are more 
than willing to invest time into co-designing a unique product. The customers also stated that 
they are enjoying the co-designing process, which shows that configurators can have a 
positive influence on the shopping experience. Although it remains to be seen if mass 
customization leads to reduced capital commitment and less overproduction, the price of the 
modular product will be lower than the standard models in case of the client. This is due to 
the modular product being easier and faster to build. Everything considered, it can be said 
that a configurator fits well with the product concept of the client. This might be the case 
because of the following reasons; 
 
● The product is viable without mass customization. Thus, a configurator can be a bonus. 
● The product exterior is important to customers. Thus, a product configurator can add 

personalization value. 

 



25 

● The product price allows for manual labour to be included. Thus, a product configurator 
does not need to be completely automated (and can therefore be developed more 
easily).  

 
The results provide answers to supporting questions one and three, as it contains 
information on the preconditions for a successful configurator and the functional 
requirements. 
 

 
Figure 2. 3D visualization of the product’s model that was shown to the customers. 
 

 

Strengths 
● Users enjoy co-designing a product, 

and are willing to invest effort. 
● The overview of USPs was clear. 
● The 3D visualization was helpful for 

understanding the expected end result. 
● Users liked the idea of testing materials 

in the configurator. 

Weaknesses 
● Users noticed that the configurator is 

still not on the level of an MMP.  
● Users found the 3D visualization clear, 

but not pretty. 
● Users missed a call to action at the 

bottom of the landing page, directing to 
the overview of models. 

● Website did not work on an user’s 
Apple computer. 

● Users missed content on the landing 
page, such as pictures. 

● Users did not like the name of the 
product. 

 

Opportunities 
● Users would like to see more models. 
● Users suggested multiple materials, 

such as slate stone and weathered 
steel (Cor-Ten). 

● After the first model of a user has been 
built, pictures of its realisation can be 
added to the website. 

Threats 
● Users had a lot of questions on the 

process of co-designing. 
● Although the users were generally 

positive, they still had a lot of criticism 
on the product itself. 

● These specific earlyvangelists are 
designers, who may be more interested 



26 

Table 1. SWOT analysis of the customer feedback on the prototype of the MMP. 
  

6.2 Technology validation 
The technology stack turned out to be suitable for the task of creating a configurator on the 
web. This is due to it being capable of supporting all the functional requirements. It also 
works well considering the non-functional requirements. The Node Package Manager allows 
technologies to easily be added and removed from the project, resulting in the stack being 
highly flexible. Webpack ensured that the front-end was as lightweight as possible through 
its modularization, caching and tree shaking abilities. React, combined with Google’s 
Material Design enables the creation of amazing single page web apps that are not only very 
performant, but also good looking. ThreeJS is a powerful library that allows developers to 
create a lightweight and performant 3D experience. React and ThreeJS work really well 
together, but requires a significant understanding of both frameworks. With FreeCAD and 
Blender, it is possible to convert CAD to lightweight GLTF files that can be loaded by 
ThreeJS. The continuous delivery pipeline of Gitlab, combined with Docker, allowed for the 
whole deployment to GCP to be automated. GCP, together with Firebase, are useful 
platforms for hosting web applications. They are affordable and offer many features in the 
cloud. The only downside of this technology stack is that it is quite complicated. Because 
there are many different technologies interacting with each other, it becomes easy to lose 
track of what is happening. The stack requires a developer that knows the intricacies of full 
stack development. It might be preferable to have a separate front-end and back-end 
developer for such configurations. The results provide answers to supporting questions three 
and four, as they confirm the non-functional criteria and technology needs of a product 
configurator. 
 

 

 in co-design; it is still the question if 
other customers value the configurator. 

● More early adopters are required 
before the concept can be deemed 
viable. 

 

Strengths 
● Very flexible technology stack. 
● Mobile friendly. 
● Lightweight and fast. 
● High degree of 3D support. 
● Security handled by GCP. 
● Automated deployment. 
● Automatically scales. 
● Very cheap to set up and host. 
● Responsive design. 
 

Weaknesses 
● Very complex due to modularity of 

technology stack. 
● Difficult to learn due to high complexity. 
● No 3D editor, making configurator 

development more difficult. 

Opportunities 
● SEO can be micromanaged. 
● Easy to add new stoves. 

