Graduation report

Procedural RGBD pear image generation

Pepijn Wasser

Saxion University of Applied Sciences
Graduation 2022/2023
482906@student.saxion.nl

All content in this document given by
the author is being held under
Creative Commons CCO license. This
means that everyone is allowed to

use this document and all its content.

All sources that are used in this
document will be named with the
appropriate name and content of the
author.

Abstract

In this report you can read about the
pear simulator developed for Riwo as
part of my graduation assignment. It
gives a description of the company
and the end user. It also goes
through the design phases, testing,
and obstacles throughout the
project. Finally it will go into detail
about the automated annotation
used to train neural networks
created as an extension of the
project.

Author keywords:

Mesh, Procedural, Pear, RGBD, ROS2,
Simulation, Neural Network,
annotation, Substance3D, OpenCV

mailto:482906@student.saxion.nl

Contents

T dgeTe [¥To A Te] o NN T T PSSP U RO PSTROPPTO 5
T =F [ol a o [U =T o 13 ST SUUUUPPN: 5
V= 1T a e [T=E] o] o o PPPPPPPPPRt 5
U] o Jo TU =Ty 4 o] o T3P URRN 5
RESEAICH METNOMS: ...ttt ettt et st st e b e bt e b e sbe e saeesaeeennees 5
o Tol= T o) - o] o] o Y- Yol s OSSP 6
T o L=t Yol e A o o Lo SRR 6
Y=o 81T =T 0 aT=T] KT PPNt 7
PrOCESS: i e e s s e s e rraee 7
LEAINING ROS2: ... ittt ettt et e ettt et e s s e s st b e e e e e e e sssaabtbeeeeesssasassbaaaeeeesssssnssbaaaeessssnnnssnnes 7
Determining g00d and bad PEAIS:uviii et e e 7
Determining the best solution to create RGBD images of pears:.....ccccceveecveeiivcieee e, 8
Determining the best engine for procedural Models:ooeeeuiiiieciiiie e e 8
(T LA TaY-d o] o Tol=Yo [V =] W o 1T | PPN 8

(O oF LAl aY -l oF [ol o T o =TT PP 8

(@1 =F LA T oY =4 ol [o [T RSP SPP 9
Creating PEAT FlESNo et e et e e bt e e e e be e e e e eare e e e enreeas 10
Creating PEAT STALK:eii it e e et e e e et e e e e be e e e e abe e e e e abe e e e eenraeeeenreeas 10

(O T LAYl oF [ol =D (AU YRR 11

[TaTe (o] a o TP o =21 o 1T | - SRS 11
Creating PEAr COIUBIS:uiiiiiiiiie et e e et e e e s sata e e e esntaeeessntreeeesnnaaeeaas 12
(O=F T o T= A o010 1YL=}V o] TSRS 12
INCreasing Pear PEIfOIMANCEcoii ettt e e et e e e et ee e e e ba e e e e abeeeeeeabaeeeesnraeaeennsenas 12
GENErAtiNg RGBD M aeS: . i iiiiiii eeaaeeeeas 13
CONNECTING TO ROS: o e e e e e e e e e e e e e e e e e e e s e e e e e s e e esaeaesesssessssssssasanssnsnsanens 13
Creating RO S MBS a8 i iiiiieieeeieeieiiiiiiieieeeieieeeeeeeee e e seseeeeeseeeeeseaeeeeeseaaeesasesasasesssssssssssssnssasasasnsenns 13
TESEING ROS 2 MESSAZES . uuueuruererererereuurererererererererererererererererere..———————————.—...r.r.—.r.—.—.—.—.—.—.—...—.———.———. 14
Optimizing ROS2 MESSAZE CreatiON: ..cccee e e e e e e 14
FIXING DU ISSUBS: «uviiiiiiiiieecieie et e e et e e e e s e e e e eaatae e senateeeeannbaeeeentaeesenseeas 15

L T Y el g Y=t g Lo T YA RS U TS RN 15
Connecting to the Riwo pear packaging SOftWare:......ccccveeevciiiiicciiieccce e 16
LT =T o LYo = =TSR 17
Generating textures in shader raph:..... ... e 17
Learning SUDStANCE DESIZNEI:......c.uiiieecieie ettt et e e e s ree e e e abe e e s eataeeeenbaeeeennreeas 17
Pepijn Wasser 482906 13/2/2023 —-30/6/2023

2

GENEIAtING RUSSEEING i s eaeeeaeeeas 17
(CT=Y Y= = LA g T [0} 3 PRSP 18
CrRATING CULS: ceiiiiieiiiiteet ettt e ettt e e e e s e ettt et e e e e e s s anb e et eeeeessaassbeaeeeeesesannssreaaeeeesasansrnes 19
Adding geNeral IMPIrOVEMENTS:cciiiiieiiciiiieeccteee et eecree e e stre e e e etee e e esabaeeessasaeeeessaeeesnnsaneeaan 19
Creating Black SPOTS: ..ii i e et e e e e rae e e e eareeas 20
CrEatiNG ROT: oottt e ettt e e e e e s s b bttt e e e e e s s bnbeteeeeeeeeaabbbeaeeeeesasannrnes 21
Creating the PEAT CrOWN: ...iii ettt e st e e e st e e e e s sabeeeesaaseeeeessaeaesnnseeeesnnsraaenan 22
TeSHING PEAI VISUAIS ... eiiiei et e e e e e e st e e e et e e e e eabee e e essbeeeeesnseaeeennseeas 22
BUE fiXING PEAI MESN...eiii e e e e et e e e et e e e e abe e e e e abeee e eenbaeeeenrenas 23
20T =4 D T oY= o B g 1T o PSP 23
Bugfix stretching of top and bottomM:.......eii i 24
Creating automated semantic SEEMENTAtiONS:......ccuiii i e 24
VNG MBS ittt ittt ettt ettt e e ettt e e e s s s bbb et e e e e s s e st b bteaeeeesasssbebaaeeeeseasstbaaaaeeeeseannnraaaeeeas 25
MakKing the USEr INTEITACE:oii ettt e e et e e e e bre e e e b e e e e e sabae e s e s araeeeeearenas 26
Creating the dESIGN: ... e e e e et e e e e etae e e e ate e e e e btee e esabaeeeennreeas 26
IMPIEMENTING @ SAVE SYSLEM . ..eiiiiiiieeeee et e e e s abe e e e s b ee e e snbeeeesnnreeas 26
Connecting the settings to the PrevieW:. ... e e 27
TESEING ThE Ul .ot e e et e e et e e e e ta e e e e ataeeeeaabaeeesansaeeeessaeeesnsaneeans 27

(0 F- T o T TR o I o YT U L PRSP 27
Making automated aNNOTAtIONS:ccccuiii i e eebee e e e ebe e e e e te e e e e abae e e e nraeas 28
Converting images to POINt ClOUAS:oicuiiiiiiee e e e e 28
(8o g oY= =Yl oT=] o F= 14T YU oS PRPPR 29

(00T oY gY=Tot] =4 o Vo] [=T3 S PRSP 29
INCrEASING PEITOIMANCE: . .cii ittt e e e e e e e e st e e e e e ttae e s eabeeeeenbeeesenbeneeennrenas 30
Testing the IMPleMeENtation:ooi i e e e e eaaee e 30
Implementing OpenCV annOtatioN:cuuiii et sre e e re e e e e abe e e e e nreeas 31
(@1g T a1 aY -8 Lo TolU L3 = o1 = 4 o] o USRI 32
Presenting simulation at TValley Tech Conference:coccueiieeiieei e 32
T E]I PSPPSR 33
(60] 3Tl (D11 To) o LTSV USSP PSP 33
RECOMMENAATIONS: ...ttt et et s e st sab e st b e bt e s be e saeesaneeneenbeesneenree e 33
RETIECHION ..ttt ettt et e bt e s bt e s he e s ab e e be e bt e bt e s bt e saeeeateeteenbeesaeesaneeas 34
RETEIENCE [ISE: ..ttt st et e e st e e sae e e sabe e e beeesabeeesseeesnteesareeesareenane 35
AN o 01T o Lol F SRR 37
Pepijn Wasser 482906 13/2/2023 —-30/6/2023

Appendix 1: Pear packaging COMpPONENt OVEIVIEW.cccccuviiieiiieeeceiieee e e eeree e e eirre e e e earee e e e 38
AppendixX 2: EMPathy Map ... et e e e re e e e et e e e e e e e s et e e e e e eareee e ennraeas 39
Appendix 3: Document describing pear QUAlItY.......cccueiiiiiiiiiiiiie e 40
Appendix 4: SWOT analysis on possible ways to generate Pears.cccccvvcveeeercieeeesiieee e 48
Appendix 5: Example drawings to help understand what a pearis.cccccoveeeeciieeeeciee e, 49
Appendix 6: Sketch final Ul CONCEPTLuvii ittt e e e e e e e are e e e e e 52
AppPendix 7: Ul USEI tESE FESUIES ...veiiiiiieeciiee et ee e e s e e s sare e e s s nareeas 53
Appendix 8: OVEIVIEW LADEIMEccoiiiiiecee ettt e s e e e s are e e s s nareeas 57
Appendix 9 Resulting annotation with errors from first iteration of automated annotation.......... 58
Appendix 10: Several UML diagrams and dOCUMENTSc.uveieeiiiieeeciieee et eeree et e e e e 61

Pepijn Wasser

482906 13/2/2023 -30/6/2023

4

Introduction:

Riwo is a company located at the Zutphenstraat 1 in Oldenzaal, that makes software for machines,
robots, and autonomous vehicles. One of their projects consists of a robot that scans pears on a
conveyor belt, and sorts the pears based on certain quality factors. The robot makes use of a neural
network which takes RGBD images created by a camera above the conveyor as input. To assess if the
robot is working, Riwo has a small model of the machine in their workshop. Using this machine
requires the user to lay a pear on a conveyor, and manually crank a lever to make the conveyor
move. To be able to test the different pear qualities, the user needs to have the different quality
pears. This is suboptimal as pears rot, so whenever the customer sends a batch of different pears to
test with, the software engineers only have a limited amount of time to test the machine. To fix this
issue, they tasked me to make a system which replaces the entire physical machine by simulating the
RGBD images which would normally be created by the camera above the conveyor belt.

