
 Graduation Portfolio
 Saxion Hogeschool, Deventer

 Bsc in Software Engineering(HBO IT) 2019-2023

 Student: Keith I. (487130)
 Company: Voordeeluitjes.nl (Freetime Company)

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 Table of Contents

 1. Project Proposal ... 5
 2. Plan of Approach ... 5

 2.1. Introduction ... 5
 2.1.1. Goal ... 5
 2.1.2. Target Group .. 5
 2.1.3. Workspace ... 5

 2.2. Project Description ... 5
 2.3. Company Description ... 6
 2.4. Project Details ... 6
 2.4.1. Expected Research ... 7

 2.4.2. Expected Solution .. 7
 2.4.3. Expected Tasks .. 8

 2.5. Functional Requirements .. 8
 2.6. Non-Functional Requirement ... 9
 2.7. User Stories ... 9
 2.8. System Architecture Diagram ... 10
 2.9. Project Management ... 11

 2.9.1. Planning ... 12
 2.9.2. FAQs for incoming team members .. 13

 3. Research Report ... 15
 3.1. Abstract ... 15
 3.2. Introduction ... 15
 3.3. Literature review ... 16
 3.4. Data collection and Analysis .. 17

 3.4.1. Data Preprocessing .. 19
 3.5. Machine Learning model .. 24

 3.5.1. Scikit-learn .. 24
 3.5.2. TensorFlow and Keras ... 25
 3.5.3. Spark MLlib .. 25
 3.5.4. LightFM ... 25
 3.5.5. Surprise .. 26
 3.5.6. Fastai ... 26

 3.6. Software development(Backend) .. 27
 3.6.1. Flask .. 29
 3.6.2. Django ... 29
 3.6.3. FastAPI .. 30
 3.6.4. Node.js/Express ... 30
 3.6.5. Spring Boot .. 30
 3.6.6. Go .. 30

 3.7. Database .. 31
 3.7.1. SQLite ... 31

 Page 2 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 3.7.2. MySQL .. 32
 3.7.3. PostgreSQL ... 32

 3.8. Software development(Frontend) ... 33
 3.8.1. ReactJs ... 33
 3.8.2. Vue.js ... 34
 3.8.3. Angular .. 34

 3.9. Recommendations ... 34
 3.10. Conclusion .. 35

 4. Functional Design ... 36
 4.1. Introduction ... 36
 4.2. Overview ... 36
 4.3. Requirements .. 36

 4.3.1. Functional requirements .. 36
 4.3.2. Non-Functional Requirement .. 37
 4.3.3. User Stories ... 37
 4.3.4. Use Cases .. 38
 4.3.5. User Interface .. 39

 4.4. Data ... 39
 4.5. Assumptions ... 39
 4.6. Acceptance Criteria .. 40

 5. Technical Design ... 41
 5.1. Introduction ... 41
 5.2. System Architecture .. 41
 5.3. Database Design ... 41
 5.4. Backend Design .. 43

 5.4.1. Libraries and systems for backend development. .. 44
 5.5. Recommendation Model ... 45

 5.5.1. Model Logic .. 45
 5.5.2. Location(Hotel) Recommendation ... 45
 5.5.3. Model management ... 46
 5.5.4. Model Testing .. 46

 5.6. Frontend Design .. 48
 5.6.1. Libraries and systems for frontend development. .. 50

 5.7. Security ... 51
 5.8. Performance .. 52
 5.9. API Documentation .. 53
 5.10. Testing ... 56
 5.11. Deployment ... 57
 5.12. Logging ... 58
 5.13. Scalability ... 58
 5.14. Recovery ... 59
 5.15. Support .. 59
 5.16. Conclusion .. 59

 Page 3 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 6. Systems Manual ... 60
 6.1. System setup and Installation ... 60
 6.2. API Documentation .. 60
 6.3. SQL Queries ... 60
 6.4. Known Issues .. 61
 6.5. Unfinished parts .. 62
 6.6. Troubleshooting .. 62

 7. Graduation Report ... 64
 7.1. Introduction ... 64
 7.2. Problem definition .. 64
 7.3. Assignment ... 64
 7.4. Design decisions ... 64
 7.5. Development environment .. 64
 7.6. Results ... 65
 7.7. Recommendation .. 66
 7.8. Conclusion .. 67
 7.9. Reflection .. 67

 8. Video Demo Presentation .. 68
 8.1. Draft .. 68

 9. Appendix ... 69
 9.1. Graduation proposal HBO-ICT .. 69
 9.2. Research Questions ... 74

 9.2.1. RQ1: (Recommendations) ... 74
 9.2.2. RQ2: (Data) ... 75
 9.2.3. RQ3: (Implementation) ... 75
 9.2.4. RQ4: (Interface) .. 75

 9.3. Contacts .. 75
 9.4. Glossary .. 75
 9.5. Readme.md ... 76

 9.5.1. Main ... 76
 9.5.2. Backend setup .. 77
 9.5.3. Frontend setup ... 79

 9.6. SQL Queries ... 81
 9.7. CSV files format ... 85
 9.8. API documentation preview ... 89
 9.9. Concept design .. 90
 9.10. Gitlab commit log ... 92
 9.11. Graphs & Diagrams .. 92
 9.12. Screenshots ... 93
 9.13. References ... 97
 9.14. Substantive Reflection .. 98
 9.15. Acknowledgements ... 98

 Page 4 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 1. Project Proposal
 The project proposal outlines the goals of the assignment. This was to be approved by the college and the
 company. See project proposal .

 2. Plan of Approach
 2.1. Introduction
 Chapter 1 gives general background about the project. Chapter 2 discusses points needed in case a new
 programmer joins the teams.

 2.1.1. Goal
 This document lays out goals and objects of the project.

 2.1.2. Target Group
 This document gives information for anyone who is interested to learn about the project and fellow team
 members.

 2.1.3. Workspace
 The project is to be carried in a hybrid form working remotely and on site at VDU address in Deventer, NL.

 2.2. Project Description
 For this project the company wants to show personalized search results for holiday destinations on their
 website. Currently, the company's system makes recommendations of search results based on deterministic
 queries on SQL. These search results offer matching results based on keywords. However, these results may
 not reflect the user's personal interests or preferences, and may miss out on similar or alternative destinations
 or hotels that the user may find more appealing.

 VDU records all users' interaction with their website. This data contains history of user’s purchases and
 liked destinations. They want to use this data to potentially recommend other destinations to their customers
 which could increase conversion(sales) rates.

 The aim of this project is to design and implement a machine learning-based recommendation system that
 can generate personalized search results for users based on their past booking history, current website
 interaction, and other factors. The project will follow the software development lifecycle (SDLC) phases of
 planning, analysis, design, implementation, testing, and deployment. The project will also involve data
 processing, and analysis to build and evaluate machine learning models which leads to recommendations of
 high accuracy.

 The main research question of this project is:

 ● RQ1: What ways can hotel search results be made more relevant to users?

 The sub-questions are:

 ● RQ2: What data must be collected from visitors of the website, which could be used to provide
 personalized recommendations based on the user's personal preference?

 Page 5 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 ● RQ3: How can this recommendation system be implemented into an existing website?
 ● RQ4: How can administrators see progress reports and do customization to the ML model?

 2.3. Company Description
 The company Voordeeluitjes.nl(VDU) is a leading online travel website in the Netherlands which offers a
 wide range of holiday destinations and hotels in the Netherlands and Germany. Their mission is to provide
 the best travel experience for its customers by offering them package deals which gives their clients
 convenience with possible discounts.

 Voordeeluitjes.nl(VDU) is an online travel agency that specializes in offering affordable and attractive
 holiday packages in the Netherlands and Germany. The company was founded in 2007 and has become one
 of the leading websites among others such as booking.com. They have a network of over 6000 hotels and
 holiday parks, which it promotes. The company's vision is to make travel accessible and enjoyable for
 everyone by offering the best deals.

 Their website is their main channel for reaching and serving its customers. The website allows users to
 search for holiday destinations and hotels based on various criteria, such as location, price, rating,
 popularity, theme, or facilities. The website also provides detailed information about each destination and
 hotel, such as photos, reviews, maps, activities, and booking availability information. The website lets users
 book their holiday packages online. Their website is powered by a SQL-based database system that stores
 and retrieves the data of the destinations and hotels. They also provide easy and fast customer service
 support.

 2.4. Project Details
 VDU's current search results system for its service is based on deterministic queries on SQL. This means
 that the system matches the user's search keywords with the data in the database and returns the results
 which match the search key phrase. This technique is quite outdated as it does not take into account the
 user's personal preferences or interests. These personal preferences vary for each user depending on their
 past booking history, interaction with the website, ratings etc. Therefore, the search results may not be
 relevant or appealing to the user if they are solely matched on keywords. There is missed opportunity to
 show alternative destinations or hotels that the user may find more attractive.

 For example, suppose a user searches for "beach holiday" on the company's website. The current system will
 return a list of hotels that are located near a beach and have the word "beach" in their name or description.
 However, the user may have other preferences or interests that are not captured by the keyword "beach
 holiday" as the results do not take into account the user's history and booking behavior. This booking
 behavior may be that users who generally like to book on holiday near a beach also like to places that are
 sunny for example. This would suggest that users like to go on holiday in “tropical” places. If this is the case
 then there would be an invention to show such holiday places to this user. Otherwise, the user may not be
 satisfied with the search results and may not book any of the hotels.

 The company wants to improve its search results system by showing holiday destinations/hotels based on
 users' interaction history to provide more relevant holiday destination results to make their offers more
 attractive. The company believes that by using machine learning techniques, it can discover the relationship

 Page 6 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 between a user's booking habits to generate personalized search results for each user based on their past
 booking history, current website interaction, and other factors.

 2.4.1. Expected Research
 The expected research for this project consists of the following activities:

 ● Literature reading: A review of the existing literature and research on machine learning-based
 recommendation systems as well as software development techniques for best practices.

 ● Data collection and analysis: A collection and analysis of the data that will be used to build and
 evaluate the machine learning model. The data will include the user interaction data that the
 company already collects, such as user clicks, purchase history, liked destinations, liked hotels,
 favorite pages, etc., as well as any additional data that may be useful for enhancing the
 recommendation system, such as user demographics, preferences, feedback, etc. The data collection
 and analysis will involve methods such as data extraction, transformation, cleaning, integration,
 exploration, visualization, and preprocessing.

 ● Machine learning model design and implementation: A design and implementation of the machine
 learning model that will generate personalized and relevant search results for users based on their
 past booking history, current website interaction, and other factors. The machine learning model
 design and implementation will involve methods such as feature engineering, model selection, model
 training, model testing, model evaluation, model optimization, and model deployment.

 ● Model integration and testing: An integration and testing of the machine learning model into the
 existing website system. The model integration and testing will involve methods such as system
 architecture design, system configuration, system testing, system debugging, system validation, and
 system documentation.

 ● Model administration and customization: An admin interface(website) that will allow administrators
 to see reports and do customization to the ML model. The admin website will involve methods such
 as web development, web design, web security, web testing, web debugging, web validation, and
 web documentation.

 2.4.2. Expected Solution
 In this section I layout what products I will be delivering to complete this assignment.

 ● A research report that documents the data analysis process, the machine learning model development
 process, the model evaluation and comparison results, and the recommendations for future work.

 ● A model implemented outside the VDU website that returns a personalized list of recommended
 hotel destinations. These results can be then displayed in the existing website search functionality
 and provides users with a new option to sort results by personalized recommendation.

 ● An internal admin website that allows the administrators to monitor and manage the machine
 learning model, view various reports and set custom properties or overrides for specific hotels or
 keywords.

 ● Documentations for the system.

 Page 7 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 2.4.3. Expected Tasks
 ● Data analysis: Review the existing data and identify the relevant features for building a personalized

 recommendation system. Perform data cleaning, preprocessing and transformation to prepare the
 data for machine learning. Create graphs to analyze data.

 ● Machine learning model development: Choose a machine learning algorithm for the recommendation
 system, such as collaborative filtering, content-based filtering or hybrid methods. Train, test and
 evaluate the model using suitable metrics and techniques. Optimize the model parameters and
 hyperparameters using grid search, random search or other methods. Compare different models and
 select the one with highest accuracy which can be trained in the shortest time.

 ● Model deployment: Integrate the machine learning model with the existing website system using API
 web services. Test that model can handle website requests and provide personalized
 recommendations in real time. Test the model functionality and performance on the website using
 various scenarios and user profiles. The model needs to have an update mechanism which will
 periodically update new user data to update its model with latest user information.

 ● Admin interface development: Design and implement an internal web interface for the administrators
 so that they can monitor and manage the machine learning model. This admin website will provide
 features such as viewing model output, user segments, user profiles and conversion rates; setting
 custom properties or overrides for specific hotels or keywords; activating or deactivating the model
 or its components; updating or retraining the model with new data and possibly other features which
 may be useful for admins.

 ● Documentation: Create documentation for the machine learning model and admin interface. The
 documentation will include motivation, process, test results, conclusions and recommendations. The
 documentation will also include some diagrams, screenshots.

 2.5. Functional Requirements
 These are the requirements that specify what the system should do for the users and the administrators.

 Ref Description

 F1 The system should generate personalized recommendations based on the user's interests and
 preferences, which are derived from their past booking history, current website interaction and
 other relevant data sources.

 F2 The personalized recommendation results should be fetched by VDU’s existing booking website.

 F3 The system should be able to update its recommendation ML model based on the user's new data.

 F4 The system should allow administrators to view various reports on the model’s performance.

 F5 The system should allow administrators to set custom properties or overrides for specific hotels or
 keywords, such as boosting or suppressing them in the personalized recommendations. The system
 should allow administrators to activate or deactivate the model or its components.

 Page 8 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 2.6. Non-Functional Requirement
 These are requirements that specify how the system should perform or behave in terms of quality, reliability,
 security, usability, etc

 Ref Description

 NF1 The system should be able to handle a large number of requests without compromising
 performance or accuracy.

 NF2 The system should be secure and protect the data and the model from unauthorized access or
 manipulation. Data is not added to the repo as all CSV files are on gitignore list.

 NF3 The system should be user-friendly and intuitive for both users and administrators, providing clear
 instructions, feedback and error messages.

 NF4 The system should work with the existing website system.

 NF5 The user’s data that will be processed by ML should be anonymized by removing any user’s
 names and contact details.

 2.7. User Stories
 As a client, I want to…

 US1 see personalized recommendations for hotels and destinations based on my interests and
 preferences, so that I can find the best options for my holiday.

 US2 ..have a new option to sort results by personalized recommendation along with other existing
 sorting functions (price, rating, popularity), so that I can easily compare and choose the most
 relevant results for me.

 US3 ..see images, ratings, prices and other details of the hotels or destinations in the personalized
 recommendations, so that I can get a clear and appealing overview of the options.

 US4 ..provide feedback on the personalized recommendations, such as liking, disliking or rating them,
 so that I can improve the quality and accuracy of the recommendations for me and other users.

 US5 ..monitor and manage the machine learning model that generates the personalized
 recommendations, so that I can ensure its optimal performance and functionality.

 Page 9 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 As an administrator, I want to…

 US6 ..view various reports and insights on the model output, user segments, user profiles and
 conversion rates, so that I can evaluate the effectiveness and impact of the personalized
 recommendation system.

 US7 ..set custom properties or overrides for specific hotels or keywords, such as boosting or
 suppressing them in the personalized recommendations, so that I can adjust the results according to
 business needs or preferences.

 US8 ..activate or deactivate the model or its components, such as using only collaborative filtering or
 content-based filtering or hybrid methods, so that I can experiment with different approaches and
 methods for the personalized recommendation system.

 US9 ..update or retrain the model with new data, so that I can keep the personalized recommendation
 system up-to-date and relevant.

 2.8. System Architecture Diagram
 Flow chart

 This flowchart shows how the SSR system will fit into the VDU website overall. It shows that SSR is an
 independent system which acts as a feature adding component for the VDU website.

 Fig PFG. Process flow graph

 Page 10 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 SSR system diagram

 This diagram shows all components of the SSR system and their connection to each part therein.

 Fig SYSD. SSR system diagram

 Link: https://app.diagrams.net/?src=about#Amywebartist%2Fvdu%2Fmain%2Fdiagrams.drawio

 2.9. Project Management
 The project started in Q4(May 2023) and should be completed by Q1(Oct 2023). The delivered products
 should address the main and sub research questions. The activities and tasks should be limited to the scope
 of the assignment. The project assumes there is sufficient user data available upon which the ML model
 would be created. Measures should be taken to secure data as per privacy act regulation. Risks such as
 spending too much time on just one deliverable should be avoided as it can lead to delays.

 The software development includes various parts which are crucial for the success of this new addition to
 the system. These parts need to be carefully designed and created within the allocated time. The work done
 should be presented to company mentors and on a regular basis to feedback in order to assess whether the
 project is going as per company specifications. The project requires full time devotion from myself for
 which I need to read various articles, books and tutorials in order to create expected products.