Threats 
● Slow to develop new features due to 

complexity. 



27 

Table 2. SWOT analysis of MMP technology stack. 
 

6.3 Approach validation 
Developing an advanced product configurator is inherently difficult and risky. Applying Lean 
startup methodology is a viable strategy to mitigate these two negative aspects. During the 
first development cycle, the product concept and technology stack were unsuitable for 
reaching a product-market fit. However, using the build-measure-learn feedback loop, it was 
possible to effectively pivot to a concept that is far more promising. Using Lean resulted in a 
decrease in waste and an increase in customer value. The difficult part was applying Lean 
startup methodology correctly. Concepts such as the MVP are often misunderstood. Even 
with a fundamental understanding, it is not always obvious how to correctly apply the theory 
in practise. It does not guarantee success either, as there are many more factors in creating 
a product configurator efficiently and effectively. However, with Lean startup methodology, it 
is possible to approach the ideal product configurator iteratively through the 
build-measure-learn loop, which is far better than the all-or-nothing approach. Lean Startup 
Methodology is therefore a valid answer to sub question two. 
 

7. Conclusion 
 

7.1 supporting questions 
What are the preconditions for a company to successfully utilize a product 
configurator for mass customization? The results from the design validation (section 6.1) 
showed that mass customization should first and foremost fit with the business model and 
product concept of a company. It is therefore not always a viable strategy. Choosing to build 
a configurator is quite an undertaking, requiring a significant investment before it pays off. 
This can be mitigated using Lean Startup Methodology, as can be read in the approach 
validation (section 6.3). 
 
How to approach the development of a product configurator so that it is efficient and 
effective? By correctly applying the build-measure-learn loop using an MVP, as can be read 
in the approach validation (section 6.3). Lean startup methodology reduces waste and 
increases customer value, therefore improving efficiency and effectiveness. However, the 
methodology is certainly not easy to understand due to its misconceptions. It is even more 
difficult to apply, as it is not always clear how to translate the theory into practise. But, it is 
certainly true that early customer validation is a key to successfully finding a product-market 
fit. 
 
How to determine the requirements of the project owner and target audience for the 
product configurator? The functional requirements depend on the problem that the product 
configurator is trying to solve, as can be read in the design validation (section 6.1). The 

 

● Google Identities for user accounts. 
● Google Analytics is very powerful and 

free. 
 

● Technology stack is very dependent on 
Google, causing vendor-lock. 



28 

non-functional requirements depend on the current best practises in the field of web 
development, as can be read in the technology validation (section 6.2). There are many 
standards and recommendations on the web. Each configurator might need a slightly 
different approach. But for the client of this report, the following four non-functional 
requirements were deemed most important; usability, marketability, security and stability. 
 
Which technologies and platforms should a product configurator on the web utilize to 
meet the requirements and support mass customization in 3D? The best way to choose 
technologies and platforms is to research different solutions and pick the one(s) that fit best 
based on the requirements of the specific product configurator. This report provides a 
technology stack that is suitable for many use cases on the web in the technology validation 
section (6.2), which can be used as a starting point. In short, it utilizes Google Cloud 
Platform for hosting, React and Material design for UI, Node and Webpack for building, 
Gitlab and Docker for continuous deployment, FreeCAD and Blender for CAD model 
conversion, and finally ThreeJS for rendering 3D models in the web browser. 
 

7.2 main question 
How to efficiently and effectively develop a product configurator on the web that 
allows for mass customization in 3D? The first step is to consider if mass customization 
fits with the company’s business model and product, due to it being an essential 
precondition. Then, Lean methodology must be used to efficiently and effectively find a 
product-market fit through the build-measure-learn loop using an MVP. Early customer 
validation prevents wasting time and resources on a solution that nobody wants, and is 
therefore key to finding a successful product-market fit. The development iterations should 
be short enough to ensure that a pivot can be made if necessary. The functional 
requirements should be based on the requirements of the project owner and target 
audience, while the non-functional requirements should be based on the current best 
practises of web development. Together, the requirements can be used to determine the 
most suitable technology stack. This stack should consist of front-end technologies, a 
hosting, database, and storage platform, build and devops tooling, and finally a CAD 
conversion workflow. This report provides a multi-purpose stack that can be used as a 
starting point. 
 