Riwo uses Robot Operating System 2 also called ROS2 to develop their robots. They specifically use
the ROS2 Humble distribution. ROS2 uses networked nodes to create complex logic. This allows the
system to have interchangeable components. For example, it is possible to switch a camera or
sensor without it influencing the detection of objects. See appendix 1 for examples of different
software components a robot might have. Most nodes in ROS2 are written in C++ or Python, which
means it can include external libraries. Riwo uses the OpenCV package in combination with the
YOLOACT EDGE neural network for the detection of pears on the conveyor belt. Another piece of
software Riwo uses is Gazebo Ignition. Gazebo is an engine which is used to simulate, and test
developed code before it is rolled out in the real world.

| was part of the research and development team, coordinated by my company supervisor Nathalie
Geerlings. The team consists out of eight people several of which conduct their internship or
graduation. Most team members do not work on the pear sorting machine, but they instead work on
other projects including autonomous vehicle development or apple picking algorithm creation.

Research questions:

Main question:
Is it possible to create RGBD images of pears in a game engine, and have the generated images be
connected to the ROS2 network so that developing a pear sorting robot becomes more efficient?

Sub questions:
What makes a good or bad pear?

What ways are there to create RGBD images of pears?
How can one send the generated data to ROS2?

What engine is best suited to create RGBD images of procedural pears?

Research Methods:

By researching and implementing all the sub questions, we can answer the main question thus, one
needs to define how to approach the sub questions to properly get answers to their questions.

To get to know what makes a good or bad pear, Riwo already had contact with the customer.
Unfortunately, all this information is scattered across PowerPoints, system files and pieces of code
or mental notes, meaning that | will have to gather this information, and condense it to a document
which one can use as an anchor point in developing the pear errors.

It is important to determine the way one wants to generate the RGBD images before one selects an
engine because, the way images are generated may use various aspects of an engine like the physics

Pepijn Wasser 482906 13/2/2023 -30/6/2023

5

engine or image processing tools, making certain engines better in different scenarios. To get to
know what solution | will use to generate RGBD images, | plan to do online research into what
solutions are possible and make a SWOT analysis to determine the solution | will develop.

If one manages to create RGBD images, the images will need to be sent to ROS2. If | were to use a
game engine like Unity or Unreal Engine, | would need to research how to generate ROS2 messages
which contain the data of the generated images, and how to send them to the software developed
by Riwo. To get to know this, | plan to look at the ROS2 and OpenCV documentation and the
documentation of the package | will use to link to ROS2, and the software developed by Riwo.

Riwo normally uses Ignition Gazebo for their simulations, thus it would be beneficial if | would also
use this piece of software however, depending on the way | generate RGBD images, and how good
support for ROS2 is in different engines, other solutions might be more suitable. Based on online
research and experimenting with Gazebo, | plan to choose the most suitable engine.

Process of approach:

With the information we gather from the sub questions, | could gradually make a simulation which
generates images of pears. The easiest images to generate are good and straight pears. Thus, at the
start, | would focus on generating images of good pears, and testing if the generated images are
recognized as good pears by the robot by sending them to a neural network over ROS2. If the images
were correctly recognized as pears, it would affirm that my solution works correctly.

After having created good pears, | will generate pears with mistakes. Based on the list of faults a
pear can have, | will discuss which errors are most important, and thus which ones | will focus on.
Like the good pears, if one were to generate pears with lesser quality and feed the images into the
neural network, one can validate that the simulation works.

To make the simulation user friendly and easy to use, | will need to make a graphical user interface
(GUI) which gives the users control of the pears being generated. To evaluate if the GUI truly is
friendly to use, | will need to conduct a user test, and implement the feedback in an updated
version.

User description:

To better understand the user | will be making a solution for, | made an empathy map which can be
seen in appendix 2. With this empathy map in mind, | created a user description.

Since most of the people that will use my application are software engineers, they do not necessarily
have knowledge about game like mechanics such as save files or advanced user interface options.
This also means that they do not have Unity on their workstations.

All the developers use the Ubuntu distribution of Linux as their main operating system. This means
my application should work on Linux.

Currently the developers can assess their developed software by manually cranking a wheel to move
a pear across a model machine in the workshop. Using this model machine takes a lot of time which
would be better spend on developing software.

The application developed by Riwo that scans the conveyor for pears uses a neural network which
needs to be trained on a dataset. To create this dataset the developers, need to use the model
machine to generate images, and then manually annotate hundreds of these images which can take
several hours to days. This again is a timely job which most find boring to do.

Pepijn Wasser 482906 13/2/2023 -30/6/2023

6

Requirements:

Because the actions the user needs to perform mentioned in the user description can take several
hours, my solution should be quicker to use than the current workflow. As the users might not be
used to save files and an expansive user interface, the application should be intuitive and easy to
navigate. Since the users do not have Unity, it is necessary that the application is playable in an easy
to install build. As the users use Linux, packages being used should support this platform.

Process:
Learning ROS2:

In accordance with the company introductory manual, and since it is important to know how the
company and their software works, | started my graduation by going through the official ROS2
tutorials to learn the basics of ROS2. | saw how ROS2 has nodes, and how the nodes communicate
(Understanding Nodes — ROS 2 Documentation: Foxy Documentation, n.d.). | managed to make a
robot which can be moved with terminal commands.

Determining good and bad pears:

After having been introduced to the company, my colleagues, and after having learned the basics of
ROS2, | made a document describing the pears that will need to be generated. The document, which
can be seen in appendix 3. It describes the pears the customer works with, and the possible faults a
pear can have. | saw how pears can be wildly misshapen (Figure 1A), miscoloured (Figure 1B), or how
pears can be injured or rotten (Figure 1C).

Figure 1 Image showing misshapen pears(A), miscoloured pears(B), and rotten pears(C)

Pepijn Wasser 482906 13/2/2023 -30/6/2023

7

Determining the best solution to create RGBD images of pears:

Having a clear vision of how pears can, should and should not look, | started to determine the best
way to generate RGBD images, and devised several ideas. The first idea was to modify existing RGBD
images by stretching or warping them to create diverse sizes and shapes. By adding certain colour
patterns, | could simulate injuries and colour issues. Another option was to use Houdini to create
procedural models based on parameters. The third idea was to train a Generative adversarial image
synthesis neural network and have it generate images based on parameters. Lastly there was the
option of generating 3D models of pears and have a camera in the scene generate the RGBD images.

| read up on the way these concepts could be implemented, and based on the SWOT analysis in
appendix 4, | determined that generating 3D models would be the most suitable method as it
doesn’t require any datasets, since it gives a lot of control of the exact images and it allows for
runtime generation.

Determining the best engine for procedural models:

With a solution defined, | started to investigate the engine | would use. Riwo uses Gazebo Ignition
for their other simulations, so | started investigating this engine. According to Aderinola (2019),
Gazebo is “A 3D simulator with the ability to accurately and efficiently simulate populations of
robots in complex indoor and outdoor environments”, thus the focus of Gazebo is not on visuals. It
also did not allow for complex procedural meshes to be created, and editing the engine was difficult.
In the end these issues made me decide against using Gazebo as the engine for my simulation. | also
investigated Unity and the Unreal Engine as potential candidates for the simulation. Since | was
more familiar with these solutions, | mostly investigated how well their support for procedural
meshes was and if there was a good way to connect the engine to ROS2. | learned that Unity has an
official ROS2 package, and that it had better support for procedural meshes, so | went with Unity as
my engine for the simulation.

Creating a procedural pear:

Creating basic shapes:

| started creating my procedural pear mesh by following a tutorial on how to create a procedural
triangle. I learned how the order of the triangle influences what side is being rendered, and how to
make buffers (Jayelinda, n.d.). After creating a basic triangle, | made two quads out of four triangles
and six vertices (figure 2).

Figure 2 Two quads made up of four triangles.

Pepijn Wasser 482906 13/2/2023 -30/6/2023

8

After having learned how to create a quad, | started to experiment with moving points around and
made a triangular prism (figure 3).

Figure 3 Procedurally generated triangular prism.

Creating a cylinder:

Having gained knowledge about how to create basic meshes from scratch, | started to determine
how to make a cylinder. | planned out where | should place the vertices and how to connect them. |
determined that it was the easiest if vertices on the same horizontal layer have indexes after each
other. | placed the vertices around a centre in a circular shape for a defined number of layers. The
number of vertices per layer, and the number of layers could be defined by the user in the inspector.

After having placed the vertices, | needed to connect the right vertices with each other. | saw that
for any given vertex that is not the last index on a layer, it should connect to the vertex with the next
index, and the vertex with an index equal to the current index added to the number of vertices per
layer. If it is the last index, it should connect to the first vertex on the layer and the vertex with the
next index. See figure 4 for an overview of the connections. A similar method has been used to
create the other triangle that makes up the square at a given index.

A

Figure 4 connections with index at end of row (A) or vertex index in middle of row(B).

Pepijn Wasser 482906 13/2/2023 -30/6/2023

9

With all the vertices and connections in place, | managed to create the cylinder as seen in figure 5.

Figure 5 Procedurally generated cylinder with dynamic number of vertices.

Creating pear flesh:

To generate the part of the pear one eats or the “pear flesh”, | had to devise an organized way to
place the vertices in a pear shape. | started by analysing the shape of a pear and came up with the
following definition: “A pear is a cylinder with varying thickness around a core that can be curved”.
Before | arrived at this definition, | made several drawings and notes to help me understand a pear.
These drawings can be seen in appendix 5. Based on this definition | used the logic of the cylinder in
combination with a user defined animation curve to generate the pear flesh. With this
implementation the user can set a curve that resembles the offset from the core and define the
shape of the pear in an intuitive way.

Creating pear stalk:

A pear also has a stalk sticking out of the top. To make the stalk, | used the same concept as for the
pear flesh except that the cylinder does not have a varying thickness rather, it has three animation
curves. Each curve represents the rotation of the stalk over time. If one sets the curves to nice
looking values, we can achieve results similar to figure 6. The pear flesh was also modified with this
logic to make it so the pear can be curved in certain directions.

Figure 6 Stalk generated based on animation curves.

Pepijn Wasser 482906 13/2/2023 -30/6/2023

10

Creating basic textures:

Because it is possible to “unfold” a cylinder into plane (see figure 7), it was easy to set the correct
UVs of the vertices. We just have to unfold the shape and see where each vertex ends up. With the
UVs set, we can apply a wooden texture to the stalk, and a pear texture to the pear. The only issue
with this implementation is that the part at the top and bottom where the vertices are almost equal
have some stretching, but | decided to postpone this issue as it would possibly not have influence on
the simulation.

A++B

A B
i

..-‘J' -

, C
() c .

Figure 7 Unfolding a rectangle into a triangle (Druguet et al., 2004)

o~ — =

Randomizing pear:

Now that we can generate a procedural pear based on 7 animation curves (1 for flesh thickness, 3
for flesh direction and 3 for stick direction), we can generate random pears by defining 2 curves in
each animation curve, and have the program create a new curve between the two curves we set
(Unity Technologies, n.d.-c). To implement this, | changed the animation curves into min max curves.
In figure 8 we can see three randomly generated pears.