 In closure the system will be presented to the client to use and evaluate. This will be done by presenting a
 research report, the machine learning model, admin website and systems documentation. After which I will
 write a reflection report of the process. The project work will be showcased to college lecturers for

 Page 11 of 98

https://app.diagrams.net/?src=about#Amywebartist%2Fvdu%2Fmain%2Fdiagrams.drawio

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 feedback, assess the strengths and weaknesses of the project and identify any lessons learned or
 recommendations for future likewise projects.

 2.9.1. Planning
 The project consists of four main phases: data analysis, machine learning model development, admin
 interface development and testing.

 In the data analysis phase, I will explore and visualize the data to gain insights on user’s booking behaviors.

 In the machine learning model development phase, I will choose a suitable machine learning algorithm for
 the recommendation system and train, test and evaluate the model using the data.

 In the software deployment phase, I will create an admin website which will administer the model using a
 RESTful API and JSON format. I will test the model functionality and performance. The model API service
 and admin website will be both created using Python and Flask.

 I will document the work throughout the project. I will also write a brief description for the model created
 and more detailed documentation for the admin interface.

 To plan the time effectively, I have made a table below that shows the start and end dates of each task and
 milestone, as well as their dependencies.

 Below table shows the start and end dates in 2023 of each milestone along its dependency

 Ref Task Start Dependency

 T1 Review existing data sources 07 May None

 T2 Identify relevant features 14 May T1

 T3 Perform data cleaning, preprocessing and transformation 21 May T2

 T4 Explore data using graph visualization 28 May T3

 T5 Choose machine learning algorithm 7 Jun T4

 T6 Train, test and evaluate models 28 Jun T5

 T7 Optimize model parameters and hyperparameters 7 Jul T6

 T8 Compare different models and select best one 14 Jul T7

 T9 Create REST API for fetching recommendations from model 7 Sep T8

 T10 Test model functionality and performance on website 14 Sep T9

 T11 Design website for administrators 21 Sep None

 Page 12 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 T12 Implement website features for admins 28 Sep T11

 T13 Test web interface functionality and security 7 Oct T12

 T14 Write research report 14 Oct None

 T15 Write documentations 21 Oct None

 T16 Presentation 14 Nov T16

 2.9.2. FAQs for incoming team members
 In this section there are some questions and answers in case another developer joins the project.

 ● Which software is used?
 ○ The company uses SQL for database and C# for programming. However this SSR system

 will be built using Python, SQLite and Flask. The reason for this is that most machine
 learning packages are only available in Python and Flask is a simple system on which website
 administration websites can be built. SQLite is a good choice because they don’t want a large
 full setup and this small db will store input output values to return search recommendations
 based on incoming requests.

 ● What will be my tasks?
 ○ Existing and joining students project member will go through this document to familiarize

 him/her self and pickup what undone requirements
 ● What are we building?

 ○ We need to build a machine learning administration website and machine learning model that
 uses an API system.

 ● Can I find how my software integrates with other software?
 ● What's the first thing that needs to be done?
 ● Who do I turn to for help?

 ○ See contacts for appropriate person to contact
 ● Where is the repository for Items I need?

 ○ The repository is available over here https://gitlab.com/mywebartist/vdu
 ● Who's involved in this project?
 ● Do I have all the necessary contact addresses?
 ● What software-development method is used?
 ● What a re the deadlines?

 ○ 08 May 2023 Q4 start
 ○ 28 May 2023 draft plan of approach
 ○ 11 Jun 2023 final plan of approach
 ○ 19 Jun 2023 monthly update meeting with teacher
 ○ 26 Jun 2023 Q4 end
 ○ 04 Sep 2023 Q1 start
 ○ 17 Nov 2023 Q1 end
 ○ 30 Sep 2023 draft graduation report
 ○ 15 Oct 2023 reflection report

 Page 13 of 98

https://gitlab.com/mywebartist/vdu

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 ○ 15 Oct 2023 evaluation form
 ○ 21 Oct 2023 presentation
 ○ 29 Oct 2023 final graduation report
 ○ 14 Nov 2023 presentation
 ○ 17-24 Nov 2023 graduation session
 ○ Weekly client/student meeting

 ● What's the expected quality of programming code?
 ○ The code should be simple to understand. As much as possible function size be kept less than

 15 lines of code.
 ● What's the naming convention used for the coding?

 ○ Use camel case
 ● Who’s the boss?

 ○ Everyone is in charge of their own destiny
 ● Who’s the lead programmer?

 ○ Keith is the lead programmer of this project
 ● What kind of system do we use for managing/reporting progress and delays?

 ○ Tools used for project management are Google Calendar, Gitlabs user stories
 ● Where do I report the bugs?

 ○ Any bugs are to be logged on GitLab as an issue
 ● To who do I report about workload/working conditions/etc

 ○ Speak with client or college supervisor
 ● What are the working hours?

 ○ Working hours are 10am to 3pm, Monday to Friday
 ● To whom do I report when I'm late/to the doctor/ill

 ○ Speak with client or college supervisor

 Page 14 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 3. Research Report
 3.1. Abstract
 In this research report, I present my journey of developing and implementing a simple yet sophisticated
 recommendation system for a vacation booking website Voordeeluitjes.nl. My main goal was to create a
 personalized hotel recommendation system which shows visitors more attractive search results than the one
 currently being generated which uses conventional keyword-based search results.

 My approach involved data collection and analysis, in which I looked at user’s booking histories and
 similarities between hotels’ facilities. Through machine learning techniques, I constructed a model capable
 of delivering tailored booking suggestions. I housed this system by way of a standard REST API system
 with adequate access protection.

 My main research involved building a complete system which can be implemented into existing website
 systems. The system includes data and recommendation fetching, model results customizations, data
 updating methods and user administration.

 Voordeeluitjes.nl is one of the well known hotel booking websites in the Netherlands. I joined their
 organization to help them achieve their vision of providing an affordable vacation within the country and
 neighboring countries.

 My proposed solution was the development of a machine learning model which could generate
 recommendations for hotels via a REST API system along with a simple admin interface(secure website)
 and documentation. The model operated independently from the website, functioning as a recommendation
 engine, while the admin interface empowered administrators like me to oversee, fine-tune, and extract
 insights from the model.

 My research involved various aspects such as literature review, data collection and analysis, model design
 and implementation, software and website development and lastly testing. I started off with the following
 Plan of Approach, and Functional and Technical Design. In every milestone completing user stories played a
 crucial role in the development process.

 The system architecture diagram shows how the system which I developed connects with the
 Voordeeluitjes.nl system and their booking website. I adhered to a structured project management plan to
 accomplish tasks on set timelines.

 Finally, after much dedication and hard work I was able to deliver artifacts, which includes research report,
 functional recommendation model, API backend, an admin website, and documentation. I believe these
 products are going to enrich the travel experience for Voordeeluitjes.nl's customers and that I have made a
 meaningful contribution to the idea of providing personalized hotel recommendations via so called
 SSR(Smart Search Results).

 3.2. Introduction
 In this research report, I document my journey of developing and implementing a sophisticated
 recommendation system for the vacation booking website Voordeeluitjes.nl. The main objective of this

 Page 15 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 project is to create a personalized hotel recommendation system that offers visitors more attractive search
 results based on existing keyword matching.

 The rationale behind this project is rooted in the understanding that today's travelers seek tailored and
 relevant recommendations. The existing approach of keyword-based searches often falls short in capturing
 the nuances of individual preferences and booking histories. To address this gap, I undertook the task of
 constructing a recommendation system that would leverage user data and machine learning techniques to
 deliver personalized booking suggestions.

 This project holds great promise for enhancing the user experience on Voordeeluitjes.nl platform as they are
 committed to providing affordable vacations. My proposed solution involves the development of a machine
 learning model capable of generating hotel recommendations through a REST API system. It comes with a
 user-friendly admin interface and comprehensive documentation.

 The journey I embarked upon was a challenging one, involving extensive literature review, data collection
 and analysis, model design and implementation, and software design and website development. Throughout
 this progress I followed a structured project management plan outlined in my initial Plan of Approach.

 I hope to provide insights into the methodologies used, challenges, and lessons learned during the project. I
 termed my system as "Smart Search Results", this project contributes to the ongoing evolution of hotel
 booking experience shaped by the recent advancement of machine learning and A.I.

 3.3. Literature review
 Recommendation systems have become a gold mine for many tech giants. It is revolutionizing how users
 interact with services on online platforms. These systems are influencing users’ decision-making for
 example, showing similar products to buy or movies to watch. Netflix is a prime example where Netflix
 keeps history of watched movies and based on the watch history recommend other movies to watch. This
 area has been growing with the help of research in achieving even more personalized and relevant user
 experiences on different platforms.

 In order to investigate my research questions RQ3 (Implementation) and RQ4 (Interface) I consulted Eric
 Evans, in "Domain-Driven Design: Tackling Complexity in the Heart of Software" (2014), emphasizing the
 importance of understanding the complexities of software systems. His perspective is particularly relevant in
 the area of recommendation systems, where complexity increases from the need to interpret user behavior
 using historical data. Domain-driven design principles can help in structuring the architecture of a system
 such as this one so that requirements are in line with needs of users. In this case the users are visitors of
 Voordeeluitjes.nl. This piece of resource came in particularly useful information for me in trying to answer
 RQ3 (Implementation).

 Erich Gamma et al., in "Design Patterns: Elements of Reusable Object-Oriented Software" (1994),
 introduced the concept of design patterns, which offer reusable solutions to common programming
 challenges. While their work focuses on software design, it has implications for the development of
 recommendation algorithms. Well thought out design patterns can enhance the modularity(separate
 components) and maintainability of recommendation systems, making them more adaptable to changing
 switching different components allowing easy upgrade throughout the lifetime of a software.

 Page 16 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 For the area of Machine Learning(ML), Aurelien Geron's "Hands-on Machine Learning with Scikit-Learn,
 Keras, and Tensorflow" (2022) provides valuable insights into the practical aspects of building ML models.
 This book is very helpful in understanding the techniques and tools necessary for constructing
 recommendation models capable of learning from user data. ML allows the uncovering of patterns and
 insights from datasets contributing to the generation of personalized recommendations.

 Miguel Grinberg, in "Flask Web Development" (2018), writes about web development with Flask. It talks
 about implementation of RESTful API systems. This part is an essential component of the SSR systems. The
 integration of machine learning models through APIs is the meat and bone of this like most today’s modern
 web applications. Flask, as a web framework, offers a sound base for developing software systems.

 In order to create robust and efficient recommendation systems, keeping best practices in mind in software
 development is crucial for software that can be reliably used for coming years and not a few months. "Clean
 Code: A Handbook of Agile Software Craftsmanship" by Robert C. Martin (2010) and "Code Complete" by
 Steve McConnell (2004) underlines the significance of writing clean, maintainable, and efficient code.
 These principles are directly applicable to the development of software systems, making sure that the
 codebase remains manageable by keeping function sizes short as possible and adaptable as the system grows
 in data and usage. Detailed and complete documentation is also important so that development could be
 continued when primary developers are no longer working on it.

 While these resources provide essential insights into the technical aspects of software systems, it is very
 important to explore the theoretical and industry norms aspects. "Artificial Intelligence in Recommender
 Systems" by Qian Zhang et al. (2020) provides a comprehensive overview of the role of artificial
 intelligence in enhancing recommender systems. This work highlights the integration of AI techniques, such
 as collaborative filtering and content-based filtering, to improve recommendation accuracy. Sci-kit Learn
 and pandas are amazing tools when trying to build systems as this and these cannot be overlooked.

 Development and implementation of any system involves a multidisciplinary approach, taking insights from
 software design, machine learning, web development and database. By taking knowledge from these areas, I
 should be able to build at least a working prototype that offers personalized and relevant suggestions to
 users, thereby boosting bookings for Voordeeluitjes.nl.

 3.4. Data collection and Analysis
 The underlying success of this research project is about collection and analysis of data from
 Voordeeluitjes.nl's website. Data received by the data team was sufficient having relevant columns which
 provided access to booking history and user interaction records.

 This part of research helped me in answering RQ2 (Data). The data collection process involved checking out
 different tables in their database and trying to find out what could form the basis of user booking records,
 hotel details, and website interaction logs. The company started keeping records of all requests and
 responses as a way to collect data. User data protection is of utmost concern. Personal data is not needed to
 train the model so user names and contact details were removed, and so GDPR requirements were easily
 met.

 Page 17 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 After having received data from different tables, I started analyzing it trying to discover patterns, trends, and
 insights that could drive personalized hotel recommendations. I used techniques from exploratory data
 analysis (EDA) to gain an understanding of the dataset's structure and characteristics.

 Fig. Histogram of ratings on bookings with dataset of 65,000 lines

 In the end I found user booking histories to identify booking patterns. Users who had booked multiple hotels
 were found to show preferences forming the basis for collaborative filtering recommendation system.

 Fig. Scikit-learn, TensorFlow and Apache Spark

 Page 18 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 By analysis I found attributes and features of hotels, with similarities and dissimilarities to create
 content-based filtering. Commonalities in facilities such as swimming pools, restaurants, and bars for
 example were considered when calculating the similarity between hotels.

 These data-driven insights laid the groundwork for the design and implementation of the recommendation
 model. The data collection and analysis was very important for the project.

 3.4.1. Data Preprocessing
 The data provided by company and its preprocessing is as follows:

 Data Lines Lines

 Bookings 455,366

 Ratings 70,882

 Bookings with Ratings 65,039

 Fig. Data quantification

 Countries where locations(hotels/parks) can be booked

 Page 19 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 Locations Counts

 Netherlands 2,452

 Germany 1,448

 Austria 610

 Belgium 419

 France 253

 Italy 127

 Luxemburg 51

 Switzerland 49

 Hungary 31

 Croatia 30

 Spain 28

 Czech 20

 Poland 17

 Denmark 16

 Portugal 14

 England 12

 Ireland 6

 Sweden 5

 Scotland 4

 Slovakia 3

 Greece 3

 Lithuania 2

 Norway 2

 Morocco 2

 Slovakia 2

 Curacao 2

 Andorra 1

 Latvia 1

 Montenegro 1

 Total 5,611

 Page 20 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 Fig.
 Fig. Bookings by country

 Fig. Frequence of bookings

 Page 21 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 Fig. Booked countries

 Processing Time in Seconds

 Data Lines Model 1 Model 2

 100 0.01 0.01

 1,000 0.81 0.04

 2,000 3.94 0.14

 2,500 6.84 0.23

 5,000 43.48 0.95

 10,000 250.35 3.83

 20,000 1352.62 19.98
 Fig. Processing time compare between Model 1 and Model 2

 Page 22 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 Fig. Processing time compare between Model 1 and Model 2

 Model Filesize in GB

 Data Lines Model 1 Model 2

 100 0.000129 0.000084

 1,000 0.00975 0.00739

 2,000 0.0359 0.0291

 2,500 0.055 0.0453

 5,000 0.203 0.177

 10,000 0.766 0.693

 20,000 2.55
 Fig. Filesize compare between Model 1 and Model 2

 Page 23 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 Fig. Filesize compare between Model 1 and Model 2

 3.5. Machine Learning model
 In order to answer RQ1 (Recommendation) I referred to online sources to assess for a suitable candidate for
 building a machine learning model with, given available data from the company. Some of the technologies I
 investigated used today are as follows:

 3.5.1. Scikit-learn
 Scikit-learn(https://scikit-learn.org) is an open-source machine learning library in Python. It's renowned for
 its ease of use and its efficient implementations of a large number of classical machine learning algorithms.
 Scikit-learn is often the go-to tool for beginners and experts alike due to its simple interface and
 well-documented functions.

 While Scikit-learn offers a vast array of machine learning algorithms, it doesn't have built-in specialized
 recommendation algorithms. For this hotel recommendation system such as this one, Scikit-learn can be
 used to develop basic models using techniques like classification or regression . However, for a more
 complex recommendation system that may involve collaborative filtering or matrix factorization ,
 Scikit-learn may not be the most direct or efficient choice.

 Page 24 of 98

https://scikit-learn.org/

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 3.5.2. TensorFlow and Keras
 TensorFlow(https://www.tensorflow.org) is a powerful and flexible open-source deep learning framework
 developed by Google for Python. It's designed to create and train custom machine learning models which
 can be used across a range of tasks.

 Keras(https://keras.io), on the other hand, is a high-level API built on top of TensorFlow, allowing for easy
 and fast prototyping. Keras is an open-source library with a Python interface for creating artificial neural
 networks . It acts as an interface for the TensorFlow library. Additionally it supports convolutional and
 recurrent neural networks . Since this project is based on structured data this may not be a good choice .

 When it comes to building sophisticated recommendation systems, deep learning models can capture
 intricate patterns in user behaviors, making TensorFlow a valuable tool. TensorFlow Recommenders, an
 extension of TensorFlow, offers tools explicitly designed for recommendation systems. Given a large enough
 dataset with hotel ratings and potentially other metadata, a deep learning-based recommendation system can
 yield more accurate results . However, this library is very complicated to use and develop and much harder to
 pinpoint issues in case of troubleshooting. There is also much higher demand for computational resources as
 opposed to other more basic modeling tools which work out of the box, such as Sci-kit Learn for an
 example.

