
Graduation Thesis

LocFlow - Localisation

Rehan Ahmed

Supervisor - Joey Teunissen (Technical Director)

ProfitFlow.

Maagdenburgstraat 14

 7421 ZC Deventer

+31640587446

Version 4.2

Acknowledgements

This report was written by Rehan Ahmed and this project was completed as a graduation
project for the HBO-IT Software Engineering programme at Saxion University.

Throughout this graduation project, I have received a great lot of direction and support from
the Technical director and my supervisor Joey Teunissen. I'd want to express my gratitude to
ProfitFlow for offering such an opportunity and a challenging project.

The ProfitFlow development team is also to be commended. Joey Teunissen, Olivier Smit and
Remy Tapper, in particular, provided invaluable input, assistance, and suggestions throughout
the process.

Finally I'd want to express my gratitude to Jeroen Linssen, acting as my graduation teacher.
His constant encouragement, feedback, and understanding, as well as his knowledge, enabled
me to keep a high motivation and produce a valuable project with a good graduation report.

Rehan Ahmed - ProfitFlow 2

Table of contents

Acknowledgements	
2

Table of contents	
3

1. Introduction	
5
1.1 Problem Statement

1.2 Objectives

1.3 Approach

1.4 Main Research Question

1.5 Deliverables

1.6 Research Plan

2. Organisation	
11
2.1 ProfitFlow

2.2 Structure

2.3 Daily Process

2.4 Limitations

2.5 Risks

2.6 Mitigation Strategies

2.7 Quality Assurance

2.8 Definition of done

3. Research	
15
Main Research Question

3.1 What are the available existing solutions and how do they compare to each other?

3.2 How can we develop our own platform?

3.2.1 Problem Analysis:

3.2.2 Survey

3.2.3 Interview

3.2.4 Requirements

3.3 How can our solution be integrated into existing and new projects?

3.4 How is it possible to integrate Google Translate into our own platform?

4. Design	
29
4.1 Architecture Design

Rehan Ahmed - ProfitFlow 3

4.2 Business Design

4.3 Database design

4.4 Frontend Mockup

4.5 Styling

5. Realisation	
34
5.1 Database:

5.2 Backend:

5.3 Hasura:

5.4 Frontend:

5.5 Services:

5.7 Steps during realisation:

6. Testing	
42
6.1 Database and Backend:

6.2 Front-End UI testing:

6.3 Translate Service testing:

6.4 NPM Integration testing:

7. Advise	
45
7.1 Development Process

7.2 Testing Process

7.3 Scaling

7.4 Continuation

8. Conclusion	
48

References	
49

Glossary	
50

Versioning	 51

Rehan Ahmed - ProfitFlow 4

1. Introduction

This is a Thesis for the Graduation Project. This graduation is for Bachelors of Software
Engineering with specialisation in Big Data. The internship for the Graduation project is
performed at ProfitFlow. B.V Deventer.

ProfitFlow is a rapidly expanding company that specialises in process digitalisation and
optimisation for MKB companies. This mostly includes back-office automation, which can
include planning and asset management. These applications are always web-based and often
require integration with ERP packages such as Exact and Unit4. Apart from this, ProfitFlow
creates software as a service platforms in collaboration with other companies that hold the
domain expertise. These platforms often come from previous customer software builds and
are mostly focused on expanding the created software to other companies in the same field.

As the company is still in its growth phase, there are not many departments. There are three
departments: management, human resources, and software development. The software
development department was hosting this graduation project. In terms of employment
numbers, the software development department is the largest. The majority of the company's
work is done on-site, however employees have the option to work remotely.

The majority of the websites built for customers use NextJS as the front-end, Hasura as the
back-end, and PostgreSQL as the database. However, depending on the needs of the
consumer, alternative front-end, back-end, and database technologies can be employed.

Many customers want websites and apps to be available in a variety of languages.
Internationalisation, also known as i18n, is the process of making a technology product
available in multiple languages. At the start of the graduation ProfitFlow's i18n was done in a
less efficient manner. The i18n files for each project were saved within a project's Gitlab
repository.

This is where the software development project for this Graduation came in. The goal was to
investigate the existing methods for i18n development and utilisation, as well as to improve
the i18n development process. Furthermore creating a platform that serves as a translation
directory. This platform now is useful both during development and while using i18n in
projects.

Rehan Ahmed - ProfitFlow 5

1.1 Problem Statement

ProfitFlow develops technological solutions for its clients. Websites, mobile apps, B2B
portals, dashboards, and more products are available. Many clients desire that their product
be available in multiple languages. Internationalisation, or i18n, is the process of making
multiple languages available in an application.

The NPM i18n library is mostly used to implement internationalisation. The keys and
translations are stored in a project, inside a JSON file. These files enable projects to support
several languages. Each supported language has its own directory with JSON files of keys
and translations. [1][2]

The problem, however, appeared when managing these translations. For instance, if you need
to update a translation or add support for a new language. Because there are multiple projects,
you had to go into the unique repository of that project and make changes to that specific file.
Furthermore, if you needed to add a new key, you would need to add the key with their
translations to all the separate language directories manually.

The idea was to develop a platform that can handle all of the projects and their translations in
one location. But then there was the problem of figuring out how to incorporate the platform's
translations into existing and new projects.

1.2 Objectives

As it is apparent from the problem statement, the main objective of this project was to
centralise the management of translations. The objective was to research existing solutions,
taking into account their cost, scalability, and usability aspects. Based on the research, it was
reasonable to draw up an advisory report on things to consider while developing our own
platform.

Following the initial research and the advisory report the objective was to develop a platform
as a solution. A full software development cycle was carried out during the development
stage. With all of the software development processes, such as stakeholder requirement
analysis, technology research, planning, development, integration, and testing,

Another objective which was decided at the start after the stakeholder analysis, was to find a
way to include Google Translate into the Internationalisation process, to quickly and easily
generate translations for the keys.

Before the start of this graduation, the translations were done manually by the software
engineers for each project inside the relative project repository. There had been no work done
to centralise internationalisation of multiple projects. So the goal to develop a software
solution, was a goal to drive the organisation to be more efficient and organised in its
translation management for all of the projects that it oversees.

Rehan Ahmed - ProfitFlow 6

1.3 Approach

This was a software development project. Therefore at the initial stage there were different
research methods used to create a better understanding of the project. Subsequently there was
software development of a Proof of Concept application, based on the requirement analysis
from the research stage.

Research methods:

The research was conducted using different research methods. There are two main types of
research methods Qualitative and Quantitative. In addition as this research was to aid
development of a software product, the DOT Framework was used as a guide for research
methods. [3]

Qualitative research is about getting the data from experiences,
emotions or behaviours. The methods include Interviews, Focus
Groups, on-site Observations.

Quantitative research is when you get numerical data which can be
ranked or measured. The common methods for this type of research
are, surveys, library research or experiments based on a hypothesis.

The Development Oriented Triangulation (DOT) framework helps
in structuring and communicating for an ICT product based
research. [4]

First of all at the start of the graduation some research questions were drawn. Then to answer
the research questions, a mix of the research methods from DOT framework were used.

After getting a transparent picture of the needs of the project from the research methods,
some requirements in a MoSCoW format were formed in collaboration with the stakeholders.

Development Stage:

After research the next phase was the development stage. In the development stage taking the
requirement analysis into consideration, a project backlog was prepared. For the development
stage the main approach was using scrum as a framework.

Rehan Ahmed - ProfitFlow 7

Fig 1: DOT Framework

SCRUM:

Scrum is a framework for project management with iterative cycles. One cycle is called a
sprint, it usually lasts for 2 weeks. For every sprint the stories/tasks are planned before the
start of the sprint. During the sprint work is done to complete all the planned tasks. Towards
the end of the sprint a sprint-planning takes place, to decide the tasks for the next sprint. At
the end of a sprint there is a sprint retrospective, this is a meeting where it is discussed what
went well during the previous sprint and what can be improved in the upcoming sprint. [5]

In this instance the early weeks of the project were focused on research and design of the
architecture, database and web-app. Following that, the scrum process started, where the
sprint goals were focused towards programming the solution. And finally in the final phase of
the project there was testing, integration and documentation.

The sprints for development started with planning for which stories from the backlog were to
be worked on during this sprint. And ended with a demo of the progress to the development
team. From the demo, feedback was collected about things to be changed, which was then
translated into tasks as stories. Finally, those stories were planned for upcoming sprints.

Apart from that at the daily stand-ups the tasks that were currently in progress were
mentioned. And if some help or meeting was required it was also notified during the standup.

1.4 Main Research Question

During the Plan of Approach the research questions were defined. At the time, the only
information available was the initial description of the project. According to the description,
the purpose was to centralise translation management. As a deduction, the main question was
formed:

- How can we centralise the management of translations for many projects?

Following the definition of the main question, I brainstormed ways to best answer the
question and develop a solution. The problem was broken into smaller segments during this
time. Because the brainstorming created questions regarding various aspects of the project,
these questions were defined as subquestions to the main question.

Subquestions:

- What are the available existing solutions and how do they compare to each other?

- How can we develop our own platform?

- How can our solution be integrated into existing and new projects?

- How is it possible to integrate automated translations into our own platform?

Rehan Ahmed - ProfitFlow 8

1.5 Deliverables

The deliverables produced by the conclusion of the project are following:

- Advise Report

A report consisting advise about the competitors solutions and how they compare to
each other. Advise on development workflow and integration of the platform. Advice
in the end about the continuation of the Project

- Requirement analysis

A report about the project requirements derived from the research and analysis of the
requirements

- Front-End

Codebase of the main front-end application

- Back-End

Codebase of the backend connected to front-end and database

- Database

Codebase of the Database and schema designed for the solution of this problem

- NPM Library

Codebase of NPM Library used for integration of projects with the platform.

- Google Translate Service

Codebase of Google API integrated into the Front-end application.

- Technical Documentation

Documentation of the different codebases and the complicated parts of the code in
more detail.

Rehan Ahmed - ProfitFlow 9

1.6 Research Plan

In the previous subsections, the research questions and deliverables were defined. Taking
those research questions and deliverables into consideration, I created a research plan. To
connect the research questions to deliverables, I planned some research methods which
helped to produce the deliverables. In the following table, the link between them can be seen: 

Rehan Ahmed - ProfitFlow 10

Research Question Research Method Deliverables

What are the available existing
solutions and how do they
compare to each other?

