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A B S T R A C T

Hybrid Energy Storage System (HESS) have the potential to offer better flexibility to a grid than any single
energy storage solution. However, sizing a HESS is challenging, as the required capacity, power and ramp
rates for a given application are difficult to derive. This paper proposes a method for splitting a given load
profile into several storage technology independent sub-profiles, such that each of the sub-profiles leads to
its own requirements. This method can be used to gain preliminary insight into HESS requirements before a
choice is made for specific storage technologies. To test the method, a household case is investigated using the
derived methodology, and storage requirements are found, which can then be used to derive concrete storage
technologies for the HESS of the household. Adding a HESS to the household case reduces the maximum
import power from the connected grid by approximately 7000 W and the maximum exported power to the
connected grid by approximately 1000 W. It is concluded that the method is particularly suitable for data sets
with a high granularity and many data points.
1. Introduction

Flexibility is essential in electrical grids with a high penetration of
Renewable Energy Systems (RES). Here, flexibility is defined as the
capability of a power system to maintain balance between generation
and load under uncertainty [1], or in the context of an electric power
system, as the ability to vary the performance characteristics of re-
sources to maintain both a balanced as well as an efficient system [2].
More volatility is introduced into electrical grids through decentralized
RESs, leading to an increased need for flexibility [2]. This increase can
be achieved through control of power demand, alterations of the power
production, reinforcement of the electrical grid, power to X,X to power,
and Energy Storage Systems (ESS) [3]. Here, ESSs provide valuable
flexibility for the electrical grid, by decoupling energy generation and
usage in time to match power supply and demand [2] and therefore
reduce power imbalances.

In many situations, using a single storage solution is more prevalent
than multiple storage solutions. This is mainly due to the cost pro-
hibitive nature of ESSs, and the stage of development of many storage
technologies. However, combining multiple complimentary ESSs into
a so called Hybrid Energy Storage System (HESS) has potential advan-
tages, specifically in situations where both a quick response is needed as
well as a large displacement of energy over time [4]. The main reason
for this is that each ESS generally function best at certain time-scales
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(for example minute, hour or day–night cycles). This implies that single
ESS solutions may be sub-optimal or insufficient in situations where
responses on multiple time-scales are required. However, storage size
determination of HESSs when accounting for multiple time-scales is
challenging.

The energy balances of microgrids across time can be represented
by power load profiles. These profiles are the basis for ESS sizing for
a microgrid, or for more complicated cases of sizing a HESS where
each individual storage component has to be chosen. Furthermore,
methods to size individual storage components in a HESS become more
manageable when decomposing the balance load profile into multiple
sub-profiles. For many applications, a preliminary analysis of storage
sizing options is often required at the start of a system design trajectory,
in order to have a preliminary indication of how a system can be
designed and its feasibility, before more in depth modelling begins.
Therefore, an approach for sizing HESSs based on load imbalances
is desired which has limited computational time per possible option,
wherein the judgement of the designer can be incorporated. This ap-
proach should not compete with more in depth approaches such as
forecast based approaches (and therefore should not be compared to
them), but be used to limit the search space before a more in depth
analysis is made. In literature [5] attempts to achieve similar goals, but
among other constraints only allows for the sizing of a HESS consisting
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of two ESSs (see Section 2.2.2 for more on this). There is a need for an
overarching technology independent method for finding multiple ESS
flexibility requirements for a HESS as a pre-processing step before a
more in depth analysis is made. To the best of the authors knowledge
this research currently does not exist.

This paper presents a methodology and a tool which give insight
into required storage capacities, power rates and ramp rates for a
given microgrid scenario, for both a single ESS and a HESS design.
No limitations are imposed regarding specific applications or subsets of
available storage devices, enabling a broader search space exploration.
The methodology aims to give an estimate of the aforementioned values
for each individual ESS in a HESS. Furthermore, the computational time
of the tool should be kept at a minimum. The derived estimates can
be used for further optimization and more detailed considerations, for
example when investigating optimal control strategies of microgrids
in which storage plays a role. The method is useful in situations
where storage technologies have not yet been chosen, where a HESS is
considered as a possible solution to handle part of a microgrids power
imbalance, and where a large number of options are given and need to
be reduced in an efficient way before a more in depth analysis is made.
The methodology is demonstrated using a residential use-case.

The contribution of this paper can be summarized follows:

• A novel holistic method for analysing load profiles and deriving a
general estimation of required storage capacity, power and ramp
rate requirements, for storage devices to be used within a HESS
framework.

• A storage independent sizing based approach.
• Investigation into the applicability of the method based on the

size of the time granularity.

Section 2 gives an overview of relevant literature, pertaining to load
profile analysis, types of storage devices and their characteristics, and
sizing of HESSs. Section 3 discusses in depth the multi-step method used
to analyse an input load profile and describes the storage model used
to ascertain storage sizes. Section 4 presents the scenario used for eval-
uating the methods, which is a household energy balance for a year, as
well as the results of the simulation study. Finally, Section 5 concludes
the findings and presents research directions for future investigation.

2. Literature review

In this section, an overview of different energy storage technol-
ogy categories is given including characteristics of storage, as well as
an investigation into (H)ESS sizing techniques, focusing in depth on
frequency based load profile decomposition research.

2.1. Storage technologies

Energy storage technologies have been thoroughly investigated and
compared in previous research. Explanations of different technologies
and comparisons can be found in [6–10]. Storage technologies can
be divided into different categories based on storage characteristics.
Such categories are useful in simplifying the comparisons based on
design criteria. For example, energy storage can be categorized based
on the conversion principle and/or the energy carrier in which the
energy is stored, as well as the time-scale in which the storage per-
forms optimally. Energy storage characteristics are used to define the
categories.

2.1.1. Characteristics
The focus for this research is on storage solutions to which electric-

ity can be exported to and from which electricity can be imported as
part of an electrical network. This does not include uni-directional heat
storage or other uni-directional conversions. Different characteristics
of storage technologies have been identified, from which a selection
is given by [7,9] and shown in Table 1.
2

Table 1
Characteristics of storage devices.
Source: Aggregated from [7,9].

Characteristic

Power rating
Energy rating (Capacity)
Discharge duration at rate power
Storage duration
Daily self-discharge
Response time
Power density
Energy density
Specific energy
Specific power
Round-trip efficiency
Lifetime
Life cycles
Capital cost power
Capital cost energy
Maintenance cost
Maturity level
Environmental impact
Operating temperature

The importance of each characteristic depends on the function
the storage needs to fulfil in a specific case. However, characteristics
such as power rating, energy rating and capital cost are generally
deemed more important than other characteristics. Additionally, only
a combinations of characteristics define in which time-scale a storage
technology can (optimally) function.

