

Graduation Report

Kubernetes multi-cluster & multi-cloud architectures

How can Avisi provide the customers of its managed platform (PaaS) with full control over the
geographical location and cloud providers hosting their applications and data?

Author: Ivan Shishkalov
Study: Saxion University of Applied Sciences, HBO-ICT > ITSM
Student number: 450037
Graduation teacher: Esther Hageraats

Company: Avisi Cloud B.V.
Company supervisor: Thomas Kooi

Version: 1.0
Date: 03-04-2022

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

2

Acknowledgements
I have received a great deal of guidance and support throughout this graduation project.

First, I would like to thank Jeroen Veldhorst and Thomas Kooi for the incredible opportunity to work on
such a novel problem for my graduation. I was able to learn a lot about cutting-edge technologies in
IT infrastructure.

I would like to give my special regards to my company supervisor, Thomas Kooi, and my colleagues
from AME for welcoming me to the team and providing the technical assistance and practical
suggestions I needed to complete this project.

Further, I would like to express my special thanks to my graduation teacher, Esther Hageraats. Her
expertise and continuous feedback were invaluable in shaping this research, establishing the right
methodology and bringing the quality of the report to a higher level.

In addition, I would like to thank the people behind the Liqo project. This research is greatly inspired
by their work which helped me the most in understanding the subject of Kubernetes multi-cluster
from different perspectives.

Furthermore, I would like to express my deepest gratitude to my parents for their everlasting support
and selfless efforts. Without them, I would not be receiving this education and delivering this paper.

Finally, I am very grateful to my friend, Tien Thai, for encouraging me all the way and providing a
healthy degree of distractions that kept me sane during this period.

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

3

Abstract
Kubernetes adoption has grown drastically since its release in 2014. Today, Kubernetes has become
the de-facto standard to deploy and orchestrate containerized applications. Avisi Managed
Environments (AME) is a cloud-agnostic platform that provides fully managed Kubernetes clusters
that host mission-critical applications and data.

There are plans to grow the platform and attract more enterprise customers. However, AME presents
limitations for certain use cases such as jurisdiction compliance, disaster recovery, high availability,
multi-/hybrid-cloud strategies and more. To solve the above use cases, the Kubernetes
environments need to stretch beyond the boundaries of a single region or cloud provider. It is not
practical to stretch a single Kubernetes cluster, however, multi-cluster architectures have the
potential to address the issue.

Kubernetes multi-cluster architectures introduce primarily two types of challenges: network
connectivity and orchestration of workloads across clusters. While networking in a single cluster has
been standardized, the solutions that extend it to multi-clusters are novel and unexplored. This
graduation project aims to evaluate a wide range of multi-cluster connectivity solutions and
propose an architecture that meets the requirements and accounts for the constraints of the current
platform.

A literature study focused primarily on the Cloud Native Computing Foundation (CNCF) resources
helped to determine nine potential solutions. The research shows that most projects have not yet
reached a production-ready status and that there is no single solution to satisfy all AME use cases.
Multi-criteria analysis and prototyping led to three final architecture proposals based on Linkerd,
Liqo, and NSM.

Linkerd is the simplest architecture that enables direct L7 connectivity between services in different
clusters which covers most generic use cases. Liqo can flatten L3 networking across AME clusters
using secure VPN tunnels. Moreover, Liqo architecture provides multi-cluster orchestration
capabilities that drastically simplify deploying to and operating a multi-cluster environment. NSM is
best-suited for scenarios when applications require lower-level network features or non-standard
protocols that use Ethernet/IP payloads at L2/L3

The proposed designs were tested with proof-of-concept using test Kubernetes clusters and mock
applications. Further investigation is required to evaluate proposed architectures with real
applications.

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

4

Table of Contents
1 Introduction ... 6

2 Problem Analysis ... 7

2.1 Problem Description .. 7

2.2 Justification .. 7

2.3 Problem Statement .. 8

2.4 Research Questions and Methodology Overview ... 9

2.5 Goal .. 11

3 Avisi Managed Environments .. 12

3.1 Methodology.. 12

3.2 AME – the foundation of Avisi Cloud ... 13

3.3 Business Context .. 14

3.4 Architecture Overview .. 15

3.5 Conclusion and Design Constraints .. 18

4 The Limits of the AME platform ... 19

4.1 Methodology.. 19

4.2 Problem – Deep Dive ... 19

4.3 Problem – Core ... 20

5 Stakeholders and User Stories ... 22

5.1 Methodology... 22

5.2 Stakeholders – Shortlist ... 22

5.3 Summary of Stakeholder Interviews .. 23

5.4 User Stories .. 23

6 Technical Research: K8s Multi-cluster ... 27

6.1 Methodology... 27

6.2 Provider-agnostic and Multi-cloud K8s .. 28

6.3 K8s Networking and Multi-cluster Connectivity .. 29

6.4 Design Principles ... 35

7 Conceptual Design ... 37

7.1 Kubernetes Concepts ... 37

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

5

7.2 Conceptual Multi-cluster Architectures .. 40

7.3 Multi-cluster Orchestration ... 43

7.4 Conclusion ... 44

8 Technical Design .. 45

8.1 Introduction ... 45

8.2 Proposed Architecture 1 – L7 Multi-cluster connectivity with Linkerd ... 45

8.3 Proposed Architecture 2 – L3 Multi-cluster connectivity with Liqo ... 46

8.4 Proposed Architecture 3 – L2/L3 Point-to-Point Multi-cluster connectivity with NSM 47

8.5 Conclusion ... 49

9 Proof of Concept .. 50

9.1 Prototyping Environment .. 50

9.2 Linkerd.. 50

9.3 Liqo ... 50

9.4 NSM ... 51

10 Advice on Multi-cluster Challenges .. 52

10.1 Complexity ... 52

10.2 Security ... 54

10.3 Observability ... 55

11 Conclusions and Reflection ... 56

11.1 Product Reflection .. 57

11.2 Self-Reflection ... 58

List of Figures and Tables ... 59

List of Abbreviations ... 60

Reference List .. 61

Versions.. 65

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

6

1 Introduction
Avisi Managed Environments (AME) is a foundational product of Avisi Cloud. It is a cloud-agnostic
platform that provides fully managed Kubernetes clusters. The AME platform solves the most
pressing problems faced by Kubernetes users: core infrastructure, cluster upgrades, and day 2
operations (e.g., monitoring, optimizing, performing backups). This graduation assignment was
created from a desire to enrich the capabilities of the current platform, namely, through multi-
cluster architectures.

Kubernetes community and existing research indicate that the number of Kubernetes clusters used
by organizations is rapidly growing and multi-cluster environments are becoming more and more
common. This trend is also confirmed by the emergence of new open-source projects such as
Submariner, NSM, and Liqo that aim to enable direct networking and simplify deployments across
multiple clusters. At the same time, neither networking nor orchestration in multi-cluster
environments has been standardized by Kubernetes as of today. While solutions are diverse, they
serve different use cases and use different underlying technology. Therefore, this research was
essential as it aims specifically at the multi-cluster use cases relevant to Avisi. Moreover, it evaluates
the widest range of possible solutions and focuses on seamless integration with the company’s
current cloud-agnostic Kubernetes platform – Avisi Managed Environments. Avisi recognizes specific
use cases and potential benefits from enabling multi-cluster architectures, however, it is not clear
how to achieve them. As agreed with the company, the primary scope of this research was on
networking, however, the orchestration was also addressed.

An iterative approach (RUP) was used which resulted in overlaps between research questions. The
structure of this document follows the order of questions defined in chapter 2.4. Chapter 2 introduces
the overarching problem and opportunity studied in this research, along with a methodology
overview and goal. Then, Chapter 3 focuses on understanding the current Avisi Managed
Environments platform, its architecture and design constraints to be considered. Followed by
Chapter 4 that delves deeper into the technical aspects of the problem; it talks about the primary
(networking) and secondary (orchestration) challenges that go into Kubernetes multi-cluster
architectures. Chapter 5 talks about the requirements identified through Stakeholder Analysis. All
technical research including a multi-criteria analysis of various Kubernetes multi-cluster
connectivity solutions is condensed in Chapter 6. In addition, the chapter defines essential design
principles. The findings are then used to present a conceptual design in Chapter 7 and Technical
Design in Chapter 8. Subsequently, Chapter 9 briefly discusses the prototypes created as PoCs to
validate the proposed designs. Finally, Chapter 10 addresses the challenges of multi-cluster
architectures and provides advice on how to handle them in the future.

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

7

2 Problem Analysis
This chapter introduces the overarching business problem and opportunity discovered through the
first conversations with Avisi. Based on the defined problem, the main research question has been
formulated in 2.4.1 along with the sub-questions 2.4.2 to navigate the research in a structured way.
The analysis of the problem continues in chapter 4, delving into the technical challenges of
Kubernetes (K8s) on the path to achieving a multi-cloud architecture.

2.1 Problem Description
Avisi Cloud offers a fully managed provider-agnostic Kubernetes platform called Avisi Managed
Environments (AME). The platform is designed to run containerized workloads safely and reliably;
AME takes charge of ensuring all environments are available, fast, and secure allowing customers to
have more environments and fewer Site-Reliability-Engineers. Furthermore, it equips organizations
with a set of fine-tuned out-of-the-box tools such as observability, logging, and alerting, allowing
them to have insights into the performance of their applications and focus on improvements without
any operational toil. More details about the platform can be found in chapter 3.2.

Today, AME wants to grow and attract new customers - enterprises with large-scale mission-critical
applications. Organizations like this have special demands for jurisdiction compliance, high
availability, resiliency, and disaster recovery. To effectively deal with these demands, companies
should be able to deploy, scale, and migrate their applications and data freely across geographies
and providers. In addition, many enterprises adopt a multi-cloud strategy – it allows to get the best
out of multiple vendors and avoid vendor lock-in. Currently, AME cannot offer this degree of choice
because only two geographical regions and few infrastructure vendors are supported. Moreover,
current K8s clusters are siloed within one region (no multi-region capability) and one provider (no
multi-cloud capability). To fulfil the use cases above, workload distribution needs to go beyond a
single region and provider.

Recently, the industry has taken the next step in the adoption of Kubernetes - multi-cluster
architectures. The CTO and the Platform Architect of Avisi consider Kubernetes multi-cluster
architectures an opportunity to address the enterprise use cases and make it a unique selling point
for AME. However, the company does not have sufficient knowledge about such an architecture, the
tools that enable it, how to integrate it into the current AME architecture and what challenges it might
bring.

2.2 Justification
According to the Flexera 2021 State of the Cloud report, 92 percent of enterprises reported having a
multi-cloud strategy [1]. Organizations opt for this strategy in pursuit of various goals, be it
optimization of cloud spend, achieving the lowest possible latency, global distribution, being able to
quickly react to changes in laws and regulations, using provider-specific features of different public

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

8

clouds, and more. Use cases evaluation (Appendix A, chapter 1.5) showed that there are at least four
critical use cases that AME cannot effectively address in its current state. All these use cases could
potentially be solved with K8s multi-cluster.

Use Case 1. Jurisdiction Compliance. Data residency and processing laws can require compute and
storage to live within a specific region. For large organizations that operate internationally, it might
be required for infrastructure to be deployed in multiple geographic regions or cloud providers.
Currently, AME wouldn’t be able to achieve this, but multi-cluster could make it possible.

Use Case 2. Disaster Recovery. Customer environments are comprised of single clusters running
workloads. K8s single clusters are distributed but only inside a single region (multiple availability
zone). If there’s an infrastructure failure within an entire region, the cluster “goes down” and all
services become unavailable. With current architecture, AME wouldn’t be able to quickly run
somewhere else. With multi-cluster, however, traffic could failover to another cluster.

Use Case 3. Multi-region Availability and Low Latency (Global Distribution). Large-scale enterprise
applications that operate globally need exceptional measures to increase availability and lower
latency to provide the best user experience. For instance, one of the customers of Avisi wants to
expand their business to Africa. To achieve this, the distribution of workloads must go beyond a
single region and become global.

Use Case 4. Provider-specific features. Many enterprises adopt a multi-cloud strategy to take
advantage of the best features from multiple providers, e.g., advanced AI or GPU capabilities. Since
AME is a K8s-based platform, multi-cloud cannot be achieved without a multi-cluster topology.

To sum up, K8s multi-cluster architecture has the potential to create a unique selling point for AME
and bring more customers. On the contrary, not carrying out this project may result in negative
consequences for the business: the topic is actively gaining traction in the industry and missing out
on this topic for Avisi means falling behind the competition and becoming less attractive to new
customers. Furthermore, the current customers of AME might face vendor lock-in which can result in
higher costs, loss of control over their data, and inability to easily transfer their workloads to another
provider.

2.3 Problem Statement
Based on the previous information, an overarching problem can be outlined. The current state of the
AME platform cannot provide target customers with sufficient flexibility and control over the
geographical location and cloud providers, and therefore cannot effectively address the following
critical use cases: jurisdiction compliance, disaster recovery, global distribution, and provider-
specific features (of multiple vendors). A novel type of K8s architecture – multi-cluster – is a big
opportunity for AME to address the use cases above but it is yet unexplored. A comprehensive
investigation is required into K8s multi-cluster architectures and tools.

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

9

2.4 Research Questions and Methodology Overview
Based on the overarching problem, the research will focus on investigating the concepts of K8s
multi-cloud and multi-cluster architectures to allow Avisi to make the AME platform more flexible. To
navigate the research, the following main and sub-questions have been formulated.

2.4.1 Main Research Question

The main research question is “How can Avisi provide the customers of its managed platform (PaaS)
with full control over the geographical location and cloud providers hosting their applications and
data?”

2.4.2 Sub-Questions

The table below lists the sub-questions, methods used and references to the chapters where the
sub-questions are elaborated.

Sub-question Methods Chapter
Ref.

1 What is the Avisi Managed Environments (AME)
platform?
Objective: Current situation, Design Constraints

• Document Analysis
• Observation
• Interviews
• Literature Study

3

2 Why does the current architecture limit AME in
supporting more cloud providers and geographic
locations?
Objective: Technical Problem Analysis, Root Cause(s)

• Problem Analysis
• Document Analysis
• Interviews
• Prototyping

4

3 What requirements do the stakeholders at the
company have for the future solution?
Objective: User Stories and Requirements

• Stakeholder Analysis
• Requirement Analysis
• Interviews
• Brainstorming
• Literature Study

5.4

4 What current trends, best practices, and reference
architectures exist around building multi-cluster
Kubernetes environments for Avisi use cases?
Objective: Design Principles and Reference
Architectures

• Literature Study
• Community Research
• Expert Interview
• Prototyping
• Multi-criteria Analysis

6.4

5 How can the discovered best practices and
reference architectures be applied to the AME
platform conceptually?
Objective: Conceptual Design

• Literature Study
• Brainstorming
• IT Architecture

Sketching

7

6 How to achieve the desired AME architecture with
respect to all system requirements and the
conceptual design?
Objective: Technical Design

• IT Architecture
Sketching

• Guideline Conformity
Analysis

8

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

10

• Peer Review
7 How can the implementation of the Technical Design

be automated in the future?
Objective: Improved Technical Design

• Literature Study
• Community Research
• Prototyping
• Peer Review

Appx. B

8 How to prove that the resulting Technical Design is a
working solution to the problem?
Objective: Proof-of-Concept (final prototype)

• Prototyping
• Testing (Usability,

System)
• Peer Review

9 &
Appx. E

9 What are the challenges associated with complexity,
security, and observability in a Kubernetes multi-
cluster environment, and what could be done to
overcome these challenges?
Objective: Advisory Report

• Literature Study
• Community Research
• Observation
• Peer Review

10

Table 1. Sub-questions, methods, and chapter references

2.4.3 Methodology Overview

The researched concepts are novel; therefore, this graduation project is very experimental in its
nature and requires an appropriate and flexible process. The research will be divided into 4 iterative
phases of the Rational Unified Process (RUP) with the focus on continuous improvement through the
DOT methods listed above.

Inception phase will use iterations of document analysis, observation, interviews with stakeholders
and prototyping to better understand the current architecture and problems within it. (Research
sub-questions 1 and 2).

Elaboration phase will focus on understanding the needs of Avisi. Iterations of stakeholder interviews
and brainstorms with the team will keep user stories emergent and evolving. Furthermore, during this
phase the first steps will be made in technical literature study and community research, leading to a
set of design principles and a Conceptual Design. (Research sub-questions 3, 4 and 5).

Construction is the phase of continuous trial and error approach. During this phase, most of the work
on the Technical Design and prototyping will happen with the help of methods such as literature
study, IT architecture sketching, multi-criteria analysis, peer review and testing. (Research sub-
questions 6, 7 and 8).

Transition is the final phase of the project; it will focus on evaluating the Technical Design and
addressing the challenges that the company might face implementing the design in production and
ways to overcome them. To assist this phase, methods like peer reviews and community research
will be used. (Research sub-question 9).