Library research

- Literature study

- Available product analysis

- Best good and bad practices

• Advise Report

How can we develop our own
platform?

Field research

- Problem Analysis

- Interview

- Survey

- Explore user requirements

Workshop

- Brainstorming

- IT architecture sketching

- Code implementation & Prototyping

• Requirement
analysis

• Front-End

• Back-End

• Database

• Technical

Documentation

How can our solution be
integrated into existing and new
projects?

Field research

- Explore user requirements

- Task Analysis

Workshop

- IT architecture sketching

- Code implementation & Prototyping

Lab research

- Usability testing

• Front-End

• Technical

Documentation

• NPM Library

How is it possible to integrate
Google Translate into our own
platform?

Library research

- Literature study

- Best good and bad practices

Workshop

- Code implementation & Prototyping

• Advise Report

• Google Translate

Integration

• Technical

Documentation

Table 1: connecting research questions, methods and deliverables

2. Organisation

2.1 ProfitFlow

ProfitFlow is a small scale startup with a 2 years history. It is a rapidly growing company, at
the moment there are 3 departments namely the development, HR, and the management.
These department are made up of 15 people.

ProfitFlow specialises in MKB process digitalisation and optimisation. They help in Back-
office automation which are largely concerned with planning and asset management. These
applications are always web-based and frequently require interaction with ERP systems like
Exact and Unit4. The company also develops software as a service platforms in conjunction
with other firms with subject expertise. [6]

2.2 Structure

Within ProfitFlow there is no hierarchical approach to the team. Instead the development
team is subdivided into sub teams. These sub teams are provided with their own project and
consists of at least two to three members:

1. Frontend engineer

2. (Senior) Frontend engineer

3. Backend engineer 

The ideology of this method is that this way there is a self sustaining team where the team
itself is capable of making all the choices of their own project. Internal discussions are made

within the team and all choices are up to the team in collaboration with the CTO

Sometime the team is assigned a project manager, mostly the backend engineer due to the
lesser workload compared to the frontend. As the backend engineer implements the data
model, it is his responsibility to keep track of the functionality and overall progress of the
project.

Besides this, the team, if possible, could also be responsible for direct communications with
the customer to ensure that there are no communications barriers, that could be found by
adding an overarching project manager who knows less about the current project than the
team itself. In some cases an overarching project manager will do the communications if the
team it self deems unfit to suit this role.

Rehan Ahmed - ProfitFlow 11

2.3 Daily Process

Work starts at 9:00 in the morning, the day starts with a daily-standup at 9:30. At the daily-
standup everyone tells what they did yesterday, what they’ll do today and finally if there is
something that is blocking their work.

Following that, everyone gets to work on the current task that has been assigned to them. The
scrum process is managed using Jira. As a result, Jira is used to track the tasks/stories
assigned to each developer.

This graduation project had its own Jira board, which was managed throughout the project
and updated during each sprint planning. After conducting research and planning, the stories
were written to a backlog, but different stories were added or removed during the sprint
depending on the project goals.

Because the supervisor is usually on-site and ready for assistance, he was reachable
immediately whenever an inquiry, feedback, or assistance was required. Other senior
developers at the company were also open for assistance as needed.

2.4 Limitations

The general limitations that you must account for during the project life cycle are known as
project constraints. A financial limitation, for example, means you're limited to a set project
budget, whereas a time constraint means you have to finish your project within a certain
amount of time.

Cost:

To develop the project, the available resources at the company were to be used. The
technologies the company already had Licenses for. If a technology is very important and
needs to be paid for, it could be discussed with the supervisor.

The goal was to keep the cost of managing the translations below the cost for Licensing the
existing alternative platforms mentioned in the competitor analysis.

Time:

Time management is very important for the success of a project. So the planning had to be
done keeping in mind the overall project timeline. For this project the available time was the
duration of the graduation period which was 21 weeks starting from 07-February-2022 to 01-
July-2022.

Rehan Ahmed - ProfitFlow 12

2.5 Risks

Project risks are any unexpected mishaps during a project which can affect the budget,
timeline, quality or completion of the project.[7]

As part of the project organisation, the following risks were outlined in the planning phase.
Their mitigation strategies were also defined as a guideline, so that a situation does not take
us by surprise:

- Restriction to work from home

- Getting off track

- Supervisor unavailable

- Technology gets outdated

- Hardware failure

2.6 Mitigation Strategies

The mitigation strategy was in place in case of one of the risks mentioned takes place or how
to avoid the mentioned risk. Following are the strategies in relation to different risks
mentioned:

Restriction to work from home:

In case for some reason we are restricted to work from home. I have had previous experience
with working from home so it should not be an issue about work management. The effect of
this risk would be, it would be harder to get advise from the supervisor and other colleagues.
So to avoid this there can be regular planned online meetings where questions about issues
can be asked and the availability of different software developers is to be taken into account
for guidance.

Getting off track:

In the case of getting off track from the project planning the completion of the project would
be risked. To handle this risk there can be formulation of a new revised plan and new
prioritisation of the requirements, based on the available time constraint.

Supervisor unavailable:

In case the supervisor is unavailable, the guidance about the project during that time can be
received from another senior software engineer until the supervisor is back to work.

Technology gets outdated:

To avoid this risk the technology researched for this project is made sure to be up to date at
the moment. And then if something gets outdated, a research for a replacing technology can
be conducted.

Hardware failure:

If there is a hardware failure the supervisor is contacted to find an alternative hardware option
to continue the project.

Rehan Ahmed - ProfitFlow 13

2.7 Quality Assurance

Quality Assurance is a means to monitor the process and methods used in a project, to assure
good quality of work on a project. Commonly QA includes software testing, design testing,
peer review and code authorisation protocol etc.

Testing was a part of the software development process for this project. The User Interface
and architecture designs were signed off through peer assessment. The code uses Linters and
build tests. Finally, every two weeks the supervisor reviewed the code being written, and
gave guidance on best practices. This assured a good quality on the coding/development side.

The limitations and risks mentioned earlier were taken into account while planning and
conducting the work. Additionally the project management was done in an agile way. This
assured a good quality in management of the project.

2.8 Definition of done

Small tasks were determined based on the task stories in the backlog; if they match the
criteria for completion, they are considered completed. When a major milestone or feature
that was agreed upon with the stakeholders was completed, the working demo was delivered
to the development team. Following the demo, a feedback was taken to determine whether it
is complete or not, and how it can be improved. These methods served to stay in the scope of
the project and as a definition of done, allowing to move on to the next significant task after
completion.

Rehan Ahmed - ProfitFlow 14

3. Research

This chapter aims at reporting the research findings from the research phase of the project.
The research questions were defined during the planning of the project, in chapter 1.4 but the
actual research was carried after the planning. Furthermore there was a research plan in
chapter 1.6 mentioning the research methods to be used as a guide to answer each
subquestion. In the subsections of this chapter the subquestions are answered. The main
question is answered in the conclusion of this report as the main question’s answer consists of
an implementation of the whole project.

Main Research Question

- How can we centralise the management of translations for many projects?

Subquestions:

- What are the available existing solutions and how do they compare to each other?

- How can we develop our own platform?

- How can our solution be integrated into existing and new projects?

- How is it possible to integrate automated translations into our own platform?

Rehan Ahmed - ProfitFlow 15

3.1 What are the available existing solutions and how do
they compare to each other?

Methods:

Library research

- Literature study

- Available product analysis

- Best good and bad practices

If we consider the workflow at ProfitFlow, at the moment there is no existing solution.
Currently the text is manually translated and manually written to the localisation files of the
projects. As the requirement is to come up with a platform that helps manage translations, we
would first look at existing solutions in the market.

There are many existing solutions in the market which are similar to a solution to this
problem. The similar available products were analysed, but they did not meet the specific
requirements of the issues at hand. Some of the platform that were analysed are: [8,9,10]

Lokalise

Lokalise is a multinational firm established in Riga, Latvia. It's a software platform for
managing technical product translations and localisation. It's a platform that runs on the
cloud. The software makes it easier to translate mobile apps, games, and websites

Locize

Locize is an online web-based Translation management system. Owned by inweso GmbH
based in Switzerland found in 2012. It is also used for management of translations for tech
products, helping the development process.

POEditor

POEditor is another competitor in the localisation platform market. It has many big brands as
their users. It is written in the C++ language. And also facilitates in handling translations for
different software products. It is very famous in the WordPress development community.

These platforms were analysed in detail in the advise report which can be found in the
Appendix III.

As these mentioned platforms are hosted by well known companies availability, performance,
and security are well taken care of. When it comes to scalability it should also not be an issue
to scale with these platforms to a reasonable extent as all of these platform have support for
many projects at their high tier plan.

But scalability comes at a cost with these platforms. Although it can be seen in Table 3.1.2
that it becomes cheaper per word with every level of upgrade to the payment plan. The issue
here is ProfitFlow as a company needs to scale very fast as there are regularly new clients
with new projects, which are long-term managed by the company itself. So as the number of

Rehan Ahmed - ProfitFlow 16

Method Description

Library Done by studying the available work done
that can help us in our research.

Table 3.1.1: DOT framework

clients and the projects starts increasing it can reach to a level where managing all projects
under one payment plan is not reasonable from the cost and the management perspective.

As there can be a situation where a client wants to change the company that manages the
project, in that case the management of translations for that project would also need to be
handed over with the product. And removing the project from the platform would cost the
company. Because the income from the client for the translation would stop but ProfitFlow
would still be paying the fee for the monthly plan for the platform. Apart from that moving
the project from one account to another is not very easy to manage. Another option having a
different account on the platform for every customer makes more sense. But that increases
the costs for each customer, as there needs to be a separate plan.

Another thing to consider during this advice was about the way the keys are stored. As a
feature there could be a possibility to have some common translation keys for free e.g sign-in.
So the common translation keys could be used by any user without paying for them. This can
be a competitive advantage and help in management of common keys. For this purpose in the
architectural design use of templates was included.

In the advise report (Appendix III) considering the cost and client management aspect, the
conclusion drawn is development of a new platform. In addition the analysis gives us insights
on some common features implemented by these existing platforms which are a market
requirement. Also gives an idea on how to best price the translation platform services if the
project is developed into a Software as a service platform.