 

8. Discussion 
 

Based on the results, it can be said that the report provides a practical method for building a 
configurator on the web. It shows that, through Lean methodology, it is possible to actively 
approach a successful configurator. However, the method does by no means guarantee 
success. As explained through the first supporting question, there are preconditions. 
Hopefully, this report can be used as a roadmap and result in better design decisions.  
 
The explained application of Lean methodology may prove useful for any kind of creator who 
faces a difficult problem. Lean can be used to effectively develop a successful product of any 
kind, as long as the methodology is applied correctly. The methods explained in this report 

 



29 

can be used for many purposes. For example, the proposed technology stack is viable for 
more than just configurators; it can also be used for other kinds of web applications, due to 
its flexible technology stack. 
 
What the research does not tell is what other technologies are interesting. Any piece of the 
provided technology stack can be swapped, resulting in many possible configurations. The 
technologies are constantly evolving, meaning that the provided stack in this report may be 
outdated in the future. The research also did not go into pre-made configurator solutions, 
both on and off the web. Although I can not believe that such solutions will offer the same 
flexibility as the provided technology stack, it might be possible that they are viable for other 
kinds of products. 
 

9. Recommendations 
 

It might be interesting to compare Google Cloud Platform to Amazon Web Services. They 
both offer hosting services, but each with their own unique features. The reason why GCP 
was chosen was because it offers Google Identity Platform; an authentication system that 
takes care of user logins on a website (Google, n.d.), either through their gmail account or 
email sign up. It could be that Amazon offers something similar, better or different that may 
be useful. 
 
PlayCanvas is a WebGL game engine written in JavaScript. It might be useful for online 
product configurators. In the case of the client, ThreeJS was chosen because it is lightweight 
and flexible. However, PlayCanvas might be far more powerful in 3D development due to its 
editor. For WebGL games, it is probably better than Unity3D. So, it is definitely worth looking 
into.  
 
Lastly, it might be educational to look into pre-made configurator solutions. These solutions 
are becoming more popular and widespread, due to their ease of use. Unfortunately, almost 
all of them are proprietary. To test them, it is necessary to contact the company.  
 
 
 
 

Bibliography 
 

Ambler, S. (2017, December 27). Defining MVP, MMF, MMP, and MMR. Disciplined Agile. 

https://www.projectmanagement.com/blog-post/61937/Defining-MVP--MMF--MMP--a

nd-MMR 

Barret, L. (2018, July 20). Factors that influence your website's credibility. Search Engine 

Watch. 

 



30 

https://www.searchenginewatch.com/2018/07/20/factors-that-influence-your-websites

-credibility/ 

Belyh, A. (2019, September 20). How The Build-Measure-Learn Cycle Really Works. 

https://www.cleverism.com/how-build-measure-learn-cycle-really-works/ 

Blank, S. (2010, March 4). Perfection By Subtraction – The Minimum Feature Set. 

https://steveblank.com/2010/03/04/perfection-by-subtraction-the-minimum-feature-set

/ 

bmilab. (n.d.). Concierge Test. https://bmilab.com/testing/cards/concierge-test 

Cloudflare. (n.d.). Why Does Site Speed Matter? | Improve Webpage Speed. 

https://www.cloudflare.com/learning/performance/why-site-speed-matters/ 

Combeenation. (2019, August 14). What Are the Different Types of Product Configurators? 

Combeenation Configurators. 

https://www.combeenation.com/en/what-are-the-different-types-of-product-configurat

ors 

Cyledge. (n.d.). Configurator Database. https://archive.is/PBn0l 

cyLEDGE Media. (2008). Configurator. Configurator Database. 

https://www.configurator-database.com/definitions/configurator 

Flyvbjerg, B., & Budzier, A. (2011). Why Your IT Project May Be Riskier Than You Think. 

https://hbr.org/2011/09/why-your-it-project-may-be-riskier-than-you-think 

Franke, N., & Piller, F. T. (2003, January). Key research issues in user interaction with user 

toolkits in a mass customisation system. International Journal of Technology 

Management, 26, 29. 10.1504/IJTM.2003.003424 

Google. (n.d.). Google Identity Platform. https://developers.google.com/identity 

Google. (n.d.). Search Engine Optimization (SEO) Starter Guide. 