One of the key methods in this project is prototyping. Small prototypes will be created throughout the
project to understand how the current AME architecture works, test various multi-cluster
interconnection techniques, discover technical limitations or possibilities that are not documented

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

11

and cannot be found in literature. The purpose, procedures and lessons learned will be documented
for each prototype allowing to reuse knowledge and create better prototypes each iteration.
Eventually, the small prototypes will lead to the creation of the final Proof of Concept prototype that
will be demonstrated at the end of the project and prove that the resulting Technical Design works in
practice.

2.5 Goal
This project aims to investigate the different types of K8s multi-cluster architecture and connectivity
solutions and design an architecture that fulfils the use cases relevant to Avisi. Further, another
important goal is to address the challenges that come with using such an architecture and how to
overcome them.

Avisi will be able to leverage these findings to implement a multi-cluster architecture within the AME
platform and use it as a unique selling point to attract large enterprises as their new customers.

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

12

3 Avisi Managed Environments
The focus of this chapter is answering the first research sub-question – “What is the Avisi Managed
Environments (AME) platform?”. Gaining in-depth understanding of the platform’s current situation
and the architectural decisions made to build it is crucial before solving the problem laid out in this
project. This is because the solution created during this project aims to extend the existing platform
with new capabilities; it must integrate well within the current technological ecosystem of AME, not to
hinder the functionality that is offered currently.

At first, this chapter talks about what AME is in general, as a product and service touching on who the
platform customers are and what problems AME solves for them. It also talks about the advantages
of the AME platform over other similar solutions such as Amazon EKS. Then, the chapter describes
business context. It does not provide a full-fledged SWOT analysis, but it covers the most important
aspects of the business context for this project: strengths and weaknesses within the team and the
current architecture, opportunities and threats associated with pursuing a multi-cloud architecture.
Finally, the chapter dives into the architecture of the platform. It looks at the key components and
technologies, how Kubernetes is used, and which components are responsible for provisioning and
managing customer environments in a fully automated manner. Furthermore, it describes which
underlying infrastructure resources are deployed in AWS and other cloud providers to power the
platform. Understanding all this context surrounding the problem is critically important to ensure that
the future solution can seamlessly integrate within the current situation.

The primary output from this chapter are the design constraints formulated at the end. Design
constraints can have either a business or technical nature and they play a critical role in designing
the final solution as they narrow down the spectrum of possible solutions and ensure they fits within
the current platform.

3.1 Methodology
Gaining information about the platform and its architecture will be done using the “Field” research
strategy. The input in this research question are the records of the initial discussions of the
assignment with stakeholders. For data collection, the primary methods will be Document Analysis,
Interviews, Observation, and Literature Study.

To collect the general information about the AME platform, its customers, and the problems it solves,
internal business and marketing documentation will be analyzed. After this, the CTO of Avisi, Jeroen
Veldhorst, will be interviewed. He will be asked questions about the business, strategy and the vision
for the platform, the opportunities and threats associated with this project. Since this project is
technical in nature, a full-fledged SWOT analysis can be too heavy. However, certain aspects

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

13

The Document Analysis will be the starting point for understanding the architecture of the platform.
Through analyzing the existing technical documentation of AME, I will be able to draw initial
understanding of the architecture and potential constraints. Based on this, a list of questions will be
prepared for the platform architect, Thomas Kooi and further information about the architecture will
be derived from the interview with him. This is also important because some documentation might
be incomplete or outdated.

Finally, to reinforce the understanding of the platform and see in real-time how it works and how
people interact with it, I will request a walkthrough demo of the platform during which I will be able to
observe the entire system in action. Additional literature study will be conducted to understand
certain technical aspects of the current ecosystem of tools and technologies used at AME, for
instance, to learn about the components of Kubernetes. This type of research will not be described in
this report.

After collecting the information, it will be analyzed and processed into the design constraints. All
derived constraints will be recorded and assigned a unique code for traceability. All design
constraints, regardless of their origin, will be discussed with the platform architect to ensure they are
valid.

3.2 AME – the foundation of Avisi Cloud
“Avisi Managed Environments” or AME is the foundational service offered by the Avisi Cloud unit. At its
core, AME is a managed Platform as a Service (PaaS) solution that is based on the Kubernetes
container-orchestration system which allows deploying, scaling, and managing containerized
applications in a fully automated way. Like other managed container services such as Amazon EKS,
AME exposes a web UI (console), CLI, and an API that allow organizations to create and manage fully
dedicated environments where each environment consists of at least one Kubernetes cluster.
However, AME has a few major advantages over other managed Kubernetes solutions like EKS.

The capabilities of the environments offered by AME stretch far beyond just running containerized
workloads and keeping the control plane patched. One advantage is fully automated upgrades and
patches of worker nodes (unlike EKS), this is achieved by using the paradigm of immutable
infrastructure as explained in 3.4.3.2. Another significant advantage is out-of-the-box automation of
operational services such as monitoring, logging, and alerting, tracing, disaster recovery, and policy
enforcement - all of these services are at customers’ disposal as soon as the environment gets
created. Besides, AME strives to achieve all of this in a provider-agnostic way - without relying on any
specific offering from one cloud provider. Because while the Kubernetes part itself is cloud-agnostic,
the rest of the platform such as Amazon EKS locks you in: log handling, monitoring, identity
management, to name a few [2]. Whereas AME realizes all the core operational services by using
industry-leading open-source solutions such as Prometheus and Cortex that can be the same
regardless of the cloud provider. This allows the AME platform and its customers to drastically reduce
vendor lock-in.

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

14

Additionally, AME provides the foundation for other important services developed and offered by
Avisi Cloud such as Performance Engineering - a stack of tools that provides in-depth metrics and
advice on the performance of applications that run in AME, thus offering the developers a clear view
on how to improve their applications’ performance.

To sum up, with Avisi Managed Environments customers receive an “all set” Kubernetes environment
equipped with all the necessary tooling and support to run, scale, and manage their containerized
applications. The platform is being developed and maintained by a team of the same name - team
AME. AME takes charge of ensuring all environments are available, fast, resilient, and secure at all
times allowing customers to host their business-critical applications and have fewer Site-Reliability-
Engineers. Customers are free of any operational complexities and can fully focus on developing and
improving their applications while saving costs on training and management for Kubernetes.

3.3 Business Context
This sub-chapter covers aspects of business context discovered through interviews and relevant to
this project.

3.3.1 Multi-cluster – an opportunity to grow

Avisi wants to grow the platform and target large-scale enterprise customers with mission-critical
applications. From interviews, both the CTO and the Platform Architect agree that the multi-cluster
project is a great opportunity to attract new customers through a unique selling point. The incentives
for the project are flexibility and control. Multi-cluster can empower enterprises to choose
infrastructure providers and geographical locations freely, make it easy to comply with data
regulations. Furthermore, multi-cluster opens the door to fully automated disaster recovery,
exceptional resiliency, and high availability.

During the interview with the CTO, I determined that the goal of Avisi is to start providing a beta-test
version of multi-cluster by the end of 2022. This is an important business constraint (BC-1) to
consider when evaluating potential solutions because Kubernetes multi-cluster solutions are at an
early stage of their development and only a few of them might be ready for beta-testing by the end
of 2022.

3.3.2 Strengths and Weaknesses of the AME team

One of the biggest strengths of the AME team is strong programming skills. In the context of this
project, it means that AME is capable of building advanced custom automation. In case this project
discovers a high-quality multi-cluster connectivity solution that does not have automation OOTB, it
can be solved by AME.

One of the weaknesses is the team size – it’s a small team working on large roadmap. Therefore, a
complex multi-cluster solution that will require a lot of teams’ capacity to implement won’t fit.

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

15

According to one of the platform developers, this project is “easy to make difficult”. The final solution
should consider not only the architecture of AME but also the team composition, it should be
adoptable not only by AME experts by also the end-users.

3.4 Architecture Overview
The architecture of AME is innovative and rather complex. To reflect the cloud-agnostic vision, many
intriguing technological choices had to be made. Of course, this backstage complexity does not exist
for the end-users - all they see is a normal Kubernetes cluster. However, for this project, it’s critically
important to understand the current architecture to ensure the design developed during this
graduation integrates seamlessly. This part of context analysis focuses on zooming into the primary
aspects of architecture and identifying associated technical constraints.

This chapter begins with explaining what a container-orchestration system is, looking at Kubernetes
in particular. After this, the concept of AME’s “Kubernetes-in-Kubernetes” is explained, followed by
analyzing the underlying infrastructure resources and automation. This chapter does not provide an
in-depth explanation of the whole architecture but rather focuses on specific components that are
tightly related to this graduation assignment.

3.4.1 Kubernetes

Containers have revolutionized the way companies distribute their applications by offering
exceptional portability, scalability, resource efficiency, isolation. Adoption of containers by
companies was and is very rapid. According to [3], the median company that adopts Docker runs
eight containers simultaneously on each host, a figure that has climbed steadily over the years. Due
to this, organizations started facing a challenge: how to manage all the “cattle” effectively and
efficiently? Container orchestration systems came in to solve these challenges by providing fully
automated mechanisms to deploy, scale, and manage the entire lifecycle of containers from a
central control plane. Today, containerized microservices are the foundation for cloud-native
applications [4].
Kubernetes is one of the most widely adopted open-source container orchestration systems. In fact,
Kubernetes has established itself as the de facto standard for container orchestration and is the
flagship project of the Cloud Native Computing Foundation (CNCF), backed by key players like
Google, AWS, Microsoft, IBM, Intel, Cisco, and Red Hat [5].

Kubernetes clusters are at the center of all AME internal and external services. AME uses its own
Kubernetes distribution called AME Kubernetes. For the most part, it’s 100% “vanilla” Kubernetes
except for a few adjustments. The main difference is that AME Kubernetes enforces default settings
for higher security. Other differences mainly relate to the additional automation for operational
services.

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

16

A few components of the core Kubernetes infrastructure are tightly related to this project. For
instance, Container Network Interface (CNI) is responsible for inserting network interfaces into
containers and thus providing connectivity of pods to networks (e.g., pod-to-pod, Internet). Since this
project looks at cross-cluster networking, CNI will play a big role in the final solution. AME Kubernetes
uses Calico CNI, and the final solution must be compatible with it (TC-2).

AME strives to stay as close as possible to the upstream Kubernetes distribution as well as to follow
the approaches fostered by the Cloud Native Computing Foundation (CNCF). In fact, Avisi has
recently become an official member of the CNCF landscape. This is also expected to be followed in
the Technical Design. (BC-3)

To summarize, several constraints can be drawn up at this point. The design must be compatible
with the Calico CNI (TC-2). Furthermore, it is desirable but not mandatory that the final solution uses
components that are open-source (BC-2) and reside in the CNCF landscape (BC-3).

3.4.2 Kubernetes-in-Kubernetes

The AME platform uses Kubernetes in a powerful and rather complex architecture called Kubernetes-
in-Kubernetes. It is based around using an outer Kubernetes cluster to automate creation, upgrades
and management of inner Kubernetes clusters used by end-customers. Subsequently, this
architecture enables AME to provide customers with fully managed consistent clusters at scale.

The diagram below provides a high-level overview of this architecture.

The pool (outer) cluster runs control planes of multiple
separate customer (inner) clusters. For each new customer,
a namespace in the outer cluster gets created and then the
control plane components are deployed as pods in that
namespace. This ensures isolation and security. To provide
high availability for the control planes, AME deploys several
entities (pods) for every component.

A customer cluster has one or more node pools that run
workloads – customer’s applications and data. Each node
pool consists of one or more worker nodes (VMs) that
provide resources like CPU, RAM, and storage. This is further
explained in the next sub-chapter – Infrastructure.

Figure 1. AME Kubernetes-in-Kubernetes
architecture overview

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

17

Ingress controller (Nginx) is configured on the outer cluster to enable customer clusters to
communicate with Kubernetes API server. The ingress controller is shared by all customers using the
same outer cluster.

This architecture is very powerful but at the same time it adds complexity and constraints to this
project. For example, if the future multi-cluster solution would require replacing certain components
of the control plane or synchronizing multiple control planes, the solution might not integrate well.
Therefore, it is a key technical constraint - the final solution must seamlessly integrate with AME
Kubernetes (TC-1).

3.4.3 Infrastructure

AME provides the PaaS platform but doesn’t manage the underlying physical infrastructure such as
hypervisors, load balancers or storage. The physical infrastructure is provided by external vendors.

3.4.3.1 Cloud providers

The AME platform is multi-cloud and provider-agnostic by vision, it uses independent components to
be able to deploy anywhere. Currently, most of the platform runs on AWS but the platform is
expanding support for more providers.

Most customer clusters worker nodes are AWS EC2 instances (VMs), storage is provided by Amazon
EBS. Other providers are used for customer clusters’ worker nodes are DigitalOcean, Scaleway, and
Intermax.

During a discussion with the platform architect, it’s been discussed that not all cloud providers
support the same set of network protocols, and this is a technical constraint for cross-cluster
connectivity. The final solution may only use network protocols supported by all providers mentioned
above (TC-4).

3.4.3.2 Immutable Infrastructure

Immutable infrastructure is an infrastructure paradigm in which servers are never modified after
they’re deployed [6]. This pattern is used by AME to automate the upgrades for Kubernetes worker
nodes. Regular upgrades are crucial to keeping the system secure and stable, but the upgrade
process can break applications running on the node. To prevent this, nodes are never patched or
upgraded in place. Instead, new nodes get created with the desired versions and configurations.
After they’re validated, they’re put into use and the old ones are decommissioned. This way, AME
guarantees predictable upgrades without any unexpected configuration drifts. This is a technical
constraint (TC-3) because the final solution cannot rely on changing node configuration in place.

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

18

3.4.4 Automation

The AME platform is designed and built with a strong focus on automation and a mindset that
applications are not static - in fact, they are changing all the time, and the infrastructure must be
consistent with this dynamicity to maintain excellent application availability and performance.

Each customer environment consists of 3 components: Kubernetes clusters, core infrastructure and
operation services. All these components are automated following a GitOps approach. GitOps is a
process of automating IT infrastructure using infrastructure as code and source version control
systems [7]. AME holds cluster configuration and manifest files in code repositories. Then, whenever a
configuration change occurs, a tool like FluxCD synchronizes the new configuration with the cluster
driving it to reach the desired state.

Because automation is so important, one of the important demands for the design is that it must be
100% automatable using the AME approach and toolset so that it can scale. This concern will be
covered in a separate user story and research question (#7).

3.5 Conclusion and Design Constraints
The architecture of AME is rather complex and unique. There are a few very distinct technical
constraints related to networking that will have an impact on the technical design. Firstly, these
technical constraints need to be studied more thoroughly through literature study. Secondly, to
ensure they are considered, constraints will be included in the multi-criteria analysis alongside the
user stories. Prototyping will be used as well to validate the constraints are met. The following design
constraints have been drawn up.

BC – Business Constraint; TC – Technical Constraint

ID Description
BC-1 Technologies used in the final solution must be ready for beta-testing by the end of 2022
BC-2 Technologies used in the final solution should be open source (preferable but not

mandatory)
BC-3 Technologies used in the final solution should be CNCF-hosted (preferable but not

mandatory)
TC-1 The final solution must seamlessly integrate with AME Kubernetes
TC-2 The final solution must be compatible with the Calico CNI (mandatory) and should be

CNI-agnostic (preferable)
TC-3 The final solution should follow the pattern of immutable infrastructure
TC-4 Network protocols used in the final solution must be supported by the cloud providers

used by AME: AWS, Intermax, Scaleway, DigitalOcean
Table 2. Design Constraints for AME multi-cluster solution

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

19

4 The Limits of the AME platform
The existing architecture of AME is incredibly powerful and already solves a lot of problems for the
customers of Avisi. However, certain challenges related to jurisdictional compliance, disaster
recovery, flexibility and other aspects of the platform remain unsolved. These challenges are
becoming more relevant for the platform growth and for the type of customers that AME wants to
target.

This chapter focuses on the second research sub-question: “Why does the current architecture limit
AME in supporting more cloud providers and geographic locations?”. This research question unfolds
the initial idea about the problem and gets to the core of it. This technical problem analysis will help
to find root causes of the problem within the current architecture and address them in the Technical
Design.

4.1 Methodology
Previously, the high-level architecture was analyzed. This research question will require zooming into
certain parts of the architecture to get to the core of the problem. First, the existing design
documentation will be examined with the focus on AME k8s control plane, networking, and storage.
Further information about the problem from different perspectives will be derived from interviews
with the CTO, Platform Architect, DevOps engineers, and internal customers of AME.

To process collected information and get to the origins of the problems and limitations within
architecture, tools such as 5 Why’s and Fishbone will be used. Both tools will focus on technical
details of the architecture. Fishbone is used because there might be multiple technical root causes.
In addition, prototyping will be used to better understand the limits of the current architecture
through experiments.