Figure 8 Three procedurally generated pears with random shapes

Pepijn Wasser 482906 13/2/2023 -30/6/2023

11

Creating pear colliders:

When real pears move across the conveyor, they sometimes roll around giving the camera
difficulties with tracking the pear instances. To simulate this behaviour, | needed to make the pears
behave like rigid bodies. Due to technical limitations, Unity rigid bodies do not support non-convex
mesh colliders (Unity Technologies, n.d.-a). Since the simulation needs to be as realistic as possible,
non-convex mesh colliders were mandatory. To fix this issue | used a package which generates a lot
of cube colliders based on a mesh collider (Sanukin, n.d.). This created an accurate representation of
the pear mesh collider that could be used in the physics engine. See figure 9 for the generated
collider.

Figure 9 Procedurally generated pear(A), the procedurally generated collider(B) and both combined(C)

Creating conveyor:

After making a script that spawns a pear every so often and after giving the pear a good collider and
rigid body, | started to work on a component which moves the pears across the roller conveyor. | ran
into the issue that the force | added to the rigid body was not enough to push the pear across the
small incline of the roller, and a force that would move the pear across the roller would have too
much force so it would fly across the conveyor once the resistance of the roller was gone. To solve
this issue, | gave the pears an additional upward force to help get them over the incline of a roller.

Increasing pear performance:
The pear generating and conveyor system was working, but every time a new pear was being
spawned, it would massively spike performance (figure 10).

Figure 10 Performance spikes on pear spawn

After debugging the performance using the Unity profiler, | found that generating a collider took a
big toll on performance. To fix this, | made modifications to the script so that generating the collider
became asynchronous. This divided the process of generating a collider over time, but now colliders
were being generated while the pear was already on the conveyor. | decided to make a variation of a
pooling system in which spawned pears would move to a buffer of pears when they completed

Pepijn Wasser 482906 13/2/2023 -30/6/2023

12

generating their collider. When the conveyor needs a pear, instead of spawning a new one, it takes a
pear from this buffer (Figure 11).

Figure 11 Pears being spawned on the bottom row, and pears in buffer on top row.

When one compares the performance before the changes (figure 10) and after the changes (figure
12), one can see that the big spikes are no longer there. We can also see that the performance is
around 60fps even if we spawn a pear every second.

Figure 12 Performance after pooling

Generating RGBD images:

With the pears working, | started to investigate how | was going to create the RGBD images. | came
across a GitHub repository called image-synthesis which contained a code package that captured
RGBD images. This package also had the potential to capture different image types like a semantic or
instance segmentation image. The package made use of command buffers and replacement shaders
which | never used before. After researching both topics, | leaned that they were used to render an
image with a different shader (Kalathil, 2018). Later in the project | removed this package due to
performance reasons.

Connecting to ROS:

Creating ROS2 messages:
When | was researching what engine would be more suitable to implement ROS2 communication, |
saw that there were several packages to connect C# to ROS2 like ROSBridge, an open-source

Pepijn Wasser 482906 13/2/2023 -30/6/2023

13

package developed by Siemens called ROS# and an official package developed by Unity called ROS-
TCP-Connector. | decided to go for Unity’s official package as ROS# made use of ROSBridge for its
communication, and Unity’s official package was built on ROS#, thus | determined that using the
highest-level package would likely have the most features. The ROS-TCP-Connector also had more
debugging tools and tutorials than ROSH.

| followed the tutorials that came with the package to see if this package was suitable for the things |
needed it to do. | managed to make a cube change colour by receiving terminal commands, and have
it broadcast its position back to the ROS2 node in the terminal. After completing these tests, |
determined that the package was suitable for the ROS2 communication.

| cloned Riwo’s repository that receives the RGBD camera data and determines the pear quality to
see what the required content of the ROS2 message was. | learned that the message required an
encoded image as well as image descriptions. Since a RGBD camera is a common sensor, the package
already contained a way to initialize a message, but | had to initialize it with the correct values. The
message also required information | had never heard of like header stamps or a big-endian bool.
After discovering that big-endian influences the order of stored bytes, | managed to send the images
to ROS2 (Bedell, 2021).

Testing ROS2 messages:

To assess if the messages were created properly, a colleague recommended that | send the message
to a program called Rviz2 before | would send them to Riwo’s software. Rviz2 is a graphical user
interface that watches for ROS2 messages on the network. It also counts the messages received and
the time it has been active. By using this program, it was easy to detect and debug my messages and
the communication between Unity and the ROS2 nodes.

Optimizing ROS2 message creation:

With the messages working, | noticed that the frame rate took a big dip (figure 13). In the profiler |
noticed two sources of the performance issues. The first was the way the images were being
captured, and the second one was the creation of the ROS2 messages. | fixed the first issue by
creating my own implementation of a RGBD camera, instead of using the external package. What
makes my implementation better than the package is that | render the screen with one camera
instead of once for every type of image, saving several render calls every frame.

Figure 13 Performance spikes when sending data.

To fix the second issue, | took another look at my code, and noticed that a method called ReadPixels
was bad for performance. This method copies the pixels from the render texture generated by the
camera into a texture2D, which in turn can be used to access the data itself which is being send in
the ROS messages. In my research for a better solution, | stumbled across the function
GPUAsyncCallback. It uses the data stored in a more efficient way thus, the function could be used
to replace ReadPixels function. After some more benchmarking, | noticed that it was however not
better for performance, thus | went back to the ReadPixels method because the GPUAsyncCallback
caused stuttering unrelated to fps on the receiving end, and because the performance was slightly

Pepijn Wasser 482906 13/2/2023 -30/6/2023

14

better. In figures 14 and 15 we can see the minimal performance difference between ReadPixels and
GPUAsyncCallback. Due to the program still hitting the target 30 fps, | decided to leave this issue for
later.

Figure 14 Performance with Read Pixels().

Figure 15 Performance with GPUAsyncCallback().

Fixing build issues:

As | wanted to see the performance of the application without the editor affecting performance, |
made a build. When the build was finished, | noticed that my depth texture was not being rendered
by the camera. After a day of debugging, | managed to find that a method called Blit was not being
called in the build. In this method | cast the view of the camera to a render texture with a special
shader. In my research | found that the method does not properly pass the depth values into the
shader (Unity Technologies, n.d.-b). To fix this | edited the shader | used in a way that forced unity to
write to the Z-buffer. This managed to fix the issue.

Fixing memory issues:

I noticed that there were still performance spikes. In the profiler | saw that it was related to the
GetRawTextureData method call in my ROS2 communication script. Uncommenting this line fixed
the issue, but it meant we were not sending an image of the generated pears, instead it was a black
image. Another thing | saw in the inspector was that the memory would go up in steps, and every 10
seconds it would quickly go down again (figure 16). The moments of this also aligned with the
moments in which the inspector indicated that the GetRawTextureData was causing issues.

Pepijn Wasser 482906 13/2/2023 -30/6/2023

15

Figure 16 Performance spikes match with memory clean up.

GetRawTextureData was getting the byte array of a texture, so the byte array could be sent to ROS2.
We are calling this method thirty times per second, so if one calculates the memory we assign in this
method alone, it is already 0.15 Gigabyte per second. In my research | found that the Unity garbage
collector likely couldn’t keep up with this amount of generated data, so once it got overwhelmed, it
would do a more inefficient flush of the created garbage. This is the moment which one can notice
every 10 seconds.

As | experienced this issue in the editor only, which is likely due to the editor and profiler also storing
the data to display in the inspector and graphs, and since | couldn’t find a better way to get the bytes
of a texture, | decided to put the issue on hold.

Connecting to the Riwo pear packaging software:

After creating the RGBD camera communication, | installed the software Riwo developed to analyse
pears on a conveyor. After setting the message names of my messages to the names the software
expects, | managed to get their software to work as can be seen in figure 17. The figure shows a
purple bounding box around the generated pears which indicates that the software was recognizing
my pears. It correctly identifies the parts of the pear itself, but it also misidentified the space
between the roller rows as part of the pear. After discussing the results with my supervisor, it
became clear that Riwo’s software was not good enough to correctly identify parts of the pear, but
that it was good that the pear was being recognized.

Figure 17 Procedural Pears being recognized by Riwo’s software.

Pepijn Wasser 482906 13/2/2023 -30/6/2023

16

Generating textures:

Generating textures in shader graph:

Up until this point my pear texture was the same for every pear, so | started to texture the pearsin a
procedural manner. | looked at how other people textured procedural meshes, and did not find
many sources that did this, so | had to experiment myself. | started with trying to add a cut texture
to the existing texture in Unity’s shader graph, but the cut was too big as both textures had the same
size. This meant | had to use a smaller image of a cut however, pasting images with varying sizes on
top of each other took quite a bit of time.

Learning Substance Designer:

Because creating textures in shader graph proved to be quite time consuming and difficult for a
simple texture, | started to search for a better option. | knew that Substance Designer was a suitable
tool for making procedural textures while exposing settings to Unity. After testing the tool, |
determined that this was a way better tool than the Shader Graph, so | started learning this tool.

After watching three basic tutorials on the YouTube channel of Substance Designer, | got the hang of
the basics and started to work on my texture. One thing | noticed while making my texture was that
many tutorials were for Substance Painter rather than Designer, even if the search specifically
mentioned Designer. This meant that | had to implement most of my texture myself.

Generating base colour:

| started by creating a texture which follows a gradient to switch between two colours from bottom
to the top. After learning how to expose variables to Unity, | managed to get the texture to work. |
expended the base colour by modifying the gradient with noise to make it feel more natural.

Generating Russeting:

A major feature of a pear are brown areas also called russeting. Russeting is not bad for consumers
and does not influence the quality however, the robot that analyses the pears can mistake the
russeting for rot, so it was important to get this right. Between pears the amount of russeting varies
wildly, as does its position on the pear, but it is more prominent at the bottom of the pear.

| used different noise functions together with gradients to make “islands” of russeting, which were
denser at the bottom. In figure 18 one can see the generated grayscale image. The black parts
indicate russeting while the white parts had the base colour of the pear. Applying this texture
resulted in the pear in figure 19.

Pige £ PR N~
A7* - T o
‘» v Y.

Figure 18 Grayscale image of brown areas.

Pepijn Wasser 482906 13/2/2023 -30/6/2023

17

Figure 19 Pear with brown areas (indicated in orange).