Integration Scalability Pricing Model Pricing

Lokalise Different
mobile apps,
web-apps,
games

Limited
number of
allowed
developers

Monthly fixed price for
limited number of words
& limited number of
developers

$585

30,000 words

15 developers

Locize i18next library Costs
increase
with higher
usage

Price per word, per
modification & per
download

$0.004/word for 10,000
words

+ $0.02/modification

for 1000

+
$0.000075/download if
downloads > 1 million

POEdit
or

IOS, Android,
Angular, React
and many
more

Limited
number of
words

Monthly fixed price for
limited number of words

$200

100,000 words

Table 3.1.2: Comparison of existing platforms

Rehan Ahmed - ProfitFlow 17

3.2 How can we develop our own platform?

Methods:

Field research

- Problem Analysis

- Survey

- Interview

- Explore user requirements

Workshop

- Brainstorming

- IT architecture sketching

- Code implementation & Prototyping

3.2.1 Problem Analysis:

ProfitFlow is in charge of its clients' codebases. Scalability with the existing platforms
investigated in the market comes at a cost. Aside from that, it is difficult to administer those
platforms if a client wishes to delegate the project to another company; to do so, a
membership for each distinct project on those platform is required, which comes at an
additional expense.

So, in order to tackle this problem and make the company's development process more
effective, I concluded that creating a new platform would be the best option. The next steps
were to conduct a survey, interview, and gather requirements in order to have a better grasp of
the company's and developers' needs. The survey, interview, and requirement analysis reports
can be found in the following sub-chapters.

3.2.2 Survey

As part of the field research a survey was conducted on all the software developers working
for ProfitFlow. The survey was designed from the questions that came up after brainstorming
on the problem analysis.

First part of the survey was to get an understanding of the frameworks, libraries and
technologies currently being used at the company. The findings were that mostly React or
NextJS frameworks were used for front-end development. The library mostly used for
localisation was i18next. It was found that most of the projects used localisation.

Next part was some questions about how the current process is and how satisfied they are
with it. The developers were not satisfied with the current process as a lot of manual and
repetitive work had to be done on daily basis.

Finally I asked for features they wanted. And auto translate and CLI integration were the
favourites in the wish-list of features.

The full survey results can be found in the Appendix II of this report. 

Rehan Ahmed - ProfitFlow 18

Method Description

Field Done to better understand the situation of a problem and
the stakeholders requirements for a proposed solution.

Workshop Done to explore opportunities and how things could work.
Prototyping, designing and co-creation.

Table 3.2.1: DOT framework

3.2.3 Interview

This is an interview with the graduation supervisor, who is also the company's Technical
Director and a stakeholder in this project. This interview was created using the insights from
the survey, which the developers completed as stakeholders. The interview was conducted to
obtain a more in-depth analysis after the survey results.

What are the type of projects that need translations?

- Maatwerksoftware (custom build software for companies, such as planning tools etc)

- Software-as-a-Services

How is the translation process carried out currently?

The developers do live translations during the development. No magic strings are allowed.

There is no systematic approach currently documented.

How do you think we can improve the process without a new platform?

By documenting a workflow that has to be adhered to.

Do you think a platform could make the the translation process more efficient?

Yes and especially more manageable. Currently all translations are stored in JSON files in the
source repository. In order to change translations the repo has to be cloned and edited.

Using a platform we can automate this process during build and gather all latest translations.

Will this platform only be used by the ProfitFlow developers or also external users?

In the beginning stages only ProfitFlow developers will use the tool. In the future other
ProfitFlow employees (Business / sales) would like to edit translations as well. Meaning there
should be a role system.

Also we might consider SaaSifying the whole platform in the far future.

What qualities in the workflow do you think are needed for the developers to be
motivated to use such a platform regularly?

Automatically retrieving the translation files during build for production

Automatically retrieving the translation files using APIs during development (for real-time
editing during dev)

What are the functional requirements for the platform?

We are going to have to do this one together and plan a couple hours

What are the non-functional requirements for the platform?

We are going to have to do this one together and plan a couple hours

Rehan Ahmed - ProfitFlow 19

3.2.4 Requirements

After using the different research methods mentioned for this research question, like survey,
talking to stakeholders and supervisor, I was able to come up with the software requirements.
The main requirements were following in a MoSCoW format: [11]

Functional requirements:

Functional requirements are the requirements related to the business functionality of the
project. For example the actions the user should be capable of performing while using the
platform.

Requirement MosCow Status

F#1 The platform must be capable of creating / editing projects Must Done

F#2 The platform must provide dashboarding per project Must Done

F#3 The platform must be capable of creating / editing groups Must Done

F#4 The platform must be capable of adding groups to projects Must Done

F#5 The platform must be capable of adding templates in a project Must Done

F#6 The platform must be capable of creating / editing languages Must Done

F#7 The platform must be capable of adding groups to projects Must Done

F#8 The platform must be capable of creating / editing key/value
translations in a project and/or module

Must Done

F#9 The platform must be capable of creating/editing users Must Done

F#10 The platform must contain user roles Must Done

F#11 The platform must be capable of authenticating users Must Done

F#12 The platform must provide a history of any key/value or project
(changes)

Must Canceled

F#13 The platform must be capable of approving new translations (done
by either the customer or project/operational manager) for any
project

Must Canceled

F#14 The platform should be capable of creating/editing translators (that
have limited rights)

Should Done

F#15 The platfrom should provide dashboarding on global level Should Done

F#16 The platform could identify reoccuring key/value pairs Could Done

F#17 The platform could be capable of translating automatically using any
ML API (Google, etc..)

Could Done

F#18 The platform could include "free" common words (gotten from the
value)

Could Done

Table 3.2.2: Functional requirements

Rehan Ahmed - ProfitFlow 20

UX requirements:

UX requirements are requirements which are only related to visual and user experience of the
platform these do not affect the functionality but only effect the user experience.

Non-functional requirements:

Non-functional requirements are the requirements related to the architecture of the project.
They define the technologies desired by the company and features which do not affect the
functionality of the project

Requirement MosCow Status

UX#1 The platform must be translated in English and Dutch Must Done

UX#2 The platform must provide dark mode Must Done

UX#3 The platform must be customizable using different colors Must Done

UX#4 A project must include details such as customer details, (optional)
logo and default language

Must Done

Table 3.2.3: UX requirements

Requirement MosCow Status

NF#1 The platform should be deployed using the JAMStack Must Not yet

NF#2 The platform must be secured using JWT Must Done

NF#3 The platform must be scalable Must Done

NF#4 The platform must be using serverless technology Must Done

NF#5 The platform should be hosted at Netlify Must Done

NF#6 The platform must be designed using Figma Must Done

NF#7 The platform must use Hasura for backend Must Done

NF#8 The platform must audit all changes done to the database (https://
hasura.io/docs/latest/graphql/core/guides/auditing-tables/)

Must Done

NF#9 The platform should be documented fully Should Done

NF#10 The platform should be manually tested, including a (small) test
report

Should Done

NF#11 The platform should be created in NextJS Should Done

NF#12 The platform should use PostgreSQL Should Done

NF#13 The platform could contain automated testing Could Not yet

NF#14 The platform could be regurarly backed up Could Canceled

Table 3.2.4: Non-Functional requirements

Rehan Ahmed - ProfitFlow 21

Integration requirements:

Finally the integration requirements were defined as the requirements that are related to the
integration of the project with other technologies.

Conclusion:

In conclusion these requirements were taken into account while creating the designs in
chapter 4 and also during sprint planning for realisation. Most of the requirements are met by
the end of the project. Some were cancelled during the project in consultation with
stakeholders. F#12 and F#13 were not needed anymore and NF#14, I#5 - I#8 were out of the
current scope of the project. As for all remaining requirements marked as “Not yet” are NF#1
in progress for the final handover stage. 

Requirement MosCow Status

I#1 The platform must be capable of communicating the translations to
the project during build time

Must Done

I#2 The platform could be capable of communicating the translations to
the project during compile time

Could Done

I#3 The platform could automatically initiate a build on staging /
production

Could Done

I#4 The platform could make use of CDN to provide translations to the
applications

Could Not yet

I#5 The platform could integrate with Slack for updates Could Canceled

I#6 The platform could integrate with Wordpress Could Canceled

I#7 The platform could integrate with Strapi Could Canceled

I#8 The platform won't have a vscode plugin that retrieves all keys in a
project and autocompletes in the IDE this time

Wont

Table 3.2.5: Integration requirements

Rehan Ahmed - ProfitFlow 22

3.3 How can our solution be integrated into existing and
new projects?

Methods:

Field research

- Explore user requirements

- Task Analysis

Workshop

- IT architecture sketching

- Code implementation &

Prototyping

Lab research

- Usability testing

Here by integration it is meant that the keys and values from the platform are downloaded to
the development files of a project. This was required, because this made the development
process easier which was the main goal of this project. To Integrate the Translations into
Local Project’s we needed to make some connection between the platform and the local
projects.

First let’s look how the translations were stored previously in the projects:

Rehan Ahmed - ProfitFlow 23

Fig 3.3.1: locales folder structure

Method Description

Field Done to better understand the situation of a problem and
the stakeholders requirements for a proposed solution.

Lab Done to test parts of the product, to be sure things work the
intended way.

Workshop Done to explore opportunities and how things could work.
Prototyping, designing and co-creation.

Table 3.3.1: DOT framework

The translations were originally saved in the locales directory, with a directory for each
available language, as seen in the screenshot. The modules are stored in JSON format in each
language directory. These JSON modules contain the key and translation pairs. Translations
for keys are retrieved from modules from the relative language directory when a language is
selected on the UI. As a result, instead of a hardcoded text, the module and key are used in
the Javascript and html during the development process. Libraries such as i18next assist in
obtaining translation values.

Because the currently used i18n library has the above shown structure. Taking scalability into
account, the purpose was to download data from the new platform in the same format and file
structure. This would make integration process of existing company projects effortless.

There were two possible ways to download the data:

- Create a service that gets all the data from the backend puts it into files. Then over the

network the files are sent to the client who requested. After retrieving the files they can be
stored in the locale folder.

- Create an NPM library which can be installed on the client. Whenever needed use a CLI
command, to retrieve the data inside the library, and create the files locally to store in
locale folder.

After some research and discussion with stakeholders I decided to go with the second option
as it made more sense with performance and user experience. With the first option we would
have to download written files, which is slower and with more steps. With the second option
we download the data, and create the files locally.