4.2 Problem – Deep Dive
AME wants to grow the platform, expand its reach, and provide the customers with the sought-after
capabilities described above. Since the AME platform is based on the container orchestration system
- Kubernetes, proper cross-cluster networking will play a critical role in achieving these capabilities.
That’s why the topics of “multi-cluster connectivity” and “multi-cloud architecture” go toe to toe in
this research and are both critically important for the goals of AME.

The previous chapter outlines the initial understanding of the problem – the current AME platform
has limitations that need to be addressed to target enterprise customers. This chapter will deepen
that understanding and get to the technical root cause that will become the primary focus of the
Technical Design using 5 Whys. The diagram below summarizes the results from initial problem to

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

20

the root cause.

Figure 2. Analyzing the AME problem using 5 Why's

Why cannot a single Kubernetes cluster span multiple regions?

According to [8], it is not practical to stretch a single K8s cluster across geographically significant
distances because of the etcd sensitivity to network latency and bandwidth between master nodes.
Etcd is a key-value store component responsible for holding and managing critical data required by
Kubernetes: state, configuration, metadata, API objects etc. A distributed protocol called Raft is used
by etcd nodes to reach a consensus - in other words, a guarantee that all etcd nodes agree on a
particular value. Even an insignificant increase in latency can cause timeouts resulting in a cluster’s
inability to start new workloads. Therefore, the master nodes of a single K8s cluster must reside within
a single region.

4.3 Problem – Core
The core of the problem comes down to network connectivity between K8s clusters. To be able to
quickly migrate workloads across regions and providers in response to jurisdiction changes or
infrastructure disasters, or to have multi-region and multi-cloud deployments for enterprise-grade
availability, pods on one cluster must be able to directly communicate with pods on other clusters in
a multi-cluster topology. This connectivity must be reliable, fast, and secure. Achieving a multi-

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

21

cluster architecture with such connectivity will be the primary focus of the technical research and
design.

The secondary problem, or rather challenge in a multi-cluster K8s architecture is orchestration.
Orchestration within one K8s cluster is straightforward – the control plane takes care of everything
automatically; this is what K8s is for. But when it comes to having a single point of orchestration for
multiple clusters, issues arise. Orchestrating workloads across multiple clusters requires additional
tooling and mechanisms that would allow control planes of those clusters to synchronize with each
other.

After a discussion with the Platform Architect, it’s been agreed that the primary focus of this project
will be on connectivity. The orchestration challenge is of secondary priority in this project.
Nonetheless, orchestration aspects will be addressed in the research and design granted that there
will be sufficient time.

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

22

5 Stakeholders and User Stories
This chapter focuses on answering the research sub-question 4: “What requirements do the
stakeholders at the company have for the future solution?”. It presents a condensed version of the
Stakeholder Analysis including a brief take on the methodology, identified stakeholders (shortlist),
summary of the interviews, and the resulting user stories. The full Stakeholder Analysis can be found
in Appendix A.

5.1 Methodology
The primary objectives for this Stakeholder Analysis are to identify the people involved, understand
their interests and influence in the project, gain insight into their wishes for the final product and
obtain the necessary support and resources. The ultimate outcome of the Stakeholder Analysis is the
list of User Stories for the final product.

For stakeholder identification, methods of Document Analysis (Avisi’s organizational chart) and
Brainstorming will be used. During this assignment, I will not be in contact with external customers;
instead, their interests will be represented by the internal customers of the platform (AME is also used
internally) and the Platform Architect. The internal customers are the AME team itself as well as other
teams in the Avisi Cloud unit.

First, a longlist will be compiled after which the Mendelow’s Power-Interest grid will be used to
prioritize the stakeholders and establish a shortlist of people for requirements elicitation interviews.
Not all requirements will be derived from interviews; due to the novel nature of the multi-cluster
technology, some requirements will be sourced from literature study and community research. All
requirements including business, functional and non-functional will be formulated as User Stories
because this is a standard practice at AME. Further, the User Stories will be prioritized using MoSCoW.
Due to a non-waterfall approach and experimental nature of the project, there will be multiple
iterations of User Stories agreed with the Platform Architect.

For full methodology, see Appendix A (1.1 Methodology).

5.2 Stakeholders – Shortlist
This sub-chapter lists the stakeholders who possess the most interest, influence, and support in the
project; they will be interviewed individually and consulted throughout the entire duration of the
project. For the full list of stakeholders, see Appendix A (1.2 Stakeholders Full List)

ID Stakeholder
INT-S1 Thomas Kooi, Product Owner, Platform Architect, Company Supervisor
INT-S2 Jeroen Veldhorst, CTO
INT-S3 Mark Freriks, Platform Developer
INT-S4 Bob Beeke, Platform Operations

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

23

INT-S5 Albert van de Kamp, Team Lead, Platform User (Internal Customer)
Table 3. Shortlist of stakeholders for requirements gathering

5.3 Summary of Stakeholder Interviews
This sub-chapter briefly discusses all interviews. A summary of each individual interview can be
found in Appendix A.

At a high level, the stakeholders’ wishes, and demands are in line: enabling network interconnection
between different Kubernetes clusters, making it integrable with the current configuration of AME
clusters, ensuring high security and maintainability support. Multi-cluster networking will enable AME
to create Kubernetes environments that span multiple regions and clouds. It is crucial for the
architecture to be reusable and well-fitted within the current ecosystem of the AME platform.

There have been some discrepancies among stakeholders on which use cases are the most relevant
for Avisi Cloud and its customers. Nevertheless, the survey (Appendix A, Ch. 1.5) helped to establish
the use cases baseline to match the User Stories. The proposed multi-cluster solution must enable
building architectures (application and platform) to facilitate jurisdiction compliance, disaster
recovery, high availability, latency reduction, and provider-specific features. It’s precisely these use
cases that Avisi can leverage to create a unique selling point for the AME platform and attract the
type of customers Avisi wants to target – enterprises with large-scale mission-critical applications.

One of the critical points mentioned by all stakeholders is automation. Multi-cluster architecture may
involve complex low-level networking solutions such as custom VPN tunnels and Direct Links. The
solution should strive to make it easy for all types of users without special networking knowledge:
developers, cluster operators, users; it should abstract and automate most of the multi-cluster
connectivity. Other critical arguments are resiliency and security: introducing multi-cluster should
not break any existing features of AME single-clusters and should minimize the security risks.

Interviews resulted in a list of user stories that represent the desired situation from different
perspectives I.e., platform customers, developers, operators. Further, during the interview with the
Platform Architect, it was discussed that multi-cluster networking should be the focus. Therefore,
User Stories associated with the multi-cluster networking problem will have higher priority than the
ones related to orchestration.

5.4 User Stories
The following user stories have been formulated and prioritized through interviews and review
sessions with stakeholders. These user stories form the accepted scope accepted by the Product
Owner. Each user story defines a set of acceptance criteria which will be used to form test cases and
evaluate whether that user story is achieved at the end of the project.

User Story ID Construction

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

24

US – User Story; sequential number starting from 1; B – Business / F – Functional / NF – Non-
Functional

5.4.1 Business

These User Stories represent the vision of Avisi Cloud for this project with the emphasis on the
expected benefits for the business; they are derived primarily from the CTO and Platform Architect.

ID Description Priority Acceptance Criteria

US-1-B As a CTO, I want to make the AME platform more
flexible through multi-cluster Kubernetes
architecture so that I can create a unique selling
point to attract new customers.

MUST • Sign-off from the CTO

US-2-B As a Platform Architect, I want to have a multi-
cluster solution that does not rely on any specific
implementation offered by one cloud provider, so
that the platform remains provider-agnostic.

MUST • The final design can be
deployed on any
provider

• Sign-off from the
Platform Architect

US-3-B As a Platform Architect, I want the final solution to
scale to 100 clusters without hindering my team with
manual activities and maintenance.

MUST • Manual activities are
demonstrated

• Manual configuration
should take less than 5
minutes

US-4-B

As a Platform Architect, I want the Advisory Report to
include information on how Avisi can use multi-
cluster topology for the GAIA-X project so that it can
be used for platform growth in the future.

COULD • The final report contains
advice on the use of
multi-cluster in relation
to the GAIA-X initiative

Table 4. Business-related User Stories

5.4.2 Functional

Functional User Stories focus on users’ needs around the functionality of the multi-cluster solution,
i.e., what actions users should be able to perform in the desired architecture. These user stories are
mostly derived from the Platform Architect as he represents customers’ interests but also from the
stakeholders who work on the platform – developers and operators.

ID Description Priority Acceptance Criteria
US-5-F As a Platform User, I want to be able to fully

replicate a service across multiple clusters in a
multi-cluster topology so that I can achieve
higher availability, resiliency, and reduced
latency for my mission-critical applications.

MUST • Demonstrate a mock application
deployed across 2 clusters (fully
replicated)

• Demonstrate HA and resiliency by
destroying one cluster; the
application should still be available

• Demonstrate latency by accessing
the mock application from different
regions

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

25

US-6-F As a Platform User, I want to be able to segment
a service across multiple clusters in a multi-
cluster topology so that I can effectively deal
with jurisdiction compliance.

MUST • Demonstrate separate services of a
mock application deployed across
2 clusters; different services can
communicate with each other
directly

US-7-F As a Platform User, I want to be able to migrate
an application from cluster to cluster in a multi-
cluster topology transparently so that I can
effectively respond to various changes within
the environment.

SHOULD • Demonstrate the migration of a
mock application from one cluster
to another cluster with minimum
downtime

US-8-F As a Platform User, I want the multi-cluster
environment to support soft multi-tenancy so
that different departments or teams within my
organization can share the environment.

SHOULD • Demonstrate the means of
creating soft multi-tenancy across
2 clusters (for example, replication
of namespaces)

US-9-F As a Platform User, I want to be able to firewall
traffic across interconnected clusters so that I
can control which pods can communicate with
each other.

MUST • Demonstrate the means of
controlling network traffic flow at
the IP address or port level across 2
clusters.

US-10-F As a Platform User, I want to be able to prioritize
traffic to the local cluster over a remote cluster
so that bandwidth costs for the traffic that
crosses the cluster boundaries can be
minimized.

SHOULD • Demonstrate the mechanisms of
enforcing a local cluster traffic
before routing the traffic to a
remote cluster

US-11-F As a Platform Architect, I want to have
encryption mechanisms for cross-cluster traffic
so that the security of data can be ensured.

MUST • Demonstrate that all cross-cluster
traffic flows through a secure
tunnel connection between two
clusters

US-12-F As a Platform Ops, I want to be able to use the
existing toolset with the multi-cluster solution so
that I can easily monitor, troubleshoot, and
debug the solution.

SHOULD • Demonstrate that metrics and logs
for the multi-cluster topology can
be collected using the existing AME
toolset (Prometheus, Grafana, Loki)

US-13-F As a Platform User, I want to be able to schedule
pods on a specific cluster in the topology so
that I can fulfill advanced scheduling
requirement.

SHOULD • Demonstrate the ability to assign a
pod to run (or not run) on a certain
cluster among the 2
interconnected clusters

US-14-F As Platform Ops, I want to have a runbook for
the final solution so that I know which steps
need to be performed to configure and
maintain a multi-cluster topology.

MUST • The runbook has been recorded in
AME documentation on Confluence

• The runbook contains a description,
step-by-step procedure
(commands), and references to
documentation

• The runbook has been tested and
approved by an ops engineer

Table 5. Functional User Stories

5.4.3 Non-Functional

The User Stories in this sub-chapter focus on non-functional requirements; they address how the
future multi-cluster topology must behave and perform in terms of security, speed, usability,

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

26

reliability, etc. These user stories have been sources primarily from literature study and community
research.

ID Description Priority Acceptance Criteria
US-15-
NF

As a Platform Architect, I want the final
solution to be aligned with the security
principles of AME so that the multi-cluster
topology does not create serious security
vulnerabilities.

MUST • The documentation describes how
the solution adheres to the security
principles

• Sign-off from the Product Owner

US-16-
NF

As a Platform User, I want to be able to
connect clusters within a few clicks using the
AME console, so that I don’t have to perform
any complex configurations.

WON'T Out of scope

US-17-
NF

As a Platform Architect, I want the network
overhead (latency, throughput, CPU usage)
in the multi-cluster topology to be less than
10% (relative to a single cluster) so that the
impact on user experience can be minimized.

SHOULD • Network stats are tested and
recorded by accessing a mock
application deployed on a single
cluster

• Network stats are tested for the same
application deployed across two
interconnected clusters (in the same
region)

• The difference between the stats is
not higher than 10%

US-18-
NF

As a Platform Architect, I want the multi-
cluster solution to permit automated pod-to-
pod service discovery, load balancing, and
routing for multi-cluster services so that I
don’t have to make any additional
configurations.

MUST • Demonstrate an ability to resolve
hostnames from a component of a
cluster across clusters

US-19-
NF

As a Platform Architect, I want the multi-
cluster solution to be fully automatable so
that I don’t have to perform any repetitive
manual configurations for each cluster.

MUST • The final report explains how the
multi-cluster interconnection setup
and deployments can be automated

US-20-
NF

As a Platform Ops, I want the solution to have
resiliency mechanisms so that failure in one
cluster does not cause the entire multi-
cluster topology to fail.

SHOULD • Demonstrate an environment with
three interconnected clusters in
which upon a destruction of one of
the clusters, the multi-cluster
connectivity remains functional

US-21-
NF

As a Platform User, I want to be able to
interconnect more than two clusters so that I
can deploy my application in at least 3
regions.

COULD • Demonstrate the interconnection of 3
clusters in different regions

US-22-
NF

As a Platform User, I want the solution to have
support for overlapping pod IP addresses so
that there are no routing issues across
interconnected clusters.

MUST • Demonstrate the absence of routing
conflicts when interconnecting
clusters with overlapping Pod, Service
and Cluster subnet CIDRs

Table 6. Non-functional User Stories

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

27

6 Technical Research: K8s Multi-cluster
This chapter gathers all technical research conducted throughout the project. It includes research
about best-practices and solutions for K8s multi-cluster to answer the research question 4. Further, it
talks about automation techniques to answer the research questions 7, as well as challenges and
risks of the architecture to answer the research question 9.

6.1 Methodology
Research sub-questions 4, 7 and 9 will be broken down into spikes – time-boxed investigations of a
technical topic required to fulfil a user story. Spikes are aligned with user stories; they are specific
and allow to conduct targeted technical research.

The table below represents the research spikes based on story mapping, related user stories and
sub-chapters in which the spikes will be elaborated.

Spike Description Related User
Stories

Refs

Multi-cloud K8s
What do provider-agnostic and multi-cloud strategies mean?
How can these strategies be achieved with K8s?
Which reference architectures exist for multi-cluster?

US-1-B,
US-2-B

6.2;
7.2;

Connectivity
How does networking work in K8s?
Why is it challenging to connect clusters?
What are the best technologies to solve the connectivity
problem?
How to evaluate network overhead?
How to control traffic across clusters (firewall and
prioritization)?
How to ensure service discovery?
How to ensure fault-tolerance in the topology?
How to ensure support for overlapping IP CIDRs?

US-9-F,
US-10-F,
US-13-F,
US-17-NF,
US-18-NF,
US-20-NF,
US-22-NF

6.3.1;
7.1.3;
Appx B: 2.3.2, 2.4.2,
2.5.2, 2.6.2

Security
How to realize encryption for cross-cluster communication?
How to adhere to security principles of AME?

US-11-F,
US-15-NF

Appx B: 2.3.3,
2.4.3, 2.5.3, 2.6.3

Maintainability
How to integrate with existing monitoring and logging tools?
How to automate multi-cluster connectivity?

US-3-B,
US-12-F,
US-14-F,
US-19-NF

Appx B: 2.3.4,
2.4.4, 2.5.4, 2.6.4

Deployments and Orchestration
How can soft-multitenancy be achieved in a multi-cluster
environment?

US-5-F,
US-6-F,
US-7-F,

10.1.1;
10.1.2;
10.1.3

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

28

How to schedule pods on specific clusters in the topology?
How to deploy applications and data to multi-cluster?
How to migrate applications in multi-cluster?
How to deploy a global load balancer and storage in multi-
cluster?

US-8-F

Table 7. Research Spikes

Finding information during the spikes will be done primarily through Library strategy. A literature
study will be performed to analyze state-of-the-art publications and conferences related to K8s
multi-cluster architectures as well as CNCF sources. Further information will be collected through
community research (K8s Multi-Cluster Special Interest Group, GitHub, etc.).

First, a longlist of multi-cluster connectivity projects will be formed. Then, the projects will be checked
against the constraints to eliminate the options that cannot be used within AME; this will result in a
shortlist. After that, shortlisted projects will be evaluated against AME requirements to determine the
best-fit solution; for this, multi-criteria analysis will be used along with prototyping.