 3.5.3. Spark MLlib
 Apache Spark's MLlib(https://spark.apache.org/mllib) available for, (Scala, Java, Python, R), is a distributed
 machine learning framework designed specifically for scalability and big data processing. With its robust
 ecosystem, Spark can handle vast amounts of data efficiently, making it a favorite for tasks that require
 processing large datasets in real-time or batch modes.

 For a hotel recommendation system dealing with a large amount of data, Spark MLlib is a feasible option. It
 offers the Alternating Least Squares (ALS) algorithm, explicitly designed for recommendation systems .
 MLlib can handle collaborative filtering on massive(possible big data) datasets, making it capable for
 scenarios where scalability and performance are paramount. However, for smaller datasets or simpler
 projects, the overhead of setting up and maintaining a Spark environment seems to outweigh the benefits .
 Given the size of the dataset, half million rows which shrinks down to approximately 65,000 lines(removing
 bookings with no ratings) this option would be an overkill.

 3.5.4. LightFM
 LightFM(https://making.lyst.com/lightfm/docs) is a Python library dedicated to offering hybrid
 recommendation algorithms. As a hybrid model, it can leverage both collaborative and content-based
 filtering , making it adaptable to various recommendation scenarios.

 LightFM shines in situations where there's a mix of user-item interactions and item metadata. For a hotel
 recommendation system, this translates to considering both user reviews/ratings and hotel attributes (like
 location, amenities, price). LightFM can effectively handle 'cold start' scenarios, where new hotels without
 any reviews can still be recommended based on their attributes. However, for extremely large datasets,
 LightFM's scalability will become a limiting factor.

 Page 25 of 98

https://www.tensorflow.org/
https://keras.io/
https://spark.apache.org/mllib
https://making.lyst.com/lightfm/docs

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 3.5.5. Surprise
 Surprise(https://surpriselib.com) is a Python library explicitly crafted for building and analyzing
 recommendation systems. It offers a variety of algorithms, from basic ones to more advanced
 recommendation strategies, and comes with built-in tools for model evaluation.

 Given its dedicated nature, Surprise is aptly suited for building a hotel recommendation system, especially
 when starting out or dealing with medium-sized datasets . Its tools allow for quick prototyping , model
 evaluation, and optimization. On the downside, its focus on being a dedicated recommendation system tool
 means it might lack the broader flexibility and scalability features present in other, more extensive
 frameworks.

 3.5.6. Fastai
 Fastai(https://docs.fast.ai) is a deep learning library for Python that operates on top of PyTorch. What sets
 Fastai apart is its focus on providing high-level components that allow users to create complex models with
 minimal code . It aims to make state-of-the-art deep learning techniques accessible and easy to implement.

 Fastai, with its deep learning backbone, can be used to design intricate recommendation systems for hotels ,
 especially when non-trivial patterns in user behavior need capturing. Neural-based recommendation models
 can be built more effortlessly using Fastai compared to other deep learning frameworks. However, it's noted
 that due to neural network complexities (and computational demands) of a deep learning approach are
 resource heavy , especially if the dataset isn't of large size(perhaps into millions of rows of data) or if the
 recommendation problem isn't overly complex.

 In order to ascertain the best modeling toolkit to use I have scored each library between 0-5 giving the
 highest point for certain criteria. The total score will give good indication as to which system is best fit for
 this project.

 Factor SK-L TFlow MLib Light
 FM

 Surprise FastAI

 Simple implementation 5 1 1 5 5 5

 Scalable 2 5 5 1 1 5

 Lightweight 3 2 2 3 3 0

 Requires minimal setup 5 3 0 3 4 1

 Suited for regression 5 1 5 5 5 2

 Built in recommendation model 0 0 5 5 5 2

 Available in Python 5 5 5 5 5 5

 Total Score 25 17 23 27 28 20
 Fig AML. Model building tool evaluation

 Page 26 of 98

https://surpriselib.com/
https://docs.fast.ai/

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 As per the total scores among the chosen criteria TensorFlow clearly doesn't fit the bill. Surprise, LightFM
 and Sci-kitLearn have the highest rates. In my past experience I have used Scikit-learn and I was expecting
 it to come out on the top, so I decided to do some more investigation about the other two tools which I had
 not heard about before. When comparing between just these three I decided to look for their launch date,
 industry usage and size of their development team. Here is what I found:

 Scikit-learn:
 Launched in 2007, Scikit-learn is one of the most popular machine learning libraries in the Python
 ecosystem. It's open-source and provides simple and efficient tools for data mining and data analysis,
 accessible to everybody, and reusable in various contexts. Scikit-learn has had contributions from
 over 2,000 developers, making it one of the largest and most active communities in the machine
 learning landscape.
 Scikit-learn supports a wide range of supervised and unsupervised learning algorithms. Extensive
 documentation and tutorials are available. Large community means more support, tutorials, and
 frequent updates. Easily integrates with other popular libraries such as NumPy, pandas, and
 Matplotlib.

 LightFM:
 Launched in 2015, LightFM is a Python implementation of a number of popular recommendation
 algorithms for both implicit and explicit feedback, including efficient implementation of BPR and
 WARP ranking losses. It's particularly suited for datasets containing both user-item interactions and
 item/content features. LightFM isn't as large as Scikit-learn in terms of contributors, but it has a
 dedicated team and a focused scope, primarily maintained by Maciej Kula.
 Allows the creation of hybrid collaborative/content-based models without requiring a cold start.
 Efficiently handles large datasets with millions of items/users. Specifically tailored for
 recommendations, unlike Scikit-learn which is more general-purpose.

 Surprise
 Launched in 2015, Surprise is a Python kit for building and analyzing recommender systems. It
 offers various collaborative filtering algorithms and has tools for evaluation, analysis, and dataset
 handling. It's a smaller project compared to Scikit-learn but has a niche focus on recommendation
 systems. Simple interface for training, testing, and evaluating recommendation models. Provides
 several algorithms out of the box like Singular Value Decomposition (SVD), k-Nearest Neighbors
 (k-NN), and more. Built-in functions for cross-validation, RMSE, MAE, and other metrics pertinent
 to recommender systems.

 Scikit-learn is by far the most widely used tool among the three given its extensive functionality with a large
 development base. This library is also the oldest so they have more experience in the field.. Even though
 both LightFM and Surprise are tailored tools for building recommendation systems I decided to go with
 Scikit-learn because I already have some experience with it and it is a popular standard industry choice.

 3.6. Software development(Backend)
 The software development aspect of this research project was needed in realizing the goal of a sophisticated
 and modern system for Voordeeluitjes.nl. This phase of the Smart Search Results (SSR) system involved
 researching data-driven model design, REST API development, user interface implementation, and
 documentation ideas.

 Page 27 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 The software development process includes the design and implementation of the recommendation model.
 Applying insights gained from data collection and analysis. Python, with its versatile libraries such as
 Scikit-Learn and Pandas, played an important role in model development.

 The development of the SSR's REST API system. Flask, a lightweight and efficient web framework, was
 chosen to create the API endpoints for fetching data. The API was designed to be consumed by
 Voordeeluitjes.nl's existing website to make the process smooth. Access control mechanisms were integrated
 to safeguard sensitive user data and model endpoints. This phase also involved thorough testing to validate
 the API's functionality and responsiveness.

 There are diverse choices available between programming languages, front-end libraries, connection
 protocols, and other critical elements that are commonly employed in software projects. This stage aimed to
 identify and evaluate numerous options for creating a recommendation system that could seamlessly
 integrate with Voordeeluitjes.nl's website trying to apply best practices.

 One of the basic decisions during this research was the selection of programming language for developing
 the recommendation system. From the programming languages including Python, Java, and JavaScript.
 Python is renowned for its simplicity and an abundance of machine learning libraries (though not
 exclusively limited to ML), was considered due to its versatility in web development and efficient data
 processing. Java, known for its robustness, was also considered for its capability to handle large-scale
 systems. JavaScript, as the language of the web, was evaluated for its client-side functionalities and ability
 to provide dynamic user experiences. Javascript is a must for frontend but within a framework to avoid
 having to build everything from scratch.

 The choice of frameworks and libraries played a role in shaping the software development process. Various
 front-end libraries like React, Angular, and Vue.js were considered for building an interactive and
 responsive user interface. These libraries enable the creation of dynamic web applications that can
 seamlessly fetch and display personalized hotel recommendations to users. Back-end frameworks such as
 Django, Ruby on Rails, and Express.js were explored for their capabilities in handling data requests,
 managing APIs, and ensuring system security. Open-source libraries like TensorFlow.js and PyTorch.js were
 investigated to see their feasibility for incorporating machine learning components.

 Efficient communication between different system components and external data sources is critical.
 Protocols such as HTTP/HTTPS, WebSocket, and RESTful APIs were assessed to determine their
 appropriateness in facilitating data exchange. Integration with third-party services and data providers, such
 as hotel booking databases and location services, was considered for the recommendation system's
 functionality.

 The research phase also involved an investigation into data storage and database systems. Both relational
 (e.g., MySQL, PostgreSQL) and NoSQL (e.g., MongoDB, Cassandra) databases were looked into to
 determine which would best accommodate the system's data requirements. The choice of database system
 directly impacted data speed, server requirements, scalability, and ease of maintenance.

 To protect user data and secure access, various security measures and authentication methods were explored.
 This included considerations of OAuth 2.0 for user authentication, SSL/TLS for data encryption, and

 Page 28 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 token-based authentication for API access control. Data anonymization techniques were also examined to
 align with data protection regulations, such as GDPR.

 Creating a visually appealing user interface was a critical aspect of the software development. Prototyping
 tools like Figma, Draw.io and Adobe XD were considered for designing user interfaces that would enhance
 the user experience. Usability testing methodologies and A/B testing frameworks were explored to validate
 the effectiveness of different interface designs and recommendation presentation formats.

 In the research phase I explored various development methodologies, including Agile, Scrum, and Waterfall,
 to determine the most suitable approach for project management. Agile methodologies, known for their
 adaptability to changing project requirements, were selected for its iterative and collaborative development
 process.

 Fig. Logos for Flask, Node, SpringBoot and Golang

 In order to answer the RQ3 (Implementation) I investigated various methods by which I could realize this
 part of the product requirement. These are discussed as following:

 3.6.1. Flask
 Flask is a lightweight and micro web framework written in Python. Its minimalist design allows developers
 to build web applications and APIs rapidly without the overhead of larger frameworks. Flask provides
 flexibility, allowing you to add only the components required.

 For integrating a Python-based ML model, Flask stands out as an excellent choice. Its Pythonic nature
 ensures seamless integration with most ML frameworks, including those written in Python like TensorFlow,
 Scikit-learn, and Fastai. Flask is highly modular, so one can easily add extensions as project scales.
 However, being lightweight, it requires additional configurations or plugins for more complex tasks. In
 larger production environments, Flask's scalability could be a limitation.

 3.6.2. Django
 Django is a high-level, open-source web framework written in Python. It follows the "batteries-included"
 philosophy, providing developers with a comprehensive set of tools and features right out of the box,
 including an ORM, an admin interface, and more.

 Django, with its robust built-in features, can be overkill for a simple API. However, for recommendation
 system's backend features like user authentication, database interactions, or an admin dashboard, Django is a
 suitable choice. The Django Rest Framework extension makes it straightforward to expose APIs. However,
 its heavyweight nature might add unnecessary overhead for a purely API-driven service such as this project
 begs.

 Page 29 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 3.6.3. FastAPI
 FastAPI is a modern web framework built on top of standard Python type hints. It's designed to create APIs
 rapidly while ensuring high performance. FastAPI automatically generates interactive API docs, simplifying
 testing and debugging.

 FastAPI is particularly suited for ML-based projects such as this one due to its seamless integration with
 Python-based ML tools and its asynchronous capabilities, offering fast performance. Speed and performance
 are delivered when querying the ML model. Its automatic validation, serialization, and documentation
 features can significantly reduce development time.

 3.6.4. Node.js/Express
 Node.js is a runtime environment that allows JavaScript to execute on the server side. With its event-driven
 architecture, Node.js is known for its scalability and performance in handling numerous simultaneous
 connections.

 While Node.js itself is not a framework, frameworks like Express.js facilitate building APIs in Node.js.
 Knowing JavaScript before is a development advantage. Integrating a Python-based ML model would
 typically require creating a separate service for the model and communicating via HTTP requests or using a
 tool like edge.js to bridge Node.js with Python. This added complexity can be a drawback compared to using
 a Python-based web framework. It is almost certain that the recommended model is Python based so using
 Node Js as backend would be an unwise choice.

 3.6.5. Spring Boot
 Spring Boot is an extension of the Spring framework for Java, simplifying the process of building
 production-ready applications with minimal setup. It offers a wide range of tools for building web
 applications, RESTful services, and more.

 For projects that require enterprise-level robustness, security, and scalability, Spring Boot is a top contender.
 Its vast ecosystem ensures almost any feature you need is within reach. However, integrating a Python-based
 ML model with a Java backend requires additional steps, such as using the Java API for Python (JEP) or
 running the model as a separate microservice. Again this would not be suitable when part of the system is
 Python based.

 3.6.6. Go
 Go, often referred to as Golang, is a statically typed, compiled language developed by Google. Known for
 its simplicity, performance, and strong support for concurrency, Go has been gaining traction for backend
 development.

 Go offers impressive speed and performance benefits, especially for high-concurrency tasks. Its standard
 library facilitates building web servers and APIs without much external dependency. However, integrating a
 Python ML model with a Go backend would require running the model as a standalone service or using a
 tool like gRPC for communication. Go's static typing and different programming paradigm also requires a
 steep learning curve as opposed to dynamically typed languages like Python. To my understanding Golang
 would be least attractive for this backend system.

 Page 30 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 Just as I did in choosing the model building tool, in order to ascertain the best suited backend system to use I
 have scored each stack between 0-5 giving the highest point for certain criteria. The total score will give
 good indication as to which system is best fit for this project.

 Factor Flask Django FastAPI NodeJs/
 Express

 Spring
 Boot

 Go

 Easy implementation 5 2 5 5 1 3

 Scalable 2 3 2 5 4 3

 Lightweight 5 0 5 2 1 3

 Requires minimal setup 5 2 5 2 1 3

 Python Based 5 5 5 0 0 0

 Total Score 22 12 22 14 7 12
 Fig AAPI. Backend systems choice evaluation

 Here the choice is clearly narrowed down to Flask and FastAPI. FastAPI is just an addition to Python just
 like Flask. However, having no prior experience working with FastAPI and having used Flask previously I
 decided to use Flask for this project as well.

 3.7. Database
 There was no real need for a database system but it is essential to have a database because there is always
 some information that needs to be served from a database system. In this project the biggest thing that needs
 a database is to store user accounts information. Even though from beginning Sqlite was best choice I still
 documented the cons and pros between few three systems as follows:

 3.7.1. SQLite
 SQLite is a unique serverless database engine . Rather than adhering to the typical client-server model,
 SQLite processes read and write operations directly to a singular file on a disk. This design makes it the
 go-to choice for various platforms such as mobile apps, desktop software, and some web applications due to
 its simplicity and lightweight natur e. Its main advantage lies in its self-contained nature, which means it
 doesn't require an external server or setup to function. Furthermore, the entire database is contained within a
 single file, making it particularly easy to transport, share, or backup .

 For recommendation systems, especially those in the nascent stages or with lighter loads, SQLite can be a
 practical choice. Its minimalistic setup ensures that developers can integrate it quickly , and the portability
 aspect can be beneficial for small teams or individual developers . However, its strengths can also be its
 limitations in larger contexts. SQLite might not be suitable for handling massive concurrent write
 operations , as it can encounter locking issues. Additionally, the absence of some advanced features , which
 other relational databases typically provide, might constrain its utility in more intricate systems or as the
 system scales up.

 Page 31 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 3.7.2. MySQL
 Owned by Oracle Corporation, MySQL is an open-source relational database management system that has
 etched its reputation on speed and reliability. Widely recognized for powering web applications, MySQL is
 an integral component of the popular LAMP (Linux, Apache, MySQL, PHP) stack. Its agility in processing
 read operations makes it a sought-after choice for a myriad of online applications and platforms.

 In the context of recommendation systems, MySQL stands out with its capacity to manage extensive
 datasets, marking its suitability for mid to large-scale applications . The speed of its read operations can
 significantly enhance the efficiency of recommendation systems, which often rely on rapid data retrieval.
 The expansive MySQL ecosystem offers a wealth of tools, libraries, and plugins, facilitating various
 functionalities. However, it does come with its set of challenges. While its open-source nature is
 commendable, the licensing could pose concerns for certain businesses due to Oracle's proprietorship.
 Moreover, write operations in MySQL can be a tad slower than its counterparts like PostgreSQL, and setting
 it up might demand more effort than SQLite .

 3.7.3. PostgreSQL
 PostgreSQL proudly stands as a sophisticated open-source relational database system. It's celebrated for its
 versatility, allowing both SQL and JSON-based querying . Moreover, its reputation for extensibility and
 feature-rich offerings sets it apart from many other database systems. Whether it's table partitioning,
 point-in-time recovery, or the array of custom data types, PostgreSQL provides advanced solutions for
 intricate requirements.