https://support.google.com/webmasters/answer/7451184?hl=en 

Hackernews. (2019). https://news.ycombinator.com/item?id=19308027 

 



31 

Heuvelmans, E. (2010). Implementation of a mass customization strategy. 33. 

http://arno.uvt.nl/show.cgi?fid=121051 

IdeaRoom. (n.d.). Build v. Buy: Deciding between Custom and Licensed Software. 

https://www.idearoominc.com/blog/build-v-buy-deciding-custom-licensed-software 

Jobs, S. (1997). You’ve got to start with the customer experience. 

https://blogs.oracle.com/today/youve-got-to-start-with-the-customer-experience 

Koster, L., & Peters, R. (2020). CAD to VR. A guide to the conversion process. 

https://leonkoster.dev/Documents/CADXRPaper.pdf 

Kromer, T. (n.d.). Concierge vs. Wizard of Oz Prototyping. Kromatic. 

https://kromatic.com/blog/concierge-vs-wizard-of-oz-test/ 

Lean Enterprise Institute. (n.d.). What is Lean? https://www.lean.org/whatslean/ 

LePage, P., & Andrew, R. (2019, Febuary 12). How to create sites which respond to the 

needs and capabilities of the device they are viewed on. 

https://web.dev/responsive-web-design-basics/ 

Marsner. (n.d.). Why Custom Software Development Is The Best Approach For Businesses. 

https://marsner.com/blog/why-custom-software-development-is-the-best-approach-fo

r-businesses/ 

Massey, B. (2015, August 19). What are some strategies for reducing bounce rate? Landing 

Page Optimization. 

https://conversionsciences.com/what-are-some-strategies-for-reducing-bounce-rate/ 

Pichler, R. (2013, October 9). The minimal viable product and minimal marketable product. 

https://www.romanpichler.com/blog/minimum-viable-product-and-minimal-marketable

-product/ 

Product Designer. (2018, October 2). 3 disadvantages of product customization and how to 

overcome them. 

 



32 

https://www.productsdesigner.com/blog/product-customization-disadvantages-challe

nges/ 

Ries, E. (2009, July 22). Minimal Viable Product. 

https://www.slideshare.net/startuplessonslearned/minimum-viable-product/5-Minimu

m_Viable_Productbr_Visionary_customers 

Ries, E. (2009, August 3). Minimum Viable Product: a guide. Startup Lessons Learned. 

http://www.startuplessonslearned.com/2009/08/minimum-viable-product-guide.html 

Ries, E. (2012, July 6). Twitter. 

https://twitter.com/ericries/status/221318901018017792?lang=en 

Rogers, E. M. (2003). Diffusion of Innovations (5th ed.). Simon and Schuster. 

https://books.google.nl/books?id=9U1K5LjUOwEC&printsec=frontcover#v=onepage&

q&f=false 

Schwery, M. P. (2018). Lean Startup Orientation. Empirical Evidence on Venture Success. 

https://essay.utwente.nl/74732/1/Schwery_BA_BMS.pdf 

SiteGround. (n.d.). Why does my website look different on different browsers? 

https://www.siteground.com/kb/why_does_my_website_look_different_on_different_b

rowsers/ 

Statcounter. (n.d.). Browser Market Share Worldwide. Retrieved 10 1, 2020, from 

https://gs.statcounter.com/browser-market-share 

Tammany, J. (2018, October 11). What is website security? SiteLock. 

https://www.sitelock.com/blog/what-is-website-security/ 

Thakur, D. (2017, July 20). 10 Good Reasons Why You Should Use Google Analytics. 

https://medium.com/@dineshsem/10-good-reasons-why-you-should-use-google-anal

ytics-699f10194834 

Wankel, C. (2007). 21st Century Management: A Reference Handbook (Vol. 1). SAGE 

Publications, Inc. 