Generating dots:

When looking at a pear one can see small dots ranging from green to brown. Some areas have a
higher density of dots compared to other areas. Dots however never appear on brown areas. |
started by placing dots on the white areas from figure 18 to prevent dots from spawning on brown
areas. You can see the dots in figure 20.

After testing the implementation, the generated texture felt quite flat, so | made the brown areas
and dots slightly lower than the surrounding surface using a normal map, as to better reflect a real
pear.

-
. 4
! C 4
-~
Figure 20 Pear dots generated.
Pepijn Wasser 482906 13/2/2023 - 30/6/2023

18

Creating cuts:

Another important part most pears have is some surface cuts which have discoloured brown. |
started by creating straight lines and indenting the pear surface on the cuts with a normal map. This
felt quite artificial however, so | had to create a way to bend the straight lines. In my research |
found out about a node called directional warp. | used this node together with noise to bend the
lines in a randomized way. In figure 21 you can see the result.

Figure 21 Surface cut.

Since | did not know if the lines were being generated with the correct settings, and since the
ultimate goal was to randomize the pears, | exposed several variables to Unity like scratch size and
amount. | did the same for relevant settings in the dots and russeting generators.

Adding general improvements:

As the most core features of a pear texture were now in place, | looked at the pear and concluded
that the pear looked more like a plastic toy rather than a real pear. | determined that this was due to
a lack of detail, so | started to expand on the parts | already made. After looking at a real pear under
different lighting conditions, | saw that the brown spaces consist of areas of two slightly different
colours, one of which is more reflective. Furthermore, | also noticed that there are some small black
dots on the russeting. | implemented these findings and found the result more realistic.

| also determined that the brown dots have a slightly darker colour around them as opposed to the
surrounding base colour. | implemented this feature by scaling the dot size, giving that a darker
colour, and then placing the dots on top of the slightly bigger area.

Lastly, | gave the base pear material more detail by adding more noise and giving the overall texture
a slightly randomized roughness. The results of these changes can be seen in figure 22.

Pepijn Wasser 482906 13/2/2023 -30/6/2023

19

Figure 22 Texture with more reflective black parts, Dot borders and a rougher base shape

Creating black spots:

Pears sometimes also have black areas of little dots so densely packed together that they are almost
indistinguishable from one another. These were easy to implement as Substance Designer already
had a noise generator which looked like the result | wanted. In figure 23 you can see the black spots,
and in figure 24 you can see the current pear in Unity.

Figure 23 Black spots.

Pepijn Wasser 482906 13/2/2023 -30/6/2023

20

Figure 24 Pear with colours set to green rendered in Unity.

Creating Rot:

The last feature | had to add was rotten areas on the pear. Because there are distinct types of rot, |
decided to make a document explaining the several types of rot. Based on this document | started by
creating circular areas with a shiny brown colour. After judging the looks of this, | determined that it
would increase realism if | added mould to the texture. The result can be seen in figure 25. After a
weekly meeting with my company supervisor, we determined that the looks were good enough, and
that | should focus on creating other parts of the pear.

Figure 25 Pear texture with rot and mould.

Pepijn Wasser 482906 13/2/2023 -30/6/2023

21

Creating the pear crown:

| decided to continue by implementing the crown of the pear on the bottom. The reason for this was
that the programmer of the neural network was working on rot detection, and they were having
issues with the neural network detecting the crown as rot, which has a major impact on the pear
quality. After looking at pear crowns and discussing the requirements with my supervisor, |
determined that the crown does not need to be perfectly accurate, and that several smartly placed
triangles would do the trick (figure 26). These triangles are placed in a small indent most pears have.
Creating this indent was quite easy as | just had to increase the y value of the core, which was
already implemented with my core bending curves.

Figure 26 Pear crown made up of several triangles.

Testing pear visuals:

Having created a model that | thought resembled a pear quite well, | conducted a small test in which
| cut out a generated pear from a screenshot and edited it into a real image without altering the
colours. The created image can be seen in figure 27. | than showed it to both colleagues and friends.
Initially they questioned why | showed them that image, but after pointing out that there was a fake
pear among them, they quickly noticed the pear. They mentioned that the points that gave it away
were mostly the lighting on the edges of the pear and a slightly different pear colour. However, the
fact that they were initially unimpressed indicated that my pears were looking quite realistic.

Pepijn Wasser 482906 13/2/2023 -30/6/2023

22

Figure 27 Generated pear indicated with arrow photoshopped in between real pears.

Bug fixing pear mesh:

Bugfix line in mesh:

Up until this point my pear mesh always had an issue | ignored. There was a small seam were the
sides of the tiling texture connected caused by the pixels interpolating the colours between the last
vertex of a row and the first vertex of the next row (Figure 28). After trying various fixes, | settled on
placing the last vertex of each row on the first vertex of the row. This had one issue however as the
lighting did not properly work on this edge. From the 3D rendering course, | remembered how
vertices on the same position need to average the tangent between the two vertices on the same
spot and their neighbours, so after implementing this interpolation, the seam was gone (Hahmann &
Bonneau, 2008).

Figure 28 Seam on in the pear mesh

Pepijn Wasser 482906 13/2/2023 -30/6/2023

23

Bugfix stretching of top and bottom:

Another small issue in my mesh was in the distribution of the vertices relative to the height of the
pear. Until now, | assumed that my pear was a cylinder, so | positioned the vertex layers evenly. This
is however not an even distribution if we consider that various parts of the pears have a different
width. If the width of the pear quickly changes like in the top and bottom, this uneven distribution
causes stretching (figure 29).

Figure 29 Stretching UVs due to uneven vertex distribution.

To be able to fix this issue | would need to calculate the circumference of the pear before placing the
vertices. This is however very costly in performance and mathematically difficult. To solve this issue,
| reworked the animation curves | had used into my own custom curves. Just like in the old system
the user can define his own animation curves, but based on this curve we create a new curve which
places and connects the points with straight lines. This is implementation is a faster way of
approximating the circumference. Now when we want to know the width of the pears at a certain
height, it bases the width on the approximate circumference curve. This made the vertex
distribution more evenly and fixed the issue of the textures stretching.

Creating automated semantic segmentations:

As my graduation assignment was done except for the Ul, and since there was still enough time left,
me and the company supervisor decided to expand the assignment by implementing automated
semantic segmentation. These segmentations create areas of solid colours based on features in an
image. This allows them to be used to train neural networks. Since my substance file has the ground
truth of the texture, | created a variation of the output texture in which | replace all the details, like
rot or scratches, with a solid colour. After learning how to create multiple materials in Unity based
on a single graph, | got the images working. Figure 30 shows a segmentation image and its source
texture.

Pepijn Wasser 482906 13/2/2023 -30/6/2023

24

Figure 30 Semantic segmentation image (A), original texture (B) and segmentation texture applied (C).

In Unity, an object can only have one material, but we want to render the object with the colour
texture and with the segmentation texture. To solve this issue, | swap the material of the object
after the scene has rendered, | render the scene a second time. This solution was working, but it
decreased performance as we now render the scene an additional time.

Saving images:

Since the neural net feedback image is only used when creating a training dataset for the neural net,
| did not need to send it over ROS2, but instead | had to save the files locally. | implemented a
system that saves the images in a folder with the current data, which has subfolders for the different
images like RGB and the feedback images. The images were named based on a unique index. This
way it is easy to find the matching RGB and feedback images.

When looking at the generated feedback image however, | noticed that the solid colours of the
various parts of the pear were blending at the borders of the colours causing a slightly blurred image
(figure 31). Since this makes the images useless for training a neural network, | had to find the
source of this problem.

_a

Figure 31 Feedback texture with blurred pixels

Pepijn Wasser 482906 13/2/2023 -30/6/2023

25

| noticed that the blending would mostly go away when increasing the image size to something
massive like 12800 x 7200. This is however not a suitable solution as this decreases performance. |
also tried to change texture and camera settings like anti-aliasing or MSAA, but this did not have a
noticeable effect. In the end | found out that the Mipmaps generated by the substance graph were
the cause of the problem, so after disabling the mipmap generation, the images were being
generated correctly in a normal resolution (figure 32).

Figure 32 Feedback image with sharp pixels (any blending is due to image scaling)

Making the user interface:

Creating the design:

With the functionality for creating a neural network dataset done, | determined that starting with
the user interface would be my best course of action as this would allow my colleagues to start using
my tool, and since it would allow me to conduct an early user test. | started by determining what
needs to be in the Ul, and followed that by creating several sketches. | asked my colleagues which
they deemed most suitable and started to implement that design in Unity. It was settled that the Ul
would contain a preview of the pears with options around the preview sorted in sections. In
appendix 6 you can see the sketch of the concept.

Implementing a save system:

When discussing the Ul with my company supervisor, it became clear that an important feature of
the Ul would be the option to load settings from an external file. | settled on a system that loads a
JSON file in which all settings have their values are stored. When the user is using my Ul, they can
make changes which can be saved to the JSON file, or which can be for that session only. This
implementation allows the user to swap out the JSON file or edit it with a text editor. In figure 33
you can see two example JSON files.

Pepijn Wasser 482906 13/2/2023 -30/6/2023

26

_ | SaveData - Kladblok |

Bestand Bewerken Opmazk Beeld Help Bestand Bewerken Opmaak Beeld Help

'Y "floatDict": {
"toggleDict": { "items": [
"items": [{
{ "key": "Pear spawn rate"”,
"key": "SaveDepthImage”, "value": 0.0
"value": false 1,
s {
{ "key": "Pear_Dots_Amount”,
"key": "SaveNeuralNetGrayscaleFeedbackImage", "value": 0.0
"value": false 1,
s {
{ "key": "camera focal length”,
"key": "SaveNeuralnetFeedbackImage", "value": @.0
"value": false T
3, {
{ "key": "Pear_Dots_Scale",
"key": "SaveRGBImage", "value": 0.0
"value": false T
s {
{ "key™: "Top_Brown_Density",
"key": "Cast shadows", "value": 0.0
"value": true T,
} {
1 "key": "Pear curvature variation"”,
}, "value": 0.0
"colorDict": { T,
"items": [{
{ "key": "Rot_Amount”,
"key": "Black spot neural net color”, "value": 0.0
"value": { N
"r": 1.0, {
"g":i 1.0, "key™: "Light intensity”,
"b": 1.0, "value": 0.0
"a"i 1.@ 1
} {
}s "key": "Black_Spot_Amount",
{ "value": @.@
"key": "Scratch_color", 1,
"value": { {
"r": 1.0, "key": "Pear curvature X",
"g": 1.0, "value": 0.0
“b": 1., 3,

Figure 33 Part of the settings’ JSON file

Connecting the settings to the preview:

With the settings correctly saving and loading, | started to connect the settings to the preview. After
learning how to set Substance graph properties through code, | connected the sliders and colour
pickers to the graph. When changing the sliders however, the regenerating of the graph outputs
took some performance, so to make the Ul feel smoother | determined at which points the graph
should update. For example, the graph only gets updated when releasing the slider, or when the
user is finished with typing a value in an input field.