2.1.2. Time-scales
Time-scales are important to categorize storage technologies. They

themselves are often closely linked to the function that the storage
device can perform. Many overviews in literature compare storage
technologies based on two or more characteristics, often using a table
or graph, examples of which are given in [11–13]. In fact, because of
the multifaceted nature of storage technologies, no single overview can
show all characteristics without sacrificing ease of understanding. Fig. 1
from [8] displays an overview of a number of storage technologies.
This overview is interesting because it links not only power scale and
duration of storage to each technology, but also links categories of
functions to the storage. Each circle represents a range within which
the storage technology can operate best, the size of the circle showing
the maturity of the technologies.

Categories of functions of storage technologies based on time-scales
are given in [8]:

• Power Quality and Regulation (≤one minute). This includes func-
tions such as reactive power control and frequency control.

• Bridging Power (one minute-one hour). This includes emergency
power backup and ramping.

• Energy Management (>one hour). This is a broader category
including functions such as peak shaving (one-ten hours), trans-
mission curtailment (five-twelve hours), renewable integration
and backup (hours-days) and seasonal storage (≥four months).

These ranges also corroborate the ranges given in [10,14], which
are short term, medium term and long term. Based on Fig. 1, no single
storage solution functions optimally in all categories.

2.2. HESS sizing

This section investigates the sizing of HESSs. For this ESS indicators
are examined, categories of sizing techniques are defined and examples
are given in which load profile filtering based sizing techniques are
investigated.
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Fig. 1. Applications for energy storage devices [8].
2.2.1. ESS indicators
Performance indicators can be used as optimization criteria to de-

termine the sizing of storage. The criteria can be divided into either the
financial or technical category.

According to [15], when using financial indicators there is either a
tendency to examine the overall costs and benefits of the system over
the operational lifetime of the system or a tendency to try to maximize
the market benefit of the inclusion of the ESS in the system. Addition-
ally, the trend is to either maximize the Net Present Value (NPV) or
minimize the Levelised Cost of Electricity (LCOE) when optimizing.
Using financial indicators has the added benefit of having only a
single performance metric, namely currency, which eases comparisons
between different solutions.

Yang et al. [15] divides technical indicators into two sets; dynamic
characteristics (time periods < one minute) and steady-state character-
istics (time periods > one minute). Dynamic characteristics generally
encompass the criteria frequency regulation (related more to balance
between power supply and demand) and voltage stability (related more
to reactive power balance). Steady-state characteristics deal more with
criteria such as reliability (for example Loss of Load Expectation or
LOLE [16]) and curtailment (for example curtailed power or curtailed
accumulated energy). Other potential technical criteria are battery
capacity, charge/discharge power rate, battery life cycle, Depth Of
Discharge (DOD) and ramp rate (see also Section 2.1.1). These criteria
are dependent on the chosen storage technology, and often serve as
constraints when choosing a storage solution. As there is no single
parameter, often multiple indicators need to be taken as constraints,
while aiming to achieve a single objective function.

Finally, both financial and technical aspects can be considered to-
gether. Financial indicators often serve to achieve an objective function.
However, the technical indicators can either serve as constraints, or
3

as input for objective functions themselves within a multi-objective
optimization process. Considering both financial and technical indica-
tors together has the advantage of potentially forming a clearer model
for the given situation. However, weighing indicators properly can be
problematic, leading to less accurate sizing choices.

2.2.2. Sizing techniques
Sizing of ESSs has been examined from different perspectives in

detail in previous years. In [15] a comprehensive review of sizing
techniques for ESSs is given, while [17] does the same for HESSs. An
overview of the suitable methods for investigating or optimizing HESS
sizing is listed below:

• Analytical methods, in which elements within a power system are
varied and performance is analysed. Examples are given in [18,
19].

• Probabilistic/Statistical methods, which mostly use synthetic data
generation to analyse a situation based on a small number of
performance criteria. Examples are given in [20,21].

• Mathematical optimization based methods, in which optimization
problems are expressed as linear, non-linear or mixed-integer
programming problems. An example is given in [22].

• Heuristic methods, in which algorithms (often local search algo-
rithm such as Genetic Algorithms (GA)) can be used to solve an
optimization problem. Examples are given in [23,24]

• Ragone method, in which a Ragone plot is used to compare
relevant indicators of ESSs. An example is given in [25].

• Pinch analysis method, which is a methodology specifically tai-
lored for heat exchange networks. Examples are given in [26,
27].
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Table 2
Overview of previous research using filtering method.

[28] [18] [29] [30]

Method Analytical Analytical Hybrid Analytical
Off grid No No Yes Yes
Other flexibility Yes, main grid Yes, main grid No Yes, generator
Load profile sample frequency(s) 900 1 1 60
Number of ESSs 2 (note, no specific

device chosen)
2 (Supercapacitor
and Fuel cell)

3 (Lead–acid,
Li-ion, Supercapacitor)

2 (Battery and
Supercapacitor)

Life cycle No No Yes Yes
Losses No Yes No Yes
DOD Yes No No Yes
Power rate Yes Yes Yes Yes
Ramp rate Yes Yes No No
Cost No No Yes Yes
Cut-off frequencies Manual Manual Algorithm Algorithm
The aforementioned methods can also be used in combinations.
dditionally, in [4] it is stated that HESS sizing methods may differ

rom methods for ESS sizing. Some methods for ESS sizing may prove
mpractical or impossible to be used for HESS sizing, as the fact that
ultiple combinations of possible solutions exists greatly increases the
esign space. In addition there is more of a focus on total cost and
ystem reliability in HESS sizing methods.

One further investigation is noteworthy, found in [5], specifically
ecause it is the only method found that attempts to investigate HESSs
ithout first choosing specific technologies. It presents a method which

izes two separate ESSs for a single HESS system, where one ESS is
ore responsible for power and one ESS is more responsible for energy.
his has the advantage of more strictly sizing the ESS taking into
ccount that the ESSs not needlessly charge each other. In addition,
he fact that the analysis is not technology dependent has inherent
dvantages (see also Section 2.2.3). However, in [5] the analysis is
estricted to only two ESSs. Furthermore other flexibility assets cannot
e accounted for directly in the analysis (for example a grid connec-
ion), but only in pre-analysis. Finally, ramp rates are not accounted
or, which means an incomplete image of flexibility requirements from
ach ESS is presented.