 



33 

https://books.google.nl/books?id=heTVxjr3HtQC&pg=PA425&lpg=PA425&dq=repres

ented+visualized+assessed+priced&source=bl&ots=FArvTYyciT&sig=ACfU3U3tU02

8aMoCCvAx8yz2haf-aW16IA&hl=en&sa=X&ved=2ahUKEwiykN710LvrAhUL2qQKHc

dNCBQQ6AEwDnoECAEQAQ#v=onepage&q=represente 

WebFX. (n.d.). Is SEO Important for Every Business? 

https://www.webfx.com/internet-marketing/is-SEO-important-for-every-business.html 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendices 
 

Minimal Viable Product 
The goal of the MVP is to gauge the desire for a stove configurator and discover its desirable 
features. This is achieved by creating a minimalistic version of a stove configurator, so that 
visionary customers can provide early validation and feedback. Their feedback is essential to 
answer critical questions, such as; 
 
● How much do customers desire to configure a stove? 
● What features are essential for customers to design a stove? 
● What does the ideal configuration process of a stove look like? 
 
Without validated feedback, it is impossible to answer these questions with certainty. A great 
benefit of validated learning through customers is that it provides answers to unasked 
questions. A product’s development team has a different frame of reference, which does not 
always portray the product as customers would see it. This is why customer interviews 

 



34 

provide opportunities to think outside of the box. They serve as a recalibration point for the 
product’s vision to ensure a proper market fit. 
 
The challenge of making an MVP is choosing the minimum feature set that best represents 
the full concept. The process of designing a stove consists of many operations, each of 
which being a considerable feature. Fortunately, in the case of an MVP, it is unnecessary to 
implement the complete process. Only an overview of the process has to be provided, as 
visionary customers can “fill in the gaps”  (Ries, 2009). After interviewing the client, it was 
determined that the configurator’s design process that can be simplified to five steps; 
 

1. Choosing a combustion chamber 
There are many kinds of combustion chamber models. The final design heavily 
depends on which one is picked. Usually, customers already have a rough idea of 
what they want. Choosing a combustion chamber seemed like a logical first step in 
the design process. In the MVP, only one combustion chamber was added for 
simplicity. This way it was possible to show visionary customers what the process 
would look like, and that more models were planned. 
 

2. Enter house info 
As the design should heavily depend on the house of the customer, it was logical that 
the configurator provides advice based on the customer’s living situation. This 
requires certain information about the customer’s house before the design process 
starts. However, the client argued that entering (complex) information as the first step 
might scare away potential customers. The required information (like level of 
insulation, chimney height, room size, etc) are rarely known by the customer when 
asked for. Hence, the step was put second. It was also made optional for customers 
who want to experiment with the configurator before investing significant effort.  
 

3. Design ducts 
The long ducts made from dense stone are what make the stove radiate its warmth 
for long periods of time. They are a crucial part of the stove, and their layout 
determines the stove’s overall shape. As the ducts connect the combustion chamber 
to the chimney, their layout should be leading in the design. This is why it was a 
logical third step. However, it is also the most complex step in the process. Only the 
most basic functionalities were implemented, as the MVP would have gotten too 
complex otherwise. In this step, users could preview, create, rotate, delete and 
connect parts. It was possible to undo and redo these operations as well. Finally, The 
whole stove setup could be moved relative to the wall, and the ducts could be 
connected to the chimney. 
 

4. Design facade 
Unfortunately, there was no design of the facade yet during the development of the 
MVP. This is why the facade design step was not implemented in the MVP. However, 
it was known what the facade would roughly look like. Hence, it was planned to be 
the fourth step. The facade consists of a “box” made from concrete tiles that 
encapsulates the stone ducts, on which panels could be placed from different 

 

https://www.slideshare.net/startuplessonslearned/minimum-viable-product


35 

materials. The idea was to automatically generate the box around the ducts. The box 
would be relative to the combustion chamber to ensure a proper fit. Then, customers 
would be able to select the panels and change their materials from a sidebar. 
 

5. Order 
The order step was not implemented either, but added as a placeholder. The feature 
is not implemented because it is not a problematic part of the solution (as it has been 
done countless times before). However, it would have been important to 
automatically generate a bill of materials from the design process. The bill should 
show all the parts and their prices, to provide an overview of the costs to the 
customer. The order process should also send an automatic email to the client with 
all the necessary information. So although it is not a challenge design wise, its 
importance should not be underestimated. 

 
During all of the mentioned steps, it is possible for the client to go back to the previous step. 
It was also possible to save and load a stove design to and from the cloud, to test how well 
the technology stack would work. 
 
The MVP’s market fit is tested through an interview with three clients who have used the 
MVP. Their feedback is essential to define the functional and non-functional requirements for 
the MMP. Negative feedback points of the MVP shall be used for testing the MMP, to ensure 
that the right changes have been implemented. 
 