6.2 Provider-agnostic and Multi-cloud K8s
The term of provider-agnostic (or vendor-agnostic) refers to tools, platforms and applications that
are compatible with any cloud infrastructure. They can be moved to and from different cloud (and
on-prem) environments freely without inducing any operational issues. A business is cloud-agnostic
when the company IT systems are not locked into a single cloud vendor or do not rely on one cloud
provider’s proprietary services [9].

Kubernetes is provider-agnostic by design, but only the open-source, “vanilla” distribution - it can be
deployed in any datacenter or cloud if all infrastructure preconditions are satisfied. However, most
public cloud-based distributions of K8s like EKS are not vendor-agnostic as they induce lock-in
through integrations with vendor-specific services and tools on top of K8s, for example, with AWS
eksctl [10]. The AME Kubernetes minimizes the use of vendor-specific resources in pursuit of
maintaining the platform vendor-agnostic.

The terms “provider-agnostic” and “multi-cloud” are easy to confuse but they also go together in
today’s cloud strategies. While provider-agnostic means that a company is not locked-in within a
single vendor, multi-cloud means that it utilizes several clouds at the same time. For instance, in a
hybrid cloud scenario, a company might combine resources from their own private cloud with
resources from a public cloud like Azure. Using multiple public clouds within one organization is also
not uncommon. Multi-cloud is a strategy pursued by organizations to become vendor-agnostic.

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

29

Multi-cloud Kubernetes is a big challenge because a K8s cluster is siloed within a single region and
cloud. Kubernetes is not designed to support a single cluster that spans multiple providers or regions
on the wide area network [11]. To build a multi-cloud or multi-region Kubernetes environment there

must be multiple K8s clusters
interconnected in a multi-cluster
topology; they should be able to
directly communicate and share
resources with each other. Hence, in
this research, the terms “multi-cloud”
and “multi-cluster” are
interchangeable.

Multi-cluster topologies introduce two
classes of challenges: synchronization

between cluster control planes and interconnection that makes services directly accessible across
clusters [12]. This research aims to focus on the interconnection challenge by evaluating various
connectivity solutions. The next sub-chapter dives deeper into how networking is realized in K8s and
what is the best way to connect multiple clusters.

6.3 K8s Networking and Multi-cluster Connectivity
6.3.1 Overview of K8s Networking

Networking is a central part of Kubernetes, it allows different K8s components to communicate with
each other and with other applications. K8s networking has 4 distinct areas of communication:
container-to-container (within a Pod), Pod-to-Pod, Pod-to-Service, External-to-Service [13].

K8s provides the networking model to enable the above connections but the implementation of that
model is not provided out-of-the-box. The most common way to realize the networking in K8s is
through Container Network Interfaces (CNI) plugins. A CNI plugin is responsible for inserting a
network interface (veth – Virtual Ethernet) into the container network namespace and making the
necessary changes on the host and in the routes [14]. One of the foundational principles of K8s
networking is that Pods can communicate with each other directly in a flat network across all nodes
using their own IP addresses. This behavior must be preserved in a multi-cluster topology.

Current official K8s documentation counts at least 25 different implementations of the K8s
networking model – each having details that differ from each other. This is a challenge for multi-
cluster scenarios that this research is focused on. There is a need to communicate across separate
private networks residing in different regions and clouds reliably and securely, however, most
networking solutions are not providing any guarantee about how multi-cluster works making it
completely left up to the unintentional implementation details [11]. And although today all AME
clusters use Calico as a CNI, it should not be assumed that this will not change in the future.

Figure 3.K8s Multi-cloud and multi-region distribution; adapted
from [49]

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

30

Finding a reliable, secure, and flexible inter-cluster networking solution that respects all constraints
and requirements of AME is crucial. The next sub-chapters look at various projects and solutions.

6.3.2 Multi-cluster Connectivity Solutions – Longlist

As explained in 6.3.1, CNIs provide networking in a single cluster. A multi-cluster connectivity solution
should enable direct cross-cluster pod-to-pod and pod-to-service communication required for a
multi-cluster topology. A literature study of the CNFC sources showed that this can be achieved
either through CNI extensions, or by dedicated tools [12]. Multi-cluster connectivity solutions vary in
their designs, where critical design choices involve mainly three aspects: interoperability with
different cluster configurations, compatibility between network parameters used in the other
clusters, and dealing with services exposed on all clusters.

A CNCF literature study combined with K8s community research resulted in a list of connectivity
solutions that are being actively worked on today; all of them are open source. Proprietary solutions
such as AWS Outposts, Google Anthos are excluded from the evaluation due to provider-agnostic
principle.

Below is the full list of projects discovered in this research. Generally, the solutions can be divided into
two groups: VPN-based and Gateway-/Proxy-based; both having advantages and disadvantages
that will be discussed further.

Project name Description CNCF Maturity
(as of Jan 26,
2022)

Submariner Submariner enables direct networking between Pods and
Services in different K8s clusters, either on-premises or in the
cloud through L3 connectivity using encrypted Wireguard or IPSec
VPN tunnels [15].

Sandbox

Skupper Skupper is a layer 7 service interconnect. It enables secure
communication across Kubernetes clusters with no VPNs or
special firewall rules using HTTP/1.1, HTTP/2, gRPC, and TCP
communication secured by mTLS [16].

Not listed

Liqo Liqo aims to create a CNI-agnostic and straightforward way to
create decentralized multi-cluster topologies using Wireguard
tunnels. On top of connectivity, Liqo proposes a seamless multi-
cluster model which allows Pods and Services to be offloaded on
remote clusters [17].

Not listed

Cilium
ClusterMesh

Cilium's multi-cluster implementation that provides Pod IP routing
across multiple K8s clusters at native performance via tunneling
or direct routing without requiring any gateways or proxies. It uses
transparent encryption for all communication across cluster
boundaries [18].

Incubating

Istio Multi-
cluster

Istio is a service mesh with multi-cluster support. The
interconnection among different clusters uses a dedicated proxy

Not listed

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

31

to route traffic from the mesh of one cluster to another. Traffic is
secured by mTLS [19].

Linkerd Multi-
cluster

Linkerd is a service mesh. Its multi-cluster support works by
“mirroring” service information between clusters. Connection
between clusters is encrypted and authenticated on both sides
with mTLS [20].

Graduated

NSM Network Service Mesh (NSM) is the Hybrid/Multi-cloud IP Service
Mesh enabling zero-trust L3 between individual K8s Pods across
clusters/clouds. Can be combined with L7 service meshes and is
not limited to K8s [21].

Sandbox

kEdge kEdge is a proxy for gRPC and HTTP microservices that aims to
make cross-cluster microservice communication secure and
simple to set up. Uses TLS and special dialer to enable pod-to-
pod [22].

Not listed

Consul Mesh
Gateway

Consul is a service networking solution that can enable multi-
cluster WAN federation via Mesh Gateways. It can be used to
federate K8s clusters across cloud providers with end-to-end
mTLS encryption [23].

Not listed

Table 8. Overview of active multi-cluster connectivity projects

Some projects like Submariner are dedicated specifically to enabling direct communication between
pods and services in different K8s clusters while others like NSM can achieve the same result but
require much more complex configuration due to low-level networking. Further, some solutions like
Cilium ClusterMesh have major drawbacks, for instance, introduce strict dependencies on specific
CNIs or assume a certain configuration of a cluster’s network, e.g., require unique Pod CIDRs in each
cluster. Due to this, not all projects can be considered for AME. First, the solutions listed above will be
filtered using the constraints determined in 3.5. Projects that do not follow the mandatory AME
constraints will be excluded from the multi-criteria analysis.

Table 9 condenses the relationships between the discovered connectivity projects and the AME
constraints. The plus (+) sign means that a solution fully conforms with a constraint, the minus (-)
sign means that it does not, and the plus/minus (+/-) implies that a solution conforms to a
constraint partially. The solutions colored green will proceed to the shortlist, whereas the red ones will
be excluded. A detailed explanation per solution can be found in Appendix B, chapter 2.1.

Constraint Subm. Skup. Liqo Cil. Ist. Link. NSM kEdge Cons.
BC-1 + + + + + + + + +
BC-2 + + + + + + + + +
BC-3 + - - + - + + - -
TC-1 + + + - +/- + +/- + +
TC-2 +/- + +/- - + + + + +
TC-3 + + + + + + + + +
TC-4 + + + + + + + + +

Table 9. Constraints Evaluation of Multi-cluster Solutions

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

32

6.3.2.1 Conclusion

Nine different multi-cluster connectivity projects have been discovered and evaluated against AME
constraints. All discovered solutions are ready for beta-testing, and some have already gone
through extensive testing in production clusters by community users. All discovered solutions are
open-source, however, only four out of nine solutions are CNCF-hosted projects.

Five projects will be excluded from further evaluation, namely, Cilium ClusterMesh, Skupper, Istio
Multi-Cluster, kEdge, Consul Mesh Gateway. Cilium ClusterMesh is excluded due to a strict
dependency on Cilium CNI (does not conform with TC-2). Skupper, Istio Multi-cluster, kEdge and
Consul Mesh Gateway will be eliminated for two reasons. First, they are not CNCF-hosted which (BC-
3 non-conformant), however, the CNCF constraint is not mandatory. The second is explained in detail
in Appendix C, chapter 2.1. In short, the projects in question are all proxy/gateway-based solutions
that operate on Layer 7 and employ a very identical approach but at the same time, they are
significantly less mature than Linkerd which, in its turn, has a CNCF-graduated maturity since 2017.
There is little value in fully evaluating all of them. Therefore, it’s been decided that out of all proxy-
based solutions, only Linkerd will be considered. This decision has been approved by the Platform
Architect.

One exception is Liqo. Despite not being on CNCF, the project has a lot of potential and attention in
the community. Besides, Liqo has unique features that could be extremely valuable for AME. For this
reason, the decision is to include Liqo in the shortlist.

6.3.3 Connectivity Solutions – Shortlist

After eliminating the connectivity solutions that do not comply with the constraints of AME, the
following shortlist has been formed:

• Submariner – CNCF-sandboxed, cross-cluster L3 overlay network with broker-based topology
• Liqo – non-CNCF, cross-cluster L3 overlay network with peer-to-peer topology
• Linkerd Multi-cluster – CNCF-graduated, L7 service mesh with gateway-based cross-cluster

connectivity
• NSM – CNCF-sandboxed, L3 zero-trust network between individual workloads/pods

The projects above will undergo extensive multi-criteria analysis against AME user stories. Based on
the MCA, a decision will be made on which solutions will proceed to Technical Design.

6.3.4 Multi-criteria Analysis of Shortlisted Connectivity Solutions

This chapter focuses on a qualitative multi-criteria analysis of K8s multi-cluster connectivity
solutions. The goal of this MCA is to establish which solution out of the shortlist qualifies the most in
terms of the functional and non-functional requirements of AME. User stories defined in 5.4 will be
used as criteria. Because this MCA is focused only on connectivity, user stories related to
orchestration will be excluded from criteria.

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

33

Each solution will be evaluated against each criterion based on information gathered through
available documentation, community posts, and prototyping, and assigned a score between 1 and 4
(explained in Table 10).

Score Explanation
0 Not capable

The evaluated product cannot satisfy the evaluated criteria
1 Capable with significant limitations

The product can partially satisfy the criteria with certain non-critical limitations
2 Capable without significant limitations

The product fully satisfies the criteria
3 Highly capable

The product fully satisfies the criteria and stands out through additional features or
automation

Table 10. MCA scores explanation

Criteria have different weights – one criterion might be more important than the other. Weights in
this MCA will be based on the MoSCoW priorities defined for each user story (Table 11).

The final score is calculated by multiplying a score gained on a
criterion by its weight. The solution that scores the highest will be used
in Technical Design. Extended version of multi-criteria analysis
demonstrates the scores for each criterion and product including the
elaboration of assigned score, it can be found in Appendix C.

Table 11. MCA criteria weight

6.3.5 Multi-criteria Analysis – Results

This sub-chapter discusses the total scores and associated conclusion of the MCA. For a complete
analysis, refer to Appendix C.

Table 12 shows the total scores
received by the four evaluated
technologies.

Linkerd scored the highest – 259. The MCA revealed that Linkerd is the only solution that satisfies all
AME requirements and is rich with additional features beneficial for a multi-cluster environment such
as distributed tracing and traffic split. Besides the core capability – L7 connectivity through multi-
cluster gateways, Linkerd’s strongest points are exceptional simplicity, security-first design with mTLS,
traffic control with Authorization and Client-side (coming in 2022) policies. Linkerd has a few non-

Priority Weight
Must 10
Should 5
Could 2
Won’t 1

Linkerd Liqo NSM Submariner

259 211 199 179
Table 12. Multi-cluster solutions MCA - total scores

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

34

critical drawbacks, e.g., with sidecar proxies, the CPU and latency overhead is inevitable, however
Linkerd strives to reduce it to an absolute minimum. Overall, the MCA proves that Linkerd is simplest
solution for secure Kubernetes multi-cluster connectivity as of today; it is suitable for a wide range of
generic use cases for multi-cluster services that communicate over HTTP, gRPC and other TCP-
based protocols as described by DP-1 in 6.4.

Liqo’s total score is the second highest – 211. Liqo is a unique, one-of-a-kind technology that
addresses both multi-cluster challenges - networking and orchestration - in one solution. Liqo
provides Layer 3 VPN-tunnel-based connectivity across clusters which is best-suited for when
services need direct IP reachability as described by DP-1 in 6.4. It also can seamlessly schedule
workloads across connected clusters making it potentially the best solution for jurisdiction
compliance and disaster recovery, application migration use cases. In addition, Liqo conforms all
design principles established in 6.4, for example, it supports decentralized and dynamic topologies,
does not make assumptions about a cluster configuration (CNI, CIDRs), fully based on vanilla K8s
components and concepts. Currently, Liqo cannot address certain “MUST” requirements of AME,
associated with traffic control (NetworkPolicy, local traffic priorities), however, according to the
roadmap, this support will be introduced in the upcoming versions. All factors considered, Liqo will be
proposed as one of the multi-cluster architectures in Technical Design.

NSM received 199 points in total. It does not satisfy all AME requirements and is rather complex.
However, NSM has a few strong characteristics not presented by any other solution: the granularity of
connections – NSM connects individual workloads instead of connecting entire clusters, full
independence of a runtime domain (not limited to K8s) and internal K8s networking (CNI). NSM is not
a generic solution; it is best-suited for a number of very distinct use cases: 1. establishing a vL3
between two individual K8s workloads in different clusters, for example, for replication between two
database instances; 2. connecting an individual K8s workload to a non-K8s workload, for example,
migrating a database from a VM in a datacenter to a Pod in a K8s cluster; 3. connecting an
individual K8s workload to one or more external Network Services such as firewall or IPS. NSM is a lot
more complex and involves low-level networking, therefore it cannot be used as a generic solution
like Linkerd. Nonetheless, NSM-based architecture will be proposed to AME to address the specific
use cases mentioned above.

Submariner, at last, received the lowest score of 179. This is due to Submariner being significantly
limited both in terms of its features and architecture. Feature-wise, its weakest points are limited
multi-cluster services (does not support having Endpoints spread across multiple clusters), no multi-
cluster Network Policy or another mechanism to control traffic. Architecture-wise, Submariner
contradicts certain design principles e.g., DP-6 because Submariner depends on a central Broker
shared by all clusters, and DP-4 because Submariner expects clusters to be architected with non-
overlapping CIDRs by default. Prototyping during the MCA also showed that Submariner is not stable.
Considering all of the above, Submariner will be excluded from the final design proposals as it will
not bring any additional value to the use cases of AME.

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

35

Based on the results of the MCA, the three leading solutions cover all cases described by DP-1 in 6.4.
Therefore, the final Technical Design will include three architecture proposals:

• An architecture based on Linkerd for Layer 7 connectivity through L7 proxies and Multi-cluster
Gateways.

• An architecture based on Liqo for Layer 3 connectivity through VPN tunnels.
• An architecture based on NSM for L2/L3 connectivity and non-standard protocols that use

Ethernet/IP payloads.

6.4 Design Principles
Through spikes of technical research, it became evident that, at present, there is not a standard set
of principles for multi-cluster solutions and topologies. Multi-clusters are still very new; neither
networking nor orchestration across multiple K8s clusters has been standardized yet. Different
projects define their own sets of design principles that fit their vision. Overall, many projects,
especially the CNCF-hosted, share the same general direction and principles.

By analyzing a wide range of multi-cluster projects and their designs and setting them side by side
with AME constraints and requirements, I’ve been able to accumulate a set of design principles that
will act as a guiding compass for the future Technical Design of multi-clusters on AME.