Testing the Ul:

After implementing the settings, | conducted a user test with my colleagues. | decided to give the
users a small list of tasks which to follow. While doing the tasks, | made observations, and after the
tasks were completed, an interview was conducted to get deeper insights into the pitfalls of the
settings menu. The tasks and conclusions can be found in appendix 7.

Changes to the Ul:

One of the things that became apparent when looking at the results was that the collapsible setting
blocks were not easily recognized as such. To improve this, | made them open by defaults as
opposed to closed. Another change | made was changing the save and load settings button. In the
test | placed the buttons in the top left and top right of the preview panel, but in the interview
several users indicated that they would prefer it if the buttons could be together, thus | grouped the
buttons and placed them in the middle right of the preview panel. In figure 34 we can see the final
ul.

Pepijn Wasser 482906 13/2/2023 -30/6/2023

27

Save frequency

Max Images

Curvature X

_Shape:
-

Images to save Curvature Z

RGB

. = Width
ave
Depth -
. \ S _settings YT

[Neural Net Feedback N Load
x settings [FJUEEENELREES
[Neural Net Feedback Grayscale .

N
Texture:

Save location
Base Color

[Output resolution
Base Color

Pear top Color

pear bottom Color

Pear

Brown areas
Light intensity Scratches

Black spots

Stick

.|
Crown

Figure 34 Final UI.

Making automated annotations:

Converting images to point clouds:

Until this point in the project, | made RGB, depth and semantic segmentation images. The neural
network does however not expect an image with distinct colours but instead it wants a COCO file
with coordinates that make up a polygon, and an index indicating what the polygon is. This JSON file
is normally manually created by annotating images in a tool called LabelMe (see Appendix 8 for an
overview of LabelMe) and converting the LabelMe JSON file to COCO with a too called
LabelMe2COCO. To decrease the manual labour required to use my tool, | made an algorithm that
translates my images into LabelMe’s JSON format (see figure 35).

{
"label”: "Russeting",
"points”: [

1,
"groupld”: @,
"description”: "V,
"shape_type": "polygon”,
"flags": []

Ts

{
"label": "Flesh",
"points": [

[

235.5,
394.5

1,

Figure 35 JSON file showing several points that make up an annotation.

Pepijn Wasser 482906 13/2/2023 -30/6/2023

28

After much testing, | settled on an implementation that made use of 2D bit masking. This is a
technique frequently used in tile-based games to determine what terrain tile should be placed based
on the surrounding tiles (Bone, 2016). In my algorithm, | loop over each pixel in the feedback image
and compare the pixel to the colours the user set in the settings. If the colour matches, the system
creates a group of all connecting pixels with the same colour. In the end we have a list with all
groups or “blobs” in the image. For each blob we use the bit masking technique to get all the points
that make up that blob. After looping over each blob and writing the points to a JSON file, we get
data in the format the neural network expects.

Unexpected behaviour:

When looking at the generated output in LabelMe, | saw that most points were correctly annotated
however, there were also issues like points missing, sets self-intersecting, sets missing from the file
or pears having the completely wrong annotation. These errors can be seen in appendix 9. After
several days of looking into the issues, | discovered that the issues were caused by a small error in
my code. Instead of removing the first and last item from a list, and then adding a new item, | added
the new item and then removed the first and last item. This caused the newly inserted item to be
removed again, and one of the old items to remain. By swapping the order all issues went away
except for an issue related to holes in the blobs.

Connecting holes:

With the algorithm | implemented, blobs can have multiple sets of points if the blob has one or more
holes in it. The JSON files made by LabelMe do not support polygons with holes, so my supervisor
came with a solution where holes connect to the outer contour through a connection with a width of
zero. This solved the initial issue, but there were instances where this connection would go through
other holes or outside of the pear if the pear is very concave (figure 36) causing the generated JSON
file to not be readable by the neural network.

Figure 36 Connection with a width of zero (indicated with white arrow) going outside of the pear.

Pepijn Wasser 482906 13/2/2023 -30/6/2023

29

After looking at the problem and the sets generated points, | concluded that every blob has one
outer set with zero or more inner sets. The fact that there is one set which surrounds all other sets is
important as this allows the algorithm to connect all sets to each other with a zero width line by
getting the right most point of the set and keep going to the right until it hits another set, or in case
of the outer set doesn’t hit anything. This implementation ensures that all the sets of points are
connected and there is no overlap of zero width lines with holes. In figure 37 we can see the result of
my algorithm when imported into LabelMe.

Figure 37 Correctly generated annotation

Increasing performance:

Since the annotation algorithm makes several calculations for each pixel the algorithm was quite
slow. | made optimizations to the algorithm which improved the performance. The change with the
biggest impact was converting the datatypes in my code from Lists to hash sets. hash sets place
items in an array of lists based on the hashed item. This has the benefit that iterating over them is
0(1) efficiency instead of O(n), making it much faster when looking for objects (Coders Campus,
2015).

Testing the implementation:

After having implemented the automated annotation, | made a dataset of 200 generated images
with annotations in the LabelMe format and converted it into the COCO format which is a format
that can be used for training the actual neural network. | handed the images and COCO file to a
colleague to train a neural network. The file did however not get accepted due to hard to trace
errors. After trying several potential solutions, the neural network still did not accept the data. With
me being confident in my code, and with the potential issues ruled out, my supervisor suggested
trying the dataset with a different neural network.

In my search for a different network, | came across MMDetection. This tool looked promising as it
included several popular neural networks, it accepted the COCO format, documentation was good,
and it had windows support. After going through their tutorials, | managed to set up the network
and execute an example which resulted in me being detected as a human which can be seen in

Pepijn Wasser 482906 13/2/2023 -30/6/2023

30

figure 38. | managed to load my dataset and | successfully trained the network meaning that my
automated annotation was working.

W1 result = O X

Figure 38 Tutorial neural network correctly identifying a person.

| also evaluated the result after training the network, the results of which can be seen in figure 39.
The test successfully identified the pear flesh, but it did not detect all the flesh. It also did not detect
the smaller features like the stick or russeting. After discussing these results with my colleague, it
became clear that this was expected as | only trained for three epochs, which are similar to cycles,
while a normal network is trained for 12000 epochs. | could however not train that much due to my
computer not having CUDA cores. Though we will not know why the original neural network failed,
my colleague and | suspect that the network cannot handle the number of points being generated.

Figure 39 Neural network trained on automated annotation dataset detecting pears. The annotation can be seen on the left
while the network output can be seen in the right two pears.

Implementing OpenCV annotation:

Though | have now confirmed that my annotation is working, it is still quite slow. | decided to
investigate OpenCV as this is one of the most popular computer vision tools, as well as open source
(6sense, 2023). Since OpenCV uses C++, while Unity uses C#, | needed a wrapper to be able to
incorporate OpenCV in my application. | came across several wrappers like EmguCV, SharperCV and

Pepijn Wasser 482906 13/2/2023 -30/6/2023

31

opencvdotnet, but found these plugins difficult to install within Unity or having been deprecated. |
ended up using OpenCVSharp as | was able to install it on both Windows and Linux without issues.
The plugin’s GitHub page specifically mentions that the software does not work in Unity, but by
adding missing dlls to the project, and testing the functionality, | determined that this tool was
suitable.

The first part of the annotation was finding the outline of the generated images. OpenCV has a
useful function called find contours which does exactly that. If we use this method for every part of
the pears that we want to identify, we get the contour points of the pear parts. Like before, the pear
parts can have holes. Luckily OpenCV can order contours in a hierarchy, so | could connect two
contours with a zero width line the same as | did in my manual implementation. This meant | had a
set of points that | could use with my converter to create a LabelMe file like before.

Comparing the performance between the OpenCV solution and my manual solution, | determined
that the performance is roughly 5 times faster in the OpenCV solution, so | used this implementation
in the application.

There was one minor issue with OpenCV as it sets the contour points in the center of the pixel, and
not on the corners. This meant that a single pixel would only have one point instead of the required
four for an annotation, and that a line would consist out of two points. To fix this issue | wrote code
that automatically adds points to solve this issue.

Creating documentation:

With most of the key features implemented and tested, and the deadline for the report
approaching, | decided to start polishing the existing features and writing documentation. | wrote a
readme file in the repository so that inexperienced users know how to install the application and
work with the interface. | cleaned up my code by adding comments and formatting it in a more
compact manner. For some parts of the application, | also made UML diagrams and documents
which can be seen in appendix 10.

Presenting simulation at TValley Tech Conference:

Near the end of my graduation, | also had the opportunity to present my solution at Riwo’s stand at
the TValley Tech Conference in the Grolsch Veste (see figure 40). For this | made a demo video
displaying the generated pears, the functionality of the application, and the created annotations. It
also gave me the opportunity to talk with employees of other companies about how they use
computer vision, simulations, and digital twins in their workflow.

Figure 40 Riwo's stand displaying my solution.

Pepijn Wasser 482906 13/2/2023 -30/6/2023

32

Final test:

To test if the instructions for installing my application were clear 3 colleagues also installed and
tested the build like they would in a real situation. There were only a few minor issues like setting
defaults not being loaded correctly, and the session data not being deleted, but these were easy to
fix. Furthermore the instructions were clear and the application was easy to use.

Conclusion:

By researching several small parts throughout this project | got answers to my sub questions, and
with the answers to those sub questions | implemented a working prototype thus answering the
main question with: “Yes, it is possible to create RGBD images of pears in an engine, and have the
generated images be connected to the ROS2 network so that testing a pear sorting robot becomes
more efficient”.

Not only is it possible to create RGBD images, but it is also possible to automatically annotate them
by creating a semantic segmentation using Substance Designer as the ground truth and converting
the segmentation into sets of points in the LabelMe format.

With that said, it is possible that my solution might not be the most optimal given that the project
was done with a limit of 20 weeks.

Recommendations:

If one were to pick up this project, | would suggest for them to read the provided documentation to
navigate the project more easily. There are several components in the project that could be made
better.

Currently it makes use of several cameras to capture the viewport into textures with different
shaders however, cameras are slow. | suspect it would be possible to capture the scene with one
camera and a more advanced shader which would result in more frames.