.2.3. Frequency based load profile splitting for HESS sizing
This section investigates in depth the current usage of frequency

ased load profile splitting in HESS sizing research. Frequency based
oad profile splitting is a technique used for sizing multiple storage
evices in a HESS by analysing a power load profile to be handled by a
ESS and splitting it into multiple sub-profiles, each to be handles by
single storage solution. This technique is generally used as a part of a
ore analytical type of approach. Of the available research in this area,

our specific publications [18,28–30] illustrate points relevant for this
aper. In mentioned papers a combination of DFTs (Discrete Fourier
ransform) and discrete filtering is used. An overview of the content of
hese papers is given in Table 2, which includes technical and financial
ndicators. A more comprehensive overview of recent research in this
rea, which is not limited to frequency based load profile splitting, is
iven in [17].

All mentioned publications use DFTs and IDFTs (Inverse Discrete
ourier Transform) in order to analyse the band of the given load
rofile. Additionally discrete filtering is used in order to split the
oad profiles into sub-profiles, by using low-pass, band-pass or high-
ass filters, or combinations of the three. Each publication also refers
pecifically to a situation for which a HESS size should be chosen, and
ailors the method to size for that situation.

Zhao et al. [28] present a wind farm scenario in which hybrid
torage should be used to smooth out the imbalance, with imbalance
efined as the difference between the generation and the consumption
rofile. The load profile is divided into four separate sub-profiles, each
ith a corresponding time interval:

• Very Short Term (one half-one hour)
4

• Short Term (one-five hours)
• Intra-day (six-24 h)
• Outer-day (24+ h)

This is a slight deviation from the time-scales mentioned in Sec-
tion 2.1.1. Due to the sample frequency of the data, no events shorter
than 900s (0.25 h) are taken into account. This also implies that
potential storage devices matched to this band may not be properly
suited to events smaller than 15 min. In the paper, the storage sizing
approach is not discussed, and no specific storage elements are chosen,
meaning no technology specific indicators are investigated, although
a maximum DOD of 90% is chosen. Two scenarios are investigated,
one in which all four sub-profiles are assigned to a storage, and one in
which the two sub-profiles with the highest frequency bandwidths are
assigned to a storage. This is in order to reduce the storage required
and examine a potentially more feasible solution.

San Martín et al. [18] investigate the integration of a fuel cell
and a supercapacitor for a microgrid containing PV, wind as well as
simulated household loads. Charge and discharge losses are modelled,
and the storage degree of coverage, in this context defined as how often
the system can function using only storage without a grid connection,
is examined in relation to energy capacity for a hydrogen system.
The supercapacitor cut-off frequency is examined in relation to the
required storage capacity. What is interesting here is that although
a frequency filtering approach has been used, i.e, a high pass filter
is used to separate the profile into sub-profiles, a solution was found
manually which compromises between the size of the supercapacitor,
the reduction in variability covered by the hydrogen system, as well as
the power exchange with the main grid.

Wen et al. [29] detail a more specific situation than the other papers
by investigating a HESS for a ship powered by PV and diesel. The main
goal is to smooth out the imbalance profile, which is more erratic than
a general PV profile due to the movement of the ship at sea. Three
specific storage technologies have been chosen, lead–acid, li-ion and
supercapacitor. PSO (Particle Swarm Optimization), in combination
with DFT has been used to iteratively investigate which two cut-off
frequencies are optimal from a cost perspective. This method uses
technical indicators as constraints, and cost as the main indicator for
the optimization objective.

Finally, Liu et al. [30] investigate a situation similar to [28], in
which a network has a high penetration of PV, although in this case the
network is off grid, but does include a generator for extra flexibility.
The main goal of the HESS is to smooth out the imbalance profile,
which here is defined as the difference between the predicted wind
generated power and the actual wind generated power. Again, DFT is
used to analyse the load profile. Here, a high cut-off frequency is first
chosen iteratively using a Power Spectral Density (PSD) based method,
in order to define which frequency band of the original load profile is to
be handled by the generator. Then, the low cut-off frequency (between
the battery band and the supercapacitor band) is iteratively chosen,

while minimizing costs. Indicators such as SoC and charge/discharge
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losses have been modelled in a more general way, i.e. not based on
the specific constraints of the discussed storage technologies. Cycle life
of the storage device has been calculated based on the specific storage
technology.

In the mentioned researches, there is a risk that splitting the profiles
while keeping certain storage technologies in mind introduces a certain
bias, as this way limits the search space already to one or two solutions.
When specific technologies are added early in the process, technical
indicators are introduced as constraints, making any conclusions drawn
specific to the technology introduced as opposed to a set of possible
storage devices. Furthermore, due to the varying goals, specific situa-
tions and indicators used, no specific HESS sizing method seems to be
used, other than the general notion of splitting up load profiles into
sub-profiles based on the fact that storage technologies function (best)
at a specific time-scales.

Given the above considerations, it is of interest to develop a method-
ology for finding HESS storage requirements for a given situation based
only on the load profile, without making a specific choice of storage
technologies beforehand. This will allow for both an unbiased analysis
as well as the consideration of different storage technologies at a later
phase in the design trajectory.

3. Methods

Selecting storage sizes for individual ESSs in a HESS is challenging.
The main problem is to assign which ESS in a HESS framework is
responsible for which time-scale behaviour, and to choose the sizing
requirements of those ESSs accordingly. Gaining insight into time-
scale behaviour can be achieved through the analysis of an imbalance
load profile. However, there is no practical way to inherently link
the behaviour of a single load profile to the set of storage devices.
Frequency filtering provides a solution by splitting up the load profile
into multiple sub-profiles and subsequently linking each sub-profile to
an ESS. This paper proposes a method to split an imbalance load pro-
file into multiple sub-profiles, each representing a time-scale relevant
within the original load profile, and then use these sub-profiles when
dimensioning storage devices. As discussed in Section 2, most research
starts analysing having already chosen specific storage technologies to
be used. This method proposes to start with sizing instead, thereby
remaining storage technology independent, and not limiting the search
space.

The proposed process, detailed in the following sections, is di-
vided into three steps. Step one is pre-processing, where the imbalance
load profile of the considered microgrid is created. Step two contains
the main processing and makes a preliminary selection of filter cut-
off frequencies and creates the resulting sub-profiles. Step three is
post-processing, where the created sub-profiles are analysed for sizing
flexibility requirements, and a decision is made to either iterate with
updated cut-off frequencies and create new sub-profiles or use one or
more of the derived sub-profile to dimension storage for the time-scale
of the selected sub-profiles.