ID Description
DP-1 Choose a connectivity layer based on application needs

Multi-cluster connectivity can be established at different layers of OSI (L2-L7); the choice should
be based on the applications’ needs.
• If services communicate over HTTP, gRPC, or other TCP-based protocols, L7 connectivity is

optimal (e.g., L7 proxy, Service Mesh).
• If applications require direct IP reachability, multi-cluster connectivity should be established at

L3 (e.g., VPN Tunnels).
• If workloads require lower-level networking features or non-standard protocols such as

proprietary DB replication protocols based on Ethernet/IP payloads, an architecture based on
L2/L3 networking should be chosen (e.g., Network Service Mesh).

DP-2 Adopt a zero-trust security model

Communication between clusters across regions and cloud providers entails cross-cluster traffic
over the Internet exposing it to attackers. Further, multiple clusters create a larger attack surface
than a single cluster environment. Therefore, it is essential that multi-cluster solution implements
the necessary configurations to adopt the zero-trust networking by default (e.g., traffic encryption,
explicit allow-rules etc.) This DP ensures the design will be aligned with AME “Security by design”
principles.

DP-3 Stay as close to “vanilla” Kubernetes as possible

The design should work with the native Kubernetes components and networking model. It should
not create any disruptions for end-users in the way they interact with the cluster and deploy their
applications. Most importantly, it shouldn’t require any changes from within applications to enable
multi-cluster connectivity. APIs should stay transparent.

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

36

The solution should use K8s concepts and patterns correctly. For example, leverage CRDs to
extend the native API instead of abusing ConfigMaps.

DP-4 Do not make assumptions about cluster configuration

The design should not make any assumptions about specific configurations of a cluster (CNI,
CIDRs). It should be possible to interconnect any CNCF-conformant K8s clusters that realize the
standard K8s networking model. [24]

This DP ensures, for instance, connecting clusters with overlapping Pod or Service CIDRs; or
heterogenous networking scenarios (connect clusters with different CNIs)

DP-5 Keep it simple and automated

The topology should be simple to set up, operate, maintain, and debug. The components should
be well-defined and clear. The behavior should be understandable and predictable with no
hidden “magic” involved. End-users should be able to start using the architecture with minimum
training required.

Connectivity aspects should be automated as much as possible (interconnection set-up,
discovery, routing, etc.). The topology should be configured for auto-recovery. This DP will make
sure that the topology can scale without operational overhead.

DP-6 Keep clusters independent and decentralize the topology

Multi-cluster topology should preserve and respect failure domains. A topology with a
“leading/central” cluster that all other participating clusters connect to should be avoided.
Failures in one participating cluster should never impact other clusters. All participating clusters
should be able to live on their own. If a centralized topology cannot be avoided, additional
resiliency measures should be taken for the “primary” cluster.

This DP ensures the topology is resilient to failure and draws the boundary between inter- and
intra- cluster networking.

DP-7 Minimize network overhead and resource consumption

First, the efficiency of communications in a multi-cluster topology should be kept as close to
native network speeds as possible to mitigate negative impact on user experience. The traffic
between Pods and Services in the topology should follow the order: 1. Local Node, 2. Local Cluster, 3.
Remote Cluster, unless otherwise required.

Second, the components of the topology running inside the cluster (e.g., multi-cluster connectivity
agents or gateways) should consume the lowest possible amount of memory and CPU and be
able to scale gracefully.

Table 13. Design principles for a K8s multi-cluster architecture on AME

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

37

7 Conceptual Design
Before delving into technical design of the desired architecture, it is useful to understand the
underlying key ideas and concepts of Kubernetes, the capabilities within a single cluster, and how
they would extrapolate to multi-clusters. This chapter also looks at conceptual architectures for
multi-cluster use cases. The focus is kept primarily on connectivity; however, orchestration aspects
are also touched.

7.1 Kubernetes Concepts
Kubernetes is an industry-standard container orchestration system; it is the foundation of AME. A
single self-sufficient Kubernetes environment is a cluster.

7.1.1 Cluster

When Kubernetes is deployed, the resulting entity is a cluster. A K8s cluster is a set of worker
machines called nodes (usually, VMs) running containerized applications. The integral components
that make up Kubernetes are control plane and worker nodes.

The control plane is a set of processes that control worker nodes
including task assignment, state management, responding to
changes in the cluster. It drives the actual state of the system to
match the desired state.

Worker nodes are the data plane of a K8s cluster; they provide
capacity such as CPU, memory, network, and storage to run
containers. Every node has an agent called kubelet that ensures that
desired containers are running and healthy.

In a multi-cluster environment, despite clusters being connected,
they do not share any integral components. Each cluster has a
distinct control plane and worker nodes; this way, participating
clusters remain independent.

7.1.2 Containers, Pods and Workloads

Containers are the current cloud-native standard for application deployment. They encapsulate an
application and all its dependencies into a single deployable unit, making deployments predictable
and repeatable regardless of the underlying infrastructure or OS. Kubernetes brings the advantages
of containers to the next level through Pods and workload resources.

Figure 4. Multi-cluster with
separate masters and workers;
adapted from [25]

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

38

Deploying applications to Kubernetes is a declarative process. A cluster operator specifies the
desired state of a deployment including all parameters such as an image to be used by a container,
number of replicas, etc.; then, K8s creates the necessary Pods. A Pod is the smallest and simplest
Kubernetes object which represents a set of running containers and has a defined lifecycle fully
managed by cluster’s workload resources (controllers) such as Deployment, ReplicaSet, StatefulSet,
DaemonSet, or Job. These controllers run in a continuous loop to ensure the right number and the
right kind of Pods are running at any given time with respect to the specified desired state.

Scheduling means matching Pods to worker nodes for resource utilization. In a single cluster, the
kube-scheduler takes care of assigning Pods to worker nodes. Orchestration is a broad term that
covers automation of most operations involved into managing containers including scheduling,
scaling, connecting and more. Kubernetes is designed to orchestrate containers within a single
cluster but has no defined standard to do it across clusters. Multi-cluster orchestration can be
achieved through a form of synchronized multi-cluster control plane – a single point for
orchestration for multiple clusters. Further explained in 7.3.

7.1.3 Networking, Services and Load Balancing

The Kubernetes networking model imposes several fundamental requirements on any networking
implementation as explained in [25]:

• every Pod gets its own IP address
• Pods on a node can communicate with all pods on all nodes without NAT
• Agents on a node (e.g., kubelet) can communicate with all Pods on that node

This creates a clean, backwards-compatible model where Pods can be treated much like VMs.

7.1.3.1 Services and Load Balancing

In K8s, Pods are considered nonpermanent – they get created
and destroyed frequently to match the desired state of a
cluster. Usually, different pods need to communicate with
each other, but due to their ephemerality, this communication
cannot rely on Pod IP addresses. K8s solves this problem using
an abstraction resource called Service which defines a logical
set of Pods and a policy by which to access them.

Further, by default, any workload launched in a cluster is only
accessible internally. The Service resource provides a way to
expose an application running in Pods to be reachable from
outside the cluster.

Kubernetes provides multiple Service types with different levels of access:

Figure 5. Kubernetes LoadBalancer
Service; from [28]

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

39

• “ClusterIP” which makes a service reachable from only
within the cluster, on a cluster-internal IP address (Figure
6),
• “NodePort” which exposes a service to the outside on a
node’s IP and a static port,
• “LoadBalancer” which exposes a service externally using
a cloud provider’s load balancer such as AWS ALB (Figure
5).

Multi-cluster connectivity will ensure direct connectivity for
ClusterIP services across connected clusters without the
need to expose a NodePort or LoadBalancer service.

7.1.3.2 Service Discovery/DNS

In a single cluster, an internal Kubernetes DNS server, usually “coredns”, provides each Pod and
Service with a DNS record in the cluster domain. This allows for intra-cluster communication between
Pods and Services using consistent DNS names instead of IP addresses. For example,
“nginx.prod.svc.cluster.local”, where “nginx” is the name of the service, “prod” is the namespace, “svc”
stands for the service resource, “cluster.local” is the domain of the cluster.

Service discovery is essential in a multi-cluster environment. Pods and Services in the interconnected
clusters should be able to address one another by name. For this, the participating clusters would
either extend the “cluster.local” domain or share a new global multi-cluster domain on which multi-
cluster services can be registered. The created DNS records should be reachable from any
participating cluster.

7.1.3.3 Network Policies

Network policies provide a native way to control traffic flow at the IP address or port level. They can
enforce rules to allow traffic from specific Pods, Namespaces, or IP blocks within a cluster. It’s
important to retain this ability when connecting multiple clusters. It is also important to draw a
distinction between policy enforcement and policy propagation. Connectivity solution could enforce
but might not automatically propagate Network Policy resources across clusters.

7.1.3.4 Encryption

By default, the traffic inside a Kubernetes cluster is not encrypted, however, certain CNIs offer
encryption capabilities. With multiple clusters, all cross-cluster traffic should be encrypted using
secure tunnel technology. This extra layer of security is essential as cross-cluster traffic flows over
the Internet.

Figure 6. Kubernetes ClusterIP Service;
from [27]

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

40

To summarize, with multi-cluster connectivity, the
goal is to fully preserve the native Kubernetes
networking model and extend it beyond the
boundaries of a single cluster. Figure 7 illustrates
conceptually the extrapolation of K8s in-cluster
networking to multiple clusters using the example

of Cilium.

7.1.4 Storage

In Kubernetes, Volumes are the base abstraction for storage architecture. Containers can request
storage resources dynamically through volume claims. By default, a container’s storage is
temporary or non-persistent; it is removed as soon as the container consuming it is shut down.

PersistentVolumes (PV) is a K8s concept that allows data to “survive” even after containers shut
down. Persistent Volumes are pieces of storage whose lifecycle is independent of Pods using them.
PVs are created using options available at provider’s site. For instance, AME clusters on AWS use EBS
and EFS volumes, but AME clusters on Intermax use Ceph storage. This behavior is automated
through StorageClasses and Provisioners.

Provisioning and migrating persistent storage in a multi-cluster environment is a separate challenge
which is out of the scope of this research. However, some recommendations are given in 10.1.3.

7.2 Conceptual Multi-cluster Architectures
Mere inter-cluster connectivity does not solve the problem, there must be a good architecture to
make the connectivity practical. Just as there are many ways to design an application architecture,
there are also multiple ways to architect a multi-cluster Kubernetes environment depending on a
use case. This sub-chapter looks at conceptual architectures with respect to Avisi use cases.

7.2.1 Multi-cluster segmentation architecture

As determined in Appendix A, chapter 1.5, jurisdiction compliance is one of the most critical use cases
for multi-cluster on AME. This can be achieved through a segmentation architecture. As explained in

[26], in a segmentation architecture, an application gets
separated into independent components, each typically
represented as a Kubernetes service. Then, the services get
allocated to interconnected clusters in different regions or
clouds according to regulatory requirements and
communicate with each other directly across clusters. The key
benefit of such an architecture is that it allows application to
enforce regulatory compliance across transnational

Figure 7. K8s networking concepts extrapolated to
multi-clusters; adapted from [19]

Figure 8. A multi-cluster segmentation
architecture; from [26]

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

41

boundaries. AME can use this architecture to provide the platform to organizations that operate
globally.

The figure below is an example of a segmentation architecture with two interconnected clusters.
Service B in the US-EAST directly communicates with Service D in the EU-WEST.

7.2.2 Multi-cluster replication architecture

Replication is another approach to leverage K8s multi-cluster
architecture. In a replication scenario, exact copies of a cluster
are hosted in different regions and even clouds [26]. This
architecture is also described in [27] as “multi-site active-
active” where all clusters are read-write, and the data is
synchronized in real time.

This type of design creates global HA in which case the
Kubernetes environment can withstand a failure of an entire
region. Further, this architecture can help achieve the lowest
latency by physically locating workloads closer to end-users.
This type of design is best suited for companies with critical workloads and data which is aligned
with the industries Avisi is targeting. The main tradeoff of this architecture is high costs.

Figure 9 demonstrates two clusters in different
clouds/regions that are virtually clones of each
other. A cross-region Load Balancer is an entity
responsible for routing requests to clusters based
on their originating location. Even if the entire local
cluster becomes unavailable, requests can still be
satisfied by a remote one. Multi-cluster

networking can enhance this architecture and make it possible for individual services to failover to a
remote cluster when they are not available locally as illustrated in Figure 10.

7.2.3 Multi-cluster active-passive architecture

Disaster recovery is the second most important use case for multi-cluster considered by Avisi. [27]
describes a disaster recovery scenario using an active-passive multi-cloud K8s architecture. This
architecture is identical to the previous one with the major difference being the second cluster is in
the “standby” mode. Usually, it means that it is only used for periodic backups and occasional read-
only operations. But as soon as the primary cluster fails, the standby one becomes fully active, and
the service can be quickly switched with minimal interruptions. This is suitable for storage services
with large data volumes.

Figure 9. Service replication in a multi-
cluster K8s architecture; from [26]

Figure 10. Multi-cluster service failover; from [18]

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

42

7.2.4 Multi-cluster topologies: “Hub-and-Spoke” & “Full Mesh”

Previous architectures covered scenarios with two interconnected clusters. The use cases of Avisi
might call for connecting three and more clusters. There are multiple ways to do it; one of them is
hub and spoke topology (Figure 12). In this case, one cluster plays a role of a central hub that
connects and routes traffic across other clusters connected to it. This is a cost-effective solution
except the hub causes latency and is a single point of failure.

In contrast, clusters could be interconnected into a full mesh (Figure 11) and instead of being
conjoined through a central hub, each cluster is connected to every other participating cluster. Full
mesh yields the greatest amount of redundancy but can be impractical due to being very expensive
and extremely difficult to operate. Either hub-and-spoke or full mesh topology can be used in
combination with segmentation or replication architecture depending on the case. The connectivity
solutions proposed in this research support various centralized and decentralized topologies
including the two described above.

7.2.5 Multi-cluster hierarchical federation

The architectures discussed previously mainly arrange clusters into a flat space as HA replicas,
however, multi-cluster connectivity allows for much more advanced architectures. This becomes
most powerful when dealing with a large number of clusters. An interesting multi-cluster
architecture proposed in [28] describes a scenario where services are arranged in dozens of
separate K8s clusters interconnected into a hierarchical structure illustrated below.

Figure 12. Multi-cluster hub-and-
spoke topology; from [29]

Figure 11. Multi-cluster full mesh topology; from
[29]

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

43

In the example shown in Figure 13, leaf clusters called deployment clusters are treated as HA replicas
within a region; they are not aware of the other clusters and can only connect to resources inside

their own cluster. The second layer consists of
hub clusters that can access all deployment
clusters’ services but are not aware of the
other hub clusters. Hub clusters are designed
to serve traffic to the leaf clusters in the same
region, but they are also able to take traffic
from hub clusters in different regions if
required. At the top, there is a global cluster,
ensuring a global view and enabling meta-
monitoring. It can connect to all hub and
deployment resources.

The main incentives for this topology stated in
the source are the same as those of Avisi: service and data locality, fault isolation, HA. But on top of
that, hierarchical architecture allows for other benefits such as partial network isolation and easier
management.

7.3 Multi-cluster Orchestration
When the networking requirement is satisfied, the next logical step is seamless orchestration -
distributing and managing workloads consistently and automatically across interconnected clusters
from a central place. Just like in a single cluster, orchestration in a multi-cluster is a broad
mechanism. It requires a form of synchronization between clusters’ control planes to propagate K8s
resources and achieve seamless multi-cluster scheduling and autoscaling. The current literature
describes primarily three approaches to multi-cluster orchestration [12]:

1. Using a dedicated API server on a central cluster to coordinate configurations of multiple
clusters from a set of extensions to traditional Kubernetes API (e.g., KubeFed, McK8s)

2. GitOps approach relying on configurations stored in Git and using CI/CD pipelines to
deploy to target clusters. (e.g., FluxCD)

3. Through a Virtual Kubelet approach in which a remote cluster can be mapped to a local
cluster node. (e.g., Admiralty, Liqo)

Ideally, a connectivity solution should be combined with a
form of multi-cluster control plane to achieve a full-
fledged multi-cluster environment. An example of such a
combined approach is proposed in [29]. The described
solution relies on NSM for cross-cluster connectivity and
KubeFed for scheduling and orchestration (Figure 14).

Kubernetes Cluster Federation (KubeFed) is a K8s SIG
Multi-cluster project, the official way to orchestrate a

Figure 13. Multi-cluster hierarchical federation; from [30]

Figure 14. Combined multi-cluster solution
based on NSM and KubeFed; from [31]

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

44

multi-cluster environment. It aims to provide mechanisms to coordinate configuration of multiple
clusters from a single set of APIs in a hosting cluster. Fundamentally, KubeFed offers building blocks
for resource propagation – distribution of K8s resources to federated clusters. However, the main
drawback of KubeFed and most other existing multi-cluster orchestration solutions is they not
seamless - they force users to use new sets of API objects, for example, the FederatedDeployment
(KubeFed) or a MultiClusterDeployment (McK8s) instead of a native Deployment object. This subject
is further addressed in 10.1.1.