Implementation 
Unity 
The MVP was made by Stanislav Mutafchiev in Unity3D, while the cloud save and load 
system was made by me, the author. We presumed that Unity would allow for quicker 
prototyping due to it providing a complete solution. The biggest reason why Unity3D was 
chosen is because of its WebGL build capability, which allows easy development of web 
applications. The same code that would normally make a standalone PC application could 
now be put on the web. The code would be transformed into WebAssembly; the latest 
standard in high performing application code on the web. Using the Unity Editor, it was easy 
to visualise what was going on when building the configurator. This was especially true while 
making the duct system, as it has to connect properly. Because Unity has a built-in physics 
engine, it was possible to check if a new part overlapped with already placed parts. It was 
also straightforward to load models, textures and scripts. One major benefit of unity 
compared to traditional web development is its user interface builder. It allows for easy 
creation of buttons, text boxes and images. There is also the Unity store, which provides 
many premade features that could save a lot of development time. 
 
Github 
The WebGL build from Unity was put on GitHub pages, which is basically a free hosting 
service. It allows for static pages to be uploaded, such as a WebGL build from Unity3D. 
Using Git, it was easy to push a new build and test the functionalities on the web. GitHub 
also offers many project management tools, like project boards that consist of Github issues; 
small user stories that allow for checkboxes, code snippets and text formatting. These could 

 



36 

be linked together, or referred to from Git commits. Having the whole Unity project hosted, 
managed and developed from one place is a great experience for developers. It made the 
development process quick and easy.  
 

Results 
Customer validation 
Interviews have been given to three clients after they used the MVP. Observations of their 
use of the MVP have also been conducted. 
 

1. The first user is an old customer of the client. He thought that the concept of a 
modular stove was promising. However, he argued that it will only work when the 
final result is pleasing to the eye. This had to be true for the product in real life, and 
its visualization in the configurator. He stated that the MVP version of the configurator 
looked rather barebones and boring, which made him doubt the looks of the product 
in real life. He would like to see the virtual version next to a picture of the released 
version. The controls of the configurator were unclear from the beginning, as he did 
not know what to do in the duct design step. After a bit of experimenting with placing 
duct blocks, he asked what shapes are possible. Again, he would like to see more 
pictures of more real life examples. The user stated that playing around with the duct 
blocks was fun, but he could not envision making a whole stove in a configurator. 
 

2. The second user has a design background. She mentioned that the aspect of 
modularity is really nice, and that she has seen a good configurator in Ikea for 
modular couches. She was especially curious about the unique selling points of the 
modular stove, and the materials that could be used. She really liked the idea of a 
simple configurator, and does not want to tinker with the internal parts (like the 
ducts). Her other feedback was on the stove design itself, and not on the 
configurator. The feedback on the product was quite positive. 
 

3. The third and last user was a software developer. He had more comments on the 
non functional requirements of the configurator. He thought that a loading time of ten 
seconds is too much, and should be way lower to avoid users bouncing to another 
website. He also mentioned that the concept is great for people who use tablets, 
such as ipads. He stressed that it is also important to ensure compatibility with IOS 
devices and safari. He was curious on how well Unity WebGL would work with the 
google search engine, and dynamic links. He pointed out that search engine 
optimization and page load speed are things that should be considered before 
sticking with a particular technology stack. 
 

The feedback showed that using a configurator to build a modular stove is promising. 
However, it is not viable in its current form. No one was particularly fond of designing the 
ducts, as its process was unclear. Overall, the results were mixed. 
 

 

Strengths 
 

Weaknesses 
 



37 

Table 3. SWOT analysis of user feedback on MVP. 
 
Technology stack 
Although the MVP was mostly meant for customer validation, it also provided insight into the 
non-functional requirements of a technology stack. In this case, the technology stack only 
consisted of Unity3D and Github. 
 