3.1. Pre-processing

An imbalance profile is required for the creation and dimensioning
of a HESS. However, it is not always clear in a practical setting how
the profile is derived. In the following two often occurring situations
are observed.

Option one considers the entire imbalance of a given profile for a
specific (micro)grid to be the responsibility of the HESS to solve. In
other words, no power exchange is required from a connected grid or
through other means to achieve power balance. The load imbalance
𝑃𝑖𝑚𝑏 for this option is now just the sum of the power demand by the
5

load 𝑃𝑑𝑒𝑚 and the production 𝑃𝑝𝑟𝑜𝑑 , all at moment 𝑡 as shown in (1). In
this paper we use the convention that positive power and energy are
load and negative are production, unless stated otherwise.

𝑃𝑖𝑚𝑏(𝑡) = 𝑃𝑑𝑒𝑚(𝑡) + 𝑃𝑝𝑟𝑜𝑑 (𝑡) (1)

Option two considers that a part of the flexibility can be handled
through a grid connection, where a maximum power exchange is
accounted for. This situation is expressed in (2), where 𝑃𝑔𝑟𝑖𝑑,𝑚𝑎𝑥 defines
the maximum power exchange with the grid, 𝑃𝑖𝑚𝑏,𝑜 is the original
grid imbalance and 𝑃𝑖𝑚𝑏,𝑠 is the new grid imbalance to be handled by
storage. Here, the power exchange is considered to be symmetrical,
however separate grid import and export values can be chosen if desire.
Note that 𝑃𝑔𝑟𝑖𝑑,𝑚𝑎𝑥 is considered to be time dependent, although in
many situations a single value may be given for the entire time series.

𝑃𝑖𝑚𝑏,𝑠(𝑡) = 𝑃𝑑𝑒𝑚(𝑡) + 𝑃𝑝𝑟𝑜𝑑 (𝑡) + 𝑃𝑔𝑟𝑖𝑑,𝑚𝑎𝑥(𝑡) if 𝑃𝑖𝑚𝑏,𝑜(𝑡) < −𝑃𝑔𝑟𝑖𝑑,𝑚𝑎𝑥(𝑡)

𝑃𝑖𝑚𝑏,𝑠(𝑡) = 0 if − 𝑃𝑔𝑟𝑖𝑑,𝑚𝑎𝑥(𝑡) ≤ 𝑃𝑑𝑒𝑚(𝑡) + 𝑃𝑝𝑟𝑜𝑑 (𝑡) ≤ 𝑃𝑔𝑟𝑖𝑑,𝑚𝑎𝑥(𝑡)

𝑃𝑖𝑚𝑏,𝑠(𝑡) = 𝑃𝑑𝑒𝑚(𝑡) + 𝑃𝑝𝑟𝑜𝑑 (𝑡) − 𝑃𝑔𝑟𝑖𝑑,𝑚𝑎𝑥(𝑡) if 𝑃𝑖𝑚𝑏,𝑜(𝑡) > 𝑃𝑔𝑟𝑖𝑑,𝑚𝑎𝑥(𝑡)

(2)

In principle, any power load profile 𝑃𝑖𝑚𝑏,𝑜 can be used from use
cases where one or more storage devices are required. Examples are
situations such as neighbourhoods, industrial parks and off-grid micro-
grids. Additionally, any time step granularity of the load profile can be
used. However, the choice of this granularity has consequences for the
usefulness of derived sub-profiles in ascertaining storage requirements
(see Section 4). It is preferable to have a time step granularity as small
as possible (sub-minute), as this allows for the most precise view of the
imbalance.

3.2. Processing

This subsection details the processing method for the created imbal-
ance profile, which is to be handled by storage devices. The processing
step details the decomposition of a single imbalance load profile into
multiple sub-profiles through the use of discrete signal filters, discussed
in Section 2. First, the filter cut-off frequencies must be selected. Next,
the resulting sub-profiles must be created by splitting the original
profile into multiple sub-profiles.

As stated in Section 2, storage devices are designed to work (best)
at particular time scales, specific to that type of storage. It is intu-
itive to therefore create time-scale based sub-profiles derived from the
original imbalance profile and centred around that time-scales power
fluctuations.

3.2.1. Selecting cut-off frequencies
Selecting cut-off frequencies for filtering can be tricky. As discussed

in Section 2, this can be done either manually by the user or through
the use of algorithms. This method proposes choosing the frequencies
through one of two options, both of which are considered to be manual,
as they rely on the insight of the designer.

Option one forgoes any further analysis of the input load profile
itself, and focuses on the time-scales which represent behaviour that
(groups of) storage can enable. A guideline here can be Fig. 1, but
also other divisions of time-scales can be used that are suitable for the
case under investigation. This option has the advantage of choosing a
starting point that is close to potential time-scales of storage solutions,
but has the disadvantage of not taking the structure of the imbalance
load profile itself into account, possibly increasing the need to iterate
after post-processing and re-select cut-off frequencies .

Option two is more of a brute force approach, which examines
a wide variety of cut-off frequencies, a so called sub-profile band
analysis approach. Here, a number of suitable low and high cut-off
frequencies are chosen which are within the bounds of the given data.
Then, a large number of test sub-profiles are created, one for each
unique combination of low and high cut-off frequencies, or bands.
Subsequently, each test sub-profile is analysed and its flexibility charac-

teristics are retrieved, specifically capacity, maximum power, minimum
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power, maximum ramp rate and minimum ramp rate (see Section 3.3.1
for more on this). Finally, a heat map is created for each flexibility
characteristic for further analysis. The set of heat maps created then
act as guidelines for the designer to choose a set of cut-off frequencies
for creation of the sub-profiles. Heat maps are useful here as they
give the relationship between different values in a clear context, which
allows for greater ease of band selection. The advantage here is that
the designer gains insight into a number of possible combinations of
sub-profiles, while a disadvantage is that this approach increases com-
plexity as each flexibility characteristic must be evaluated individually
while taking the others into account.

It is noteworthy that the time step size of the original load profile
is a constraint which must be accounted for when choosing cut-off fre-
quencies. The Nyquist frequency is twice the frequency of the original
signal and ensures the filtered signal is free of aliasing [31], mean-
ing that filtered profiles are free of distortions. Sub-profiles must be
avoided where a cut-off frequency is higher than the Nyquist frequency
of the original load profile. Additionally, it is not recommended to
create a profile where the cut-off frequency is lower than 1∕𝑆𝑎𝑚𝑝𝑙𝑒𝑠,
where 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 represents the total number of samples in the data set,
as time-scale behaviour will not be distinguishable.