Initialise

The next step was learning how to create an NPM library. To create an NPM library we start
by setting up the package.json file in a new directory. Inside the package.json there are some
required fields like package name, version, license info which need to be set. The name of the
package was set to locflow-downloader. [12]

Write the function

The most innovative part was to write the index.js file. This file had the actual function that
loads the data from the backend, and writes into local files. The data is loaded using the
projectID. The projectID is provided to the function through environment variables in .env
files. This is because the library needs to be reusable with any project. To load the data from
graphQL backend I use the Apollo library. Then I use the fs library provided by node.js to
create and write files using the loaded data. [13]

Publish Library

Finally we want to publish or create a package for the library we have written. As I wanted to
locally develop this library for the prototype I do not opt to publish it to the NPM registry.
Instead I use NPM pack command to bundle the package locally. After this a package is
created locally which can be Installed using NPM install. [14]

Rehan Ahmed - ProfitFlow 24

Testing

After creating the library, I create a new nodeJS project to test the NPM library. First to
initialise the project I use NPM install <path to the local package>. Install the package and set
up the .env variables. Now the function can run using npx locflow-dowloader and it
downloads the translation files into the locale folder, as required. [15]

We can use an NPM package to retrieve translations into our projects so this fulfils our goal
for integration.

The environment variables required in a
project where the library is used are:

The function in this NPM library that fetches the data and writes to local files is shown in the
Fig 3.3.3. In simple words the steps
it takes are:

- Fetches the data from the
backend using the project_id
provided in the env variables

- Creates the language directories
based on supported languages at
the platform

- Adds each Group to all language
folders

- Adds keys with the relevant
translation to the Groups

- If the -replace flag was set on the
npx command it replaces the
group completely, removing the
local changes

Apart from this research, the design chapter has an architecture design on how the
components are put together, and how they work in relation to each other. The advise section
gives in detail advise on how we can implement an efficient workflow for the development
part of translation. 

Rehan Ahmed - ProfitFlow 25

Fig 3.3.2: .env variables

Fig 3.3.3: Function that fetches the data and writes to locales

3.4 How is it possible to integrate Google Translate into
our own platform?

Methods:

Library research

- Literature study

- Best good and bad practices

Workshop

- Code implementation &

Prototyping

To Integrate Google translate feature into our platform we would need to use the Google
Translate API. For which most of the documentation is provided on the Google Cloud
platform. The API usage is a paid feature but the pricing is not too much so the company
stakeholders were willing to get research on the Translate API. In this research the Translate
API’s integration, guidelines and pricing are discussed.

Cloud Translation offers two editions:

• Cloud Translation - Basic (v2)

• Cloud Translation - Advanced (v3)

Both editions support language detection and translation. They also use the same Google pre-
trained model to translate content. Cloud Translation - Advanced includes features such as
batch requests, AutoML custom models, and glossaries. As we only need the translation
feature we will be using the Basic version.

Even though the Basic version has the language detection feature but we will be only using
the translate feature because according to my design we will always be translating from
English language. As per pricing the first 500,000 characters are translated for free the next
are charged $20 per million characters.

First we need a project on the Google Cloud,
with the Cloud Translation API enabled and the
project credentials to make authenticated calls
and only then we can use Cloud Translation.

From the project we can get the private key file,
put it in our project directory and then link the
key with an environment variable.

To enable the API we need a billing Account. For safety we can also set a usage quota in the
Google Cloud. So that the costs don't go very high if a lot of bad or accidental requests are
made. Then after setting up a billing account for the project in Google Cloud we can enable
the API. Now that the API is enabled we can make REST API calls to the API to get our
translations.

Rehan Ahmed - ProfitFlow 26

Fig 3.4.1: Google Cloud Platform

Method Description

Library Done by studying the available work done that can help us
in our research.

Workshop Done to explore opportunities and how things could work.
Prototyping, designing and co-creation.

Table 3.4.1: DOT framework

REST API:

POST https://translation.googleapis.com/language/translate/v2

Parameters:

We can send the API requests to the above mentioned API with the parameters in the figure to
get a response like the following:

{

 "data": {

 object(TranslateTextResponseList)

 },

}

TranslateTextResponseList : {

 "translations": [

 {

 	 "detectedSourceLanguage": string,

 	 "model": string,

 	 "translatedText": string,

}

],

}

After getting the correct response we can display it in our FrontEnd Application, this will be
explained more in the Realisation chapter. [16]

Rehan Ahmed - ProfitFlow 27

Fig 3.4.2: Google API request parameters

https://translation.googleapis.com/language/translate/v2

TranslationService:

Setting up the account on google cloud platform was the first step, next was creating a
TranslateService that is using the Translation API and sending the data back to the front-end.

From the initial research I had thought that we can use the translation API directly on the
front-end client. But this was a blind spot in this research after some code implementation it
was found that for security reasons Google does not recommend making API calls directly
from the front-end. To authenticate Google uses a private key, if we put the private key in the
front-end application it becomes vulnerable to attacks. So to avoid this security threat the best
practice is to create a nodeJS TranslateService that stores the private key. And make api
requests to the Google API when ever the front-end client makes a request to the
TranslateService. [17]

Now when a user clicks the translate button on a cell it
sends a request to the translation service with the
english string and the target language.

The TranslateService upon receiving
a request at api/translate . Sends a
request to the Google Translate API.
When it receives a response with
translated string it send back the
response to the client who made the
request.

The target languages supported by
the Google service and their relative
iso codes are specified in Google
docs at [18] 

Rehan Ahmed - ProfitFlow 28

Fig 3.4.3: Translation button inside a cell

Fig 3.4.4: TranslateService

Fig 3.4.5: Language Support Google

4. Design

4.1 Architecture Design

The Architecture design was created after the research phase. And it was regularly updated
during the development sprints.

This project's architecture is made up of several parts, the majority of which are linked to one
another. I use a PostgreSQL database that is linked to the Hasura Backend.

The platform's front-end communicates with the backend to query or manipulate data. On the
other hand, it connects to our Translate Service to get translations. The Google Translate
service connects to the Google API using the security key to request and fetch translations. To
aid development, the front-end also makes use of libraries such as Apex charts and MUI
styling.

Finally, we have the integration library, which generates an NPM package. The NPM package
can be installed on any project. After installing, it can get the data by querying from the
backend.

Rehan Ahmed - ProfitFlow 29

Diagram 4.1: Architecture diagram

4.2 Business Design

The Business design was created based on the stakeholders requirements. There were many
changes, after reviews on the whole project, and when some main requirement changed. The
requirements from chapter 3.2.4 required to have create, read update and delete functionality
on users, projects, groups, keys and translations. This represents the final and best version of
the design.

There are these main components:

- Users

- Projects

- Groups

- Templates

- Keys

- Translations

- Languages

Users can have Roles, the project and Platform features access is based on these roles.:

1. Administrator

2. Developer

3. Translator

Projects can have users assigned to them. And one project can have many groups. These
groups contain keys with their translations.

Rehan Ahmed - ProfitFlow 30

Project

Group Group Group

User

User

User
Key

Translation

Key Key Key Key

Translation
Translation

Translation
Translation

Translation
Translation

Diagram 4.2: Business Design

4.3 Database design

As we can see from the previous section about Business Design we needed 6 main tables:

- user

- project

- group

- key

- translation

- language

To connect these tables we needed some extra join tables. A user_role table was needed to
define roles for users with different levels of access.

A project can have users so we have join table between project and user table. And similarly
are the project_group, group_key tables. Templates from the business design however are
groups in the database, with a boolean called template, and a value: true. Because projects
stored the languages and templates are not related to any project, the templates have a
template_language table to store the supported language for each template.

There were a couple of design iterations to the db because of change of requirements or
implementation. The summary of database design evolution can be found on Appendix IX.
Diagram 4.3 shows the final version of db schema design : 

Rehan Ahmed - ProfitFlow 31

Diagram 4.3: DB schema final version

4.4 Frontend Mockup

This was the initial mockup designed to have an idea of how the platform should be looking:

The frontend, however had several alterations throughout the development. During several
demos, developers advised different changes. For example we remove the project list from
the sidebar because we would potentially have a large number of projects. This is how the
frontend looks now:

Rehan Ahmed - ProfitFlow 32
Fig 4.2: front-end screenshot

Fig 4.1: Frontend Mockup

4.5 Styling

This project's styling was done with the help of a Styling Library. Following a proposal and
discussion with the company's Technical Director, the decision to use a styling library was
made. The benefit of using a library is that it makes the styling more consistent and the
development more efficient.

The library used was MUI from mui.com. It is a react-supported npm library. Many of MUI's
supported components can be reused. However, for specific use cases, the components
provided need to be customised and tailored to my requirements. For example, while using
the data grid from MUI, I needed to add the translate button to the cells. I modified the code
for the cells to include a button inside a cell when it is in edit mode. Furthermore, I had to
create a custom export format for when someone wanted to download the data from the data
grid in JSON format directly. [19]

I also made use of the Apex Charts library to display project statistics in chart form on the
dashboard. [20]  

Rehan Ahmed - ProfitFlow 33

Fig 4.5: Chart for statistics on dashboard

Fig 4.3: JSON export option Fig 4.4: translate button in a cell

5. Realisation

5.1 Database:

First step in realisation was to setup a Postgres database local
environment on the local machine. Next, using the database
design mentioned previously in chapter 4.3, SQL code is written
to create the SQL tables and their relations.

PgAdmin4 and Postico were used interchangeably to manipulate
data and make any required changes inside the database during
development.

PostgreSQL is an open source, object-relational database system. The choice for PostgreSQL
is due to the large increase in performance and SQL standards. Postgres implement
MVCC[21], meaning that PostgreSQL can use multiple cores in parallel for creating indexes
and partial indexes. Aside from this, PostgreSQL also protects its data at the transaction level,
meaning it is less vulnerable by design to data corruption.

The decision to use Postgres for database was made in agreement with supervisor as the
supervisor wanted Hasura to be used for backend and Postgres was the most compatible
database with Hasura

Rehan Ahmed - ProfitFlow 34

Fig 5.2: SQL codeFig 5.1: Postico

5.2 Backend:

Hasura was used for the backend, as this was one of the must requirements of the company.
To setup local hasura environment I ran a docker-compose -up on the following docker file,
this downloaded a hasura image and ran a docker container with hasura connected to the
database:

5.3 Hasura:

Backend development has been massively innovated on by the open-source community of
software engineers. Hasura was released with the idea that there is no longer a need to
develop a REST (or GraphQL) CRUD backend service from scratch.