In contrast, Liqo aims to work with existing Kubernetes ways.
Instead of introducing a set of new APIs like KubeFed does, Liqo
seamlessly extends cluster resources via a virtual-kubelet-
based approach. The local cluster “sees” remote (connected)
clusters as “big nodes”. A big node or a virtual node is
equivalent to a physical node, hence it can be controlled by
the native Kubernetes scheduler and controller manager
(Figure 15).

Moreover, Liqo takes care of the entire multi-cluster topology
lifecycle: not only on pod scheduling and offloading but also on
cluster discovery and cross-cluster networking. Liqo is the only
present solution that integrates connectivity and orchestration
in one tool. For details, refer to Appendix B, chapter 2.4.

7.4 Conclusion
The core concepts of Kubernetes need to be extrapolated beyond a single cluster. The connectivity
agent can help to extend network-related concepts such as routing, policies, and DNS from a single
cluster to multiple clusters. Extending aspects like scheduling and orchestration should be the next
logical step after connectivity, otherwise, deployments will have to be managed manually by cluster
operators.

Multi-cluster connectivity opens the doors to building various architectures with K8s. Just as there
are different application architectures, there are many ways to architect a multi-cluster K8s
environment depending on a use case. This chapter covered a few conceptual architectures for the
use cases of Avisi.

Prototyping was used as a research method (chapter 9), including for testing described
architectures. Prototypes have proven that segmentation can be very efficient for jurisdiction
compliance. Active-passive multi-cluster is an effective approach to deal with disasters. Global HA,
low latency can be achieved through active-active replication. Finally, when dealing with many
clusters, they can be arranged in a hierarchical structure for granular network isolation.

Figure 15. Liqo Big Node (Virtual Kubelet)

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

45

8 Technical Design
In this chapter, the condensed version of the Technical Design is discussed. The full version can be
found in the Appendix D.

8.1 Introduction
Based on the results of the MCA described in 6.3.5, the final Technical Design will be represented by
three architectures based on three different multi-cluster technologies: Linkerd, Liqo, and NSM – each
being best-suited for different use cases. All three designs fully support multi-region and multi-cloud
deployments, therefore AME clusters can be connected regardless of a region and cloud provider,
granted that all prerequisites are met (e.g., LoadBalancer UDP support).

Due to limitations, this report does not cover a full spectrum of Technical Design’s components but
rather demonstrates its feasibility based on the example of two ‘MUST’ user stories: US-5-F (multi-
cluster services) and US-11-F (encryption). These user stories showcase the core of the project – a
secure network connectivity between different K8s clusters. The full evaluation of all user stories and
design principles can be found in Appendix D.

8.2 Proposed Architecture 1 – L7 Multi-cluster
connectivity with Linkerd
The current design is based on Linkerd version v2.11. Linkerd Multi-cluster is an extension to the Linkerd
service mesh that enables transparent communications between services in different clusters
through proxies, gateways, and service mirroring. Linkerd works at network Layer 7 and solves the first

case described in DP-1, enabling multi-
cluster communication over HTTP, gRPC
and other TCP-based protocols.

Figure 16 illustrates two AME clusters:
cluster “Ireland” hosted on AWS in the eu-
west-1 region, and cluster “Amsterdam”
hosted on DigitalOcean in the ams2
datacenter. The Linkerd control plane is
installed in both clusters using a shared
trust anchor – a TLS certificate that will be
used for cross-cluster traffic encryption.

Services on different clusters can reach each other directly by name. The Linkerd control plane is
responsible for managing the service mesh as a whole. The Linkerd data plane comprises ultralight
proxies that intercept all requests and provide security and observability features.

Figure 16. Linkerd Multi-cluster Architecture with two AME
clusters

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

46

For US-5-F (connectivity), Linkerd guarantees connectivity between multi-cluster services with two
main components: Multi-cluster Gateway and Service Mirror. The Multi-cluster gateways are
exposed to the public Internet via a K8s service of type LoadBalancer; they provide target clusters a
way to receive requests from source clusters and automatically route those requests to the correct
Pods. Further, the Service Mirror component reflects (copies) the services between the clusters
providing visibility into service names and enabling applications to address remote services directly.

For US-11-F (encryption), as shown in the diagram, all outgoing and incoming requests are
intercepted by sidecar proxies before being routed to services. These proxies, among other things,
guarantee traffic encryption. This is possible because Linkerd installations on the clusters share a
trust anchor – a root TLS certificate that is used to generate the issuer certificates for each cluster in
the topology. The proxies send certificate signing requests (CSR) to the Identity service that uses the
issuer certificates to fulfil the requests. As a result of this process, all intra- and cross-cluster traffic is
automatically authenticated and encrypted via mTLS.

8.3 Proposed Architecture 2 – L3 Multi-cluster
connectivity with Liqo
The current design is based on Liqo version v0.3.2. Liqo allows to build a wide range of multi-cluster
topologies: centralized and decentralized, with unidirectional or bidirectional resource sharing. This
Technical Design showcases one possible architecture with Liqo called a “Supercluster” – a cluster of
clusters. Liqo-based architecture solves the second case described in DP-1, providing workloads with
a direct IP reachability at network Layer 3.

As demonstrated by Figure 17,
the proposed architecture with
Liqo provides multi-cluster
connectivity and encryption
through highly performant,
secure and automatically
managed VPN tunnels. Table 14
lists the services required to be
reciprocally accessible by all
Liqo clusters to establish multi-
cluster connectivity through
encrypted tunnels.

Figure 17. Liqo Multi-cluster Architecture (Liqo Supercluster) with three AME
clusters

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

47

Service Protocol Default Port Description
Liqo-Auth HTTPS 443 Liqo service exposed through a LoadBalancer service

or Ingress. It is used to authenticate incoming peering
requests

Liqo-Gateway
(WireGuard)

UDP 5871 Liqo service exposed through a LoadBalancer service.
It is responsible for VPN tunnels between clusters

Kubernetes API
Server

HTTPS 443 A standard Kubernetes API server used in
combination with etcd (storage) for the creation and
replication of required resources. On AME, exposed
through an Ingress

Table 14. Services used by Liqo clusters to establish connectivity

For US-5-F (connectivity), this flattens the L3 network between K8s clusters allowing Pods and
Services on different clusters to communicate directly to each other. On top of that, Liqo automates
the deployment of multi-cluster services (service replication) by providing seamless dynamic
scheduling and spreading service Endpoints across multiple clusters through the process called
Offloading. In this process, the remote clusters are represented as “Big” nodes in the local cluster;
they are controlled by a Virtual Kubelet and act like regular K8s nodes. In this topology, the peering is
unidirectional, meaning that the resources are shared only from secondary clusters to a primary
cluster and not vice versa. Depending on requirements, bidirectional peering can be established
making it possible to share resources both ways.

For US-11-F (encryption), all cross-cluster traffic flows through encrypted VPN tunnels using the
WireGuard technology. WireGuard is an incredibly performant tunnel technology that uses state-of-
the-art cryptographic protocols and primitives such as ChaCha20, Poly1305, Curve25519, etc. [30].
Liqo-Gateway automatically manages the entire lifecycle of the tunnels; additional configuration
can be done to achieve the best performance such as installing WireGuard kernel module on AME
cluster nodes.

8.4 Proposed Architecture 3 – L2/L3 Point-to-Point
Multi-cluster connectivity with NSM
The proposed design is based on NSM version v1.2.0. From research findings, using NSM for multi-
cluster connectivity is significantly more complex than Linkerd or Liqo, thus, it is not recommended to
employ it for a generic use case. However, this architecture addresses the third case described in
DP-1 and supports lower-level networking features (L2/L3). In addition, as it was described in 6.3.5,
NSM uniquely solves the use cases of individual (point-to-point) and cross-runtime-domain
connections, therefore, AME should keep the project in sight. Upcoming versions of NSM will include
enhancements that will improve its integrability with AME clusters and bring the complexity down.

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

48

• Out-of-the-box implementation of a virtual Layer 3 (vL3) Network Service which will provide a
common routing for workloads running in different clusters or cloud providers.

• Integration of NSM and Calico-VPP which will allow the two to share the same VPP forwarder
instance on a node improving overall performance.

• Advanced healing features that will act more robustly when the NSM control plane or NS data
path becomes unavailable.

Figure 18 illustrates a
high-level architecture
with two AME clusters
and two individual Pods
interconnected via NSM.

The architecture
comprises four primary
components:

• the NSM control
plane (NSMgr (Network
Service Managers))
which is responsible
primarily for connection

management (i.e., injection and removal of network interfaces),
• the NSM data plane which is, essentially, a forwarder (router) component,
• the NS Registries that use etcd to store information about forwarders, Network Services and

Endpoints,
• the connected Pods (NS Client and NS Endpoint).

KubeFed is not a strict requirement; its purpose in this architecture is solely to simplify deployments
to multiple clusters. Therefore, it can be either replaced with another multi-cluster control plane
solution such as McK8s, Admiralty or completely excluded with no effect on NSM network
connectivity. The integration of NSM and KubeFed will not be tested during this project.

For US-5-F (connectivity), NSM can provide a distributed vL3 domain (as a Network Service) that
allows individual workloads (Pods) in different clusters and cloud providers to communicate via IP.
The mechanism through which NSM achieves this is completely different from Linkerd and Liqo.
Instead of utilizing the existing internal K8s networking (CNI), NSM introduces a separate connectivity
domain completely independent from a CNI running inside a cluster. The connectivity between two
Pods can be requested and released at runtime with annotations. NSM injects new network
interfaces into the Pods on both sides whenever connectivity is requested, through which IP packets
are forwarded.

Figure 18. Multi-cluster architecture with NSM and KubeFed

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

49

For US-11-F (encryption), NSM’s model of a Network Service aims to provide not only connectivity but
also security and observability features at L3 and above for individual workloads. All these features
can be composed into Network Services, including VPN termination to enable traffic encryption. NSM
provides full flexibility in choosing a data plane forwarder and VPN mechanisms because all
components are pluggable. At the same time, the underlying implementation is more complex as it
involves low-level networking concepts. An example of possible implementation is described in [31]
as “Kernel to WireGuard to Kernel connection”. In future releases, AME would be able to use Calico-
VPP with NSM.

8.5 Conclusion
The MCA showed that different connectivity solutions work at different layers of network. According to
DP-1, a connectivity layer should be chosen based on applications’ needs. In this Technical Design,
three different architectures have been proposed.

The first architecture is based on the Linkerd service mesh’s multi-cluster extension. It provides Layer
7 connectivity for services that communicate over TCP-based protocols such as HTTP, gRPC, etc.
Linkerd achieves this via proxies, service mirrors, and publicly exposed multi-cluster gateways.
Linkerd-based design conforms to all design principles formulated in 6.4 and all AME criteria
formulated in the MCA. This architecture is simple and universal.

The second architecture is based on Layer 3 connectivity via VPN tunnels managed by Liqo. It
enables direct Pod-to-Pod and Pod-to-Service IP reachability across clusters. The design based on
Liqo conforms all design principles and most AME criteria. This architecture is more sophisticated
than the one with Linkerd as it enables multi-cluster scheduling besides networking.

The third architecture is powered by Network Service Mesh. Its purpose is to provide per-workload
connectivity for applications that require lower-level network features or support for non-standard
protocols that use Ethernet/IP payloads. NSM enables granular L2/L3 connectivity by injecting
secondary network interfaces into Pods on each side. The NSM-based design conforms most design
principles and satisfies most AME criteria.

All three architectures provide multi-cluster connectivity (at different layers) necessary to handle
jurisdiction compliance, DR, HA, and more.

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

50

9 Proof of Concept
Prototyping was used as one of the research methods in this project. Since not all capabilities could
be proven through documentation, smaller prototypes were built to evaluate individual MCA criteria
for the shortlisted solutions: Submariner, Liqo, Linkerd, NSM. Furthermore, three PoC prototypes were
built to answer the research question 8 and validate the final architectures proposed in chapter 8.
This chapter summarizes the challenges during prototyping and the results they yielded. For a
complete prototype log, refer to Appendix E.

9.1 Prototyping Environment
Two types of prototyping environments were used – local and staging. The local environment
consisted of test Kubernetes clusters created locally on my laptop using tools such as minikube, KinD
and k3d. This environment was used for day-to-day tests on individual features.

The staging environment is a real AME environment which almost completely reflects the production
configuration. This environment was used for the final PoC prototypes and to validate a multi-cloud
and multi-region setup. For this, clusters were created in with two different providers and regions:
AWS (eu-west-1) and DigitalOcean (ams3).

To prove multi-cluster connectivity and test multi-cluster (East-West) services, mock applications
were deployed using scenarios such as replication and segmentation described in 7.2.

9.2 Linkerd
The final prototype with Linkerd was built using two AME staging clusters. it is consistent with the
architecture described in 8.2.

All Linkerd components were deployed using Linkerd CLI; no issues have been discovered during this
process. A sample microservices application (provided by [32]) was used to validate the following
features: multi-cluster connectivity, encryption, authorization policy, traffic split and distributed
tracing.

In addition, the PoC with Linkerd successfully demonstrated automated multi-cluster per-service
failover, multi-cluster communication for StatefulSets as well as proxying traffic for Postgres. The
prototype with Linkerd has proven its simplicity and robustness since almost no additional
configuration was required on AME clusters compared to Liqo and NSM.

9.3 Liqo
The PoC with Liqo fully reflected the architecture proposed in 8.3. It was built using two AME clusters
on AWS and one cluster in DigitalOcean (DO). Several challenges have been discovered when
prototyping with the current version of Liqo (v0.3.2). Challenges included:

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

51

• Inability to use the standard (recommended by Liqo) deployment process with AME. To
solve it, an alternative installation method tailored to AME was tested and described in
Appendix D, chapter 4.2.2.

• Inability to patch Calico on AME to ignore Liqo-managed network interfaces using the
instructions provided by Liqo. An alternative approach is further addressed in the above
appendix.

• DigitalOcean not supporting a UDP Load Balancer required by Liqo-Gateway. This is a
provider constraint; Liqo-Gateway cannot be exposed with a DO LB as of now.

Overall, multi-cluster connectivity using Liqo-based architecture was successfully tested in the
following scenarios: a. PostgreSQL replication across three clusters (1 replica per cluster), b. sample
cloud-native application with 10 microservices (provided by [33]) segmented across 3 clusters using
selective offloading strategy.

9.4 NSM
At the time of writing this report, the PoC with NSM connectivity was tested using only local clusters
created with KinD and only with “ping” between the NSC (alpine) and NSE (ICMP responder) Pods. The
connections were successfully tested using the following basic examples defined in the
“deployments-k8s” GitHub repository that belongs to Network Service Mesh: a. Kernel to VXLAN to
Kernel; b. Kernel to WireGuard to Kernel.

The main challenge faced during prototyping with NSM is the absence of an out-of-the-box
implementation of a virtual Layer 3 (vL3) Network Service that can be used to provide a common
routing domain to which workloads in different clusters or cloud providers may attach. The vL3
implementation will be released in the upcoming version of NSM (v1.3.0) in April 2022 which would
allow to test multi-cluster connectivity using real clusters in the staging environment of AME and with
more sophisticated scenarios such as Postgres database replication.

Furthermore, the PoC did not include the integration of NSM with KubeFed described in the design
because the primary focus was on testing network connectivity.

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

52

10 Advice on Multi-cluster Challenges
Along with numerous benefits, multi-cluster architectures bring new operational challenges. This
chapter focuses on answering the research question 9 – “What are the challenges associated with
complexity, security, and observability in a Kubernetes multi-cluster environment, and what could be
done to overcome these challenges?”. The recommendations are based on the most recent
publications from CNCF, Kubernetes SIG Multicluster and Gartner.

10.1 Complexity
Added complexity is one of the fundamental challenges that go with multi-cluster architectures.
Multi-cluster creates an array of questions related to deployments, storage, load balancing,
debugging and more.

10.1.1 Multi-cluster Deployments

Multi-cluster networking solutions, except for Liqo, do not deal with deploying workloads across
multiple clusters. A form of multi-cluster control plane is required to facilitate multi-cluster rollout
strategies, orchestration, and workload distribution. There are primarily two ways AME can address
this challenge – through extending the existing internal GitOps practices to support multi-cluster
setups or through dedicated multi-cluster control plane tools.

The first method is preferred for at least two reasons. First, AME already embraces GitOps approach
for individual clusters by using FluxCD to install applications inside clusters. Second, this approach
does not introduce any extra APIs unlike the ones described further. If configured properly, GitOps
can represent an elementary multi-cluster control plane. However, this approach is minimalistic and
will not provide sophisticated functionality like dynamic Pods placement, cross-cluster migrations,
DR etc. For this, a more advanced multi-cluster control plane is required.