 In a recommendation system, PostgreSQL is a potent contender, especially when the system demands
 complex query handling . Such capabilities make it conducive for systems driven by intricate algorithms, like
 recommendation engines. Its extensibility, marked by a rich set of extensions, adds layers of functionalities
 that can be tailored for specific needs. Yet, it's essential to note its challenges. Novices might find its
 comprehensive features leading to a steeper learning curve . In certain scenarios, PostgreSQL might exhibit
 more overhead than MySQL . Achieving the optimum performance it's renowned for requires meticulous
 configuration and tuning, making the initial setup more complicated compared to simpler solutions like
 SQLite.

 Page 32 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 Factor SQLite mySQL Postgre
 SQL

 Easy implementation 5 3 1

 Scalable 3 5 5

 Lightweight 5 3 3

 Requires minimal setup 5 3 2

 Total Score 18 14 11
 Fig ADB. Database systems choice evaluation

 As per my prediction SQLite is a suitable choice for a project at this stage.

 3.8. Software development(Frontend)
 For the Admin interface a choice of frontend was needed. I chose three systems for their cons and pros to
 decide which one should be used for this project.

 Fig. Logos for ReactJs, VueJs and AngularJs

 Here is an evaluation of three frontend frameworks which are most popular for any website as frontend for
 any kind:

 3.8.1. ReactJs
 React is a JavaScript library developed and maintained by Facebook. It specializes in building user
 interfaces and facilitates the creation of dynamic web applications with data that can change over
 time, without reloading the page. React operates using a component-based structure, allowing
 developers to craft reusable UI components and manage states effectively with the Virtual DOM.

 React's component-based structure is useful for building modular web interfaces where various
 components like user metrics, recommendation settings, and feedback panels can be integrated
 seamlessly. React's vast ecosystem, backed by a strong community, provides a plethora of third-party
 libraries and tools that can be leveraged to expedite the development of features specific to
 recommendation systems. Its flexibility ensures that as your recommendation system evolves, the
 admin interface can adapt without significant overhauls. Voordeeluitjes.nl is also built using ReactJs

 Page 33 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 so they have developers which will not have hard time continuing with the development in future.
 This gives ReactJs a huge plus point .

 3.8.2. Vue.js
 Vue.js is a progressive JavaScript framework renowned for its simplicity and adaptability. Whether
 it's crafting user interfaces or full-blown single-page applications, Vue offers an intuitive and
 developer-friendly approach. Vue's reactive data system ensures that the UI remains in sync with the
 underlying data, providing a streamlined development experience.

 Vue's incremental adoption capability makes it a versatile choice for developing web interfaces of
 varying complexities. For an internal staff-operated recommendation system, Vue can offer a
 straightforward and clean UI, facilitating easy monitoring and management. Its plug-and-play nature,
 combined with an active community, means there are ample resources and plugins available to
 embed analytics, visualization tools, or other utilities tailored for recommendation system
 management.

 3.8.3. Angular
 Angular is a robust, TypeScript-based open-source web application framework provided by Google.
 Distinct from its previous version confusingly enough called AngularJS, Angular offers a set of tools
 for building web applications. It integrates two-way data binding, dependency injection, and a
 modular architecture, providing a comprehensive web development toolkit.

 Angular's all-encompassing framework can be particularly useful when devising a sophisticated
 admin interface for recommendation systems. Its two-way data binding ensures that any adjustments
 made within the admin panel are instantaneously reflected in the live recommendation system.
 Angular's structured environment might be especially beneficial for teams that prefer a stringent
 development paradigm. For a website where real-time updates, intricate feature sets, and integration
 with backend services are most sought after, Angular offers a resilient and scalable solution.

 This however seems an overly complicated system for building a few basic pages. Therefore it does
 not seem like a suitable choice here.

 With not alot of difference between these systems apart from their development team there is not much to
 compare. The easy choice here is to go with ReactJs as it is used by the client company’s main website.

 3.9. Recommendations
 After detailed research and due diligence I arrived at the following systems chosen for reasons discussed
 above. In summary they are:

 ➢ Scikit-learn for building the recommendation model
 ➢ Flask for backend API server
 ➢ Sqlite as only user data and metadata is to be saved
 ➢ Reactjs for frontend amind website

 Page 34 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 3.10. Conclusion
 The research phase involved deciding between various programming languages, backend and front-end
 libraries, connection protocols, databases and security measures. The goal was to gain an understanding of
 the options available to create a recommendation system that could integrate with the client's website.

 In conclusion, this early stage of the project has produced a logical set of systems and tools in order to build
 a reliable and effective SSR system. The software components, including the recommendation model, REST
 API, and website interface contribute to the system's ability to provide personalized and relevant hotel
 recommendations for Voordeeluitjes.nl

 Page 35 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 4. Functional Design
 4.1. Introduction
 In this document I provide the SSR’s (Smart Search Results) functionalities. It lays out intended behavior,
 features and what users can expect from the system.

 4.2. Overview
 The objective of the SSR system is to provide personalized recommendations based on the visit history of a
 particular user. Since the Voordeeluijtes.nl website doesn't have a user login system, the recommendations
 are based on visited hotel history of currently unlogged users and these recommendations are predicted
 based on booking history of the hotel in question with a combination of other booked hotels by the same
 user id. This user id is identified to be the email address of booking.

 4.3. Requirements
 4.3.1. Functional requirements
 As per project specifications following are non-functional requirements that specify what the system should
 do for the users and the administrators.

 Ref Description

 F1 The system should generate personalized recommendations based on the user's
 interests and preferences, which are derived from their past booking history, current
 website interaction and other relevant data sources.

 F2 The personalized recommendation results should be fetched by VDU’s existing
 booking website.

 F3 The system should be able to update its recommendation ML model based on the
 user's new data.

 F4 The system should allow administrators to view various reports on the model’s
 performance.

 F5 The system should allow administrators to set custom properties or overrides for
 specific hotels or keywords, such as boosting or suppressing them in the
 personalized recommendations. The system should allow administrators to activate
 or deactivate the model or its components.

 Page 36 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 4.3.2. Non-Functional Requirement
 These are requirements that specify how the system should perform or behave in terms of quality, reliability,
 security, usability, etc

 Ref Description

 NF1 The system should be able to handle a large number of requests without
 compromising performance or accuracy.

 NF2 The system should be secure and protect the data and the model from unauthorized
 access or manipulation.

 NF3 The system should be user-friendly and intuitive for both users and administrators,
 providing clear instructions, feedback and error messages.

 NF4 The system should work with the existing website system.

 NF5 The user’s data that will be processed by ML should be anonymized by removing
 any user’s names and contact details.

 4.3.3. User Stories
 As a client, I want to…

 Ref Description

 US1 see personalized recommendations for hotels and destinations based on my
 interests and preferences, so that I can find the best options for my holiday.

 US2 ..have a new option to sort results by personalized recommendation along with
 other existing sorting functions (price, rating, popularity), so that I can easily
 compare and choose the most relevant results for me.

 US3 ..see images, ratings, prices and other details of the hotels or destinations in the
 personalized recommendations, so that I can get a clear and appealing overview of
 the options.

 US4 ..provide feedback on the personalized recommendations, such as liking, disliking
 or rating them, so that I can improve the quality and accuracy of the
 recommendations for me and other users.

 Page 37 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 As an administrator, I want to…

 Ref Description

 US6 ..view various reports and insights on the model output, user segments, user
 profiles and conversion rates, so that I can evaluate the effectiveness and impact of
 the personalized recommendation system.

 US7 ..set custom properties or overrides for specific hotels or keywords, such as
 boosting or suppressing them in the personalized recommendations, so that I can
 adjust the results according to business needs or preferences.

 US8 ..activate or deactivate the model or its components, such as using only
 collaborative filtering or content-based filtering or hybrid methods, so that I can
 experiment with different approaches and methods for the personalized
 recommendation system.

 US9 ..update or retrain the model with new data, so that I can keep the personalized
 recommendation system up-to-date and relevant.

 US10 ..monitor and manage the machine learning model that generates the personalized
 recommendations, so that I can ensure its optimal performance and functionality.

 4.3.4. Use Cases
 Here are some use cases as per UML(Unified Modeling Language).

 Actor Unregistered user

 Description The user can request to get an access token in order to access the system.

 Actor Registered user

 Description The user can access various APIs but only with valid access token

 Actor Admin user

 Description Enable or disable user accounts by enabling or disabling registered users’ access tokens

 Actor Registered user

 Description The user search for hotels for which user wants to see recommendations for

 Page 38 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 4.3.5. User Interface
 The user interface should have white background. Where feasible information should be presented by way
 of lists. A search bar should be present to filter through the list. Users should be able to easily navigate
 through the website. The website should have possible success or error messages.

 The user interface should feature a user-friendly homepage with a search bar and clear navigation options.
 When a user does a search, the results page updates with hotel recommendations in a list format, with each
 recommendation showing hotel names and other relevant details. Showing images for each hotel is nice to
 have.

 Fig. Website front page

 4.4. Data
 The SSR application has two types of data. One is user data stores user information. This user information
 contains login details and identifiers with which the user can be identified. The other source of data is from
 the Voordeeluijtes.nl website. The data is directly kept uploaded to the server and not added to the code
 repository. The user data should be anonymized, with names and contact details removed or encrypted in
 order to protect user privacy.

 4.5. Assumptions
 It is assumed that the Voordeeluijtes.nl has historic data available with hotel details and also booking
 records. It is also assumed Voordeeluitjes.nl’s staff member is able to consume the SSR’s API system to use

 Page 39 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 it in their existing website. It also assumes that server resources, such as memory and processing power, are
 adequate to support the system's scalability.

 4.6. Acceptance Criteria
 The SSR system should minimally have the following features.

 - Give recommendations of hotels
 - Generate similar hotels based on selected hotel
 - Have user registration and login system
 - Users should be able to update users’ personal details
 - Have response time less than 6 seconds on admin website
 - Have API response time of less than 1 second
 - Data protection that aligns with GDPR requirements

 Page 40 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 5. Technical Design
 5.1. Introduction
 This Technical Design document is intended for developers of the system. It provides architectural
 information and technologies needed to build the SSR(Smart Search Result) system. Once the system is built
 this document is ideal to refer to when seeking technical details.

 5.2. System Architecture
 The system is built with a model version of MCV(Model View Controller) pattern design in mind. It is not
 strictly MVC but follows a variation of it(explained below).. This design choice is well adapted in the
 industry in order to separate concerns(keep modularity). The system has three main components.

 ➔ Backend REST API (Python Flask)

 ➔ Front end admin interface (React Js)

 ➔ Database (Sqlite)

 Model : This part of the system handles data and logic processing. It receives requests via REST API to do
 CRUD(create, read, update, delete) operations namely GET, POST, PUT, DELETE in HTTP terms. For the
 hotel recommendations the API takes in hotel id for which it returns hotel ids. The user management is also
 dealt via API system. There is security in place via a token which needs to be sent as header to be granted
 access.

 View : The view is the admin website built using React. I chose React for its popularity and also for the fact
 that Voordeeluitjes’ website is built using this. The SSR is meant to be used by Voordeeluitjes’ website
 directly from the backend API; however this admin website can be used by their sales team or other
 developers to see the data in a user-friendly way. It also serves as a proof concept to demo which hotels are
 being recommended in order to evaluate SSR’s capabilities.

 Controller : Conventionally, the controller is a middle-man between Model and View, which handles user
 inputs and sends it for data processing and returns values back to the view. In this design case the controller
 is distributed in model and view. Since React can handle some of user interaction and data flow the rest is
 handled by Flask. The controller otherwise is mainly embedded in the Flask if accessed purely via API.

 This mixed architecture is sometimes referred to as “backend for frontend” or vice versa and this is a
 practical industry approach for building modern web applications like this one.

 5.3. Database Design
 The main data storage requirement posed in this project is to store user’s login details. All the data
 pertaining to the recommendation model are from CSV(comma separated values) files. This data is located
 in Voordeeluitjes.nl’s database service which runs on mySQL. When designing the machine learning model
 relevant tables and columns were exported into CSV files. From these CSV files the SSR system produces
 the recommendation model.

 Page 41 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 Between few options for a database technology from SQLite, mySQL and PostgreSQL etc, Sqlite is chosen
 for the database as all relevant business logic data comes off of CSVfiles exported from Voordeeluijtes’
 website. Sqlite has fewer functions but it is still widely used such that Android devices use Sqlite for its
 reliability. These CSV files are uploaded and stored in a data folder from which the machine learning model
 loads these files in order to process the machine learning part. Pandas library is used to create a data frame
 which is similar to a database object.

 All data is processed from it in order to come up with machine learning recommendations. Since there isn’t
 any need for a separate database system as lite version of SQL is used to save other information such as
 users authentication access tokens, their permission level and logging information. The logging information
 is to keep record of all requests made to the system.

 Fig BKDB. Database design at backend

 Fig BKDF. Dataframes at the backend

 Page 42 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 5.4. Backend Design
 As already mentioned for backend API Python is used along other libraries listed below. Python is the
 industry standard for its extensive libraries and making machine learning algorithms. The Flask library is
 widely used for API development.

 From the CSV files in the dat folder the backend will read those files in order to generate a recommendation
 model. The class diagram below shows the classes implemented for the backend. Interestingly enough the
 User class required many more functions and skills for user administrations and user authentication.

 Fig. Backend files

 The system uses classes to keep separation of concerns and follows an OOP(Object Oriented Programming)
 design pattern.

 Page 43 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 Fig BKCL. Classes at backend

 5.4.1. Libraries and systems for backend development.
 Email validator 2.0.0.post2
 Flask 2.3.2 https://flask.palletsprojects.com
 Flask-cors 4.0.0
 Flask-swagger-ui 4.11.1
 Flask-swagger 0.2.14
 Flask-httpauth 4.8.0
 Marshmallow 3.20.1 https://marshmallow.readthedocs.io
 Nltk 3.8.1
 Pandas 2.0.3
 Python 3.11.4 https://www.python.org
 Python-dotenv 1.0.0
 Pytest 7.4.3
 Scikit Learn 1.3.0 https://scikit-learn.org
 SqlAlchemy 2.0.20 https://www.sqlalchemy.org

 Page 44 of 98

https://flask.palletsprojects.com/en/2.2.x
https://marshmallow.readthedocs.io/en/stable/
https://www.python.org/
https://scikit-learn.org/
https://www.sqlalchemy.org/

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 Fig. Backend API on demo server

 5.5. Recommendation Model
 One issue I faced was that Voordeeluijtes does not currently make use of the user login system. That means
 implementing personalized recommendations was not straight forward. To get around this issue I still used
 the standard user-item matrix taking into account ratings then instead of inputting user_id and location_id,
 the system requires only location_id effectively skipping the need to enter user_id. This approach may not
 give optimal recommendations however it does pick up hotels which would probably be of interest for
 someone who seems to be interested in the location_id queried for.

 5.5.1. Model Logic
 This data is the booking history of users and hotel facilities information. With this information two types of
 models are to be trained. First model is for prediction likeness of hotels and second is similarity of hotels
 based on facilities offered.

 The first logic behind hotel recommendations is based on booking history where a user has booked more
 than 1 hotel. In these cases there is some sort of relationship between these hotels and the user. With this
 information one can assume that if a visitor from the website is checking out a hotel then there is a higher
 chance that this website visitor may also be interested in booking another hotel.

 The second recommendation logic revolves around similarity of hotels. For example if two different hotels
 have similar facilities such as pool tables, restaurant, swimming pool, bar etc then we could calculate a
 similarity between these two hotels. This way if a website visitor visits one hotel then we could say that
 there is a higher probability that this user may also be interested in booking the other hotel. This hotel
 similarity approach is different to using filter method on website because as soon as user selects for example
 bar in the filter any hotel without bar will be filtered off the list, this is not the case with this system as hotels
 search results are calculated depending on overall score of facilities common between all the hotels in the
 dataset.

 5.5.2. Location(Hotel) Recommendation
 The steps of creating location recommendations are as follows:

 Step 1: Read csv file with email_hash, bookings and ratings.

 Step 2: Create user-location matrix(pivot table). For every email_hash there is a location with given rating

 Step 3: Create correlation matrix using Cosine similarity. This took 22 seconds.

 Page 45 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 To find the recommendations for a particular hotel, use the matrix to look up columns for that location and
 sort the column where highest similarity is on the top.

 5.5.3. Model management
 The model's administration and customization are important because the model needs to be updated on a
 timely basis in order to keep recommendations current. This could be managed via the admin interface to
 rebuild the recommendation model. This gives the company flexibility to make changes to the search results.
 Administrators can make adjustments based on business needs such as the sales team. Customization allows
 administrators to set custom properties or overrides for specific hotels on specific national holidays, seasons
 or hotel availability.

 Moreover, administrators had the flexibility to activate or deactivate specific model components, experiment
 with different recommendation approaches, and keep the system up-to-date by updating or retraining the
 model with new data. This level of customization meets Voordeeluitjes.nl's goals and objectives, marking a
 significant contribution in the research project.