Hasura provides the developer’s, with a quick and easy way of deploying a full-fetched
CRUD based on an existing database. One of the major features that comes with Hasura is an
RBAC system that allows the developer to define complex permissions on rows and columns
of tables within the database.

One of the biggest advantage of Hasura is it
produces a quick GraphQL schema based on
the database that it is connected to. So this
saves time from creating a graphQL schema

Now after connecting the frontend to the
endpoint there needed to be made custom
functions in the backend. Like a trigger on a
value update, to save new update time. After
set up we can quickly start making requests. 

Rehan Ahmed - ProfitFlow 35

Fig 5.3: hasura docker-compose file

Fig 5.4: hasura API explorer

5.4 Frontend:

Frontend application uses a react based NextJS framework. NextJS is an open-source
development framework built on top of Node.js that enables server-side rendering and the
generation of static websites in React-based web apps.

A web application framework simplifies, accelerates, and scales the development process. I
picked this framework since the company already uses NextJS for the majority of its
applications, making it easy to integrate a standalone app with existing web-apps. Apart from
that it is one of the frameworks I have not worked with before, thus it was a fresh experience
for me.

The frontend is structured into folders of :

-pages

-public

-src

pages:

Contains all the static pages and the NextJS router links these
pages to routes based on the page name

public:

Contains all the public assets which are needed at the build time

src:

contains all the modules a module can be used in other modules. A
module directory contains the components, their graphQL queries/
mutations, hooks and types.

Some of the main modules are group, auth, createProject. To optimise code and use a
common component for similar functioning parts, the structure of the project changed over
the course of the graduation. For example the GroupTemplates before it was called this was
called just Groups which had its own keys and translations, projects also had their own keys
and translations. The idea was that different groups could be made reusable with different
projects. But later on I decided the projects did not need to hold keys so made it so that only
groups can have keys. Projects hold those groups. So in this way the table component which
had logic for updating each cell or adding keys became reusable. Now groups and
groupTemplates both can use the same table component.

Rehan Ahmed - ProfitFlow 36

Fig 5.5: file structure

Each module contains the following files:

- components

- graphQL

- hooks

- types

components:

This folder contains all the .tsx files with the html and typescript for a child component of the
parent component. For example the Group contains custom edit cells which are child
components of the parent component Group.

graphQL:

This folder contains the graph QL queries and mutations. Written in graphQL format. It is a
good practice to keep the queries and mutations separate from the rest of the code. Because it
would also be easy in future to customise the query or mutation if the database/backend
design changes.

hooks:

Hooks folder contains typescript files which are responsible for handling the query or
mutation. For example if some event like clicking a button was loading some data from the
backend. The buttons click handler would call a hook to fetch and load the data to update the
components state.

types:

As I am using typescript, defining types for the objects assures a good quality of code and an
object oriented approach for development. This types folder is used to store the types related
to the parent component.

Note: global types (i.e types used by all components are stored in the common directory)

Rehan Ahmed - ProfitFlow 37

Diagram 5.1: Project structure

GroupTable.tsx:

This is a very important component it receives 2 props :

- groupId

- languageList

This component uses the Datagrid library to showcase the data into a grid and it has
additional custom functionality written by me, for editing different cells. For example editing
a key, comment or default_text calls the graphQL mutation to update the key. Whereas
editing a language calls the mutation to update translation. And in case a key is added to an
empty row a CreateKey mutation is called. This way a cell can have different function based
on its column. The flow chart for this component can be seen in Diagram 5.1.

Rehan Ahmed - ProfitFlow 38

Fig 5.6: group table

Diagram 5.2: Flowchart Cell edit functionality

For getting translations using the GoogleAPI there is custom functionality. As you can see in
the figure there is a Google translate icon inside a cell. When the cell is in edit mode clicking
this button triggers the request to Translate service and updates the cell.

I use the groupId prop to fetch the group data. When the selected group is changed on the
front end it refetches the keys and translations.

Also the language list is provided as a prop because projects and groupTemplates can have
different supported languages. So based on if this table components being rendered in
Templates page or Project page the list of languages is provided by those pages.

Another important aspect of the code structure is how the main components view gets
updated after a child component makes a change. For this purpose I create an update function
in the parent component which queries the data. And pass the function down to a child
component as a prop. To understand this better let us take the example of a group inside a
project. So when we add or remove a language support inside a project the desired outcome is
that the new languages be displayed on the group table. After the language list gets updated
through a mutation, a positive response is received from the backend. The updateProject
function is called this in turn queries the project again and updates the projects view.

Auth:

This module is responsible to authorise users when logging in or trying to access some
settings which have role based access. An auth api is used to sign JSON web-tokens while
authenticating a user. The web-token is later used to authorise requests to the backend.
Diagram 5.2 shows how a user gets the web-token while logging in with email and password. 

Rehan Ahmed - ProfitFlow 39

Diagram 5.3: Sequence diagram Authorisation API

5.5 Services:

The Integration library and Translation service were part of realisation, they have already
been covered in the research section as these parts of the project were also part of research.
Here are some charts to show their work flow.

Translation service:

Integration library: 

Rehan Ahmed - ProfitFlow 40

Diagram 5.4: Sequence diagram translation service

Diagram 5.5: Flowchart Integration library

5.7 Steps during realisation:

1. Set up the local project database and backend

2. Run sql code to setup database

3. Setup the hasura properties, connect to database and generate a graphQL schema

4. Setup frontend libraries, create styling files for the theme

5. Create all the pages and routes

6. Connect the pages to the sidebar

7. For every page start creating components

8. For each components functionality write the graphQL queries/mutations

9. Connect components to each other

10. Debug components

11. Create more components as needed

12. Debugging errors

13. Styling the code

14. Create the translate service

15. Create Google console account and set up the security keys with our service

16. Connect the translate service to the frontend component

17. Create the integration library

18. Create NPM package out of the library

19. Create a sample dev project to test the library

20. Install the library

21. Create a project on the platform with groups, keys and translations.

22. Test the library by integrating the platform keys & translations into our sample project.

This is a short overview of the steps carried in this order. In conclusions most of these steps
required: research, learning, development, debugging, testing, rewriting, restructuring,
guidance and documentation.

Rehan Ahmed - ProfitFlow 41

6. Testing

During development different components need testing strategies. This chapter focuses on
documenting the test strategies used. The tests were carried out manually after finishing their
relative story and the UI testing steps were done once every time before sending code to
production. These test strategies also act as a definition of done to the requirements in chapter
3.2.4. The better way to do testing is to use an automated test also for UI. But as it was not a
must requirement, the automation of UI testing was not focused. It will be advised in the
advise section. The code and build however were tested automatically before creating a build
using the gitlab pipelines and also locally before pushing to gitlab using linters for React,
NextJS and Typescript.

6.1 Database and Backend:

To test the database and backend we need to prove that when a request is made to the
backend the requested change is made in the database. And when something is queried from
the backend the correct data is received from the database.

To do this testing I use the Hasura API explorer which allows us to write a graphQL query/
mutation and run it from there using a button.

✓ Test to query projects with their groups and keys.

✓ Test to add a translation for a key and check the added translation in Postico

6.2 Front-End UI testing:

To test this we need to manually do Quality Assurance tests on the working of different UI
components and their edge cases.

✓ Dashboard shows correct number of projects and their correct relative statistics on load.

✓ Projects page shows all the projects enlisted and each project can be clicked to open the

project

✓ Autocomplete on Project page shows the project name filled and does autocomplete the

input.

✓ Create Project page shows the available templates, and languages to be selected.

✓ After creating a project the project can be seen enlisted in Projects.

✓ On templates page the autocomplete to find templates shows the templates on input.

✓ On templates page the create template functionality work and creates a new template.

✓ When deleting a template the templates get refreshed and the deleted template does not

exist anymore

✓ Adding deleting languages to templates.

✓ On Languages page the supported languages by the platform are shown

✓ A new language can be added or a previous language can be deleted. The view refreshes

on both of those actions.

Rehan Ahmed - ProfitFlow 42

✓ On the table a new translation can be added for a key

✓ A translation can be generated using the translate button

✓ A translation can be deleted

✓ When a language is added or removed the columns change accordingly

✓ A key can be added or removed

✓ After adding a new key a new empty field comes up

✓ Sorting filtering and hiding columns works correct

✓ The export JSON produces the JSON file as expected

✓ The View of the group refreshes after any changes

✓ On a specific Project page a new group can be added to this project

✓ A group can be bookmarked to save for quick access

✓ Bookmark removed correctly

✓ When deleting a project or group a popup shows up

✓ On agreeing to a delete popup the deleted group or project does not exist on the platform

✓ When the settings icon is clicked the settings options can be seen

6.3 Translate Service testing:

Testing the translate service can be done by making an api call to the translate service
providing the correct query parameters. I use postman to test the querry.

✓ The query returns the correct translation.

Rehan Ahmed - ProfitFlow 43

Fig 6.1: Postman API request

6.4 NPM Integration testing:

To test the integration a sample project was created. In this project the keys are used and the
translation values for the keys are updated through the platform, after integrating the library it
is checked if the updated version of translations can be seen on the sample project:

✓ NPM install adds the npm library to node_modules directory and package.json
dependencies

✓ “npx locflow-downloader” adds the files to locales

✓ “npx locflow-downloader -replace” replaces the existing files 

Rehan Ahmed - ProfitFlow 44

Fig 6.2: Screenshots of the sample project

7. Advise

7.1 Development Process

This advise is towards the developers for using the built platform. It aims on advising a
workflow to make best use of the developed technology.

First of all we need to look at the current development process for localisation. So as it stands
during development, the developers perform live translations. And check the project to see if
the translation is right in the project. There is currently no reported systematic approach.

The developers look for hardcoded strings in the user interface that can be made dynamic to
be translated individually. Consider a name for the translation key. And add manually the key
and its translations into the relevant localisation json files for each supported language. After
that, they go over the rendered UI to check if the translation comes up as expected.

Now as part of this project it would be advised to adhere to a standard procedure for the
localisation process. Firstly to keep track of different translations to be done. At the planning
stage stories in the Jira board should be created for translation tasks. At the moment in a
project every different module or page is separated as a good practice, from project structure
point of view. It is advised that every separate module or page has a separate Group in the
Localisation platform. One story per Group should be a standard to keep the stories short and
precise.