Another part that is quite slow is the package | used to generate the colliders. With a better system
to convert mesh colliders into several cube colliders, the framerate might improve. Unity’s mesh
collider works with rigid bodies in an old Unity version, so one might go back to this version
however, several core packages | used do not support this old Unity version.

A pear is not a complex shape. If one were to use a similar simulation for objects that should be both
procedurally generated as well as complex, it might be better to make the 3D models in a procedural
modelling program like Houdini, though Houdini does not allow procedural generation in builds due

to licensing issues.

Though the OpenCV annotation method correctly annotates the images, it could be more detailed as
the annotation uses the center of pixels, and not the borders of pixels. If one would like to increase
the accuracy by using pixel corners, they would need to either improve my manual annotation, or
find a different tool to help create annotations as OpenCV does not support pixel border contours.

Perhaps the biggest point of improvement that could be done is in the fact that the annotation does
not work with Riwo’s software. Further investigation is needed into the source of this problem as the
created annotation works with different neural networks.

Pepijn Wasser 482906 13/2/2023 -30/6/2023

33

Reflection:

Looking back on the project, there are several things that went well, while a few things could have
gone better. One of the things went well was the division and planning of the project. When | joined
the company, the company supervisor advised me to deliver something small every sprint instead of
a big broken feature. Throughout this project, | mostly finished my tasks for that sprint, and planned
my tasks accordingly, the only component that was not finished at the end of a sprint was the
annotation, but this was partially due to it being added later in the sprint.

| think the communication with the company supervisor also went well. Every week we had a
meeting discussing the project and the progress made on it that week, and in case | was stuck on
anything, if | needed assistance with anything.

One of the things that | think could have been done a little more extensively was validating the
created images with the network. The reason | did not do this much was due to the network not
being fully developed yet. | could have done some testing in a different way, but with the fact that
the users can define the shape of the pear however they like, | determined that this was redundant.

Throughout the project the team also held sprint meetings in which we show our progress to other
team members through a small presentation or video as well as a sprint report. Though my
presentations showed the progress well, | did not spend much time on making them look all that
pretty. This however did not seem to be an issue as | never heard any remarks about it.

Through user testing | concluded that my Ul was functional and not bad looking however, If | had
spent more time on creating custom assets for my Ul, | think | could have made it look more pretty.

Pepijn Wasser 482906 13/2/2023 -30/6/2023

34

Reference list:
6sense. (2023, May 24). OpenCV - Market Share, Competitor Insights in Data Science And Machine
Learning. https://6sense.com/tech/data-science-machine-learning/opencv-market-share

Aderinola, B. (2022, November 18). What is Gazebo Simulation - The Construct. The Construct.
https://www.theconstructsim.com/ros-5-mins-028-gazebo-simulation/

Bedell, C. (2021). big-endian and little-endian. Networking.
https://www.techtarget.com/searchnetworking/definition/big-endian-and-little-endian

Bone, S. (2016). How to Use Tile Bitmasking to Auto-Tile Your Level Layouts. Game Development
Envato Tuts+. https://gamedevelopment.tutsplus.com/how-to-use-tile-bitmasking-to-auto-tile-your-
level-layouts--cms-25673t

Coders Campus. (2015, October 6). Java HashSet Tutorial [Video]. YouTube.
https://www.youtube.com/watch?v=WPcKwA5WF7s

Druguet, F., Drettakis, G., Girardeau-Montaut, D., Martinez, J. L., & Schmitt, F. (2004, July). Figure 7:
Unfolding a cylinder to a plane. ResearchGate. https://www.researchgate.net/figure/Unfolding-a-
cylinder-to-a-plane figl2 220955363

Hahmann, S., & Bonneau, G. P. (2008). Polynomial surfaces interpolating arbitrary triangulations.
University of Grenoble. https://hal.science/hal-00319652/document

Jayelinda. (n.d.). Modelling by numbers: Part One A [Jayelinda’s Web.
http://jayelinda.com/modelling-by-numbers-part-1a/

Kalathil, J. (2018, December 22). Introduction To Replacement Shaders & Shader Keywords. Bitshift
Programmer. https://www.bitshiftprogrammer.com/2018/12/introduction-to-replacement-shaders-
and-shader-keywords.html

Sanukin. (n.d.). UniColliderinterpolator. GitHub.
https://github.com/sanukin39/UniColliderinterpolator

Understanding nodes — ROS 2 Documentation: Foxy documentation. (n.d.). Retrieved June 12, 2023,
from https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-
Nodes/Understanding-ROS2-Nodes.html

Pepijn Wasser 482906 13/2/2023 -30/6/2023

35

https://6sense.com/tech/data-science-machine-learning/opencv-market-share
https://www.theconstructsim.com/ros-5-mins-028-gazebo-simulation/
https://www.techtarget.com/searchnetworking/definition/big-endian-and-little-endian
https://gamedevelopment.tutsplus.com/how-to-use-tile-bitmasking-to-auto-tile-your-level-layouts--cms-25673t
https://gamedevelopment.tutsplus.com/how-to-use-tile-bitmasking-to-auto-tile-your-level-layouts--cms-25673t
https://www.youtube.com/watch?v=WPcKwA5WF7s
https://www.researchgate.net/figure/Unfolding-a-cylinder-to-a-plane_fig12_220955363
https://www.researchgate.net/figure/Unfolding-a-cylinder-to-a-plane_fig12_220955363
https://hal.science/hal-00319652/document
http://jayelinda.com/modelling-by-numbers-part-1a/
https://www.bitshiftprogrammer.com/2018/12/introduction-to-replacement-shaders-and-shader-keywords.html
https://www.bitshiftprogrammer.com/2018/12/introduction-to-replacement-shaders-and-shader-keywords.html
https://github.com/sanukin39/UniColliderInterpolator
https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html
https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html

Unity Technologies. (n.d.-a). Unity - Manual: Mesh Collider component reference.
https://docs.unity3d.com/Manual/class-MeshCollider.html

Unity Technologies. (n.d.-b). Unity - Manual: ShaderLab: Culling & Depth Testing.
https://docs.unity3d.com/2017.2/Documentation/Manual/SL-CullAndDepth.html

Unity Technologies. (n.d.-c). Unity - Scripting API: MinMaxCurve.
https://docs.unity3d.com/ScriptReference/ParticleSystem.MinMaxCurve.html

Wkentaro. (n.d.). LabelMe. GitHub. https://github.com/wkentaro/labelme

Pepijn Wasser 482906 13/2/2023 -30/6/2023

36

https://docs.unity3d.com/Manual/class-MeshCollider.html
https://docs.unity3d.com/2017.2/Documentation/Manual/SL-CullAndDepth.html
https://docs.unity3d.com/ScriptReference/ParticleSystem.MinMaxCurve.html
https://github.com/wkentaro/labelme

Appendices:

Pepijn Wasser 482906 13/2/2023 -30/6/2023

37

Appendix 1: Pear packaging component overview

RGB-D
camera node

Data . = 5
Depth image Color image ‘ﬁ
Vision node Ifi{arco_emcy)
¥
Vision alive counter (every sec)
Calibration
node Segmentation

) Arco emcy check (every sec)

Segmented
image Mask

iz
(visualisation
node)

Pear ID, grasp pose and class
Modbus server
node

Engagejrelease specific belt and platfor
——

Deprojection’
2D bbox
center)

3D bhox
center

Detection
visualisation

¥

Tracking (match all
Snapshot nod detections to known or

new objects)

A
‘ Grasp & classification Stoppable
[" Gel shape Gel color Get 2D stem
\ (Ge‘ grasp > (defects) (defects il
‘ ¥ [] []
3D grasp Shape defect | || Color defect
L — pose scores. scores 2D stem

orientation Wi

Get 3D quadrant (based on
rotation direction and pear
direction)

m
‘YE

Classification

|

Visualisation)«

L Object

\ visualisation

Pepijn Wasser 482906 13/2/2023 -30/6/2023

38

: Empathy map

Appendix 2

sylomiau einau dojpasp Asu)-

SIUIEIISUOD 3WI 01 3Np S2IN1eay Ul || 1521 1,uop A3u]-

3UIYDEW [BpoLL & ylim apod padojaasp 1531 Aay] -

20140 241 ol

1521 01 2|qe 2q 01 Juem Asul Aes Asy-
Bupjiom jou si auemyos

padojzasp Aia4yl Jo Buissl 01 pale|al
MOIPRIOM JUSLIND 341 1841 uonuaw Asy -

(IoIeURq Jiay) ajeanow B sHu

10q0. Buinos Jead e dojaasp Asy)-

¢0a Aay1 op 1eym

EAVS Aay1 op 1eym Buol
001 S3XE1 L0I1220| WOl
Bunsay a1 (224 Asy-
pa1iwl| ool
O[S 51
511531 01 31 10 JunoLwe
MO|I{I0M 1USLIND 1141 335 A3y
JsuueLw ay1 =1 |33 Asy -
s wadojpasp
>2inb & ul @140
10q0J4 01 pa1e|ad sbuipuy
31 LWOL 21emM1os savjel Bunisa
pue sMaU 1usdad yoiem Ay d A
) fau1 op 1eym padojaaap 1521 01 A2m 2LUI1 JO UnoLe a1
¢33s vy 2 2l pinom Ay - Aq peAouue aie Asyl-
SNIVD SNivd

£1334 pue YNIHL £3y1 op 1eym

3P0 3141 1531 01 AUIYDELW

|3pow & 3sn 01 paau A3y -
3p02 pa1eaUd |2 1531 pasu A3 -
sulyoew Bunios

Jead e dojaasp 01 pasu Ay -

¢0a 01 paau £ayy op 1eyMm

24n1n sy u s1oefoad
AR|Is 20 ybiw 2121 deay Asy -

apo2 Jiay1 dojaasp djay o1 uone|nwis
asn saluedLlod 1810 mol 1eal Asy -

&dV3H A3y op 1eym

SuUlyoeLw

Buios uead e o siadojaazg

V09 yum Buiziypedwa am a1 OHM

T women £207/7/07 #=0 195SE Ufidag Aassut

uonenwis tesd Buisn sjdoad o peubissg

seAue) dey Ayyedwz

13/2/2023 -30/6/2023

482906

Pepijn Wasser

39

Appendix 3: Document describing pear quality.

Context:

For my graduation project | am generating pears to simulate camera data from a pear packaging and
sorting machine, but to generate good and bad pears, | need to know what a good pears and bad
pears are. This document goes into detail on how to determine the quality of pears.