 5.5.4. Model Testing
 In order to test how well the recommendation model performs there are various types of tests. Usually this is
 measured in terms of accuracy. Some accuracy measures for the regression model are Mean Absolute
 Error(MAE), Mean Squared Error(MSE) and Root Mean Squared Error(RMSE).

 Fig. Accuracy formula

 In the model developed I have used correlation matrix to generate item-item similarity based on different
 users anonymously identified by email addresses encrypted by MD5 hashing. This model does not predict
 ratings, rather find the closest match of hotels based on a similarity matrix created based upon previous
 bookings and their ratings. So these correlation similarity matrices are actually not predictions but a
 calculation based on ratings value given by different users, for this reason the appropriate approach to test
 the accuracy cannot be met by MAE, MSE or RMSE rather something called Hit Rate.

 Hit Rate measures the percentage of users for whom at least one relevant item was recommended. It’s a
 simple yet informative metric to evaluate the performance of a recommendation system. For this reason in
 my model testing I decided to use the Hit Rate metric to evaluate my model. In order to calculate Hit Rate
 you first have to collect a list of recommended items and ground truth(actual booked places) for each user.
 Then for each user check if there is at least one overlap between the recommended item and ground truth
 and if there exists one this is counted as a hit for the user. Divide the number of users with at least one hit by
 the total number of users and then multiply by 100. This gives a Hit Rate for the model based on the given
 data.

 In order to understand how to achieve a high Hit Rate. I used different sizes of input data to see how the Hit
 Rate changes. Here is table of my findings:

 Page 46 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 Hit Rate % = (Users with at least one hit / Total users)*100

 Data Lines Lines with Ratings Usable Data Hit Rate

 100 0 n/a 0%

 1000 91 9.1% 83.52%

 10,000 1180 11.8% 83.07%

 50,000 6,463 12.9% 82.27%

 100,000 13,098 13.0% 81.36%

 250,000 33,152 13.2% 82.98%

 455,000 65,039 14.2% 82.27
 Fig BKHR. Hit Rate for given size of data set

 Lines with Ratings Training Time

 0 n/a

 100 0.02 second

 1,000 0.08 second

 2,000 0.19 second

 2,500 0.27 second

 5,000 0.57 second

 10,000 1.41 seconds

 20,000 3.59 seconds

 65,039 23.41 seconds
 Fig. Training time for given size of data set

 Page 47 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 5.6. Frontend Design
 Only in the development environment the frontend requires installation of Node Js. However on build the
 files are regular HTML, CSS, JS files which need to be placed on to the server.

 Fig. Details of user with valid access token

 The file structure of the React website system is given below. Separate reusable components have been
 created in order to follow best practices such as DRY(don't repeat yourself). A central storage has been
 created to centralize the data as the user interacts with the website which is updated to provide a smooth
 interactive rich user experience.

 Page 48 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 Fig. Frontend development files

 Page 49 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 5.6.1. Libraries and systems for frontend development.
 @wojtekmaj/react-datetimerange-picker 5.4.3
 Bootstrap 5.2.3 https://getbootstrap.com
 Bootstrap-icons 1.10.5
 Dotenv 16.3.1
 React 18.2.0 https://react.dev
 React-dom 18.2.0
 React-redux 8.1.2
 React-router 6.14.2
 React-router-dom 6.14.2
 Sass 1.64.2
 Node 18.14.2 https://nodejs.org

 Fig. Frontend admin website

 Page 50 of 98

https://getbootstrap.com/
https://react.dev/
https://nodejs.org/en

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 5.7. Security
 A secure application is a must in today's data privacy requirement. For example GDPR requires safety of the
 user's personal data. Utmost care has been taken to make sure that no client’s private data is exposed outside
 of staff who are supposed to have access to such data.

 The SSR application requires booking history in order to train a machine learning model. The booking
 history includes private details of customers such as customers name, address, email etc. In order to protect
 user’s private data upon export of the CSV files none of such data is used. However in order to create
 correlation of bookings by the same user email of booking person is needed. In order to avoid leak of email
 addresses the email column has been encrypted by using one way MD5 hashing technique. This way each
 email generates unique encrypted text for every email which confirms the booking details by one user, this
 process is the basis for creating the booking matrix needed to generate recommendation models

 Fig. User administration page by admin

 The SSR system has the option to be deployed in a closed server which would be exclusively accessible by
 the Voordeeluitjes.nl's website. This approach would be secure as no outsiders can make direct requests to
 the SSR system.

 Another approach would be to expose the SSR system to the internet but only those with an access token
 would be able to use the system. There has been a fully functional access token system created to allow only
 authorized requests to the system.

 Page 51 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 Fig. Registration and login at Frontend

 There are two access roles, Admin and User. Admin users have elevated permissions which can enable and
 disable access of other users. A standard User could access the machine learning API endpoints. The benefit
 of this approach is that Users can access the recommendation data via internet access. This would be useful
 for the sales team to see what recommendations the SSR system is giving on certain hotels. Another use case
 could be that Freetime Company B.V contracts a third party vacation booking website to sell the
 recommendations generated by the SSR’s ML model.

 The demo server is behind Cloudflare(https://www.cloudflare.com) protection which offers various access
 attacks specially DOS(denial of service) attacks. The server administrator should keep the server well
 updated with security patches on time to make sure new viruses and malwares are kept at bay.

 5.8. Performance
 Any system which is slow and crashes has serious questionability of being used. Voordeeluijtes.nl operates
 in a competitive travel industry and it is crucial that the potential customers do not have to wait long(< 10
 secs) for a page to load. Before they decide to include a new system, it must not cause errors or slow down
 their existing system.

 For an SSR system to work optimally there needs to be considerations made for the server specifications
 taking into account CPU, RAM and disk space. The administrator needs to keep in mind scalability
 requirements by estimating current and future traffic size so that the system can handle increased request
 load. At bare minimum a server should be Ubuntu 20.04, Intel pentium, 1GB RAM and 30 GB disk or

 Page 52 of 98

https://www.cloudflare.com/

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 higher. In order to scale for performance and handling Vertical scaling should suffice as the system would be
 able to handle more requests and return responses quicker.

 Caching is a good technique to speed up retrieval of data. Since the system uses a data frame all the
 information is already in memory however there could be further speed increase by using a library called
 Flask-Caching. This has been implemented to avoid reading from sqlite- or recalculate repeated calls
 unnecessarily which could burden the system. This cache is updated depending on cache expiration time
 which could be minutes, hours or until the next update of new incoming data at which a new model is
 trained to replace the previous one. Currently without using cache at the local development system the API
 returns response in 16ms, while at the demo server the API returns response in 200ms. This response time
 could change depending on the server specification where Voordeeluijes.nl deploys the live application.

 For troubleshooting purposes, the SSR system has been equipped with a logging trail. At every request the
 system is going to log in the log table. This can help diagnose system errors and potentially uncover
 unauthorized access.

 5.9. API Documentation
 This section describes how the API endpoints have been documented plus how and where these could be
 accessed from. The documentation is generated by Swagger library which creates a nice interface to layout
 all endpoints. This could accessed from here https://api-vdu.mywebartist.eu/swagger

 Some endpoints are open, for example a register requires a secret token as this is open for new registrations.
 Some endpoints require parameters for example name and email when sending registration requests. These
 parameters are well defined and clearly stated in the documentation. In case of incorrect request an error
 message is returned with possible cause of failed request. The API response is always JSON() format. There
 is always a success or error key available so that the system calling it knows whether the request was
 successful or not. In case of error, there is an error message sent back. On top of that the response also sends
 back “status code” for example 400 for bad requests or 404 for resources not found.

 Page 53 of 98

https://api-vdu.mywebartist.eu/swagger

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 Fig. API Documentation via Swagger

 The documentation contains description, address, method, permission level and example response for each
 endpoint. Given a valid access token one could run the commands directly from this Swagger documentation

 Page 54 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 page to see what input and outputs are given for the recommendation system. During the development, a
 famous system called Postman was used to test the endpoints. Postman also has a feature to publish the
 endpoints as a Collection. These are available from this link
 https://documenter.getpostman.com/view/11320596/2s9YJeygrm

 Fig. API documentation via Postman app

 It is to be noted that not all endpoints are open and require a valid access token. To retrieve this token one
 needs to send the register at /api/user using POST command and then get the token in their email. An admin
 must first enable the account before the token is accepted.

 Page 55 of 98

https://documenter.getpostman.com/view/11320596/2s9YJeygrm

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 5.10. Testing
 Testing is another enormously important area of software development. I applied various testing techniques
 to create a reliable product. Different testing covers different testing aspects of the system, these are unit
 testing, integration testing, user acceptance testing(UAT). During development, testing is merely a matter of
 trial and error in order to get the program to work as expected. Later on automated testing is used as it is not
 practical for one person to check the whole system after every modification.

 Apart from manual testing to see if the program works as expected, I implemented unit testing using the
 Pytest framework for the backend Python code for three functions. For example, the recommendation
 generation algorithm was extensively tested to verify that it produces accurate recommendations based on
 input data as well as the user class and the email class. For user acceptance testing I asked the team at
 Voordeeluitjes.nl's to try out the system at the demo server. For integration testing I ensured that the backend
 Flask API and the React frontend integrated seamlessly without any errors on the website as well as in the
 console log. This involved testing API endpoints to confirm that data is correctly transferred between the
 frontend and backend. The company staff used the admin interface and provided feedback on the usability
 and functionality of the SSR system. The SSR system consistently achieved response times of less than 1
 second which is good speed.

 The three functions actually test more functions as some functions are dependent on other functions. The
 three functions are a follows:

 ● test_add_user()
 ○ As it appears this will add a new user to see if the user is registered successfully.

 ● test_me()
 ○ This is the user's profile page. This tests whether user is able to successfully get access to the

 system and get their details
 ● test_get_similar_bookings()

 ○ This test compares the output of recommendations based on what data was used to train the
 model. The test here is to see whether the function returns data as expected. This test is not
 intended to test the accuracy rate for booking recommendations. For that see Hit Rate in
 Model Testing section for this.

 Security testing included scanning open ports to allow for the only port on which the backend is running
 which is port 3006. Additionally, in case real email gets exported in the CSV files the system would flag it
 so that only hashed emails would be processed. Testing covered scenarios where invalid requests were made
 to API endpoints. The system consistently provided informative error messages, this helps users understand
 the cause of the issue. The Swagger-generated API documentation and Postman collection were individually
 checked to ensure that they accurately returned data as required results.

 Detailed testing played a vital role in verifying the reliability and functionality of the SSR system. It allowed
 me to identify and address issues in the development process. With help of testing I was able to create a
 robust and dependable end product.

 Here are test result report showing passed tests:

 Page 56 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 Fig. Passed test results using Pytest library

 5.11. Deployment
 During development all files were on the company's laptop where I used files at the local server. These files
 were committed to GitLab at this repository https://gitlab.com/mywebartist/vdu . There were mainly two
 branches: dev and main. At the localhost development all code was pushed to the dev branch and at the
 demo server dev branch was merged into the main branch from where services were started.

 Among few cloud server choices such as AWS(Amazon web services), Heroku, Vercel, Google Cloud etc
 there were plenty of options where to deploy the SSR system for the demo. In the end I chose the demo to be
 deployed on a droplet at DigitalOcean https://www.digitalocean.com running Ubuntu 22.04(Linux variant)
 and Nginx server with all the necessary resources to host SSR applications. Digital Ocean is a similar cloud
 service provider similar to AWS(Amazon web services) and Google Cloud. The Nginx server uses a reverse

 Page 57 of 98

https://gitlab.com/mywebartist/vdu
https://www.digitalocean.com/

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 proxy to handle incoming HTTP requests along with a SSL certificate to securely transmit end to end
 communication.

 Typically a database connection is also required, however due to design choice SQLite was used and this
 requires no additional setup as the database is simply a file. The Python library SQLalchemy administers the
 connection between the application and database engine.

 In order for the backend SSR system to run for the first time. A Python command needs to run in order to
 install all dependent libraries. This command is simply “pip install -r requirements.txt”. The requirements
 file has the correct library names along with compatible versions.

 In order for the frontend SSR system to be updated this node command, ”npm run build”, needs to be run
 and the files generated in the “/dist” folder needs to be copied into the public folder of the host.

 On updating new code from dev to main a gitlab pipeline could be added so that the new changes are
 automatically reflected on to the API and the frontend system. It seemed unnecessary to implement this
 feature specially because currently the SSR system is on a demo server. Should Voordeeluijtes.nl decide to
 implement the system then this Gitlab CI/CD(Continuous Integration/Continuous Deployment)pipeline
 would come in handy.

 Sometimes the cloud services such as SSR can go down for various reasons such as system overload, system
 restarts or unanticipated errors. In such circumstances it is vital to get notification that the service is down.
 An email notification could be implemented should the service go down. It's possible to run the SSR service
 simultaneously on a backup server, in case disruption in the main server node the Voordeeluitjes.nl website
 can switch to the backup service.

 5.12. Logging
 It’s good practice to keep a log of as many things as possible. These logs come in handy when diagnosing
 causes of system failure or investigating security-related events. Thankfully the SSR system does not store
 any client data. The SSR system logs all incoming requests along with the user id, IP address of requester
 and timestamp. For a system of this size and operation this level of logging seems sufficient.

 Log files become very large overtime, for this reason log files should be exported and kept in a safe archive
 and log table cleared off to free up server disk space. A suitable retention policy like keeping previous 365
 days of log files should be decided. This part of the process is to be done by an SSR administrator.

 5.13. Scalability
 As part of robust software development scalability should not be overlooked. For this project scalability is
 particularly important as Voordeeluijtes.nl website receives hundreds of thousands of visitors yearly. The
 search result recommendations could get just as many requests. This number is going to grow over time and
 so the SSR system needs to be on a server which can increase memory and CPU power overtime. This is
 something the company needs to determine. Server’s control panel shows load levels which is a good
 indicator of how well the system is able to cope with the load. Load balancing via multiple servers is also a
 good technique. The Nginx could be set up in a way for a load balancing feature which distributes incoming
 HTTP requests among multiple SSR server instances. This will make sure of efficient resource utilization
 and keep response time as low as possible.

 Page 58 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 Conventionally database scaling is a huge undertaking, however in case of SSR the recommendation data is
 mostly kept in memory by way of a dataframe object. This size could grow however RAM of a couple of
 GB is more than sufficient to cater for this. The database in the SQLites is very small and will not grow
 large. This avoids scalability issues from the database point of view.

 5.14. Recovery
 All and any systems are prone to all kinds of failures. This leads to data loss and downtime therefore a
 recovery process needs to be in place. The SSR system operates upon CSV exports from the
 Voordeeluijes.nl website so in case of disk corruption these files could be easily replaced. The only “new”
 data the SSR system needs to protect is the kdatabase.db file in the /data folder of the backend system. This
 is because this database keeps users and logs tables which would be painstakingly difficult to redo and
 impossible for log data to recover. In order to backup these files a periodic cron job could be set up to copy
 this file on a separate server. This should mitigate the data loss.

 5.15. Support
 A proper support channel should be available in case the company requires assistance in ensuring smooth
 operation of the SSR system. Since I was the only person involved in building the system, I paid particular
 attention in documenting everything as much as possible. All functions come with comments so that the
 system could be debugged and extended in the future. Should the company require assistance they may
 reach me at my support email at contact@mywebartist.eu . In order to understand usability, user friendliness,
 and the satisfaction of the SSR system I have created a survey form in which I can get feedback. I would
 take this feedback in development of my future products. Survey link
 https://forms.gle/aeHgizWKGWQoAzmW6 .

 5.16. Conclusion
 This document is a blueprint of the SSR system in which I laid out detailed architectural intricacies,
 technological choices, and design considerations that shaped the SSR system. This document is an emblem
 of my commitment to deliver a robust software solution which houses the cutting edge tool of the currently
 exploding field of A.I. In today's fast moving world a company requires not only a software system but a
 smart software which helps them stay ahead of their competitors and this is exactly what is aimed at with
 this project.

 The system's architecture is not limited by the conventional strict MVC pattern because it is customized to
 fit the needs of the project. Python, Flask, React Js, and SQLite are used to create a dynamic back-end logic,
 front-end usability, along with data delivery.

 Security concerns have been paramount and the SSR system uses access tokens to secure the application.
 API documentation with detailed description provides all information to get the system up and running.

 Page 59 of 98

mailto:contact@mywebartist.eu
https://forms.gle/aeHgizWKGWQoAzmW6

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 6. Systems Manual
 The SSR system is a complete system ready for deployment. However the person made in charge needs to
 get to know the system with its aspects of setup, installation and any troubleshooting before the system can
 run as intended while avoiding obvious pitfalls which can lead to loss of time not knowing what the issue is.
 This Systems Manual should mitigate such scenarios as it gives step by step instructions on how to correctly
 setup the system. Some basic technical know-how is expected such as working with servers with some basic
 programming knowledge.