As a platform feature there is support for templates. If there are recurring keys and groups,
they can be saved into a template. During the planning, a story to create a template should be
created. These templates can then be reused inside a project with the keys and their relative
translations copied to the project.

When the planning phase is done, next comes the development phase. During the
development phase the first step should be setting up the localisation library in the project.
And to test the library one simple manually written file with one or two keys and at least 2
languages supported should be added. Now that we are sure the library is working fine in the
project. We can create a new project on the localisation platform that was created during this
project.

While creating a project on the platform, we can select some templates that are commonly
needed for most projects. For example a general template that has keys like Login, Log Out,
Sign Up, Agree, Decline etc. After creating the project on the platform we can start creating
the needed Groups and their keys. For each key, we can use auto translation feature to get
translations for different languages from the Google API.

Now that we have the project and the required Group setup on the platform we can use the
NPM library for integration of translations into our development project. This library was
custom created during development of this project. To setup the library we run NPM install

Rehan Ahmed - ProfitFlow 45

locflow-downloader (the library name). When it is installed, we setup the required
environment variables in the .env file. In the .env file it is required to provide the project id
from the platform, the GraphQL endpoint where the backend for the platform is running and
the path to the locale folder in our development project. After this setup, by running the NPM
command npx locflow-downloader, we get all the translations and groups automatically
downloaded and written to our locale folder. After this command we will have all keys
translated in their relative language directories in our project’s locale directory.

7.2 Testing Process

Following the development stage, the story can be assigned to the quality assurance. The QA
then tests, each supported language for the module or page which the story specifies. If QA
testing goes as expected, the QA can finally approve the story for deployment. It is advised to
the developers to always use camel case while creating the key. This helps the QA in finding
any bugs on the UI, because when a translation is not working properly the string on the UI
shows the key instead of the translated value. And it is easy for QA to see any camel case
string on the UI while testing

To test the user interface a UI-test-automation tool could be incorporated into the project. For
example Selenium is an open source umbrella project providing a collection of browser
automation tools and libraries. It provides a playback tool for building functional tests across
most modern web browsers without the need to learn a test scripting language.

7.3 Scaling

When the organisation grows, it is advised to pass the translation tasks to professional people
completely responsible for translations. These people can use the platform with an account
with a translator role which has less privileges than an account with admin role.

As the company has a desire to upscale this project in future as a SaaS platform. It is advised
to add organisations to the database with different feature access based on their plans. The
early research on existing platforms completed during this project can also be utilised as a
guide for pricing the plans. The detailed research on existing platform can be found in the
Appendix.

7.4 Continuation

This is already in the plans of organisation to possibly scale the project to a SaaS platform.
Even though it was not a requirement for the current project, most of the architectural and
business design was made keeping that continuation goal in the mind. So my advice is to first
use the platform internally, to gain experience on its suitability and discovering potential
shortcomings. If it has proven itself internally, then it might be time to build upon the main
features to scale it to a SaaS platform.

As we know the translation service is based on usage of Google API which has a usage based
cost plan. If the project is continued as Software service, my advice would be changing the
translate service in such a way that the user of the service uses their own Google API

Rehan Ahmed - ProfitFlow 46

credentials. This would help keeping the cost down, as the Google API only charges for
higher usage. If each user has their own account with credentials the usage cost would be low
per user.

Another feature idea from me was to integrate a VS code plugin for synchronising
translations. Which I believe was a nice idea but was out of the scope of the project. The
recommendation is to create a fun hackathon challenge out of this. Or if it becomes a highly
desired feature then plan a small project to develop the VS code plugin.

The NPM integration package can be expanded and made into a bigger library with features
like, uploading the local project, live changes or addition of automated testing of keys and
translations. 

Rehan Ahmed - ProfitFlow 47

8. Conclusion

This graduation project, after a period of learning to solve new problems, and motivating
challenges, comes to an end. In this chapter, I would summarise the entire project in order to
reach a conclusion.

I had no idea about many aspects of the project at the start, and it seemed a bit overwhelming.
The situation with the localisation process at the time was inefficient. The translations had to
be typed into the JSON files by hand. Someone had to create the translations for each
language as well. It was not fun to do that manually or with a quick translation app.
Developers disliked this part of the process because their primary goal was to spend more
time writing code. Apart from the difficulties in the development procedure, management was
also a major issue, because all of the company's client projects exist in their own repositories,
so the translation files are very scattered.

After being given the opportunity to work on this tricky project, I examined all of the tools
and skills I had acquired during my Bachelor's degree in Software Engineering. First and
foremost, we needed to create a good project plan so that we could have a guideline
throughout the process of how progress is being made and which steps should be taken.

The next mission was to comprehend the problem as thoroughly as possible. I formulated
some research questions based on my limited knowledge from the assignment description to
accomplish this. The research subquestions were answered methodically in the research
section. However, I would like to address the main research question in this conclusion.

Main Question: How can we centralise the management of translations for many projects?

Well, based on the advice report and study on subquestions, we can conclude that a platform
to manage translations in one place was indeed required. The solution to how it can be done
was a continuous learning process throughout the project's development. And now we have
an answer in the form of this project.

At the graduation level, many tasks from a Software Engineer Professional's daily work were
completed. First, I produced an advise about existing frameworks. To generate a requirement
analysis, I employed several analysis methodologies such as surveys, interviews, library
research, and field research. A full design of the product was produced using my knowledge
from my studies, taking into account architecture, business, schema, and user experience. The
largest part was the development phase, which included tasks in which I was proficient as
well as some that I had never done before, which was a valuable learning experience. Finally,
I offered another piece of advice on the development process and the project's future.

Finally, I must say that this was a challenging project. Knowing how significant it is to the
company, how it will solve a big problem, and how everyone was looking forward to it makes
me happy. And it gives me the confidence to create valuable software solutions in my
profession. 

Rehan Ahmed - ProfitFlow 48

References

—————————————————————————————————————

[1] i18n- https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/

i18n

[2] i18next docs - https://www.i18next.com/

[3] Research Methods: What are research methods? https://libguides.newcastle.edu.au/

researchmethods

[4] HBO-i - The Dot Framework https://ictresearchmethods.nl/The_DOT_Framework

[5] scrum.org - What is scrum - https://www.scrum.org/resources/what-is-scrum?

gclid=CjwKCAjws8yUBhA1EiwAi_tpEQFMvx3lYO2kEivTotChPyAXL2eml03rC1
GiDtJbBxkYDIEu65rh-hoC2BEQAvD_BwE

[6] ProfitFlow - https://profitflow.nl/

[7] Team Asana. (2021). What is a risk register: a project manager’s guide https://asana.com/

resources/risk-register

[8] Localise - https://lokalise.com/

[9] Locize - https://locize.com/?lng=en

[10] POEditor - https://poeditor.com/

[11] Charles Lane & Nico Kruger. (2021). How to Write a Software Requirements

Specification https://www.perforce.com/blog/alm/how-write-software-requirements-
specification-srs-
document#:~:text=A%20software%20requirements%20specification%20(SRS)
%20is%20a%20document%20that%20describes,(business%2C%20users)%20needs.

[12] Creating Node.js module - https://docs.npmjs.com/creating-node-js-modules

[13] Scott Robinson. Reading and Writing JSON Files with Node.js - https://stackabuse.com/

reading-and-writing-json-files-with-node-js/

[14] Debashish Pal. (2019). Publish a npm package locally for testing - https://medium.com/

@debshish.pal/publish-a-npm-package-locally-for-testing-9a00015eb9fd

[15] Janne Kemppainen. (2021). Make an NPM Package Executable with npx - https://

pakstech.com/blog/npx-script/

[16] Google cloud docs. https://cloud.google.com/translate/docs/basic/translating-text

[17] Richard Koret. (2021). How to get started with the Google Translate API - https://

bdtechtalks.com/2021/07/04/google-translate-api-beginners-guide/

[18] Google API Language support - https://cloud.google.com/translate/docs/languages

[19] MUI docs - https://mui.com/material-ui/getting-started/installation/

[20] Apex Charts - https://apexcharts.com/docs/installation/

[21] Hossein Shams. (2014). MVCC: An Architectural Pattern for Developing Context-aware

Frameworks - https://www.sciencedirect.com/science/article/pii/S1877050914008904

—————————————————————————————————————

Rehan Ahmed - ProfitFlow 49

https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/i18n
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/i18n
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/i18n
https://www.i18next.com/
https://libguides.newcastle.edu.au/researchmethods
https://libguides.newcastle.edu.au/researchmethods
https://ictresearchmethods.nl/The_DOT_Framework
http://scrum.org
https://www.scrum.org/resources/what-is-scrum?gclid=CjwKCAjws8yUBhA1EiwAi_tpEQFMvx3lYO2kEivTotChPyAXL2eml03rC1GiDtJbBxkYDIEu65rh-hoC2BEQAvD_BwE
https://www.scrum.org/resources/what-is-scrum?gclid=CjwKCAjws8yUBhA1EiwAi_tpEQFMvx3lYO2kEivTotChPyAXL2eml03rC1GiDtJbBxkYDIEu65rh-hoC2BEQAvD_BwE
https://www.scrum.org/resources/what-is-scrum?gclid=CjwKCAjws8yUBhA1EiwAi_tpEQFMvx3lYO2kEivTotChPyAXL2eml03rC1GiDtJbBxkYDIEu65rh-hoC2BEQAvD_BwE
https://profitflow.nl/
https://asana.com/resources/risk-register
https://asana.com/resources/risk-register
https://lokalise.com/
https://locize.com/?lng=en
https://poeditor.com/
https://docs.npmjs.com/creating-node-js-modules
https://stackabuse.com/reading-and-writing-json-files-with-node-js/
https://stackabuse.com/reading-and-writing-json-files-with-node-js/
https://medium.com/@debshish.pal/publish-a-npm-package-locally-for-testing-9a00015eb9fd
https://medium.com/@debshish.pal/publish-a-npm-package-locally-for-testing-9a00015eb9fd
https://medium.com/@debshish.pal/publish-a-npm-package-locally-for-testing-9a00015eb9fd
https://pakstech.com/blog/npx-script/
https://pakstech.com/blog/npx-script/
https://cloud.google.com/translate/docs/basic/translating-text
https://bdtechtalks.com/2021/07/04/google-translate-api-beginners-guide/
https://bdtechtalks.com/2021/07/04/google-translate-api-beginners-guide/
https://cloud.google.com/translate/docs/languages
https://mui.com/material-ui/getting-started/installation/
https://apexcharts.com/docs/installation/
https://www.sciencedirect.com/science/article/pii/S1877050914008904

Glossary

————————————————————————————————————— 
i18n - Internationalisation

MKB - Small and medium-sized enterprises

ERP - Enterprise resource planning

B2B - Business to Business

DOT - Development Oriented

Triangulation

ICT - Information and communications

technology

MoSCoW - Must Have, Should Have,

Could Have, Won't Have this time

SCRUM - a framework for developing

software

Sprint - a short, time-boxed period when a

scrum team works to complete a set
amount of work

Story - description of features of a software
system.