3.2.2. Creating sub-profiles
The creation of sub-profiles is done in and iterative manner. The

flow chart Fig. 2 illustrates the splitting of a load profile into sub-
profiles. Each time the given load profile is filtered using a cut-off
frequency, a corresponding time-scale sub-profile is created. Here, a
low-pass filter [32] is used, which filters out higher frequencies than the
cut-off frequency, and allows lower frequencies to pass. The remaining
unfiltered profile can then be filtered by the next low pass filter with
a higher cut-off frequency, until the entire set of cut-off frequencies
has been filtered. In principle, high-pass filters or band-pass filters
could also be used, although the resulting sub-profiles may vary due
to filter roll-off frequencies. A low-pass filter has the added potential
advantage of creating neater lower frequency sub-profiles, which could
be useful when linking these sub-profiles to specific slower working
storage technologies, in which more predictable behaviour is desirable.
Additionally, any rest behaviour as a result of adhering to the Nyquist
frequency when filtering at the highest possible frequencies should be
handled by a storage device which works best at these time-scales, and
not added to the lower frequency filtered bands. The order of the filter
is chosen to be 2nd order, as it has a sharper roll-off than a 1st order
filter. A sharper roll-off leads to a more clear cut filtering of bands,
which is desirable.

The relationship between the original profile and 𝑥 number of sub-
profiles at moment 𝑡 is given in (3), where 𝑃𝑡 is the original load at
time 𝑡, and 𝑃 𝑛

𝑡 is the filtered load at time 𝑡 for the 𝑛th sub-profile.

𝑃𝑡 =
𝑥
∑

𝑛=1
𝑃 𝑛
𝑡 (3)

3.3. Post-processing analysis

This sub-section details the post-processing phase, including deter-
mination of the storage requirements as well as the overall evaluation
of the profiles.

3.3.1. Storage requirements
Flexibility of systems can be characterized by several metrics and

indicators, dependent on a specific situation [33] or as part of a more
generalized framework [34]. Useful flexibility metrics for analysis and
assessment of power systems are power, energy and ramp-rate [35].
These metrics can also be taken as specification of storage device re-
quirements, and can be derived using the sub-profiles from the previous
section.

Power rates per sub-profile can be found by investigating the max-
imum and minimum power values in that sub-profile. As the power
6

Fig. 2. Flowchart for splitting a load profile into multiple sub-profiles.

profiles can have both positive and negative values (to represent both
positive and negative imbalances), both maximum and minimum values
should be derived.

In order to find the ramp rate (𝑅𝑟), (4) is used, where 𝑡 is the current
moment, 𝑡 − 1 is the previous moment, and 𝑇𝑠 is the sample time in
seconds.

𝑅𝑟 =
𝑃𝑖𝑚𝑏(𝑡) − 𝑃𝑖𝑚𝑏(𝑡 − 1)

𝑇𝑠
(4)

To find the required storage capacity for a sub-profile, a storage
charge profile must be created for that sub-profile. This storage charge
profile shows the relative charge contained within the storage at any
given moment, and can be both positive and negative, see (5), where
𝐸𝑡 is the energy stored at a given moment in Wh, 𝑃𝑖𝑚𝑏 is the power
imbalance. Unless otherwise stated, all energy values in this paper are
given in Wh.

𝐸𝑡(𝑡) = 𝐸𝑡(𝑡 − 1) − 𝑃𝑖𝑚𝑏(𝑡) ⋅
𝑇𝑠

3600
(5)

In order to get the total required storage capacity, 𝐸𝑐𝑎𝑝, the max-
imum value of the storage capacity profile 𝐸𝑡,𝑚𝑎𝑥 and the minimum
value of the storage capacity profile 𝐸𝑡,𝑚𝑖𝑛 are used, see (6).

𝐸𝑐𝑎𝑝 = 𝐸𝑡,𝑚𝑎𝑥 − 𝐸𝑡,𝑚𝑖𝑛 (6)

Note that here no storage losses, for example conversion losses, are
accounted for. This is purposeful as the goal is to derive a generic
indication of the storage requirements. Taking losses and other storage
technology specific factors such as Depth of Discharge (DOD) into
account would limit the search space, which is not desired at this stage.
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Fig. 3. Load profile data, 1 year.
Table 3
Load profile metadata.

Name Value

Sample frequency 0.1 Hz (10 s)
Samples 3 144 734
Total energy −625 975 Wh
Minimum power −2980 W
Maximum power 9030 W
Minimum ramp rate −517 W/s
Maximum ramp rate 523 W/s

A similar reasoning is used for battery control. In order to ascertain
the storage sizing, the control is chosen to be greedy. Here, when there
is an excess of energy available in a sub-profile, 𝐸𝑠𝑡𝑜𝑟 is increased by
this excess, and when there is a deficit of energy available 𝐸𝑠𝑡𝑜𝑟 is
decreased by this deficit. Taking specific control strategies into account
would also limit the search space, as control strategies can be based
on the aggregated flexibility in a system (i.e., the sum of the storage
devices, as well as other available flexible devices) in a multitude of
ways. Also, if prediction is part of the control strategy, this introduces
an extra level of complication which is not desired in a preliminary
investigation. Note, over-dimensioning may be a result of trying to cope
with prediction errors.

3.3.2. Evaluation of profiles
Based on the created sub-profiles, a choice can be made to accept

the sub-profiles as they are or to iterate. Here, iteration means either
returning to the pre-processing step and altering the input imbalance,
or returning to the processing step, whereby cut-off frequencies are
altered and new sub-profiles are created. Furthermore, if the achieved
set of sub-profiles is considered to be acceptable, a choice can be made
of which sub-profiles can function as storage and which should not
be considered storage. This means that, although the intention in the
pre-processing phase is to cover the entire imbalance through storage
devices and steps were taken to account for connected grid flexibility,
it may prove useful to re-add sub-profiles which are not suitable for
storage to any remaining flexibility imbalance which are, for example,
handled by a grid connection.

Guidelines for deciding which sub-profiles are suitable to be han-
dled by storage are case and goal specific and are likely linked to
required technical functions and/or financial incentives. However, such
guidelines are not within the scope of this method. As an example, if
five sub-profiles have been created, three may be handled by storage
and two could be considered to be the remaining imbalance and
7

not handled by storage. This consideration is based on the available
financial capital and the flexibility available through other means, for
example through a connection to a larger grid or backup generators.