 6.1. System setup and Installation
 The project setup is described in the 3 README.md files using markdown format. Here is a structure
 showing where these files are located.

 vdu ➔ Back-end-flask-app ➔ README.md

 ➔ front-end-react-app ➔ README.md

 ➔ README.md
 The content of the README.md files are provided in Readme.md .

 6.2. API Documentation
 A complete swagger documentation is provided which can be accessed from directly from backend
 https://api-vdu.mywebartist.eu/swagger and in JSON format from https://api-vdu.mywebartist.eu/apidocs
 See API documentation preview .

 6.3. SQL Queries
 Their system uses a database for which SQLite is used. There is a .db file which holds all the database data
 and there are SQL queries written in order to export CSV files from which the recommendation model is
 generated. The database files are located below.

 vdu ➔ Back-end-flask-app ➔ data ➔ csv_bookings.csv
 ➔ csv_

 ➔ sql_queries ➔ query_booking.sql
 ➔ query_locations.sql
 ➔ query_ratings.sql
 ➔ query_table_locations.sql
 ➔ query_visits.sql

 The content of some complicated SQL queries are provided in SQL queries . The type of data required in csv
 files are shown in CSV file format .

 Page 60 of 98

https://api-vdu.mywebartist.eu/swagger
https://api-vdu.mywebartist.eu/apidocs

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 6.4. Known Issues
 During development following issues were discovered. These were unresolved by the end of the project.
 These are documented here along with possible solutions.

 A. The menu button on the admin website does not work on mobile devices.
 Possible solution:Add back missing navigation menu code from Bootstrap 5 website as something
 was deleted which is needed for menu burger button to work on mobile device

 B. The recommendations page on http://localhost:5173/booking/hotels/[:location_d]

 C. At odd times the frontend is presented with this error. It is obvious that this is a frontend issue. A
 simple refresh page resolves this but of course that is not the permanent fix here.

 D. The demo server stops responding if the bookings page is opened too quickly(say refresh within 10
 seconds). This issue is not present on the local server. The obvious thing that comes to mind is that
 the demo server is only 1GB of ram which may cause it to get overloaded. The other factor is that the
 model needs to be modified in a way as to either store recommendations in SQLite or change the
 code in a way so that recommendations do not need to be calculated from the model. This fix does
 not require too much time to implement but it is definitely technically challenging.

 E. The training of the recommendation model does not work on the server. This could be because of
 memory limitations on the server. This function works fine locally, so if facing issue then train the
 model locally then upload to server in ./model directory

 F. Sometimes the menu buttons on frontend go off. Refreshing page fixes this issue
 G. Scrollbar on the right on the main page is not showing. It was there in the start but it disappeared.

 Initial guess is that due to the dynamic nature of list loading the browser does not know the list is
 long. Use the mouse to scroll down.

 Page 61 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 6.5. Unfinished parts
 Due to time constraints some of the systems were unfinished. Below is a list of items which were being
 worked upon and were left unfinished.

 - Logging table where each request and system change is recorded. What goes with that is an API
 endpoint which would fetch this data from this table. This then could be presented on the Admin
 website. This would be a nice addition in terms of keeping a good audit trail of changes and usage.

 - A second model was developed in which the idea was to cluster hotels with similar facilities. This in
 the end was left out as it required more work. The relevant files for work done to develop this model
 are as follows:

 - k_ml_similar.py
 - /data/csv_locations.csv

 - Boost date range widget on https://vdu.mywebartist.eu/booking/hotels/144 is not implemented

 6.6. Troubleshooting
 This section helps to troubleshoot usual issues which can cause the API backend or Admin website to
 malfunction and how to go about resolving those issues.

 Issue Possible Solution

 API backend system is
 showing bad gateway

 Check if you are on the correct host and port. See .env file for these system
 variables

 HOST=0.0.0.0
 PORT=3006

 Here the 0.0.0.0 refers to localhost or 127.0.0.1
 Check to see if the chosen port is open on the server. On local system this
 port should be open by default

 Access token is not sent
 over email

 Check to make sure that email SMTP settings are correct in .emv file

 MAIL_FROM_EMAIL=email@email.com
 MAIL_SMTP_SERVER=smtp.server.com
 MAIL_SMTP_PORT=587
 MAIL_SMTP_USER_EMAIL=email@email.com
 MAIL_SMTP_SENDER_NAME=email@email.com
 MAIL_SMTP_PASSWORD=password
 MAIL_TURN_OFF_EMAILS=False

 Unable to access upon
 first installation

 Check to see that first admin details are entered in .env file

 FIRST_ADMIN_TOKEN=haha

 Page 62 of 98

https://vdu.mywebartist.eu/booking/hotels/144

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 FIRST_ADMIN_EMAIL=email@email.com
 FIRST_ADMIN_NAME=K

 User is not able to access
 the API

 Check to see if the access token is valid and activated. Any user with admin
 access can check this from front end https://vdu.mywebartist.eu/admin or by
 sending API GET request at https://api-vdu.mywebartist.eu/api/admin/users
 You need to send in admin access token in your request otherwise you will
 get unauthorized Access message such as below

 {
 "error": "Unauthorized Access - Token not found"

 }

 You may enter this in the Console window of your browser in the Developer
 tools section. Replace the address and access token.

 fetch('[https://api-vdu.mywebartist.eu/api/admin/users]', {
 method: 'GET',
 headers: {

 'Authorization': 'Bearer [YOUR TOKEN]
 }

 })
 .then(response => response.json())
 .then(data => console.log(data))
 .catch(error => console.error('Error:', error));

 Page 63 of 98

https://vdu.mywebartist.eu/admin
https://api-vdu.mywebartist.eu/api/admin/users

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 7. Graduation Report
 7.1. Introduction
 This project involves software development and machine learning skills. Overtime I have been learning both
 of these art forms. This is my last opportunity to demonstrate that I have these skills to build a complex
 system which could be used by a company. Freetime Company B.V has contracted with me so that I can
 build a solution for them.

 7.2. Problem definition
 The heart of the problem is the use of conventional keyword based search results and recommendations
 based on traditional methods such as hotels with most bookings or most availability etc. These methods do
 not provide users with personalized hotel recommendations. In today's incredibly fast evolving world of A.I
 a recommendation system is needed which can provide the best close match to what visitors are looking for.
 This system needs to be encapsulated into a software system which can be securely accessed by their
 website outlet Voordeeluitjes.nl.

 7.3. Assignment
 The problem definition was to take data stored in a database in order to build a system that could be
 integrated into Voordeeluijtes.nl website. The system should take hotel ids as input and return multiple hotel
 ids which hold high probability of getting booked by visitors. This system should operate on HTTP protocol.
 See Technical Design report for complete details of requirements.

 7.4. Design decisions
 The company gave me complete freedom to come up with my solution. I worked side to side with highly
 experienced programmers. I was able to discuss my plans to get their feedback on their ideas. I conducted
 research on many possibilities to understand what might be the best way to develop this system. The process
 involved using my experience working with different systems and investigating what other possible systems
 could be used to speed up the development process.

 7.5. Development environment
 The development environment consisted of MS Visual Code which is an IDE(integrated development
 environment). The local development system also had Python 3 and Node 18 installed. I used Gitlab to store
 files in a repository. DB Browser for SQLite to query data. Jupyter notebook as VS Code extension was used
 during modeling of the recommendation algorithm. SSH to log on to Ubuntu server to transfer files for the
 demo server. I used Postman to try out the API endpoints to see if they give results as expected.

 Page 64 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 7.6. Results
 Below are the results from the project work which lists all the function and non-functional requirements as
 well as user stories.

 Ref Status Ref Status

 F1 Achieved US1 Achieved

 F2 Achieved US2 Possible

 F3 Achieved US3 Possible

 F4 Partly
 achieved

 US4 Possible

 NF1 Achieved US6 Out of
 Scope

 NF2 Achieved US7 Partly
 Achieved

 NF3 Achieved US8 Partly
 Achieved

 NF4 Possible US9 Achieved

 NF5 Achieved US10 Not
 Achieved

 Fig. Outcome from work on the project

 The SSR system came together bit by bit over the course of about 6 months.The API system is available
 with full documentation and link to frontend at this link https://api-vdu.mywebartist.eu . The company
 appreciates my efforts in this attempt to game up against their rival booking sites. The system does what it
 should as outlined in functional requirements. My design decisions were on par with how modern web
 applications are built using separate backend and interactive frontend. The application is very secure against
 malicious attacks(SQLi and XSS for example) and data breaches against user private information protected
 by using access tokens. The application could be set behind the company VPN so that unauthorized IP
 addresses cannot reach the service. Lastly, there are no user identifiable details in the CSV files so in case of
 data break no private information is compromised. The system is complete with backend, frontend, detailed
 documentation and a systems manual.

 Page 65 of 98

https://api-vdu.mywebartist.eu/

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 Fig. Intermediary video demo presentation watch here

 Below are screenshots from the frontend admin website where I showcase how the system in the end looks
 like. For live demo simply visit https://api-vdu.mywebartist.eu

 7.7. Recommendation
 My recommendation to the company would be as following:

 - To implement a user login system. This way there is complete browsing history available to the
 company about a particular user no matter from where or which device they log in to look for their
 next holiday destination.

 - Their database is huge and each table has millions of records. It takes very long to export data, so
 they need to find a way to export this data faster or without overloading the database. There are
 techniques such as batch processing or running queries using low priority so that a large dataset
 could be exported without burdening the live database. In order to overcome this I was able to have
 two different csv files exported then merge them together before the model could be developed.
 Obviously this middle step could be removed if the csv files were exported directly in the format
 required, reducing errors and extra work.

 - Try out multiple different models by training various models based on different ideas. Via the Admin
 website the staff could then see which models are working and try to understand why and repeat the
 process to optimize search results even further. Administrators will have the flexibility to activate or
 deactivate specific models, experiment with different recommendation approaches, and keep the
 system up-to-date by updating or retraining the model with new data.

 Page 66 of 98

https://www.youtube.com/watch?v=wKxY8xcVkI0
https://api-vdu.mywebartist.eu/

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 - Use the booking page as a hint of having great interest in liking the location(hotel), this could be
 used as one of the attributes taken into account when creating the recommendation model.

 - Lastly, to use my project as soon as possible and build upon it. There is an A.I race in every area and
 the ones who start first will stay ahead.

 7.8. Conclusion
 In bringing the SSR system to a working stage was a long winding journey which has finally come to an
 end. This graduation project is an ambitious one for any student. Countless hours of dedication and hard
 work was needed to get everything to come together.

 This journey of the last four years was nothing short of a hopeless experience. Working late nights and
 starting early. I played the role of a student, a developer, a problem-solver while trying to live and survive.

 Many times I wanted to quit the program for different reasons but the people around me wanted me to keep
 going. Thankfully this is the end so that I can start anew on my next journey. As a student I was self
 responsible to solve all problems. With this experience I learned that learning comes from determination and
 a commitment to continue on which is what I am built for.

 Ability to conclude this program with this project was an achievement. A milestone of more harder things to
 come my way. It's a reminder for me that one step at a time will take me to my destination which I sought
 out for. It's about the passion to pursue knowledge, the courage to take risks, and the resilience to overcome
 hurdles. As I close this chapter, I carry with me not just a completed project but a newfound confidence and
 a deeper appreciation for the world of software development.

 7.9. Reflection
 The final graduation project is nothing short of a long painstaking process. Looking back at it from the start
 I’m glad to have found Voordeeluijtes.nl to work with. Their team is a pack of herd which moves together as
 one. Their warm welcome everytime pushed me to get the best of me and I thoroughly enjoyed working next
 to them. Despite having done numerous software development projects, this one was unique and I practiced
 my existing skills and learned new things. More projects means more experience and with each new project
 I become faster and more technically savvy. With this project I also fulfilled my long awaited desire of
 working with Reactjs.

 Time management is a big one because it's not like one cannot achieve anything like this. What matters is
 how long one takes to get it done and there is only a limited amount of time. On the flip side software
 development is something very time consuming so the two are always against each other. For someone keen
 as myself I’m interested to learn how something works or doesn’t and when digging into reasons to find out
 it takes even longer. I would have continued working with this project even longer however there are set
 dates which I must adhere to and development of features can never end. That in a shell a black of a hole
 software development is.

 Finally, I would like to thank the team(see Personal Reflection section 8.1) at Voordeeluijtes.nl for letting me
 help them move one step closer to bringing new features to their already amazing system.

 Page 67 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 8. Video Demo Presentation
 8.1. Draft

 Fig. Intermediary video demo presentation watch here

 Page 68 of 98

https://www.youtube.com/watch?v=wKxY8xcVkI0

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 9. Appendix
 9.1. Graduation proposal HBO-ICT
 The format for the graduation proposal to be submitted by you is described below.

 Fill in all requested data and describe the proposal in your own words and as clearly as possible. You can
 then submit the graduation proposal via Blackboard.

 Graduation proposal of Keith I. at Voordeeluitjes.nl

 Student Keith I. , 487130, I don’t have phone

 Degree
 program

 HBO-ICT, profile < SE>
 (strike through or delete what does not apply)

 Versie 1.0
 Date 28 Mar 2023
 Intended
 starting
 moment

 ☐ Week 1 of quarter 1
 ☐ Week 1 of quarter 2
 ☐ Week 1 of quarter 3
 X Week 1 of quarter 4

 Admission
 requirements

 Indicate your situation at the date of submission , and clearly
 indicate when you intend to complete the modules that have not
 yet been completed:
 X I meet the transfer requirements. I have completed my
 propaedeutic phase + at least 142 EC in the main phase.
 ☐ I still do not meet the transfer requirements, the following
 modules have yet to be completed:

 Statement By submitting this graduation proposal, I declare that I:
 ● am thoroughly familiar with the graduation manual,

 which can be found on Blackboard
 ● have handed the graduation manual to the prospective

 company supervisor and have pointed out to him / her
 the requirements for the company and company
 supervisor as stated in the graduation manual

 ● this graduation proposal was discussed with the
 company supervisor by date: 28 Mar 2023, 3 Apr 2023,
 14 Apr 2023, 25 Apr 2023

 Page 69 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 The graduation proposal contains at least the following information:

 1. The company
 a) Freetime Company B.V, Voordeeluitjes.nl
 Munsterstraat 20, 8418 EV Deventer
 +31(0) 88 130 4420
 They are a holiday website which offers booking for holidays in the Netherlands and Germany.
 110 people from which 40 work in the IT department.
 b) Development supervisor:
 Contact person 1:
 Arno Schlepers, IT Manager
 Bachelor of Communication, IDM(Informatiedienstverlening en management) at Saxion in 2008
 20+ years of working experience in IT
 a.schlepers@freetimecompany.nl
 Munsterstraat 20, 8418 EV Deventer
 LinkedIn https://www.linkedin.com/in/arnoschlepers/

 Contact person 2:
 Rasha Medhat
 Senior software engineer
 Bachelor of Engineering at Cairo University in 2007
 15+ years of working experience in Computer Programming
 r.medhat@freetimecompany.nl
 Bouwerij 4 h, 1185 XX Amstelveen
 LinkedIn https://www.linkedin.com/in/rasha-medhat-6748238b/
 c) The student will be provided with:
 Company systems

 Access website system
 Access to company locations either in Amstelveen or Deventer

 Company data which is based on its existing customers. The dataset includes
 User details(user id, address, etc)
 User’s purchase history(places booked, booking dates etc)
 User’s rating on visited destinations
 User’s browsing interaction with website(places searched,

 visited hotel pages, pages clicked, favorites destination/hotels)
 Hotel details(name, location, features)
 Hotel packages/deals/price information
 Other data as necessary
 The company mentor has informed me that they have necessary data for ML

 2. The graduation project
 Starting situation: They want to improve their search results for their service to show better search results
 when users are searching for holiday destinations. Currently their system makes recommendations of search
 results based on deterministic queries on SQL. These search results offer matching results based on
 keywords. The company wants to improve their search results by showing holiday destinations/hotels based
 on users interaction history to provide more relevant holiday destination results to make their offers more
 appealing.

 a) Problem analysis: The search results for particular hotels are arranged in order based on a few criteria
 such as price, popularity, ratings. Upon users choice these results can be arranged accordingly. However,
 when sorted upon popularity, the results would simply show hotels first which were either most clicked or

 Page 70 of 98

mailto:a.schlepers@freetimecompany.nl
https://www.linkedin.com/in/arnoschlepers/
mailto:r.medhat@freetimecompany.nl
https://www.linkedin.com/in/rasha-medhat-6748238b/

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 most booked and similarly if sorted using rating the results are sorted based rating high to low or vice versa.
 These options may end up showing places or hotels which may be of no interest to users as they are not
 based on the user's own likings.

 It’s obvious that users are more likely to book holidays at destinations they are most interested in going to.
 For this reason the company wants to show results which appeal to the users most. In order to create more
 relevant hotel search results and destination recommendations to users, one approach to solving this problem
 is machine learning. With ML it may be possible to discover the relationship between a user's booking habits
 by seeing their past booking history, current website interaction and then try finding the user's personal
 interests which caused them to book particular hotels or destinations. There may be other users who may
 have the same interests which could also be appealing to other users. These users would be most likely to
 book similar hotels again which matches users personal interests and with machine learning relationships in
 the given dataset can be identified.

 b) Problem definition: Search results shown to users of hotels are too generic. Existing sorting and hotel
 recommendation system shows results based only on keyword/location matching and it misses out on similar
 places which might be appealing to the users based on hotel/location similarities.