The table below lists several open-source projects that can be used by AME for multi-cluster
orchestration in combination with connectivity provided by Linkerd, Liqo or NSM.

Project Description
Admiralty An open-source project that provides a system of Kubernetes controllers that intelligently

schedule workloads across clusters. [34]
Shipper An open-source extension for Kubernetes that enable sophisticated rollout strategies and

multi-cluster orchestration. It enables multi-cluster, multi-region, and multi-cloud
deployments and release management. [35]

KubeFed Kubernetes Cluster Federation. An official K8s project that allows to coordinate the
configuration of multiple clusters from a single set of APIs in a hosting cluster. [36] Makes
multiple separate clusters appear as a single cluster from an operational standpoint. [8]

mcK8s mck8s, short for multi-cluster Kubernetes, allows you to automate the deployment of
multi-cluster applications on multiple Kubernetes clusters by offering enhanced

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

53

configuration possibilities and scheduling policies (e.g., resource-based, network-based,
etc.) [37]

Table 15. Multi-cluster control plane solutions

10.1.2 Multicluster Load-Balancing

When services are deployed across multiple clusters, the next logical step is to serve and distribute
requests across those clusters whether they are on-prem or in cloud. A Global Server Load Balancing
(GSLB) solution is required to direct HTTP requests across K8s local load balancers (e.g., Ingress
controller instances) based on the health of targets (Pods). In many cases, when clusters are in
different regions, a GSLB should be locality-aware - direct requests based on their originating
location to minimize latency and provide the best user experience.

It is challenging to satisfy these criteria due to the absence of standardized methods to provision
and manage GSLBs in a Kubernetes-native way. With traditional servers, LSB solutions have mostly
been a task for proprietary infrastructure providers that configured and maintained those tools by
siloed network teams. This is not a cloud-native friendly way. And for AME, as a provider-agnostic
platform, it is of special importance to avoid using proprietary solutions.

To address this challenge, AME could integrate support for K8GB – a cloud-native Kubernetes Global
Balancer. As explained in [38], K8GB is a CNCF-sandbox project with a focus on providing an open
source, cloud-native global load balancing for Kubernetes. It allows to deploy a GSLB with a single
Kubernetes custom resource (Gslb kind), performs balancing on timeproof DNS protocol, does not
induce any dedicated management cluster and no single point of failure, uses K8s-native health
checks for load balancing decisions.

Global locality-aware load balancing has its own risks and should be implemented with precautions.
When this mechanism is used to failover to a remote cluster if the local one is unable to serve
requests, there are at least two risks:

• As the cluster is remote, latencies are going to spike. If services have configured timeouts or
SLOs set, it is likely those are going to be breached and produce cascading failures.

• Depending on how overhead is configured, a remote cluster jumping in 2x load all of the
sudden might crash that cluster as well.

To mitigate these risks, it is recommended to perform extensive manual testing before automating
this mechanism.

10.1.3 Storage

The AME platform hosts many stateful workloads – applications that save data to persistent disk
storage that does not get destroyed when a Pod consuming it is terminated. Databases and key-
value stores are examples of such stateful workloads. According to [8], deploying and managing
stateful applications in a Kubernetes multi-cluster environment adds another layer of complexity
related to storage and data dependencies.

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

54

In Kubernetes, the binding between a Pod and persistent storage is managed by persistent volume
claims (PVC). When a Pod running a stateful application migrates from one cluster to another, it is
challenging to reestablish the correct binding between a migrated Pod and its data. Currently, there
are no standardized processes within K8s as it does not define any federated method for specifying
PVCs. There are several considerations that could be useful for AME.

First, the architecture with Liqo proposed in 8.3 can simplify deploying and migrating stateful
applications across multiple clusters. In the upcoming versions, Liqo will introduce support for a
virtual storage class that maps a virtual PV to an actual PV available through a cluster’s storage
classes. This functionality will allow support for stateful workloads on Liqo-enabled clusters. To
support the migration of a stateful Pod across clusters, Liqo will implement an ability to move PVs
between clusters. The first expected implementation will be done through Restic – a backup software
that will allow to create a snapshot in a local cluster and restore it in a remote one [39]. This concept
is unique to Liqo; other solutions considered in this research do not offer this capability as of now.

Another consideration for the storage challenge is using a container-native storage (CNS). This is a
new generation of storage solutions designed specifically for containerized workloads, some of
which support Kubernetes multi-cluster architectures. For instance, Portworx offers a distributed
persistent storage platform for multi-cluster stateful applications. In addition, it facilitates
mechanisms for multi-/hybrid-cloud migrations and disaster recovery [8].

10.2 Security
DP-2 already emphasized the importance of adopting a zero-trust security model in a multi-cluster
environment. The motivation behind it is simple – more clusters mean a larger attack surface area.
Adopting a zero-trust security model is essential to protecting such an environment.

Each cluster has its own set of security-related resources such as Secrets, Certificates, Roles, etc. AME
uses cert-manager to provision and manage TLS certificates automatically. As of now, cert-
manager is only able to create and manage these resources in a single cluster. One possible
solution is to federate these resources through KubeFed – multi-cluster control plane solution that
supports federated CRDs. Federation would allow to propagate Certificates, Secrets, and other
security resources across clusters. This option remains unexplored; as of now, there is not enough
data to evaluate how well it would work.

Another consideration for distributing Secrets and Certificates is an external dedicated secret
management solution that can be accessed by multiple Kubernetes clusters. There are projects like
external-secrets [40] that allow to read information from third-party secret management solutions
such as AWS Secret Manager or Hashicorp Vault and automatically inject the values as Kubernetes
Secrets.

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

55

10.3 Observability
As explained in [41], observability refers to the ability to gain insights into what is happening inside a
system based on the external data exposed by that system. AME already enables rich observability
for individual clusters through log and metrics collection and visualization using Prometheus,
Grafana, Loki. The challenge of observability in a multi-cluster environment revolves around a so-
called “single pane of glass” – a centralized entity that can collect and display monitoring data
across all clusters. To achieve this, AME can use open-source solutions like Cortex or Thanos to
aggregate data from multiple Prometheus deployments.

In addition, the components that provide multi-cluster connectivity themselves need to be
monitored continuously to be to react to connectivity losses and other incidents quickly. To address
this, AME should configure Prometheus instances to scrape metrics exposed by those components.
As of now, among proposed solutions, only Linkerd exposes out-of-the-box Prometheus metrics. It is
expected that metrics will also be available for Liqo and NSM in the upcoming versions.

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

56

11 Conclusions and Reflection
Kubernetes multi-cluster architectures are an important next step in the evolution of the AME
platform. This research aimed at investigating how these emerging architectures can provide the
customers of Avisi with flexibility and choice over the geographical locations and cloud providers
hosting applications and data. Given the plans of AME to continue expanding support for more cloud
providers and regions, Kubernetes multi-cluster architectures will open up a fundamentally new
class of opportunities for the platform’s users. These architectures drastically simplify connecting,
deploying, and migrating applications across different geographic regions and cloud providers. This
gives versatility in solving such problems as jurisdiction compliance, disaster recovery, high
availability, multi-cloud and more.

Multi-cluster architectures involve primarily two challenges: network connectivity and orchestration
across clusters. This research focused mostly on network connectivity. Nine multi-cluster
connectivity solutions have been considered. The research has shown that although the solutions do
overlap in many ways, they focus on different use cases and utilize different underlying technology.
First, a constraints analysis was conducted which focused on integrability with the current platform.
At this stage, 5 out of 9 solutions have been eliminated. Further, a comprehensive multi-criteria
analysis was performed to evaluate the remaining solutions against 20 criteria of AME. The criteria
looked at aspects such as multi-cluster service discovery, routing, traffic control, and connection
security. The MCA revealed that no single solution can cover all use cases, and the choice depends
on application needs. As a result, the final Technical Design proposes three different architectures
that provide multi-cluster connectivity at different layers.

The first design discussed in 8.2 is based on the multi-cluster extension to the Linkerd service mesh. It
is the most mature (CNCF-graduated) and simplest solution to establish multi-cluster connectivity
at Layer 7. It is best suited for applications that communicate over TCP-based protocols such as
HTTP, gRPC, WebSocket, etc. Followed by a design based on Liqo explained in 8.3. This design extends
Kubernetes Layer 3 networking to multiple clusters allowing Pods and Services in those clusters to
communicate directly through secure VPN tunnels. Additionally, Liqo provides seamless workload
scheduling across clusters. Finally, the design proposed in 8.4 would allow providing individual
workloads with L2/L3 connectivity across clusters. It is best suited for applications that require
support for lower-level networking features or non-standard protocols that use Ethernet/IP payloads.
Furthermore, all proposed designs follow the design principles defined and agreed with the Platform
Architect.

Throughout the project, multiple prototypes have been built locally and in the AME staging
environment which almost completely reflects the production configuration. Not only did the
prototypes serve as a proof-of-concept proving the designs in practice, but they also helped to
identify more technical challenges related to multi-cluster deployments, load balancing, and
storage. As a result, additional tailored advice was formulated for the future.

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

57

To conclude, Kubernetes multi-cluster architectures are novel and complex. The designs and
recommendations delivered in this research will minimize the complexity of implementing and
operating these architectures on AME. Consequently, the customers of AME will gain exceptional
versatility to deploy their applications and data across different regions and cloud providers.

11.1 Product Reflection
Overall, the prototypes successfully validated most acceptance criteria. The delivered designs follow
the design principles established during research and agreed with the Platform Architect thus
providing guarantees of integrability with the current platform. However, due to time constraints,
some work could not be completed. This chapter talks about important steps that must be
considered by AME to proceed with the implementation based on the proposed designs.

Prototyping with Linkerd has proven Linkerd’s maturity, simplicity, and robustness. There were no
significant issues when deploying Linkerd components and linking clusters; the service reflection
process was straightforward, and connectivity was stable. In addition, I was able to test the most
recent feature that has just been released by Linkerd in March 2022 – automated multi-cluster per
service failover. I successfully tested this feature with two AME clusters in AWS. The only
recommendation is to further investigate how Linkerd Service Mirror changes the names of reflected
services and how it might impact applications that use internal K8s DNS (see Appendix E, chapter
5.4.3.).

Although the developers of Liqo claim it is mature enough for production use, it is recommended that
AME performs additional extensive tests. At the time of writing this report, the Liqo architecture was
tested successfully only with single-node AME clusters in AWS. The traffic is correctly sent and
received across clusters by Liqo gateways on each side, however, the inter-node traffic does not
proceed from the node running the liqo-gateway to other nodes in the cluster. After several
debugging sessions and discussions with the Liqo team, it is presumed that the packets destined for
liqo.vxlan interfaces get dropped possibly due to Calico configuration or the underlying
network/security groups configurations in AWS. Further investigation is required to address the issue
and be able to use Liqo on multi-node clusters. Furthermore, due to the same issue, the Liqo
prototype did not test the Liqo-gateway failover process which is critical for a resilient topology.
When the multi-node problem is addressed, AME should test Liqo with multiple gateway instances.
The test should include unexpected termination of a node running the active Liqo-gateway instance
in which case the tunnel must be automatically reconciled by the standby replica of the Liqo-
gateway.

Additionally, basic tests have been performed to evaluate how Liqo Resource Offloading can work in
conjunction with the deployment tool currently used by AME – FluxCD. The tests were successful and
showed that Liqo and FluxCD can be a powerful combination to deploy applications across clusters.
However, no real use cases were used; AME should follow through and investigate Liqo Selective
Offloading which in combination with FluxCD could enable fully automated multi-cluster
deployments to handle a case like jurisdiction by configuring cluster affinities based on the cluster’s

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

58

region/provider. Furthermore, there was not enough time to sufficiently evaluate another important
feature of Liqo as it has just been released in v0.4 (end-March 2022). The Liqo multi-cluster PVC and
volume migration capabilities hold a lot of potential to simplify the deployment and migration of
stateful workloads across clusters. Since AME clusters host a lot of stateful workloads, the feature
could be highly beneficial, therefore, AME should test it further.

The NSM-based multi-cluster connectivity was only tested using local clusters created with KinD and
only using a basic test scenario that included an alpine image client (NSC) and an ICMP-responder
endpoint (NSE). The current NSM configuration could be complicated due to the absence of OOTB
implementation of a virtual Layer 3 Network Service. This implementation will be added in the next
NSM release (v1.3.0) which is scheduled for April 4, 2022. When this happens, AME would be able to
conduct more sophisticated tests. NSM roadmap also includes integration with Calico-VPP which
would allow NSM and Calico to share a single forwarder and improve overall performance. AME
should consider this integration when using NSM in the future. Furthermore, the proposed integration
with NSM as a multi-cluster connectivity agent and KubeFed as a multi-cluster orchestrator has not
been explored in the prototype.

Another important test that could not be finished at the time of writing this report is a multi-region
and multi-cloud setup. A prototype that connects AME clusters in AWS with a cluster in DigitalOcean
could not be fully completed. It is very important to test all three solutions in real multi-region and
multi-cloud configurations, ideally, using real applications. This test should also include gathering
information about the network (latency, throughput) and performance (CPU, memory) overhead for
the user story US-17-NF which could not be evaluated as of now.

Further, although this research made sure the proposed solutions integrate well with the
configuration of AME infrastructure, it did not dive further into which component of AME backend
architecture should be responsible for “activating” multi-cluster connectivity. Options to consider are
cluster-controller or addon-controller. Liqo requires certain adjustments to the core infrastructure
(e.g., Calico CNI), therefore, it is important to find a proper place. Investigating how multi-cluster
connectivity should be activated from the end-user perspective was also excluded from the scope
(US-16-NF) and is a part of future work for AME.

Finally, by the end of the project, internal discussions suggested that the proposed multi-cluster
connectivity solutions can be used not only as a customer-facing feature but also internally to
address some problems within the root architecture of AME. This was not investigated further due to
time constraints. AME should consider which of the connectivity solutions is best suited for the root
cluster needs and build a PoC to evaluate the feasibility and stability of such integration.

11.2 Self-Reflection
This graduation project was incredibly complex from a technical standpoint. Virtually the entire
technical part of the project is related to cutting-edge technology and concepts that I grasped on
the fly. Thanks to this I was able to gain invaluable knowledge. A complete self-reflection on the
project can be found in Appendix G.