Pear quality:

To determine what makes for a good or bad pear, the customer of RIWO came up with several
guidelines. They divide pears based on a variety of aspects like: shape, curvature, size, colour, the
stick, internal injuries, external injuries and roughness. With these aspects in mind, they dive the
pears in three quality groups (Q1, Q2, Q3).

For reference material, the customer send hundreds of images of pears sorted with their respective
quality group and several tens of pears for each category.

Q1l:
Pears with Q1 quality are the healthiest and most beautiful pears, hence why they are sold at
supermarkets and greengrocers.

As can be seen in the image below, a Q1 pear has a nice shape with a ball-like bottom and a cone like
top. The stick that sticks out of the top is long, and the pear is not injured. As the brown spots are
part of the pear and they do not influence the taste of the pear, the quality is not influenced by the
brown spots.

—

Pepijn Wasser 482906 13/2/2023 -30/6/2023

40

Q2:

Q2 pears are pears with minor issues. They might be slightly misshapen or they might have a
unappealing colour. They are still perfectly edible thus they are used as cut pieces in fruit salads or
other processed food.

Quality 2 pears can be misshapen pears or slightly bruised pears. In the images below you can see
that quality 2 pears can have a lot of curvature or be bottle shaped. One can also see that some
pears have slight spots that do not pierce the skin of the pear. The colour of the pear can also be
slightly more brown compared to Q1 pears. Sometimes the stick goes in between the rollers of the
conveyor. Pears without sticks can cause rot, so when a stick is not visible, one needs to differentiate
the pears based on other aspects.

Pepijn Wasser 482906 13/2/2023 -30/6/2023

41

Q3:

When a pear is so injured that it might cause rot, the pear belongs to quality 3. Apart from badly
injured pears, wildly misshapen pears also belong to this category. Quality 3 pears are not suitable
for human consumption, and will be used as animal food.

As can be seen below quality 3 pears are badly injured pears, some pears appear to be fine, but they
might be missing their stick, which can result in rotting. They can also be in quality 3 due to a brown
colour. Pears can be even more misshapen compared to Q2, or they can have a rough surface.

Pepijn Wasser 482906 13/2/2023 -30/6/2023

42

Additional points of interest:

The images you see in this document were taken on a test conveyor belt. In the real factory the
pears just get out of a water bath, making them wet and adding reflections to the image.

When pears move on the conveyor, some rotate themselves between the rollers. This means that
the all sides of the pear will become visible to the camera. Pears with a long stick, or pears a lot of
curvature do not rotate however, making it so their bottom side is never visible to the camera.

More images:

Differences between Q1 and Q2 based on curvature

Pepijn Wasser 482906 13/2/2023 -30/6/2023

43

Differences Q1 and Q2 based on shape

Pepijn Wasser 482906 13/2/2023 -30/6/2023

44

Differences Q1 and Q2 based on stick

Pepijn Wasser 482906 13/2/2023 -30/6/2023

45

Differences Q2 and Q3 based on shape

Pepijn Wasser 482906 13/2/2023 -30/6/2023

46

Q3 pear based on roughness

Differences Q1, Q2 and Q3 based on colour

Pepijn Wasser 482906 13/2/2023 -30/6/2023

47

SWOT analysis on possible ways to generate pears.

Appendix 4

[FPoW MmaU e Suuies

sanbal sain1ea) mau SUIppY
JEa4Y |

LWL PRI Ul 2(geon 4 snoigng
sizlzweled uo paseq

I1EizuaE U 2aey 01 pdey 29 I9Sy

wieJy o1 Mops Ajjeay

ucnelouue

UM 12SEIRD 3580 B JAYlla spaap
SSIUNEIM

sialzweled uo paseq S1Ela2uss
1 2AEY PUB NN UBCS) O#Al LB

sdew) 01 2nNp ppe
01 pJey 20 WS Jojod Yyim s3ned

=T

125 01 paeY 20 WYSIW sAM
|2pow

Ul UoI33s131Ul 135 asned 1Yy
YI1BI3S

LI [2pOW (IE 21B31D 01 pJeY
SSAUNEIN

SEIZWET 35N DUE S[2polW (T 218307

paleiauE 20 01 250w Jo

UoeIauas
SN 104 M5 001 34

3dA1 Aue 1oy seo)e poylaw syl l 1y2w uogel2uad [2pow WIpnoy

Aypunpoddp

128 uel 1 52 205)|ead
5B 2JE 184l sadew 5218240
yisuans

;uogn|os

Z|qissod adeys
Aue Jo 35N 241 smo)|e poylapw

Auunpoddg

JI0dIUC D 2230 [nd
yiduans

:uognjos

1E3UY |

plINg Ul uonesauas
MO][E 10U 520D IUIpNoH

IUIPNOH Ulea| ol pasy
SSAUNEIMN,

IpNoH
Ul s|2pow g [einpaosoad a1eau7

24NINY 241 Ul SUSIRLIEA
2JOW ppe 01 paey aq w3y

eauy|

[[0JIUDD J3EN PaUWI

|zpow ag 3u 01 piey

|2poW QE 24ewW o piey
SSAUNEIAN,

sadew) diesm weisoud saey

Zgeui@ew adeys Aue yewWw
ued pue [Inuzsod 51 upnoy
Ayunyuoddg

[IodIU0D 135N [|ng
y1duans

uogn|os

1IN IUBJALID Y1IM jiom w3y

Ayunpoddp

Juawadw o1 Aseg
Yrduans

uonn|os

13/2/2023 -30/6/2023

482906

Pepijn Wasser

48

Appendix 5: Example drawings to help understand what a pear is.

Pepijn Wasser 482906 13/2/2023 -30/6/2023

49

Pepijn Wasser 482906 13/2/2023 -30/6/2023

50

Pepijn Wasser 482906 13/2/2023 -30/6/2023

51

Appendix 6: Sketch final Ul concept

Pepijn Wasser 482906 13/2/2023 -30/6/2023

52

Appendix 7: Ul user test results

Tasks:

1.
2
3

10.
11.
12
13.
14.
15.
16.
17.

18.

Go to the create dataset menu

. Set the output resolution to 1520x1080

. Set the pear colour of the Neural Net Feedback image to black
. Set the scene light intensity to 2

. Set the pear to have no curvature

. Set the pear to be verry bottle shaped (very straight)
. Set the scratch colour to bright blue

. Set the scratch sizeto 0,10 x 2

Save the settings

Change any setting

Load the settings

Make a screenshot (windows + shift + 5)

paste the screenshot in paint (ctrl + v)

Open the save data file (already opened in the task bar)
Disable cast shadows in the save data file

In the application load the settings

go back to the main menu (where completed step 1)

Method:

. Set the images to save to: RGB, Neural Met Feedback and Neural Net Feedback grayscale

After completing the tasks the participants were asked to give their thoughts. This was followed by
asking questions regarding observations during the completion of the tasks and previous answers.
Questions were also asked regarding Ul elements, positioning and functionality. Lastly the interview
ended by asking the participant for any more feedback that might have come up during the
interview.

Pep

ijn Wasser 482906

13/2/2023 -30/6/2023

53

Participant 1:

Observations:

1.
2,

Was confusing neural net grayscale colours for neural net colours
Took a bit of time to find the dropdowns

Interview results:

1. Would like the load settings to be underneath the save settings

2. Setting the pear scratch size would not allow decimal numbers

3. For the amount of settings the user interface was clear

4. Saw that the settings were divided into blocks and roughly saw the theme of 3 blocks
Participant 2:
Observations:

1. Participant changed the neural net scratch colour instead of the pear scratch colour.

2. Took some time for the participant to see the dropdowns

3. Did not notice that changing the external files and loading them had any influence on the

settings

Interview results:

1. Participant expected to receive a popup with the save location when saving the options

2. Because of point 1, the participant was confused what the output location field in the
capture block was for.

3. User was confused about the naming difference between neural network feedback image in
the task list and neural network image setting block in the user interface.

4. The load settings and save settings button being apart was not optimal

5. A popup saying settings have been saved/loaded would have been nice

6. Setting blocks appearing when certain boxes were ticked was confusing as you were clicking
in the middle of the screen, while things appeared/disappeared in the bottom of the screen

7. Participant was able to recall all setting blocks and their functionality

Pepijn Wasser 482906 13/2/2023 —-30/6/2023

54

Participant 3:

Observations:

1.
2.

Participant changed the neural net scratch colour instead of the pear scratch colour.
Participant was confused by the ZCurve not working

Interview results:

S R A o

Participant did not like the colour palette

Participant would make all the setting blocks smaller and organize the window differently
Participant did not have any issue with the positioning of the back/save/load button
Participant felt that the Ul looked blocky

Participant did not find the dropdown arrows clear

Meural net setting blocks disappearing was not distracting

Participant would be able to quickly interact with the interface after a small overview
Participant would like there to be some text giving meaning to the sides of the slider
Participant did not realize that the preview is a preview.

General observations:

1.

Settings do not load for the second time when going back to the menu, and then going back
to the settings again.

2. MNeural net image setting blocks do not automatically open when the menu is loaded

3. The loading of the settings menu takes too long causing confusion if the menu is working

4. ZCurve not working

Key takeaways:

1. When the user presses a button, there should be feedback (When loading the scene, saving
settings and loading settings)

2. The preview should have a title

3. It needs to be clearer that the dropdowns are actually dropdowns

4, |If possible it would be nice to have a Ul with more rounded edges

5. Sawve and load settings should be close to each other

6. Perhaps make the headers bigger to make the user more aware of the different setting
categories

Pepijn Wasser 482906 13/2/2023 —-30/6/2023

55

Participant 4:
Observations:

1. Participant confused the neural net image colours with the pear colours
2. Participant tried to click on the colours in the colour picker panel to move to that hue instead

of moving the slider.

Interview results:

1. Participant thought the Ul was clean

2. Participant liked that the pear settings which influenced the preview were next to the
preview

3. Participant recommended to switch around the neural net image colours with the scene
settings

4. The location of the save/load and back buttons were clear

Participant has never worked with JSON files

6. Participant saw that the settings were divided into blocks

W

Pepijn Wasser 482906 13/2/2023 -30/6/2023

56

Appendix 8: Overview LabelMe (Wkentaro, n.d.)

W 1abeime - C/U:

Data/Loc: RIWO/Pear Simulator/C: 023-5-1 13-4 B/10.png*

File Edit View Help

Flags & x

Label List & x

Crown e
Stick »
Scratch «
Brown area o

Polygon Labels & x
[Cown e ~

URRRRRRERIR
8

Reown aren e

7
|&

0] Cyusers/pwasser/AppData/Local

labelme - data_annotated/2011.000006.jpg

Duplicate
Folygans.