 Goal: The users will have a new option to sort results by “personalized recommendation” along with other
 existing sorting functions(price, rating, popularity). This option will show a list of hotels/destinations which
 will be generated by the algorithm of machine learning based on the user's interests and personal preferences.
 The company collects data of the users and their interacting history.

 c) Main research question: What ways hotel search results could be made more relevant to users.

 d) Additional research questions:

 I. Question : What data must be collect data from visitors of website, which could be used to provide
 personalized recommendations based on user’s personal preference

 Explanation : Methods of data collection, storage and processing. The basis of machine learning is relevant
 data. Need to find out what data is already collected and what other data would be useful in building a better
 recommendation algorithm

 II. Question : How can this recommendation system be implemented into an existing website

 Explanation : The recommendation system is a machine learning model created upon data. For this model to
 be used it needs to be implemented inside the company's website system.

 III. Question : How can administrators see progress reports and do customization to the ML model.

 Explanation : The website system administrators want to be able to see how the ML model is performing.
 They also want to be able to override the ML model by setting custom settings which would modify the
 search results giving a combination of recommendations plus the overrides. There should be some kind of
 secure web interface where these reports can be seen and settings modified.

 e) Preconditions: The data provided by the company is relevant and appropriate for applying machine
 learning. Give enough details and access to the system to build the addon system.

 3. Graduation worthiness and HBO-i domain description
 When your graduation proposal is assessed, it is important that the graduation proposal is graduation worthy.
 After all, we do not want you to start with a graduation project that you cannot graduate with.

 Explanation:

 Page 71 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 Our current graduate profiles of HBO-ICT have defined the intended final level with the help of the so-called
 HBO-i 25-squares model. This model has three dimensions: activities (what does an IT worker do?),
 architectural layers (in what context?) and mastery levels (how complex?).

 According to the graduation requirements, you must demonstrate at least three activities at mastery level 3
 during graduation, of which at least two are activities within the architecture layer that matches your
 graduation profile (architectural layer 'Organizational processes' at Business & IT, architectural layer
 'Infrastructure' at Infrastructure and architectural layer 'Software' at graduation profile Software
 Engineering). It goes without saying that all three activities at level 3 may also be in the architectural layer
 that matches your graduate profile.

 You will find extensive information about this domain description on the HBO-i website (see
 https://www.hbo-i.nl/publicaties-domeininformatie/). In particular, we refer you to this domain description
 for exemplary tasks . In addition, you will also find videos here that can provide more insight into the
 activities (https://www.hbo-i.nl/domeininformatie-videos/). For the time being, these videos have only been
 made for the implementation of the organizational processes architectural layer and only in Dutch.

 To gain insight into the graduation worthiness of your graduation project, we ask you to describe the
 following:

 a) Which of the activities at mastery level 3 associated with your graduation profile do you think you
 can demonstrate? Indicate this with an "x" in the diagram of the HBO-i 25-squares model.

 activities

 manage/control analyze advise design realize

 Ar
 chi
 tec
 tur
 al
 lay
 ers

 user interaction

 organizational
 processes

 Infrastructure

 software X X X

 hardware
 interfacing

 Figure 1: HBO-i 25-squares model 2018

 b) Show in the overview table below whether you can demonstrate the graduation level and how you
 will do this. You do this by establishing a relationship between the activity (of which you have entered at
 least 3 in figure 1), one or more research questions and the resulting products. You should place the products
 in the context of your graduation project as much as possible (see the description at 2d in this graduation
 proposal).

 Page 72 of 98

https://www.hbo-i.nl/publicaties-domeininformatie/
https://www.hbo-i.nl/domeininformatie-videos/

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 Problem statement:

 f) Search results shown to user of hotels are too generic

 g) Main research question: What ways hotel search results could be made more relevant to users.

 Objective:
 Below is a list of products to be delivered. Some will have more weight than others. The main emphasis is
 on the main research question but there are also other parts which would complete the feature the company
 is looking to build.

 activity at level 3: Research questions: product(s) + explanation:

 Architectural layer: software

 activity: analyze

 What data must be
 collected from visitors
 of website, which
 could be used to
 provide personalized
 recommendations
 based on user’s
 personal preference

 Product: Research report

 Methods of data collection, storage and processing.
 The basis of machine learning is relevant data.

 Need to find out what data is already collected and
 what other data would be useful in building a
 better recommendation algorithm.

 The company already has a lot of user interaction
 data such as user clicks, purchase history, liked
 destinations, liked hotels, favorited pages etc. The
 mentor has informed me that they should have
 enough user insight data in order to build a ML
 model out of, however, since this is the first time
 they will be creating an ML model there must be
 some other data points which could have been
 collected or stored in a different way in order to
 facilitate ML model production process in future

 Architectural layer: software

 activity: design

 h) What ways
 hotel search results
 could be made more
 relevant to users

 Product: Machine learning model

 Design a machine learning model which takes in
 information from users and tries to match with
 destinations.

 The hotels which best fit users personal
 preferences, giving recommendations as to which
 places the user would enjoy the most.

 Architectural layer: software

 activity: realize

 How can this
 recommendation
 system be
 implemented into an
 existing website

 Product: Model implemented in the website

 The recommendation system is a machine learning
 model created upon data. For this model to be used

 Page 73 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 it needs to be implemented inside the companies
 website system

 Architectural layer: software

 activity: realize

 How can
 administrators see
 reports and customize
 the ML model

 Product: Recommender admin interface

 The admin interface could be in the form of a
 website. The website must be secure and give
 access to only authorized users. The purpose of the
 website is to let admins manage the Machine
 Learning model and see various reports. One of the
 settings should be to be able to set/modify custom
 properties(such as boost) for a particular hotel to
 show up upon certain searched keywords. This and
 other ML model overrides should be possible
 which can be activated/deactivated for a given
 timeframe.

 The website should provide real time insights
 about

 - Model output
 - User segments
 - User profiles
 - Conversion

 4. Motivation
 The company operates in the tourism sector. Their customers are booking holidays in the Netherlands and
 Germany. They have a network of hotels for which they advertise for making a commission on the bookings
 they bring for the hotels.

 The company tries to make their bookings attractive by showing details about the destinations and finding
 lowest prices to book. The company can significantly increase their bookings by showing more relevant
 search results for their users.

 This can potentially lead to growth of the company as they would have a competitive advantage because
 users can easily find destinations and hotels according to their interests and they would want to book again.

 The company’s idea about building this recommendation system is at very good timing as machine learning
 is applicable to almost any field today. I would be very interested to work on this assignment as I will get to
 think about the problem and try to find ways to come up with such a system and get to implement it.

 The project size is of the right size and it’s something I want to build more experience in. My mentor has a
 lot of experience at the company and I’m looking forward to adding this feature to the website.

 9.2. Research Questions
 There are 4 research questions in my assignment. They are as follows:

 9.2.1. RQ1: (Recommendations)
 What ways hotel search results could be made more relevant to users.

 Page 74 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 9.2.2. RQ2: (Data)
 What data must be collect data from visitors of website, which could be used to provide personalized
 recommendations based on user’s personal preference

 Explanation : Methods of data collection, storage and processing. The basis of machine learning is relevant
 data. Need to find out what data is already collected and what other data would be useful in building a better
 recommendation algorithm

 9.2.3. RQ3: (Implementation)
 How can this recommendation system be implemented into an existing website

 Explanation : The recommendation system is a machine learning model created upon data. For this model to
 be used it needs to be implemented inside the company's website system.

 9.2.4. RQ4: (Interface)
 How can administrators see progress reports and do customization to the ML model.

 Explanation : The website system administrators want to be able to see how the ML model is performing.
 They also want to be able to override the ML model by setting custom settings which would modify the
 search results giving a combination of recommendations plus the overrides. There should be some kind of
 secure web interface where these reports can be seen and settings modified.

 9.3. Contacts
 Details of persons involved in the project.

 Role Name Email

 Student Keith I. 487130@student.saxion.nl

 IT manager Ano Schlepers a.schlepers@freetimecompany.nl

 Senior software engineer Rasha Medhat r.medhat@freetimecompany.nl

 Team Lead Software
 Development

 Mustapha Idrissi m.idrissi@freetimecompany.nl

 Data Analyst Shilpa Sasidharan Nair s.sasidharannair@freetimecompany.nl

 College contact Michael De Louwere m.h.e.delouwere@saxion.nl

 9.4. Glossary
 Some useful terminologies.

 ML
 Machine learning

 A branch of artificial intelligence that enables systems to learn from data and
 improve their performance without explicit programming

 Machine learning
 model

 A mathematical representation of a real-world process that is learned from data and
 can make predictions or decisions based on new data.

 Page 75 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 Collaborative
 filtering

 A technique for recommendation systems that uses the ratings or feedback of other
 users who have similar preferences to generate recommendations for a given user.

 Content-based
 filtering

 A technique for recommendation systems that uses the features or attributes of the
 products or services to generate recommendations for a given user based on their
 profile or preferences.

 VDU Voordeeluitjes.nl website

 SSR system Smart Search Result system

 RQ Research Question

 9.5. Readme.md
 9.5.1. Main
 This Readme.md file is in the root folder of the VDU project.

 # Smart Search Results(SSR)
 by Keith I.

 ## Description
 Hotel recommendation system.

 There are two folders in this project.
 - back-end-flask-app
 - front-end-react-app

 As the folder names suggest the back end is built using flask which runs on
 Python and React which runs on Node.

 These two systems are independent so they could be replaced without affecting
 the other.

 ## Installation
 To download projects either on server or locally run this command. This repo
 is set as private on Gitlab. VDU has been given a copy to use. If you are
 from VDU you may request access for https://gitlab.com/mywebartist/vdu by
 Keith. See contact details below.

 ̀``
 git clone https://gitlab.com/mywebartist/vdu.git
 ̀``

 Page 76 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 ## Support
 Keith at contact@mywebartist.eu
 Data or programming team at VDU.

 ## Roadmap
 This is the first attempt for a hotel recommendation system for VDU. They may
 choose to build upon this and implement it on their website.

 ## Authors and acknowledgment
 Lead programmer: Keith I. (487130)

 ## License
 To be used by voordeeluitjes.nl

 ## Project status
 Completed

 9.5.2. Backend setup
 This Readme.md file is in the backend folder of the VDU project.

 # Smart Search Results(SSR) - Backend
 by Keith I.

 ## Description
 Hotel recommendation system.

 This is the main API system is the backend system. The endpoints produced
 from there could be accessed by anywhere with authorized access.

 ## Setup
 ### Requirement
 - Python 3.x

 ### Data files
 In order for the recommendation model to work. You first need to enter the
 data files and generate the model. Without this step there will not be any
 recommendations or information returned by the server as the whole data would
 be missing. The data folder is in /data. you may upload csv files. Here is
 list of files which you need:
 - csv_bookings.csv (generated)
 - csv _bookings_ no_ratings.csv *(* important*)

 Page 77 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 - csv_locations.csv *(* important*)
 - csv_ratings.csv
 - table_cities.csv
 - table_countries.csv
 - table_locations.csv *(* important*)
 - table_provinces.csv
 - table_regions.csv

 (You don't need all the CSV files to get started as the most important csvs
 in this are table _locations.csv, bookings_ no _ratings.csv, and
 csv_ bookings _no_ ratings.csv*)

 ### Setup environment file
 Copy and rename sample_env as .env file. This environment file contains
 system settings which differ depending on whether you want to run the system
 on a local development or production server. You need to have another .env
 file with settings for the production server if you are going to set up the
 production server.

 ### Installation
 Before index.py can run you need to have a Python environment setup. This is
 not required but highly recommended as the installation can break should you
 run other python programs in your default environment. You only need to set
 this up once. Here is an example for setting up a Python environment.
 ̀``
 python -m venv env_ssr
 ̀``
 You will see a bunch of files being created in the env _ssr folder. Inside
 env_ ssr/Scripts/python.exe executable. You will need to use this to run
 index.py but before that you need to install a list of dependent library
 files. These libraries are listed in requirements.txt. To install, run this
 command.
 ̀``
 env_ssr/Scripts/pip install -r requirements.txt
 ̀``

 Start Flask server using this command. This should launch Flask server at its
 default address http://localhost:3006
 ̀``
 env_ssr/Scripts/python index.py
 ̀``

 Page 78 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 ### Setup Users
 In the environment file you will see these keys to set up the first admin.
 This is very important to note as this will be the first admin which cannot
 be deleted or admin privileges revoked. Consider this as the master admin
 user. The only way to modify this user is to edit the .env file. See
 env.sample.txt but here you can do what you need to enter.

 - FIRST _ADMIN_ TOKEN=strong_token
 - FIRST _ADMIN_ EMAIL=email@email.com
 - FIRST _ADMIN_ NAME=name

 You can generate strong token by sending API request at
 http://localhost:3006/api/generate_token

 ### Generate model
 Having the csv files entered in the data folder. It's time to generate a
 model. You need to send these two commands in this sequence.
 1 http://localhost:3006/api/model/compile-bookings-csv
 2 http://localhost:3006/api/model/generate-booking-model
 Do note that the API call will instantly return a success message if nothing
 has gone wrong. This does not mean that the files are done generating as this
 is a background task. The speed of completion depends on the speed of the
 system and size of the data(csv files).

 ### API Documentation
 Every endpoint is well documented using the Swagger system. You can see the
 link at the homepage of API server or directly visit
 http://localhost:3006/swagger A json version of API documentation is
 published here http://localhost:3006/apidocs

 ## Support
 Keith at contact@mywebartist.eu
 Data or programming team at VDU.

 ## License
 To be used by voordeeluitjes.nl

 9.5.3. Frontend setup
 This Readme.md file is in the frontend folder of the VDU project.

 Page 79 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 # Smart Search Results(SSR) - Frontend
 by Keith I.

 ## Description
 Hotel recommendation system.

 This is a frontend for the API system. The purpose of this website is to have
 methods for users such as staff working in the sales team as a way to see how
 the model is performing for particular hotels(locations). They make
 adjustments to the recommendation model by overriding match rates. To use
 this you must have an access token.

 ## Setup
 ### Requirement
 - Node >= 20.x.x

 ### Setup environment file

 Copy and rename sample_env as .env file. This environment file contains
 system settings which differ depending on whether you want to run the system
 on a local development or production server. You need to have another .env
 file with settings for the production server if you are going to set up the
 production server. You can have two env files .env for local development and
 .env.production which will be used automatically on 'npm run build' command
 see below.