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

59

List of Figures and Tables
Figures

Figure 1. AME Kubernetes-in-Kubernetes architecture overview .. 16

Figure 2. Analyzing the AME problem using 5 Why's .. 20

Figure 3.K8s Multi-cloud and multi-region distribution; adapted from [49].. 29

Figure 4. Multi-cluster with separate masters and workers; adapted from [25] .. 37

Figure 5. Kubernetes LoadBalancer Service; from [28] ... 38

Figure 6. Kubernetes ClusterIP Service; from [27] .. 39

Figure 7. K8s networking concepts extrapolated to multi-clusters; adapted from [19] 40

Figure 8. A multi-cluster segmentation architecture; from [26] ... 40

Figure 9. Service replication in a multi-cluster K8s architecture; from [26] .. 41
Figure 10. Multi-cluster service failover; from [18] ... 41
Figure 11. Multi-cluster full mesh topology; from [29] ... 42

Figure 12. Multi-cluster hub-and-spoke topology; from [29] ... 42

Figure 13. Multi-cluster hierarchical federation; from [30] .. 43

Figure 14. Combined multi-cluster solution based on NSM and KubeFed; from [31] ... 43

Figure 15. Liqo Big Node (Virtual Kubelet) ... 44

Figure 16. Linkerd Multi-cluster Architecture with two AME clusters ... 45

Figure 17. Liqo Multi-cluster Architecture (Liqo Supercluster) with three AME clusters 46

Figure 18. Multi-cluster architecture with NSM and KubeFed .. 48

Tables

Table 1. Sub-questions, methods, and chapter references .. 10

Table 2. Design Constraints for AME multi-cluster solution .. 18

Table 3. Shortlist of stakeholders for requirements gathering .. 23

Table 4. Business-related User Stories ... 24

Table 5. Functional User Stories ... 25

Table 6. Non-functional User Stories ... 26

Table 7. Research Spikes ... 28

Table 8. Overview of active multi-cluster connectivity projects ... 31
Table 9. Constraints Evaluation of Multi-cluster Solutions .. 31
Table 10. MCA scores explanation.. 33

Table 11. MCA criteria weight .. 33

Table 12. Multi-cluster solutions MCA - total scores .. 33

Table 13. Design principles for a K8s multi-cluster architecture on AME ... 36

Table 14. Services used by Liqo clusters to establish connectivity ... 47

Table 15. Multi-cluster control plane solutions ... 53

https://saxion-my.sharepoint.com/personal/450037_student_saxion_nl/Documents/Graduation%20Project/Versions/IvanShishkalov_450037_GraduationReport_v1.0.docx#_Toc99911204
https://saxion-my.sharepoint.com/personal/450037_student_saxion_nl/Documents/Graduation%20Project/Versions/IvanShishkalov_450037_GraduationReport_v1.0.docx#_Toc99911206
https://saxion-my.sharepoint.com/personal/450037_student_saxion_nl/Documents/Graduation%20Project/Versions/IvanShishkalov_450037_GraduationReport_v1.0.docx#_Toc99911207
https://saxion-my.sharepoint.com/personal/450037_student_saxion_nl/Documents/Graduation%20Project/Versions/IvanShishkalov_450037_GraduationReport_v1.0.docx#_Toc99911208
https://saxion-my.sharepoint.com/personal/450037_student_saxion_nl/Documents/Graduation%20Project/Versions/IvanShishkalov_450037_GraduationReport_v1.0.docx#_Toc99911209
https://saxion-my.sharepoint.com/personal/450037_student_saxion_nl/Documents/Graduation%20Project/Versions/IvanShishkalov_450037_GraduationReport_v1.0.docx#_Toc99911210
https://saxion-my.sharepoint.com/personal/450037_student_saxion_nl/Documents/Graduation%20Project/Versions/IvanShishkalov_450037_GraduationReport_v1.0.docx#_Toc99911211
https://saxion-my.sharepoint.com/personal/450037_student_saxion_nl/Documents/Graduation%20Project/Versions/IvanShishkalov_450037_GraduationReport_v1.0.docx#_Toc99911212
https://saxion-my.sharepoint.com/personal/450037_student_saxion_nl/Documents/Graduation%20Project/Versions/IvanShishkalov_450037_GraduationReport_v1.0.docx#_Toc99911213
https://saxion-my.sharepoint.com/personal/450037_student_saxion_nl/Documents/Graduation%20Project/Versions/IvanShishkalov_450037_GraduationReport_v1.0.docx#_Toc99911214
https://saxion-my.sharepoint.com/personal/450037_student_saxion_nl/Documents/Graduation%20Project/Versions/IvanShishkalov_450037_GraduationReport_v1.0.docx#_Toc99911215
https://saxion-my.sharepoint.com/personal/450037_student_saxion_nl/Documents/Graduation%20Project/Versions/IvanShishkalov_450037_GraduationReport_v1.0.docx#_Toc99911216
https://saxion-my.sharepoint.com/personal/450037_student_saxion_nl/Documents/Graduation%20Project/Versions/IvanShishkalov_450037_GraduationReport_v1.0.docx#_Toc99911217
https://saxion-my.sharepoint.com/personal/450037_student_saxion_nl/Documents/Graduation%20Project/Versions/IvanShishkalov_450037_GraduationReport_v1.0.docx#_Toc99911218
https://saxion-my.sharepoint.com/personal/450037_student_saxion_nl/Documents/Graduation%20Project/Versions/IvanShishkalov_450037_GraduationReport_v1.0.docx#_Toc99911219
https://saxion-my.sharepoint.com/personal/450037_student_saxion_nl/Documents/Graduation%20Project/Versions/IvanShishkalov_450037_GraduationReport_v1.0.docx#_Toc99911220
https://saxion-my.sharepoint.com/personal/450037_student_saxion_nl/Documents/Graduation%20Project/Versions/IvanShishkalov_450037_GraduationReport_v1.0.docx#_Toc99911221

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

60

List of Abbreviations
Abbreviation Explanation
AME Avisi Managed Environments P2P Peer-to-Peer (Networking)
API Application Programming

Interface
PaaS Platform-as-a-Service

AWS Amazon Web Services PoC Proof of Concept
AZ Availability Zone PV Persistent Volume
BYOC Bring Your Own Cloud PVC Persistent Volume Claim
CIDR Classless Inter-Domain Routing RAM Random-Access Memory
CLI Command-line Interface RBAC Role-Based Access Control
CNCF Cloud-Native Computing

Foundation
RUP Rational Unified Process

CNI Container Network Interface SIG Special Interest Group
CNS Container Native Storage SSH Secure Shell
CPU Central Processing Unit TCP Transmission Control Protocol
CRD Custom Resource Definition

(Kubernetes)
TD Technical Design

CSI Container Storage Interface TLS Transport Layer Security
CSR Certificate Signing Request UI User Interface
DNS Domain Name System VM Virtual Machine
DO DigitalOcean VPN Virtual Private Network
DR Disaster Recovery
EKS Elastic Kubernetes Service
gRPC Google Remote Procedure Call
GSLB Global Server Load Balancing
HA High Availability
IaC
ICMP

Infrastructure-as-Code
Internet Control Message Protocol

IPS Intrusion Prevention System
IPSec Internet Protocol Security
K8s Kubernetes
L3, L7 Layer3, Layer 7 (Networking)
LAN Local Area Network
LB Load Balancer
mTLS Mutual Transport Layer Security
NAT Network Address Translation
NS Network Service
NSM Network Service Mesh
OOTB Out of the Box
OSI Open System Interconnection

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

61

Reference List

[1] Flexera, "2021 State of the Cloud Report," 2021. [Online]. Available: https://info.flexera.com/CM-
REPORT-State-of-the-Cloud. [Accessed 10 12 2021].

[2] L. Larsson, "Cloud-agnostic third party managed Kubernetes services – the unexploited
opportunity," 3 June 2021. [Online]. Available: https://elastisys.com/cloud-agnostic-third-
party-managed-kubernetes-services/. [Accessed 3 December 2021].

[3] Datadog, "8 Surprising Facts About Real Docker Adoption," June 2018. [Online]. Available:
https://www.datadoghq.com/docker-adoption. [Accessed 5 December 2021].

[4] Red Hat, "What is container orchestration?," 2 December 2019. [Online]. Available:
https://www.redhat.com/en/topics/containers/what-is-container-orchestration. [Accessed 5
December 2021].

[5] J. Withers, "What Is Kubernetes? An Introduction to the Wildly Popular Container Orchestration
Platform," 26 May 2021. [Online]. Available: https://newrelic.com/blog/how-to-relic/what-is-
kubernetes. [Accessed 5 December 2021].

[6] H. Virdó, "What Is Immutable Infrastructure?," 26 September 2017. [Online]. Available:
https://www.digitalocean.com/community/tutorials/what-is-immutable-infrastructure.
[Accessed 5 December 2021].

[7] Red Hat, "What is GitOps?," 3 May 2021. [Online]. Available:
https://www.redhat.com/en/topics/devops/what-is-gitops. [Accessed 10 January 2021].

[8] Gartner, Inc., "Assessing Patterns for Deploying Distributed Kubernetes Clusters," 8 April 2020.
[Online]. Available: https://www.gartner.com/en/documents/3983221/assessing-patterns-for-
deploying-distributed-kubernetes-. [Accessed 12 January 2022].

[9] CloudZero, "Cloud Agnostic: What Does It Really Mean And Why Do You Need It?," 13 August 2021.
[Online]. Available: https://www.cloudzero.com/blog/cloud-agnostic. [Accessed 25 January
2022].

[10] C. Tozzi, "Why Cloud Kubernetes Is Not as Vendor-Agnostic," 26 November 2020. [Online].
Available: https://www.f5.com/company/blog/why-cloud-kubernetes-is-not-as-vendor-
agnostic-as-it-seems-and-What-to-do-about-it. [Accessed 25 January 2022].

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

62

[11] A. Robinson, "Gotchas & Solutions Running a Distributed System Across Kubernetes Clusters," 20
December 2018. [Online]. Available: https://www.cockroachlabs.com/blog/experience-report-
running-across-multiple-kubernetes-clusters/. [Accessed 27 January 2022].

[12] G. Arbezzano, "Simplifying multi-clusters in Kubernetes," 12 April 2021. [Online]. Available:
https://www.cncf.io/blog/2021/04/12/simplifying-multi-clusters-in-kubernetes/. [Accessed 15
December 2021].

[13] Kubernetes, "Cluster Networking," [Online]. Available:
https://kubernetes.io/docs/concepts/cluster-administration/networking/. [Accessed 27
January 2022].

[14] Red Hat, "A brief overview of the Container Network Interface (CNI) in Kubernetes," 29 April 2021.
[Online]. Available: https://www.redhat.com/sysadmin/cni-kubernetes. [Accessed 27 January
2022].

[15] Submariner, "Submariner," 2021. [Online]. Available: https://submariner.io/. [Accessed 24
January 2022].

[16] Skupper, "Skupper," [Online]. Available: https://skupper.io/. [Accessed 26 January 2022].

[17] Liqo, "Liqo," [Online]. Available: https://liqo.io/. [Accessed 26 January 2022].

[18] Cilium, "Deep Dive into Cilium Multi-cluster," 18 March 2019. [Online]. Available:
https://cilium.io/blog/2019/03/12/clustermesh. [Accessed 26 January 2022].

[19] Istio, "Multicluster Deployments," [Online]. Available:
https://istio.io/v1.2/docs/concepts/multicluster-deployments/. [Accessed 26 January 2022].

[20] Linkerd, "Multi-cluster communication," [Online]. Available:
https://linkerd.io/2.11/features/multicluster/. [Accessed 26 January 2022].

[21] The Network Service Mesh, "Network Service Mesh," [Online]. Available:
https://networkservicemesh.io/. [Accessed 2022 January 26].

[22] kEdge Authors, "kEdge," [Online]. Available: https://github.com/improbable-eng/kedge.
[Accessed 26 January 2022].

[23] Consul Authors, "Multi-Cluster Federation Overview," [Online]. Available:
https://www.consul.io/docs/k8s/installation/multi-cluster. [Accessed 26 January 2022].

[24] Liqo Team, "CNCF Turin," in Unleashing the multi-cluster potential with Liqo, Turin, 2021.

[25] Kubernetes, "Kubernetes Documentation," [Online]. Available:
https://kubernetes.io/docs/home/. [Accessed 6 February 2022].

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

63

[26] B. Reselman, "3 questions to answer when considering a multi-cluster Kubernetes architecture,"
14 December 2021. [Online]. Available: https://www.redhat.com/architect/multi-cluster-
kubernetes-architecture. [Accessed 15 December 2021].

[27] T. Yuan, "A Multi-Cloud and Multi-Cluster Architecture with Kubernetes," 13 November 2019.
[Online]. Available: https://www.alibabacloud.com/blog/a-multi-cloud-and-multi-cluster-
architecture-with-kubernetes_595541. [Accessed 5 February 2022].

[28] Improbable, "Introducing kEdge: a fresh approach to cross-cluster communication.," 1 January
2018. [Online]. Available: https://www.improbable.io/blog/introducing-kedge-a-fresh-
approach-to-cross-cluster-communication. [Accessed 5 February 2022].

[29] L. Osmani, "Multi-Cloud Connectivity for Kubernetes in 5G Networks," IEEE Communications
Magazine, vol. 59, no. 10, pp. 42-47, 2021.

[30] WireGuard, "WireGuard Installation," [Online]. Available: https://www.wireguard.com/install/.
[Accessed 1 March 2022].

[31] Network Service Mesh, "Test kernel to wireguard to kernel connection," [Online]. Available:
https://github.com/networkservicemesh/deployments-k8s/tree/main/examples/use-
cases/Kernel2Wireguard2Kernel. [Accessed 11 March 2022].

[32] Linkerd, "Linkerd Multicluster Manifests," [Online]. Available:
https://github.com/linkerd/website/tree/main/multicluster. [Accessed 5 March 2022].

[33] GCP, "Online Boutique - Microservices Demo," [Online]. Available:
https://github.com/GoogleCloudPlatform/microservices-demo. [Accessed 10 March 2022].

[34] Open Source, "Admiralty," [Online]. Available: https://github.com/admiraltyio/admiralty.
[Accessed 15 March 2022].

[35] Open Source, "Shipper," [Online]. Available: https://github.com/bookingcom/shipper.
[Accessed 15 March 2022].

[36] Open Source, "Kubernetes Cluster Federation," [Online]. Available:
https://github.com/kubernetes-sigs/kubefed. [Accessed 15 March 2022].

[37] Open Source, "mck8s: Container orchestrator for multi-cluster Kubernetes," [Online]. Available:
https://github.com/moule3053/mck8s. [Accessed 15 March 2022].

[38] https://www.k8gb.io/, "K8GB - Kubernetes Global Balancer," [Online]. Available:
https://www.k8gb.io/. [Accessed 11 March 2022].

[39] Liqo, "[Feature] Move PersistentVolumes between clusters," 27 January 2022. [Online]. Available:
https://github.com/liqotech/liqo/issues/1071. [Accessed 10 March 2022].

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

64

[40] Open Source, "Kubernetes External Secrets Operator," [Online]. Available:
https://github.com/external-secrets/external-secrets. [Accessed 16 March 2022].

[41] Observe Inc., "What Is Observability?," 16 February 2021. [Online]. Available:
https://www.observeinc.com/resources/what-is-observability/. [Accessed 15 March 2022].

[42] O. Hughes, "What is Gaia-X? A guide to Europe's cloud computing fight-back plan," 10 June
2020. [Online]. Available: https://www.techrepublic.com/article/what-is-gaia-x-a-guide-to-
europes-cloud-computing-fight-back-plan/. [Accessed 5 January 2022].

[43] C. Morris, "Infrastructure as a story," 2 September 2021. [Online]. Available:
https://www.thoughtworks.com/en-br/insights/blog/cloud/infrastructure-as-a-story.
[Accessed 11 January 2022].

[44] Google, "Multi-cluster use cases," [Online]. Available:
https://cloud.google.com/anthos/multicluster-management/use-cases. [Accessed 15
December 2021].

[45] M. Caulfield, "KubeCon 2018," in Clusters All the Way Down: Crazy Multi-cluster Topologies,
Seattle, 2018.

[46] N. Leiva, "Kubernetes multi-cluster networking made simple," 19 December 2018. [Online].
Available: https://itnext.io/kubernetes-multi-cluster-networking-made-simple-c8f26827813.
[Accessed 10 February 2022].

[47] Platform9, "Difference Between multi-cluster, multi-master, multi-tenant & federated
Kubernetes," 27 May 2020. [Online]. Available: https://platform9.com/blog/difference-between-
multi-cluster-multi-master-multi-tenant-federated-kubernetes/. [Accessed 6 February 2022].

[48] D. Friedlander, "Kubernetes-ClusterIP-Service," 24 September 2019. [Online]. Available:
https://www.docker.com/blog/designing-your-first-application-kubernetes-communication-
services-part3/kubernetes-clusterip-service/. [Accessed 6 February 2022].

[49] V. Sharma, "Load Balancer Service type for Kubernetes," 8 August 2020. [Online]. Available:
https://medium.com/avmconsulting-blog/external-ip-service-type-for-kubernetes-
ec2073ef5442. [Accessed 6 February 2022].

[50] G. Chandra, "Kubernetes Multi-Cloud and Multi-Cluster Connectivity with Submariner," 20
February 2020. [Online]. Available: https://itnext.io/kubernetes-multi-cloud-and-multi-cluster-
connectivity-with-submariner-test-cockroachdb-b79662209bd7. [Accessed 20 January 2022].

Ivan Shishkalov (450037) - Graduation Report
v1.0 of 03-04-2022

65

Versions
Version Date Changes Review summary

v0.1 22-12-2021 • Document created
• Initial Structure
• Stakeholder Analysis (80%)
• Context Analysis (20%)

• Research questions should be used as
a basis for structuring the report.

• Methods such as 7S, PESTEL are too
heavy and not suitable for this project,
they will not be used.

• Stakeholder Analysis needs a second
look – in this project, it should be more
about people who can help reach the
goal.

v0.2 19-01-2022 • Added Problem Analysis, User
Stories, Prototype Log

• Improved structure

• Problem Analysis should be split in 2
parts – initial and technical deep-dive

• Conceptual Design should be
described before the Technical Design

v0.3 03-02-2022 • Changed the structure
• Added partial Technical Research

• Multi-criteria analysis adding weights
and scores

• Move all appendices into a separate
document

v0.4 23-02-2022 • Elaborated Design Principles
• Added MCA results
• Improved Conceptual Design

based on MCA
• Moved appendices to a separate

document

• Summarize Stakeholder Analysis
briefly in the main report and provide
references to the full version

• Provide an explanation of the
Conceptual & Technical Designs
based on a single selected
requirement; refer to the Appendix for
the rest

v0.5 16-03-2022 • Added Technical Design
• Added Advice
• Improved structure and

formatting

• Elaborate further on why 3 different
architectures are proposed

v0.6
Concept

20-03-2022 • Elaborated on 3 different
architectures (DP-1)

• Extended Advice

• Reduce main content down to 60
pages

v1.0
Final

03-04-2022 • Content reduced
• Added conclusion and reflections

N/A

Appendices
Appendices to this report can be found in a separate document - “Appendix to the Graduation
Report”.