4. Evaluation

In this section, an evaluation test-case and simulation results are
presented. The test-case concerns a household where storage should
be implemented. The main goal is to investigate the generic storage
requirements per sub-profile for the household using the method pre-
sented in Section 3. An additional goal is to examine the impact of
using the proposed method with different input load profile sample
frequencies.

We have implemented the method presented in Section 3 into a tool
in Python, the so called Load Profile Analysis Tool (LPAT). LPAT is free
to use for non-commercial ends (NC-BY licence), and available at [36].
This tool takes a load profile as input and performs the splitting into
sub-profiles as well as the flexibility characteristics analysis of the sub-
profiles based on set parameters. Furthermore, the computational time
of the tool is evaluated.

4.1. Model

The load profile data used for the model are taken from a real world
measured energy balance of a household, see Fig. 3. The household is
located in the Netherlands, and is all electric (does not use natural gas
and uses a wood stove for heating). It has an electric boiler which is
used for heating water, and an induction cooking stove. Furthermore
the house also produces energy with solar panels.

The data considered in this evaluation was collected between Febru-
ary 2018–January 2019, with the exception of May, where data from
2019 was used instead. No large differences in demand load (i.e, new
appliances) are known to have occurred during this time, making May
2019 suitable to use. The data was collected using a monitoring system
connected to the smart meter located at the point of connection to
the grid of the household, with a sample frequency is 0.1 Hz. Of the
remaining months, the majority of the data in that year was measured,
with <0.005% missing. The missing data is spread out over the year,
and not concentrated in specific moments. For larger gaps (>4 h),
missing data is replaced with a zero value. For the remaining gaps, no
data was added. After making the alteration to the data set, we consider
the data to be a good representation of the household case.

Table 3 displays the general information regarding the load profile.
Note that the total energy of the year is negative (−626 kWh), meaning
that the household produces more energy over a year than it consumes.
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Table 4
Sub-profile ranges.

Name Frequency (Hz) Time

Profile 1(𝑃 𝑑𝑦) Energy Management Long 𝑃 𝑑𝑦 ≤ 1
86400

𝑃 𝑑𝑦 ≥ 1 d

Profile 2(𝑃 ℎ𝑟) Energy Management Short 1
86400

> 𝑃 ℎ𝑟 ≥ 1
3600

1 h ≤ 𝑃 ℎ𝑟 < 1 d

Profile 3(𝑃 𝑚𝑛) Bridging power 1
3600

> 𝑃 𝑚𝑛 ≥ 1
60

1 min ≤ 𝑃 𝑚𝑛 < 1 h

Profile 4(𝑃 𝑟𝑠) power Quality and Regulation 𝑃 𝑑𝑦 > 1
60

𝑃 𝑑𝑦 < 1 min
Table 5
1 year sub-profile data, 10 s sample frequency.

Capacity (Wh) Min power (W) Max power (W) Min R rate (W/s) Max R rate (W/s)

Original profile 1 904 028.4 −2980.0 9030.0 −5.17E+02 5.23E+02
𝑃 𝑑𝑦 1 886 593.4 −797.2 762.5 −5.91E−04 5.47E−04
𝑃 ℎ𝑟 31 386.7 −1501.7 1048.3 −8.39E−02 8.47E−02
𝑃 𝑚𝑛 7177.4 −2531.5 6305.8 −9.23E+00 1.04E+01
𝑃 𝑟𝑠 190.8 −3177.6 5604.8 −5.11E+02 5.27E+02
Fig. 4. Capacity heat map. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Based on this data, a 2nd data-set was created, re-sampled to a
sample frequency of 900 s (15 min) average values, in order to explore
the effects of data granularity on the results derived using the proposed
method.

4.2. Pre-processing

The household data represents the power exchange of the household
with the main grid. This is the imbalance that must be dealt with from
the electrical circuit outside the household, and is the sum of the energy
production and energy demand at any given moment. This imbalance
profile is assumed to be completely handled by storage, and therefore
this original imbalance profile has to be split into sub-profiles in the
processing step.

4.3. Processing

During the processing, the cut-off frequencies are selected and
based on this selection the imbalance load profile is split into several
sub-profiles.

4.3.1. Selecting cut-off frequencies
The cut-off frequencies chosen are 1

86400 Hz (corresponding to 1
day), 1

3600 Hz (corresponding to 1 h) and 1
60 (corresponding to 1 min).

The ranges of the created sub-profiles are given in Table 4. These
sub-profiles were chosen because they are in line with the storage
technologies ranges given in Fig. 1, and deemed suitable for this
particular case.

As mentioned in Section 3, it is possible to examine an imbalance
load profile in more depth first before making a choice of cut-off
frequencies, which can make the resulting sub-profiles better attuned to
8

the specific imbalance load profile input. This so called band analysis
approach is carried out for the purposes of this paper. A set of heat
maps was created for several possible sub-profiles using sub-profile
band analysis. The sub-profile band analysis uses a number of cut-off
frequencies in order to investigate capacity in Wh (Fig. 4), maximum
and minimum power in W (Figs. 5 and 6) and maximum and minimum
ramp rate in W/s (Figs. 7 and 8) per band investigated, in order to
gain an overview of the set of possible bands. The cut-off frequencies
are shown in the figures, given in Hz, with the high cut-off frequency
shown horizontally, and the low cut-off frequency shown vertically.
Each cell shown that bands specifically calculated capacity, power or
ramp rate value. The cut-off frequencies were chosen based on the
sample frequency and data size. Based on the Nyquist frequency, 1

20 Hz
is the highest possible frequency. As the data is for one year, 1

604800 Hz
(a week) is a good lower frequency limit. The intermediate frequencies
were not chosen regularly, as the computational time required to carry
this out would be large. However, representative frequencies were
chosen which give a good indication of different ranges.

It is clear by the colours and values in Fig. 4 that the low cut-off
frequency value is leading when determining capacity. In this case, the
lower the low cut-off frequency, the larger the required capacity. Figs. 5
and 6 show that both the low and the high cut-off frequency effect the
maximum and minimum power requirements, where a larger difference
between both values means a larger power is required. Finally, Figs. 7
and 8 show that the ramp rate is mainly influenced by the high cut-
off frequency, with a lower value requiring a higher ramp rate. This
conforms to expectations, as it is intuitive that the higher frequency
bands contain the most drastic and quick changes, and therefore the
highest ramp rates.