Github is great for repositories and project management. Github Issues allow for agile 
development, and is incredibly powerful. The connection between the Git repository and 
project management functionalities makes it great for small to medium sized teams. There 
are more sophisticated project management tools out there, like Jira. But four our use case, 
it was perfect. Github pages is also a nice and simple hosting service. It allows for quick 
prototyping and manual testing on the web. However, it only hosts one version of an app. 
This makes Github pages unsuitable for bigger projects, where it is desirable to have a main 
version for real users and a test version for developers. It also does not offer password 
protection of the web page as of 2020. The Github environment is rapidly changing, so it is 
advisable to check on the current status before choosing Github. Their CI and CD pipeline, 
called Github Actions, is also worth looking into. 
The results with Unity are mixed. It is definitely a useful framework for quick prototyping, and 
its WebGL build capability is surprisingly functional. However, it certainly is not meant for 
advanced web applications such as configurators. Unity’s focus on being a game engine 
makes it inflexible in the web environment. This is due to it being a closed environment; the 
code written for the unity engine (C#) does not cover the browser specific functions found in 
JavaScript. It is possible to call JavaScript functions from C#, but it requires an interface, 
which adds a lot of complexity. This makes it very difficult to connect to WebAPIs, such as 

 

● Configurator is generally appreciated 
by users. 

● Product itself received positive 
feedback. 

● Product concept fits well with a 
configurator. 

● Online configurator is technically 
feasible. 

● Customers do not desire to configure 
the internal mechanics of a stove. 

● Users find it difficult to imagine 
possibilities. 

● Product does not look realistic in the 
configurator. 

● Current technology stack is unsuitable. 
● Customers do not understand the 

unique selling points of the product and 
configurator without substantial 
explanation. 

 

Opportunities 
 

● Customers are interested in different 
materials. 

● Customers are interested in possible 
shapes. 

● Support for mobile devices would be 
appreciated. 

● Overview of price. 

Threats 
 

● Switching technology stack takes a lot 
of time. 

● It is still not completely certain if the 
concept is viable on the market. 

● Unique selling points should be 
properly explained in order for the 
product to be interesting.  

 



38 

the ones from databases. Another huge consideration is its lack of search engine 
optimization support. All the text that is shown in the Unity WebGL build is done without 
HTML, making it difficult for search engines like Google to know the content (quality) of the 
page. This might result in a low ranking on Google searches, which is undesirable for 
businesses. Last but not least, the C# code written for the Unity3D engine cannot be 
transferred to JavaScript when switching to another framework. Due to the high switching 
cost, one must definitely know all the limitations of Unity before choosing it as a framework 
for the web.  
 

Table 4. SWOT analysis of Unity3D for the use of an online configurator. 
 

Conclusion 
Everything considered, a pivot is definitely required. This does not mean that the MVP was a 
failure; a lot of lessons were learned without significant investment. The experience captures 
the essence of an MVP, and shows its essential role in validating the problem and finding 
the requirements of a solution. The MVP will not be developed any further, as the Unity3D 
framework is unsuitable. The next MVP will be built from the ground up. This is not unusual 
in the build-measure-learn feedback loop. Sometimes, it is necessary to make multiple 
MVPs. Only once a suitable solution has been found, the MVP can be further developed into 
an MMP. 
 
In the case of the client, this MVP can be considered successful. However, mistakes have 
been made. For example, earlier research on the Unity3D WebGL framework would have 
resulted in a different framework being chosen. If the framework of this MVP was better 
suited, its development could have continued and resulted in less waste. Another mistake 

 

Strengths 
● Easy development in Unity Editor. 
● Complete WebGL engine on the web. 
● Easy to create UI. 
● Unity store offers many features. 
● Might be more performant in some 

cases due to WebAssembly. 
 

Weaknesses 
● Poorly interfaced with JavaScript in the 

browser. 
● No asynchronous functionality due to 

transpilation. 
● Slow initial load time. 
● Does not support lightweight GLTF 

format for 3D models. 
● Difficult to load 3D models at runtime. 
● SEO unfriendly. 
● Nasty bugs due to transpilation. 
● Slow building time. 
● Not free, unlike other web frameworks. 
 

Opportunities 
● Unity WebGL is very promising, and 

might be viable in the future. 
● Great for small standalone applications 

on the web. 
 

Threats 
● Code cannot be transferred to 

JavaScript when changing stack. 
● WebAssembly might not work on older 

devices. 
● Undesirable for traditional web apps. 
 



39 

were some of the MVP’s features; the cloud saving and loading were unnecessary for 
customers to provide early validation of the concept. Fortunately, both these mistakes taught 
us a lot about the technical requirements of a configurator’s framework.  

 