NPM - package manager for the JavaScript

API - application programming interface

HR - Human Resource

CTO - Chief Technology Officer

Jira - an app that aids scrum process

QA - Quality Assurance

Localisation - making something local in

character

i18next - npm library for

internationalisation

iOS - Apple phone operating sytstem

CLI - command line interface

dev - developer

JWT - JSON web tokken

CDN - content delivery network

UI - user interface

MUI - Material UI

MVCC - Multiversion concurrency control

CRUD - create, read, update, and delete

RBAC - role-based access control 

—————————————————————————————————————

Rehan Ahmed - ProfitFlow 50

Versioning

0.1 Start Graduation Thesis Document Mon, 14 Mar 2022

0.2 Introduction Tue, 15 Mar 2022

0.3 Organisation Wed, 23 Mar 2022

1.0 Requirement Analysis Fri, 25 Mar 2022

1.1 Research on existing solutions Wed, 6 Apr 2022

1.2 Architecture + DB design Wed, 20 Apr 2022

1.3 Research on Google API Mon, 25 Apr 2022

2.0 Research Integration Wed, 11 May 2022

2.1 Got feedback Thu, 19 May 2022

3.0 Fixed Report Fri, 27 May 2022

3.1 Report submission Sun, 29 May 2022

4.0 Got feedback Thu, 2 Jun 2022

4.1 Fixed Report for final version Fri, 10 Jun 2022

4.2 Final Submission Sun, 12 Jun 2022

Version Table

Rehan Ahmed - ProfitFlow 51

Appendix

————————————————————————————————————— 
Appendix I - Planning

Appendix II - Survey

Appendix III - Advise Report

Appendix IV - Database design summary 
—————————————————————————————————————

Appendix I - Planning

Steps:

Rehan Ahmed - ProfitFlow 53

Plan of Approach

Library Research

Requirement Analysis

Finalise Documentation

Design

Develop

Deploy Test

Finalise Project

Reflect + Research

Sprint

Timeline:

Week
Nr Date Task

1 Feb 7 Intro week

2 Feb 14 Plan of Aproach

3 Feb 21 Plan of Aproach

4 Feb 28 Library Research + Requirement Analysis

5 Mar 7 Jira + Sprint Planning

- Mar 13 Deadline Final Plan of Approach

6 Mar 14 Sprint 1

7 Mar 21 Sprint 1

8 Mar 28 Sprint 2

9 Apr 4 Sprint 2 + Research

10 Apr 11 Sprint 3

11 Apr 18 Sprint 3

12 Apr 25 Sprint 4

13 May 2 Sprint 4 + Research

14 May 9 Sprint 5

15 May 16 Sprint 5

16 May 23 Finalise Concept Version

- May 29 Deadline Concept Graduation File

17 May 30 Work on the Feedback

18 Jun 6 Work on the Feedback

- Jun 12 Deadline Final Graduation File

19 Jun 13 Product integration + Presentation Preparation

20 Jun 20 Presentation Preparation

21 Jun 27 Graduation Session

Table 1: Timeline

Rehan Ahmed - ProfitFlow 54

Appendix II - Survey

These are the results of a survey conducted on all the software developers working for
ProfitFlow. The questions with choices show the relevant data diagram of the answers,
meanwhile there were a few open questions for which the answers were written by
participants, so rather than writing all the answers, they were summarised.

Rehan Ahmed - ProfitFlow 56

How do you currently add or update translations? (Process)

1. Look for hardcoded or ui strings which could be stored and translated separately.

2. Think of a name for the translation key (no real convention for translation keys at the

moment)

3. Add the translation key and the translations to the necessary localisation json files (ex.

Dutch and English).

4. Test if the translation comes up as correct in the project.

How is a project updated when a new language is to be made available in the project?

- Copy pasting the key/value "template" of an existing language and changing all the values
manually.

Rehan Ahmed - ProfitFlow 57

If you have used a platform for translations before which platform was it?

- Tonguetied: https://tongue-tied.co.uk/, which is a bit of an old application to create, update,
delete and monitor translation keys.

What would be the ideal process from development point of view for translations of projects?

- Either via a third party program where you can click a flag of a language you'd like to add
and then all the existing translation keys will be duplicated for a new language entry and
have all their translation strings automatically translated, via tools such as Google
Translate or AI. If not using a third party program, an automatic translation of the existing
locale, such as autocomplete when filling in the new language' respective translation
strings.

Rehan Ahmed - ProfitFlow 58

Which features can you suggest for a platform used for management of translation?

1. A way to test translations. In the project itself but maybe also on the platform.

2. There should not be any duplicate keys on the platform.

3. Have a common convention for translation keys(maybe make a translation key

generator?)

4. Search and filter functionalities.

5. Maybe include comments on the platform for translations.

6. Track who made translations(Some sort of history on translations would be ideal)

7. A CI/CD process for all projects which updates translation keys of the project

automatically if there are updates.

8. Should automatically check if any translation for a language is missing.

Rehan Ahmed - ProfitFlow 59

Appendix III - Advise Report

Advise Report

LocFlow - Localisation

Rehan Ahmed

Supervisor - Joey Teunissen (Technical Director)

ProfitFlow.

Maagdenburgstraat 14

 7421 ZC Deventer

+31640587446

Version 3 

Rehan Ahmed - ProfitFlow 60

Table of contents

1. Introduction	
62

1.1 Report structure	
62

2. Analysis of available products	
63
2.1 Research design	
63

2.2 Available products	
63

2.3 Conclusion	
65

3. Advice on development process	
67
3.1 Research design	
67

3.2 Development Process	
67

3.2 Testing Process	
68

3.3 Scaling	
68

Appendix IV - Database design summary	 69

Rehan Ahmed - ProfitFlow 61

1. Introduction

This is an Advice Report for the Graduation Project in relation with the graduation thesis.
This graduation is for Bachelors of Software Engineering with specialisation in Big Data. The
internship for the Graduation project is performed at ProfitFlow. B.V Deventer.

The majority of the websites built for customers use NextJS as the front-end, Hasura as the
back-end, and PostgreSQL as the database. However, depending on the needs of the
consumer, alternative front-end, back-end, and database technologies may be employed.

Many customers want websites and apps to be available in a variety of languages.
Internationalisation, also known as i18n, is the process of making a technology product
available in multiple languages. ProfitFlow's i18n is currently done in a less efficient manner.
The i18n files for each project are saved locally within that project's repository.

This is where the research and development project for this Graduation comes in. The goal is
to investigate the present methods for i18n development and utilisation, as well as to improve
the i18n development process. Furthermore creating a platform that serves as a translation
directory. This can be useful both during development and when using i18n in projects.

1.1 Report structure

In this Advice report there is advise on different aspects at different phases of the whole
Graduation project. Following is an overview on the contents of this advise report:

- Analysis of available product:

This is an Analysis of existing solutions available for the same problem. It covers the costs
aspects and the features available with the existing platforms. This part of the advise is
delivered at the start of the project before the requirement analysis is conducted to get an
understanding of the existing solutions and reasoning on why a research and development
project about a translation platform is needed.

- Advice on software development process, including the test process.

This is an advise on how to best use the platform after its development. This part is Advised
after the development of the platform. And its aim is to advise a better workflow for the
translation process.

- Advice on the test process.

This part of the report is a guide for the testing work flow during a development process

- Advice on scaling.

This part of the advise is concerned at mentioning some possible improvements during
scaling of the project

Rehan Ahmed - ProfitFlow 62

2. Analysis of available products

2.1 Research design

Focused Research question:

- What are the available existing solutions and how do they compare to each other?

Research Methods:

Library research

- Literature study

- Available product analysis

- Best good and bad practices

2.2 Available products

Lokalise

Lokalise is a multinational firm established in Riga, Latvia. It's a software platform for
managing technical product translations and localisation. It's a platform that runs on the
cloud. The software makes it easier to translate mobile apps, games, and websites. Its primary
goal is to improve the technical project development process.

To use Lokalise in a react project, first create an account on Lokalise web-app. Lokalise
provides a CLI that can be used to create projects, upload, and download translation files.
From the Lokalise web-app we can get an API token which is used for the authentication of
requests from the CLI. Now after setting up the Lokalise CLI using the API token inside our
project folder, we can make request to upload or download the translations stored on the
platform. The files are downloaded in JSON format which can be used easily with any of the
react i18n library.

As Lokalise is a software as a service platform there are price aspects which need to be taken
into account for this advise report. There are different tiers of monthly payment plans to
choose. First one is called Start it costs $120 per month there is no limit of projects but there
is a limit of 5000 hosted keys it includes integration support with different developer
softwares like Git, Slack Web-hooks etc, furthermore there are 10 seats included which
means 10 people can collaborate on one plan. Next plan is called Essential it costs $230 per
month, just like Start it also includes 10 seats, the limit for hosted keys on this plan is 10000.
Apart from this there are more features and integrations. Features like translation history,
Machine translations, Stats and reports. The integrations include Jira and Wordpress. The next
plan is called Pro which costs $585 per month. This plan includes 15 seats, 30000 hosted
keys. Features like Branching and User Groups. Asana, Azure, Amazon S3 and Google Cloud
Storage integrations. Last tier of the plan is called Enterprise and to get the price for this one
must contact their sales team for a custom quote.

Rehan Ahmed - ProfitFlow 63

Locize

Locize is an online web-based Translation management system. Owned by inweso GmbH
based in Switzerland found in 2012. It is used for management of translations for tech
products, helping the development process. The creators of locize are also the developers of
i18next library. It is a Javascript based SaaS web-app.

There are many features provided by Locize. There are statistics on the modifications done,
translations retrieved or words per language. There is history of changes and who did the
change. Where we can do translations ourselves we can also order translations from Locize.
There is availability for Machine Translations. And there are some more useful features.