 ### Installation
 From terminal/command prompt run this command
 ̀``
 npm install
 ̀``

 ### Build for local development
 This should launch Node server at its default address http://localhost:5176

 ̀``
 npm run dev
 ̀``

 ### Build for server

 Page 80 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 This will output dist files in
 '/home/user _k/web/vdu.mywebartist.eu/public_ html' which is the demo server.
 You may edit this output directory in vite.config.ts file as per your
 production server directory hierarchy. This will use the .env.production
 file.
 ̀``
 npm run build
 ̀``
 In case you want to build using a .env file for development then run this.
 ̀``
 npm run build:dev
 ̀``

 ## Support
 Keith at contact@mywebartist.eu
 Data or programming team at VDU.

 ## License
 To be used by voordeeluitjes.nl

 9.6. SQL Queries
 Bookings.sql v1.1

 SELECT b.id as booking_id,
 v.cookie_id,
 v.remote_addr_number as ip,
 MD5 (email) AS email_hash,
 l.id as location_id,
 b.create_date as booking_date,
 b.state as booking_state,
 b.action_id as action_id,
 p.id as package_id,
 p.amount_days as days ,
 r.score as rating

 FROM bookings b
 INNER JOIN guests g on g.id = b.guest_id
 INNER JOIN packages p ON p.id = b.package_id
 INNER JOIN locations l ON b.location_id = l.id
 inner join visits_bookings vb on b.id = vb.booking_id
 inner join visits v on vb.visit_id = v.id
 LEFT JOIN www_reviews.review r ON b.id = r.BookingId

 Page 81 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 where b.state in (1 , 2 , 7 , 8 , 10)
 and create_date >= DATE (NOW () - INTERVAL 7 DAY)

 group by b.id

 Bookings.sql v1.2

 SELECT b.id as booking_id,
 g.MD5(email) AS email_hash,
 l.id as location_id,
 l.name as location_name,
 b.create_date as booking_date,
 r.score as rating

 FROM bookings b
 left JOIN guests g on g.id = b.guest_id
 left JOIN locations l ON b.location_id = l.id
 LEFT JOIN www_reviews.review r ON b.id = r.BookingId

 where b.state in (1 , 2 , 7 , 8 , 10)
 and create_date >= DATE (NOW () - INTERVAL 999 DAY)

 group by b.id

 Bookings.sql v1.3

 SELECT b.id as booking_id,
 g.MD5(email) AS email_hash,
 l.id as location_id,
 l.name as location_name,
 b.create_date as booking_date,
 FROM bookings b
 left JOIN guests g on g.id = b.guest_id
 left JOIN locations l ON b.location_id = l.id

 where b.state in (1 , 2 , 7 , 8 , 10)
 and create_date >= DATE (NOW () - INTERVAL 999 DAY)

 group by b.id

 Locations.sql v1.1

 SELECT l.id as location_id,
 l.name as location_name,
 c.id as city_id,
 pr.id as province_id,
 cn.id as country_id,

 Page 82 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 l.review_average as average_rating,
 group_concat (distinct usp_facilities.id) as facility_ids,
 group_concat (distinct usp_facilities.name) as facility_names

 FROM www_ftc.locations l
 inner join locations_g7_facilities loc_fac on l.id = loc_fac.location_id
 inner join locations_usp_facilities on loc_fac.location_id =

 locations_usp_facilities.location_id
 inner join usp_facilities on locations_usp_facilities.usp_facility_id =

 usp_facilities.id
 inner join cities c ON l.city_id = c.id
 inner join provinces pr ON c.province_id = pr.id
 inner join countries cn ON pr.country_id = cn.id

 group by l.id

 Ratings.csv v1.0

 SELECT b.id as booking_id,
 b.create_date as booking_date,
 r.score as rating

 FROM bookings b
 LEFT JOIN www_reviews.review r ON b.id = r.BookingId

 where b.state in (1 , 2 , 7 , 8 , 10)
 and create_date >= DATE (NOW () - INTERVAL 999 DAY)

 Table_locations.sql v1.0

 SELECT l.id as location_id,
 l.name as location_name,
 l.country_id,
 l.city_id,
 Concat (p.id, '_' , p.name) as picture_url

 FROM www_ftc.locations l
 left join locations_photos lp on lp.location_id = l.id
 left join photos p on p.id = lp.photo_id

 group by l.id

 Visits.csv v1.0

 SELECT v.time as Date ,
 v.id as Visit_id,
 v.cookie_id,

 Page 83 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 v.remote_addr_number,
 v.targeturl_id,
 t.location_id

 FROM www_ftc.visits v
 inner join targeturls t on v.targeturl_id = t.id
 and t.location_id IS NOT NULL

 where date (v.time) >= DATE (NOW () - INTERVAL 7 DAY)

 Visits.csv v1.1

 SELECT v.id as visit_id,
 v.cookie_id,
 v.remote_addr_number as ip,
 t.location_id,
 v.time as visit_date,
 v.targeturl_id,
 t.action_id

 FROM www_ftc.visits v
 inner join targeturls t on v.targeturl_id = t.id
 and t.location_id IS NOT NULL

 where date (v.time) >= DATE (NOW () - INTERVAL 7 DAY)

 Visits.sql v1.2

 SELECT v.id as visit_id,
 v.cookie_id,
 v.remote_addr_number as ip,
 t.location_id,
 v.time as visit_date,
 v.targeturl_id,
 t.url,
 t.action_id

 FROM www_ftc.visits v
 inner join targeturls t on v.targeturl_id = t.id
 and t.location_id IS NOT NULL

 where date (v.time) >= DATE (NOW () - INTERVAL 7 DAY)

 Bookings.sql v1.3

 SELECT b.id as booking_id,
 g.MD5(email) AS email_hash,

 Page 84 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 l.id as location_id,
 l.name as location_name,
 b.create_date as booking_date,
 FROM bookings b
 left JOIN guests g on g.id = b.guest_id
 left JOIN locations l ON b.location_id = l.id

 where b.state in (1 , 2 , 7 , 8 , 10)
 and create_date >= DATE (NOW () - INTERVAL 999 DAY)

 group by b.id

 9.7. CSV files format
 This section gives details about each CSV file format and data contained therein.

 csv_bookings.csv

 booking
 _id

 email_hash location
 _id

 location_name booking_date rating

 1461055 70344c27cd6f2170f
 33cfba3572494c5

 4750 NH Atlantic Den Haag 13/01/2021
 13:57

 5.8

 1461078 bd1c5948e9d4f65f1
 281f75f7372acdd

 809 De Wapser Herberg 13/01/2021
 17:34

 9

 1461090 54c06873ae62cd2d5
 2a739a5039be644

 1008 Hotel Restaurant Vijlerhof 13/01/2021
 18:55

 9.6

 1461154 3a4e03d78657703b6
 31a094cd641e026

 2461 Golden Tulip Hotel Central 14/01/2021
 14:34

 9.5

 1461165 701951265531b8bcc
 72f533a9d2a6416

 1008 Hotel Restaurant Vijlerhof 13/01/2021
 13:57

 9.5

 csv_bookings_no_ratings.csv

 booking
 _id

 email_hash location
 _id

 location_name

 1460733 7965cd0899b29a517f7eb56fe7
 b63a09

 809 De Wapser Herberg

 Page 85 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 1460736 3a31ce039d23cd1c1573671c62
 325a9c

 4749 NH Conference Centre Leeuwenhorst

 1460737 ddd695c45bba049df1364fe1fb
 8d5539

 1524 Hotel De Hoeve van Nunspeet

 1460741 0e6ecaf902d7034ab8cd871d2e
 345f1c

 1154 Bilderberg Europa Hotel Scheveningen

 1460742 7470ee5655f8703bcbe1135bad
 27ba3f

 147 Boetiek Hotel BonAparte

 csv_locations.csv

 location
 _id

 location_name city
 _id

 province
 _id

 country
 _id

 average
 _rating

 facility
 _id

 offered_facilities

 113 Fletcher
 Hotel-Restauran
 t Auberge De
 Kieviet

 2 12 1 6.6 17,18,4
 8,49,24
 5,312,4
 29,433,
 434,43
 7,469,6
 12,118
 2,3989

 Bar,Barbecue,Fietsenstall
 ing,Fietsverhuur,Huisdier
 en toegestaan (op
 aanvraag, tegen betaling
 â‚¬ 15
 p.h.p.n.),Lift,Lounge,Opl
 aadmogelijkheid
 elektrische
 fiets,Restaurant,Rolstoelv
 riendelijk,Rookvrij
 hotel,Roomservice,Terras
 ,Wasserij/stomerij service

 115 Fletcher
 Hotel-Restauran
 t Bon Repos

 4 6 1 5 17,18,2
 9,30,31
 ,49,50,
 433,60
 5,612,1
 123,16
 14,172
 6,3512,
 3988

 29
 Hotelkamers,Biljart,Draa
 dloos internet
 (gratis),Elektrische
 fietshuur,Fietsenstalling,
 Huisdieren toegestaan
 (op aanvraag, tegen
 betaling â‚¬ 10
 p.h.p.n.),Lift,Mindervalid
 enkamers niet

 Page 86 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 aanwezig,Restaurant,Rols
 toelvriendelijk,Rookvrije
 kamers,Tafeltennistafel,T
 erras,Tuin,Zonnebank

 116 Fletcher
 Badhotel
 Noordwijk

 5 12 1 6.2 18,22,3
 7,49,42
 8,431,4
 34,469,
 1123,1
 182,11
 88,161
 4,2915,
 3988

 Draadloos internet
 (gratis),Fietsenstalling
 (overdekt),Fietsverhuur,H
 uisdieren toegestaan (op
 aanvraag, tegen betaling
 â‚¬ 10
 p.h.p.n.),Internet,Kamers
 begane
 grond,Lounge,Mindervali
 denkamers niet
 aanwezig,Oplaadmogelij
 kheid elektrische
 fiets,Parkeergelegenheid
 (tegen betaling van â‚¬10
 per
 nacht),Restaurant,Sauna
 met
 dompelbad,Solarium,Terr
 as

 124 Fletcher
 Hotel-Restauran
 t De Grote
 Zwaan

 9 9 1 5.9 33,48,4
 9,428,4
 29,433,
 434,43
 7,469,1
 182,11
 95,131
 2,1397,
 3512,3
 988

 36
 Hotelkamers,Bar,Barbecu
 e,Elektrische
 fietshuur,Fietsenstalling
 (overdekt/afgesloten),Fiet
 sverhuur,Geschikt voor
 groepen,Gratis
 parkeergelegenheid,Huis
 dieren toegestaan (op
 aanvraag, tegen betaling
 â‚¬ 10 p.h.p.n.),Kamers
 begane
 grond,Lounge,Oplaadmo
 gelijkheid elektrische
 fiets,Rolstoelvriendelijk,
 Rookvrij hotel,Terras

 Page 87 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 125 Fletcher
 Hotel-Restauran
 t De Gelderse
 Poort

 10 4 1 6.6 17,18,4
 9,167,4
 28,429,
 433,43
 4,469,6
 12,118
 2,3988

 Bar,Dakterras,Fietsenstall
 ing,Fietsverhuur,Huisdier
 en toegestaan (op
 aanvraag, tegen betaling
 â‚¬ 10 p.h.p.n.),Kamers
 begane
 grond,Lift,Lounge,Oplaa
 dmogelijkheid elektrische
 fiets,Restaurant,Rolstoelv
 riendelijk,Terras

 csv_ratings.csv

 booking_id booking_date rating

 1461055 13/01/2021 13:57 5.8

 1461078 13/01/2021 17:34 9

 1461090 13/01/2021 18:55 9.6

 1461154 14/01/2021 14:34 9.5

 1461165 14/01/2021 15:47 9.5

 table_locations.csv

 location
 _id

 location_name country
 _id

 city
 _id

 picture_url

 113 Fletcher Hotel-Restaurant Auberge De Kieviet 1 2 565_15215462ffa2
 7c2c96c36aa6c512
 4a48.jpg

 114 NH Hoteles Kijkduin 1 34 569_2de99dd37727
 071802443a2652e0
 173a.jpg

 Page 88 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 115 Fletcher Hotel-Restaurant Bon Repos 1 4 3698_de92f2ac9e1
 6633fc8b11c2e036
 7f553.jpg

 116 Fletcher Badhotel Noordwijk 1 5 425_0f2dfe1d91cbf
 323f3215ee2fdac60
 1d.jpg

 124 Fletcher Hotel-Restaurant De Grote Zwaan 1 9 456_65c4390d4206
 96a9b2e0ff2ac0a36
 de3.jpg

 9.8. API documentation preview

 Page 89 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 9.9. Concept design
 The company provided me with their existing plans of building this system. Their idea was to generate the
 recommendations depending on different metrics and not machine learning. Their metrics included things
 such as most visited hotels, highest booked hotels etc.

 Page 90 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 Fig. Possible system design

 Fig. A/B/C/D conversion testing

 Page 91 of 98

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 Fig. A/B/C/D conversion testing

 9.10. Gitlab commit log
 Gitlog contains 187 commits https://drive.google.com/file/d/18srsVezDvVhkbdY143b8wY1If166XAyC

 9.11. Graphs & Diagrams
 Graphs and diagrams were made using draw.io This file is stored in the Gitlab repo as drawings.drawio
 https://app.diagrams.net/#Amywebartist%2Fvdu%2Fmain%2Fdiagrams.drawio

 Page 92 of 98

https://drive.google.com/file/d/18srsVezDvVhkbdY143b8wY1If166XAyC
https://app.diagrams.net/#Amywebartist%2Fvdu%2Fmain%2Fdiagrams.drawio

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 9.12. Screenshots

 Fig. Backend API homepage https://api-vdu.mywebartist.eu

 Fig. Frontend homepage https://vdu.mywebartist.eu

 Page 93 of 98

https://api-vdu.mywebartist.eu/
https://vdu.mywebartist.eu/

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 Fig. Frontend recommendations page https://vdu.mywebartist.eu/booking/hotels/144

 Page 94 of 98

https://vdu.mywebartist.eu/booking/hotels/144

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 Fig. Backend API homepage https://vdu.mywebartist.eu/me

 Page 95 of 98

https://vdu.mywebartist.eu/me

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 Fig. Frontend boosted locations page https://vdu.mywebartist.eu/boosts

 Fig. Frontend admin page https://vdu.mywebartist.eu/admin

 Page 96 of 98

https://vdu.mywebartist.eu/boosts
https://vdu.mywebartist.eu/admin

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 Fig. Frontend register/login page https://vdu.mywebartist.eu/login

 9.13. References
 These reading materials have been identified to be useful resources when carrying out the assignment.

 Cover page picture. AI and Computers, 28 May 2023,
 www.tharawat-magazine.com/wp-content/uploads/2019/03/shutterstock_1082585840-Converted-1-1068x74
 2.png

 Evans, Eric. Domain-Driven Design : Tackling Complexity in the Heart of Software. Boston, Mass. ;
 Munich, Addison-Wesley, 2014.

 Freeman, Eric, and Elisabeth Robson. Head First Design Patterns : A Brain-Friendly Guide. Sebastopol, Ca,
 O’reilly, Edition: 10Th Anniversary Ed, 2014.

 Gamma, Erich, et al. Design Patterns : Elements of Reusable Object-Oriented Software. Boston,
 Addison-Wesley, 1994.

 Geron, Aurelien. Hands-on Machine Learning with Scikit-Learn, Keras, and Tensorflow 3E. S.L., O’reilly
 Uk Limited, 2022.

 Grinberg, Miguel. Flask Web Development. “O’Reilly Media, Inc.,” 5 Mar. 2018.

 Hunt, Andrew, and David Thomas. The Pragmatic Programmer. Addison-Wesley Professional, 20 Oct. 1999.

 Martin, Robert C. Clean Code a Handbook of Agile Software Craftmanship. Upper Saddle River [Etc.]
 Prentice Hall, 2010.

 McConnell, Steve. Code Complete. Pearson Education, 9 June 2004.

 Page 97 of 98

https://vdu.mywebartist.eu/login
http://www.tharawat-magazine.com/wp-content/uploads/2019/03/shutterstock_1082585840-Converted-1-1068x742.png
http://www.tharawat-magazine.com/wp-content/uploads/2019/03/shutterstock_1082585840-Converted-1-1068x742.png

 Graduation Portfolio / Saxion Hogeschool, Deventer
 Keith I. (487130) / voordeeluitjes.nl

 “Recommendation System - Machine Learning - Javatpoint.” Www.javatpoint.com,
 www.javatpoint.com/recommendation-system-machine-learning. Accessed 28 May 2023.

 Zhang, Qian, et al. “Artificial Intelligence in Recommender Systems.” Complex & Intelligent Systems, 28
 May 2023, https://doi.org/10.1007/s40747-020-00212-w .

 9.14. Substantive Reflection
 Doing this project was an honor because the people I worked with were extremely supportive and helpful in
 this journey. They knew that my success is their success and this is what team work should be about. We
 offered each other a helping hand. They gave me the opportunity to sharpen my skills in programming and
 showcase my skills. Closing off this program with this project means alot to me. The project requires a lot of
 reflection over what expectations the client has and how best I can meet them. During this whole process I
 faced many hurdles but I kept my confidence up in order to keep going. In this project I worked alone but
 the team members I worked with were part of the software development team so they offered me their expert
 help whenever I approached them.

 After having gone through the whole project I can confirm that I got to learn a whole lot. Even though at this
 stage we are expected to know how to do all these things but not everything is known so the element of
 learning continues. This is probably the biggest project we have done and each time the bar raises which is
 great. I’m not afraid to put in hard work because this is what I wanted to be able to do, build applications for
 all sorts of use cases to help change the world for the better and give me some skill which I can use to earn
 myself a living.

 Doing documentation is certainly a monumental task and I had spent 90% of my time working towards
 building the SSR system however the document also needs a lot of work and perhaps counts for 50% of the
 work so I feel there is an imbalance as to what we are expected of.

 Once again the client for which I built the system is hugely appreciative of my efforts and they were flexible
 for me to work from anywhere just like the rest of their staff members as getting to the office took a whole
 lot of time from my residence. In all fairness I’m somewhat relieved that this long journey is soon to end to
 start new things to come. A more detailed separate self reflection is here
 https://docs.google.com/document/d/1Us3ZDsR1mWdSHGxDyWeXQLCf_F10dbfDEWWyntzcyB0/edit?u
 sp=sharing

 9.15. Acknowledgements
 These are probably the last words I need to include in my graduation documentation. I would like to mention
 a most special thanks for my friend Nico M. who connected me wth Arno S. who got me working on this
 assignment. I thoroughly enjoyed being part of their team in Deventer and Amstelveen. Even if I didn’t get
 to work directly with them I still owe them for making me part of the team.

 In no particular order a big thank you to..

 Shilpa, Amir, Ilse, Arno, Rasha, Wouter, Yaser, Jorge, Coen, Mojo, Michelle, Dena, Mustapha, Nico,
 Jonathan, Jordy, Joost and the list goes on..

 Page 98 of 98

https://doi.org/10.1007/s40747-020-00212-w
https://docs.google.com/document/d/1Us3ZDsR1mWdSHGxDyWeXQLCf_F10dbfDEWWyntzcyB0/edit?usp=sharing
https://docs.google.com/document/d/1Us3ZDsR1mWdSHGxDyWeXQLCf_F10dbfDEWWyntzcyB0/edit?usp=sharing