¥

car
chair

diningtable
dog

horse
motorbike
person
potted plant
sheep

sofa

N Cancel

o

006

ignore
background@

aeroplane ®
vicycle ®
bird

boat @
bottle ®
bus ®

car

cow @
diningtable ®
dog ®

horse @
motorbike ®
person &
potted plant ®

00

person &

RSCNENEV NN NN

)
sofa (0) ®

00

Search Filename

Label List

Polygon Labels

Fill List

v data_annotated/2011_000003.jpg
v data annotated/2011_000006.jpg
¥ data_annotated/2011_000025jpg

Pepijn Wasser 482906

13/2/2023 -30/6/2023

57

Appendix 9 Resulting annotation with errors from first iteration of automated
annotation

Pepijn Wasser 482906 13/2/2023 -30/6/2023

58

Pepijn Wasser 482906 13/2/2023 -30/6/2023

59

Pepijn Wasser 482906 13/2/2023 -30/6/2023

60

Several UML diagrams and documents

Appendix 10

|euslel B|eIsAEIDIBLBIBINHIEPaa 4NN +

|BUBIE EUSIBINHIBDSE NN +
|BUsIE EUBIEWNESE] +
Osudeinaauglsgns [osydeld +

|eusle|y B|easfeiDieusieIBqpaadNN +
[EUSIEN |el=lEHIEqPsadNN +

|euslep |eusleaseq +
ydesgyawnunyaiuelsqng ydeigswinun +

Juslis[FEUSIEN YIRS
<<]IS ==

Jusiis[IeUSIE L.
<<]OMIS=>

ploA [(gaap -anjea ‘Bulls SWEeU)ZIsAes +

pioa :(buuys :anjea ‘Buns sweu)buuigles +

ploa J(Jul anjea ‘Bulls SWeuulEs +

ploa (120l anjea ‘Bulls sweujieo|418s +

ploa - (1010 Jojo2 ‘Bulls sweulojodles +

ploA [(Jpasgiag +

ploa (jeUsiep S3140L|BUSIEW)[EUSIE SIS +

ploa (oo DUASYISpUS) JUSWS|TeUsiBydeID USSR YdeIsWRUNYISpUSY -
pioa -(usws|Jeusiewydels Juswas)saneaudeinswiunyaiepdn -
swaeusienydels | (100g DUASYISpUSLESNOLIBLSIENISD +
ploa ()=1epdn -

pioa {Juntuoneagddyud -

ploA “(Jaemy -

ploa (jleusieps|easieioyieqpaa JNNOLISS -
pioa (JeuSieIEqpaa ANNOLIBS -

pioa X()jeuslepssegolles -

proa :()s[EUBIENIRD) +

ploa (Jfonsaquo -

ploa (Juels -

|00q Jspuadolpaau -

<|00q ‘Jusws|Jeusiewydern=/deuonng Aeuonpngsbesnudels -
jooq ‘sabuByDIaUYIspUS] +

|00g (S3IUEISUISZILUOPUE] +

Musws|3udergienu) sydeigie +

|00dIEUSIEN SIUESUl +

|eUslEl |EUSIEINEIEISARIDNIEPaS 4NN +
|euslEp EUSIBINNIBPSadNN +

[BUS1E JeuslYNaSEq +

1318pUSHUSEN Jal8pusy|ELSIBW-

ploa (}Monsagquo -

ploa :(Jebewpapusgug -

elawe) (Guuls Bweu)eIsWE)USPPIHEIREL] -
pioa (Jgdweiepdn +

ploa :(BJaWeD (EISWED)FULEPUSYEISWED PUTUD -
ploa J(eiawe] esswed)bulspusyesweubagug -
ploa (Jazisay -

ploa (Zosp, ‘uCN|OSSYMBL)UONN|0SaYIES +

pIoA “(Jaxemy -

JO0SBLBIEN

Ja18g[BLUBIENIESS

e

UBAZANUN JBPUSHISO43|EISABIDNNUD +
Wwan3fun 18pusyalda|eIsiBIONNUD +
JUBAZANUN JBPUSHISOINNUD +
WwaA3fun J8puadaldNNUD +

Jaimdenainxa) eisLwes

13/2/2023 -30/6/2023

482906

Pepijn Wasser

61

428 09

»|3USI5 18581ED B1EAID

1eselep Guneal) uelg

S

sbumss sbueyd

S

428 09

L —
s ™y

J8sElRp

¥

81es1D) nusw sfumag
@

BIBWED

1oy

49Eq 09

auads

"

BIBLWED BlBNWIS

BISWED

3

Bunenuwis peps
|
™

sBumas sbueyy

|

49Eq 09
L —]
s ~

Bla3WeEd SlBnwIS
nuaw sbuyss

1394 signuis
S
.

18se1ED 81E8ID

S

uoneddde yno

L —
s ™y
nusw

583012 uonedddy

¥

uleL SI181Ua 1857

yoedsip

13/2/2023 -30/6/2023

482906

Pepijn Wasser

62

B|gE30d
150)q 1 ydesd

BN[EA |Bud ud

G st Aue o Sipded

Guifiaw pus sydel
10 suosod Burgsns

FIETE]

YEHAJUG punen)

L

[
UBS0 BAEY jou

N
L0 s u yoest |

U U0 Sapou Guppe [*
A SYdEIE 7 |3ULs T

..... =

i g

mw.r_] 0w aag) |

BunsEWY Uo peseq |

aN

H 184 papaLD

0
CPENIELD LEaG JoU - UEaq BAEY J0U

q:_? e ajenied

S0 AUE BJBLY BAYF 30| 0P 1L B peaed s

m?._rm,_ic 1B Qo =1 U
—

150 Eai o) gog n__u._nt._

10903 Q047 BL4)
UHEW JBY) SUDIEIP

PRLEgIED 1 EanogGiau
I G109 U1 IBYED)

LELL B4 JOJ0D

aN

R
on ey R

40y BULDIESS BIE

i3 0 1090 5] |25 pUl
hi_n B B BjeaLT

8af| Wdg jau
EER]
g i

L B e b Y CRIER TR

SI0109 2NgHE] 199

Y382 O} Juen

B nE) By B

\pEdten

T29, (UIISOSEP0U +

apoy

=BRAN =] 280U +
B0 ‘SPONPLE +
B0 BRONUEN +

udes

” =FIBN=]BEYSEH PEYISLSUNySed +
| «T2EA=IGSUSEH HOSUED0LSUmYSed +

MR8 Stdesd +
<FIEN=1E S0 SSUEND +
“FIRN=|FEYSEH QupFu)sEd +
BuL]s -eWeNqoeg +

Wi 101090 +

qoia

13/2/2023 -30/6/2023

482906

Pepijn Wasser

63

Jead a8yl Uo S8UIIBIDS JO INOI0D BY1 519848 Bumas siyl 110103 Udieios

Jead ay) Jo woneq ayl 1k umeolq Jo Junolwe ay) s19a)e Bumas siyl (Ansusp wolog ease umolg
aead 8y Jo dol 8yl 18 umolg Jo Junowe ayl s1oalie Bumas syl (Alsusp dol eale umolg

'510p Pue SE8le Umoig 8yl Jo Jojo2 AJepuooes 8yl s1oe)je Bunies siyl o) AJepuooses ease umolg
"S10p PUE SE8JE UMOIQ JO 10102 JUBUWOp ay) s1oaye Bunias siy] iojoa Aewd eale umolg

ead 8yl Jo wWolod syl Jo 10102 85eq syl 519848 Buimes siyL 110102 woloq Jesd

“ead ay Jo doy syl Jo o102 aseq ay) sioaje Bumes siyl oje2 doy Jead

‘ale siead sy 1yBens moy si1oaye Bunmias sy sseupadeys ajllog

'siead usamiaq @dUBIB}IP UIPIM BUY1 51384 Bumas SIUL (ucneuea uyipip

ead ayi jo yipiv 1esausb ayl s1oaye Bumiss siul UIpIM

'sIxe Z ay) punose aney ued Jead ayl jo dol sy uonelos Jo unowe ayl s108)je bumas siy] 17 aimeang

SIXE ¥ 22Ul puncle aAely UBD Jead all Jo doy @l uonel1ot Jo Junolle ayl sioa)e @C_.me SIYL “¥ ainieAlng
lead

"15B2 84 PINOUS SMOPeYS JI s12a)e Buimas siul :Ssmopeus 15ed

"sa)bue Jana ul wou) Buiwod s b 2yl uondanp ayl s1984e Bumas sy rucnodanp Wb
146 syl jo ssaulybiig ayl s10aye Bumas sy Ausuaiu 6

10feAuoo syl uo umeds siead yoiym yim Aouanbely syl s1oeye Bunies siyl e1el umeds Jeed

-saue)d dijo Jey pue Jeau ayl usamiaqg s 12alqo ue abejuaiad syl uo paseq 5| afew) yudap ay] “palepual Guleg wWoly _lawed ayl waoly Jej spoalgo
syuanaud sued dino 1e) ay) "pelepual Buiaq wou) BlaWeD syl 0] 85012 s128lgo suasald aueld dno Jeau ay] ‘passpual ag NIM $122(qo yaiym s1oape Bumas siyl saueid dno esawen

“wooz sauwialap yibua) 1eaoy yum saylabo) 'sabBew) 818312 0} pasn BISWED aU} JO aZIS J0sUas al) s10a))e Bumas siy] :9z|s 10suas elawe)
WOoz SaUILIalap azIs Josuas yum Jayiabol sabew) alealo 01 pasn elawed ayl jo Yibua) 1820} ay) s1aa))e Bumas siul yi1bus) 1eoo) elawen

1ofanund ay) asoqe eiawe? ayl jo 1Wbiey ayl s1oaye Bumas syl aybiey elawe)

sbuimas suaog

13/2/2023 -30/6/2023

482906

Pepijn Wasser

64

Creating Dataset Mode

Unity Annotation

maker

Automated annotation in LabelMe format
& RGB image

Windows directory

Captured RGB image

Riwo MM training

Generaied LabellMe annotation

Labelme2COCO

Generaled COCO annotation

Unity Pear generator

Pear model

Unity Scene

Scene

Unity Camera

Simulating Camera Mode

RGE & NNGrayscale images

Serialized RGB & Depth images:

Unity ROS Publisher

Script

RGB & Depth images

ROS-TCP-Connector
Server Endpoint

Ros Publisher Node

Ros Publisher Node Ros Publisher Node

I :
Depth image RGE Image Camera infe data

Riwo Pear Package

Robot Arm

Pepijn Wasser

482906

13/2/2023 -30/6/2023

65