Additionally, the heat maps can be used to choose cut-off frequen-
cies for the sub-profiles if so desired. This is based on the specific
requirements of a use case. For example, a decision can be made by
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Fig. 5. Maximum power heat map. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 6. Minimum power heat map. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 7. Maximum ramp rate heat map. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
a designer to design a HESS with three ESSs to handle the imbalance
of a microgrid. No storage devices have been selected yet, but it is
intuitive to have each sub-profile specialize in one specific flexibility
characteristic. Storage one is selected to focus on ramp rate. The heat
maps show that in the band 1/120 to 1/20 Hz, ramp rate is relatively
high (red), capacity is relatively low (green), but power is in the middle
(yellow) relative to the other power values. A bandwidth with a lower
high cut-off can be chosen, for example 1/60 Hz, but this would lead
to a relatively lower ramp rate (orange). The choice is made in this
case to keep the band at 1/120-1/20 Hz. The process is then repeated
for the other two storage devices, one specializing in power and one
specializing in capacity.

As stated at the beginning of the section, for this paper cut-off
frequencies are selected corresponding to the values in Table 5.
9

4.3.2. Creating sub-profiles
The sub-profiles created from the 10 s load profile data are shown in

Fig. 9. Each graph represents a sub-profile achieved using the settings
detailed in Table 4, as well as the original load profile. The graphs
increase in volatility from top to bottom, reflecting the increase in the
frequency.

For clarity, 𝑃 ℎ𝑟, 𝑃𝑚𝑛 and 𝑃 𝑟𝑠 have been enlarged to show the
behaviour over shorter time spans. Fig. 10 shows a zoomed in graph
of sub-profile 𝑃 ℎ𝑟 for approximately two days. Here, the recurring
behaviour can be seen, where a wave period has a one day period.
Fig. 11 zooms in on 𝑃𝑚𝑛 to show approximately six hours, where two
clear wave periods can be seen, or one period approximately every
three hours. Finally, Fig. 12 zooms in on 𝑃 𝑟𝑠 for approximately an
hour. Here, multiple shorter wave periods can be seen. There is less
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Fig. 8. Minimum ramp rate heat map. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. Sub-profiles one year, 𝑃 𝑑𝑦 (top), 𝑃 ℎ𝑟 (2nd from top), 𝑃 𝑚𝑛 (2nd from bottom and 𝑃 𝑟𝑠 (bottom).
Fig. 10. 𝑃 ℎ𝑟 sub-profile, two days.
of a period trend visible here due to the frequencies in the band being
the remainder of the original signal.

4.4. Post-processing

In Table 5 an overview of the characteristics of the achieved sub-
profiles as well as the of original profile is given. Also, the required
10
capacity of a storage device service these profiles is given. A few
points are noteworthy. First, the required capacity decreases as the
frequencies within each sub-profiles band becomes faster. Second, the
minimum and maximum power decreases as a general trend, as the
frequencies within each sub-profiles band becomes slower. This leads
to the conclusion that the higher power components of the load profile
take place at shorter time-scales for this case. Here, the maximum
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Fig. 11. 𝑃 𝑚𝑛 sub-profile, six hours.
Fig. 12. 𝑃 𝑟𝑠 sub-profile, one hour.
power between 𝑃𝑚𝑛 and 𝑃 𝑟𝑠 is an exception to this, as 𝑃𝑚𝑛 requires
more power than 𝑃 𝑟𝑠. Next, both the minimum and maximum ramp
rates increase as the frequencies within each sub-profiles band becomes
faster. This is to be expected, as the behaviour in these higher frequency
time-scales is faster. Lastly, the required characteristics for the original
profile and the profile 𝑃 𝑑𝑦 capacities do not differ so much, however
the power differs greatly, specifically the maximum power.

Both the decreasing capacity and the increasing power requirements
for increasing frequency ranges are in line with what is required by
storage devices in respect to time-scales. As demonstrated in Fig. 1,
storage devices generally trade power for capacity. In the case that
storage devices should serve (some) sub-profiles, it is probable that stor-
age technologies exist which meet the sub-profile requirements. This
indicates that the proposed method may have value as a preliminary
investigation tool.

Storage charge profiles are also constructed using the approach
outlined in Section 3 showing a relative charge at any given moment
for the sub-profiles. These correspond to the profiles shown in Fig. 9.
These profiles are given in Fig. 13. Two observations can be made.
First, the original profile and the profile 𝑃𝑑𝑦 storage profiles look
very similar, which is in line with the minimum difference in storage
capacities. Second, each profile shows how a cycle can behave. The
lower frequency sub-profiles have longer cycles (fully charging and
fully discharging once is a cycle), and the higher frequency sub-profiles
shorter cycles.
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Considering the above, it seems not to be practical for this use case
to use storage to handle sub-profiles 𝑃𝑑𝑦 and 𝑃ℎ𝑟, as the required storage
capacity is too large and seasonal storage is not practical at household
level. An iteration, where grid constraints are taken into account in pre-
processing or other cut-off frequencies are chosen, is possible. However,
the choice has been made here not to iterate, but to assume both 𝑃𝑑𝑦
and 𝑃ℎ𝑟 can be handled by means other than storage. Additionally, it
is assumed that sub-profiles 𝑃𝑚𝑛 and 𝑃𝑟𝑠 are suitable to be considered
storage profiles. Therefore, it is interesting to see what the effect is of
removing these two profiles from the original imbalance by subtracting
load 𝑃𝑚𝑛 and 𝑃 𝑟𝑠 from the original load profile. In other words, what
is the effect on the original grid imbalance of adding the 𝑃𝑚𝑛 and 𝑃𝑟𝑠
based HESS flexibility to the microgrid?

Fig. 14 shows this improved profile, which has a much lower maxi-
mum power requirement, and a lower minimum power requirement.
It is interesting to note that the demand of the microgrid seems to
be contained more in 𝑃𝑚𝑛 and 𝑃 𝑟𝑠, as much of the positive part of
the improved profile appears flatter. The production appears to have
a higher percentage of power than the demand covered by the other
sub-profiles, as the negative part of the improved profile appears less
flat. This means that the production behaviour has a slower time-scale
component.

Fig. 15 is a load duration curve taken from the original and im-
proved load profiles given in Fig. 14. What is clear here is that the

improved profile when storage is added to the household does not
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Fig. 13. Storage profiles one year, 𝑃 𝑑𝑦 (top), 𝑃 ℎ𝑟 (2nd from top), 𝑃 𝑚𝑛 (2nd from bottom and 𝑃 𝑟𝑠 (bottom).
Fig. 14. Improved energy balance, one year.
often have an value of 1000 W or higher. This appears approximately
1
30 th of the year, in comparison to the original profile where this
occurs approximately 1

7 th of the year. In addition, the maximum power
(imported from the grid) of the improved profile is approximately
2000 W in contrast to the original profile where the maximum power
value is approximately 9000 W, which is a marked improvement.
For minimum power (exported to the grid), the differences are less
pronounced, where the improved profile is approximately 2000 W in
comparison to the original profile which is approximately 3000 W.