There are several ways to use the translations from the platform. First is the simplest way to
manually download the translations in JSON format and place them in our project folder. The
other way is by automation, Locize provides an API which can be used to sync with our local
code and then there is also a Sync tool. Locize platform is fully compatible with i18next
library.

As this is a platform which provides service for a cost there is also a pricing structure. There
is a basic $5 starting price and then the users are charged based on their usage. There are
different metrics used for calculating the usage based price. The users get charged monthly
per word, and then charged per modification and per download. First 10,000 words are
charged $0.004 per word and then per every next 20,000 words it keeps getting low by
$0.001. First 1,000 modifications of the month are charged $0,02 per modification and then
for every next 2000 it decreases by $0.005. The first 500,000 downloads are charged $0.0001
per download, next million download is charged $0.000075, after that every download is
charged $0.00005. After combining all these costs the monthly costs are calculated.

POEditor

POEditor is another competitor in the localisation platform market. It has many big brands as
their users. It is written in the C++ language. And also facilitates in handling translations for
different software products. It is very famous in the WordPress development community. But
can also support IOS, Android, Angular, React and many more in their translation process.

POEditor just like the previous two comes with its own features. Smart translation memory
reduces the translation work volume. It has integrations for Github, GitLab, BitBucket, Slack,
MS Teams.And the common features like Automatic translation and translation history.

For the development process when using POEditor it supports OpenAPI to make API calls for
different Actions. It has API calls to sync the project or to Export translation files from the
platform to our project directory.

Rehan Ahmed - ProfitFlow 64

POEditor has a simpler pricing model. There are different tiers of payment plans, but the only
thing considered is how many strings are stored on the platform there is no limit on API calls,
project, contributors or languages. For 1000 strings there is no fees. For up to 3000 strings is
the starter plan which costs $15 per month. And there are plans with string limit of 10,000,
30,000, 100,000. Priced at $45, $120, $200 respectively.

2.3 Conclusion

As these previously mentioned platforms are hosted by well known companies availability,
performance, and security are well taken care of. When it comes to scalability it should also
not be an issue to scale with these platforms to a reasonable extent as all of these platform
have support for many projects at their high tier plan.

But scalability comes at a cost, although it can be seen that it becomes cheaper per word with
every level of upgrade to the payment plan. The issue here is ProfitFlow as a company needs
to scale very fast as there are regularly new clients with new projects, which are long-term
managed by the company itself. So as the number of clients and the projects starts increasing
it can reach to a level where managing all projects under one payment plan is not reasonable
from the cost and the management perspective.

As there can be a situation where a client wants to change the company that manages the
project, in that case the management of translations for that project would also need to be
handed over with the product. And removing the project from the platform would cost the
company. Because the income from the client for the translation would stop but ProfitFlow
would still be paying the fee for the monthly plan for the platform. Apart from that moving
the project from one account to another is not very easy to manage. Where having a different
account on the platform for every customer makes more sense but that increases the costs as
for each customer there needs to be a separate plan.

Another advice is about the way the keys are stored. As a feature there could be possibility to
have some common translation keys for free e.g sign-in. So the common translation keys
could be used by any user without paying for them. This can be a competitive advantage and
help in management of common keys.

Rehan Ahmed - ProfitFlow 65

Integration Scalability Pricing Model Pricing

Lokalise Different mobile
apps, web-apps,
games

Limited
number of
allowed
developers

Monthly fixed price for
limited number of words &
limited number of developers

$585

30,000 words

15 developers

Locize i18next library Costs increase
with higher
usage

Price per word, per
modification & per download

$0.004/word for 10,000
words

+ $0.02/modification for

1000

+
$0.000075/download if
downloads > 1 million

POEditor IOS, Android,
Angular, React
and many more

Limited
number of
words

Monthly fixed price for
limited number of words

$200

100,000 words

Table 1: Comparison of existing platforms

Rehan Ahmed - ProfitFlow 66

3. Advice on development process

3.1 Research design

Focused Research question’s:

- How can our solution be integrated into existing and new projects?

- How is it possible to integrate Google Translate into our own platform?

Research Methods:

Library research

- Literature study

- Best good and bad practices

Field research

- Explore user requirements

- Task Analysis

Lab research

- Usability testing

3.2 Development Process

This advise is towards the developers for using the built platform. It aims on advising a
workflow to make best use of the developed technology.

First of all we need to look at the current development process for localisation. So as it stands
during development, the developers perform live translations. And check the project to see if
the translation is right in the project. There is currently no reported systematic approach.

The developers look for hardcoded strings in the user interface that can be made dynamic to
be translated individually. Consider a name for the translation key. And add manually the key
and its translations into the relevant localisation json files for each supported language. After
that, they go over the rendered UI to check if the translation comes up as expected.

Now as part of this project it would be advised to adhere to a standard procedure for the
localisation process. Firstly to keep track of different translations to be done. At the planning
stage stories in the Jira board should be created for translation tasks. At the moment in a
project every different module or page is separated as a good practice, from project structure
point of view. It is advised that every separate module or page has a separate Group in the
Localisation platform. One story per Group should be a standard to keep the stories short and
precise.

When the planning phase is done, next comes the development phase. During the
development phase the first step should be setting up the localisation library in the project.
And to test the library one simple manually written file with one or two keys and at least 2

Rehan Ahmed - ProfitFlow 67

languages supported should be added. Now that we are sure the library is working fine in the
project. We can create a new project on the localisation platform that was created during this
project.

While creating a project on the platform, we can select some templates that are commonly
needed for most projects. For example a general template that has keys like Login, Log Out,
Sign Up, Agree, Decline etc. After creating the project on the platform we can start creating
the needed Groups and their keys. For each key, we can use auto translation feature to get
translations for different languages from the Google API.

Now that we have the project and the required Group setup on the platform we can use the
NPM library for integration of translations into our development project. This library was
custom created during development of this project. To setup the library we run NPM install
locflow-downloader (the library name). When it is installed, we setup the required
environment variables in the .env file. In the .env file it is required to provide the project id
from the platform, the GraphQL endpoint where the backend for the platform is running and
the path to the locale folder in our development project. After this setup, by running the NPM
command npx locflow-downloader, we get all the translations and groups automatically
downloaded and written to our locale folder. After this command we will have all keys
translated in their relative language directories in our project’s locale directory.

3.2 Testing Process

Following the development stage, the story can be assigned to the quality assurance. The QA
then tests, each supported language for the module or page which the story specifies. If QA
testing goes as expected, the QA can finally approve the story for deployment. It is advised to
the developers to always use camel case while creating the key. This helps the QA in finding
any bugs on the UI, because when a translation is not working properly the string on the UI
shows the key instead of the translated value. And it is easy for QA to see any camel case
string on the UI while testing

3.3 Scaling

When the organisation grows, it is advised to pass the translation tasks to professional people
completely responsible for translations. These people can use the platform with an account
with a translator role which has less privileges than an account with admin role.

As the company has a desire to upscale this project in future as a SaaS platform. It is advised
to add organisations to the database with different feature access based on their plans. The
early research on existing platforms completed during this project can also be utilised as a
guide for pricing the plans. 

Rehan Ahmed - ProfitFlow 68

Appendix IV - Database design summary

This is the first version of db schema design:

user table has roles which are defined in
user_role table. A project can have users so
we have join table between project and user
table.

In the first version Projects and Groups are
similar. Projects can have keys and groups.
Groups can also have keys.

Keys have translations and translations have
languages.

After realising during the development phase there were some issues with the first version of
db schema. Projects and groups did not have a list of supported languages. Which made it
hard to add a translation to a project or a group.

Rehan Ahmed - ProfitFlow 69

Diagram 1: DB schema v1

Diagram 2: DB schema v2

During the reviewing of the front-end application we came to realise that we don't really need
to store keys into projects instead we can create some groups as templates and add the normal
groups to projects, because group have the keys. Also from the integration point of view it
makes sense to have keys in groups as the groups are converted into JSON modules on
export. Now Projects have Groups, Groups have keys which have translations.

Languages are still stored to projects because a language is global to a project and it stays
same for all groups owned by the project.

There is a new table template_language. This was needed when a boolean was added to
groups stating if its a template. A template can have its own languages to store keys and
translation.We have now templates so that, when a new project is created a template group
can be copied with all its keys and translations to a new group in the project, which makes
project initialisation more efficient.

Rehan Ahmed - ProfitFlow 70

Diagram 3: DB schema final version

	Acknowledgements
	Table of contents
	1. Introduction
	1.1 Problem Statement
	1.2 Objectives
	1.3 Approach
	1.4 Main Research Question
	1.5 Deliverables
	1.6 Research Plan

	2. Organisation
	2.1 ProfitFlow
	2.2 Structure
	2.3 Daily Process
	2.4 Limitations
	2.5 Risks
	2.6 Mitigation Strategies
	2.7 Quality Assurance
	2.8 Definition of done

	3. Research
	Main Research Question
	3.1 What are the available existing solutions and how do they compare to each other?
	3.2 How can we develop our own platform?
	3.2.1 Problem Analysis:
	3.2.2 Survey
	3.2.3 Interview
	3.2.4 Requirements
	3.3 How can our solution be integrated into existing and new projects?
	3.4 How is it possible to integrate Google Translate into our own platform?

	4. Design
	4.1 Architecture Design
	4.2 Business Design
	4.3 Database design
	4.4 Frontend Mockup
	4.5 Styling

	5. Realisation
	5.1 Database:
	5.2 Backend:
	5.3 Hasura:
	5.4 Frontend:
	5.5 Services:
	5.7 Steps during realisation:

	6. Testing
	6.1 Database and Backend:
	6.2 Front-End UI testing:
	6.3 Translate Service testing:
	6.4 NPM Integration testing:

	7. Advise
	7.1 Development Process
	7.2 Testing Process
	7.3 Scaling
	7.4 Continuation

	8. Conclusion
	References
	Glossary
	Versioning
	Appendix
	Appendix I - Planning
	Appendix II - Survey
	Appendix III - Advise Report

	Table of contents
	1. Introduction
	1.1 Report structure

	2. Analysis of available products
	2.1 Research design
	2.2 Available products
	2.3 Conclusion

	3. Advice on development process
	3.1 Research design
	3.2 Development Process
	3.2 Testing Process
	3.3 Scaling
	Appendix IV - Database design summary