4.5. Downscaled data

This section investigates the influence of the frequency of the input
load profile. For this, a new input load profile data set was created
from the 10 s data set, by averaging 90 consecutive intervals, leading
to 15 min (or 900 s) intervals. The downsampled year load profile and
the corresponding sub-profiles are shown in Fig. 16. There is one profile
fewer than in Section 4.3.2, due to the sample frequency being lower
than the cut-off of 𝑃𝑚𝑛 as in Table 4. This means that 𝑃𝑚𝑛 is not created
and 𝑃 𝑟𝑠 covers the remaining band above a cut-off frequency of 1 .
12

3600
Table 6
Comparison of storage sizes one year for original (10 s) and downsampled (900 s) data
set.

Profile name Capacity 900 s (Wh) Capacity 10 s (Wh)

𝑃 𝑑𝑦 240 100.3 1 886 593.4
𝑃 ℎ𝑟 1 719 423.6 31 386.7
𝑃 𝑚𝑛 – 7177.4
𝑃 𝑟𝑠 94 757.3 190.8

It is immediately evident, in comparison with Fig. 9, that almost
all of the fluctuating behaviour is now in 𝑃 𝑟𝑠. In addition, as shown in
Table 6, the storage size for 𝑃 𝑟𝑠 is higher than in the 10 s analysis. If
the storage capacity requirements of 𝑃𝑚𝑛 and 𝑃 𝑟𝑠 from the original 10 s
data are combined, the 900 s data required storage capacity is more
than twelve times larger. It is also uncertain what is happening exactly
during the 900 s period, which could lead to an inaccurate indication of
the power requirements and energy throughput of the storage devices
for more volatile loads. Additionally, no conclusions can be drawn from
this new data set about actual ramp rates. In summary, the flexibility
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Fig. 15. Original and improved load duration curve, one year.
Fig. 16. Sub-profiles, 15 min down-sampled data, 𝑃 𝑑𝑦 (top), 𝑃 ℎ𝑟 (middle) and 𝑃 𝑟𝑠 (bottom).
characteristics of the imbalance, and therefore the requirements on
storage devices, becomes less evident.

It is not possible to derive one or more storage solutions from
the sub-profiles created using the 900 s load data using the proposed
method on a time-scales lower than 30 min due to having to adhere
to the Nyquist frequency constraint. The 𝑃𝑚𝑛 profile was not created
and a cut-off of one hour was still adhered to, in order to keep in line
with the baseline storage technology time-scales discussed earlier. As
detailed in Section 2, storage devices work best at time-scales specific
to that technology. If an attempt was made in to link the sub-profiles
to storage technologies, it is likely that a number of possible flexibility
requirements derived from the sub-profiles would not be suitable for
consideration. However, with more granular data more accurate and
considerable flexibility requirements may become possible. This is an
argument for using data granularity that is suitable for the use case
13
being examined. In the case of a household, the lower time-scales are
relevant, and should be accounted for.

4.6. Benchmark testing

This section investigates the computational time of the tool that was
created in Python in order to test the proposed method for several data
set sizes. This tool is divided into two parts. Part I reads the original
load profile, filters and splits the load profile into sub-profiles. These
sub-profiles are then written to .csv files. Part II reads the individual
sub-profiles and gathers the power, ramp-rate and capacity data per
sub-profile, as well as creates the improved profile. This meta-data is
written to .csv files.

Testing is conducted on a Intel core i7-7500U CPU @2.70 GHz.
This is carried out for different sample sizes of data, with 10 s sample
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Table 7
Benchmark testing.

Sample size Part I (s) Part II (s)

100k 2.03 1.64
200k 3.07 2.70
500k 6.05 5.90
1000k 10.92 12.22
3000k 30.96 33.53

frequency data being used as input and creating four sub-profiles.
Table 7 shows the achieved results for the 10 s data set.

The computational time for an entire demonstration of the method-
ology for approximately one year of 10 s data (just over 3000 k
samples) is just over one minute. This tool allows for a quick prelim-
inary acquisition of requirements for multiple storage devices, based
on large amounts of input data. The proposed method is therefore best
suited for data sets over long periods with high granularity.

5. Conclusions and future work

To summarize, an approach has been presented to create sub-
profiles from a given overall profile using a frequency filtering method-
ology. This approach is considered to be used as a preliminary in-
vestigation methodology that focuses on splitting based on frequency
and creating a corresponding sizing but does not account for specific
storage technologies. In a first step, a given number of sub-profiles are
created using low-pass filters with cut-off frequencies which are chosen
based on time-scale categories inherent to storage technologies. Based
on these sub-profiles an estimate is made of storage capacity, power and
ramp rate requirements, using a rudimentary storage model. Note, that
this step can be augmented with a more in depth analysis of the load
profile data using heat maps, in order to ascertain flexibility require-
ments for multiple frequencies. The basic aim of the methodology is to
provide an easy and fast way to give insights into the necessary storage
flexibility for a given situation. Furthermore, it is specifically suitable
for high granularity data sets over longer periods of time. Additionally,
for the investigated household use case, the method proves valuable
for finding the requirements of a HESS which reduce the flexibility
required from a grid connection to handle a power imbalance. The
maximum power imported from the connected grid is reduced by
approximately 7000 W the maximum power exported to the main grid
is reduced by approximately 1000 W.

In future work, the proposed method should be tested with addi-
tional data sets, in order to ascertain how well the method performs
for these data sets. Furthermore, methods for linking each sub-profile
to a specific storage technology based on given specifications of these
technologies may be integrated. Here, also financial indicators could
play a role, as well as other technical indicators which may be added
as constraints. In practice, a group of storage solutions could be de-
rived to increase flexibility for a use case, with the storage devices
chosen from a pool of possible technologies. Heat maps used also in
an overall approach could be a useful tool here, and integrated into the
larger methodology. Additionally, it would be interesting to investigate
how the proposed method would perform when analysing a single
load profile input, for example a household, compared to analysing
a combination of load profile inputs, for example a neighbourhood.
Finally, the influence of data sensitive to seasons of the year (such
as wind or PV generation, or demand profiles with heat pumps or
air conditioning) should be investigated in relation to the accuracy of
defining the required flexibility of energy storage based on the mount
14

of data available.
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