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Abstract 
This graduation report describes the implementation of a Proof-of-Concept vertical farm 

system and an accompanying custom admin dashboard client with multi-farm management 

capabilities. The system allows for the monitoring and control of connected vertical farms 

through a single client, providing a centralized management solution for potentially large-

scale vertical farming operations. 

 

Vertical farming is an innovative approach to plant cultivation that involves stacking layers 

of plants in a controlled indoor environment, optimizing land usage. This technique employs 

Controlled-Environment Agriculture (CEA) technology to control environmental factors such 

as air quality, irrigation, lighting, and soil conditions. The ability to monitor and control 

multiple vertical farms allows manual and/or automated fine-tuning of the system's behavior 

for specific crops by adjusting actuators and physical outputs based on measured 

environmental factors. The implementation of such a system can significantly boost 

productivity, efficiency, and sustainability in the vertical farming industry. 
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1. Introduction 
In recent years, there has been a growing interest in smart agricultural solutions to address 

challenges in food production and resource management. As part of this trend, vertical 

farms have been emerging as a potential solution for sustainable urban agriculture. One key 

aspect of vertical farming systems is the integration of technology for monitoring and 

control, which enables precise management of the environment and resources. 

Developing a dashboard for managing vertical farms can help optimize their performance 

by providing real-time information and control over various parameters, such as 

temperature, humidity, and light intensity. This project aims to design and implement a 

custom vertical farm management system, including a user-friendly dashboard that interacts 

with a Raspberry Pi-driven vertical farm. 

 

1.1. Project Background and Context 
Escari is a startup company that specializes in the production, sales, and distribution of 

microgreens. They currently cultivate microgreens using a traditional vertical farming setup 

without any digital integration. Microgreens are young, edible plants that are harvested just 

a few weeks after germination, when the first set of true leaves has emerged. They are 

smaller than baby greens and are often used as a garnish or as an ingredient in salads, 

sandwiches, and other dishes at culinary restaurants. 

However, Escari recognizes the potential benefits of integrating an IoT-based solution into 

their vertical farming setup. The company wants to build a prototype that will allow them to 

integrate a Raspberry Pi into their vertical farming setup and an admin dashboard to 

monitor, control, and automate many Raspberry Pi’s acting as vertical farms.  

 

1.2. Problem definition 
Escari's vertical farming setup is currently being operated through manual labor to cultivate 

crops (such as microgreens) and selling these crops to culinary restaurants in Zwolle to 

generate a decent side-income. However, if Escari wants to expand its operations and 

deploy multiple vertical farming setups, the resources required for this endeavor will 

increase in proportion to the number of vertical farms and at some point, become 

impossible to manage individually. Existing vertical farm management solutions may not 

fully address the unique requirements and constraints of a custom vertical farm system. 

Furthermore, integrating various technologies and tools can be challenging, particularly 

when considering compatibility, scalability, and overall practicality. 

To scale their vertical farming operations, Escari requires a comprehensive system that can 

monitor, control, and automate their vertical farm setups. The project's challenge is to 

research, design and implement a custom vertical farm management system that effectively 

integrates the chosen technology stack, meets the specific needs of the target users, and can 

be seamlessly integrated into Escari's existing vertical farming infrastructure. 
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The vertical farm currently operated by Escari is used for cultivating crops without any 

hardware or software integrations. The entire process relies on hydroponics knowledge, 

time, and manual labor. The setup includes basic components such as 12V fans, a heating 

element and white LED lights, while water supply to the microgreens is handled manually 

based on the specific needs of the crops. 

In addition, Escari monitors essential environmental factors like air temperature, humidity, 

and soil moisture using consumer-grade electronic devices. The system is housed within a 

cube-like insulated structure, which makes it easier to regulate the internal environment. 

This cube contains three racks, each with multiple layers, and is equipped with necessary 

lighting and ventilation systems. 

1.3. Objectives 
The primary objective is to design and implement a system that will provide Escari with 

these capabilities (monitor, control, automate) through the accompanying admin dashboard. 

Figure 1: current setup of the vertical farm used by Escari 

Figure 2: industrial-grade vertical farm Figure 3: single-layer hobby grade vertical farm 
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The dashboard will also provide insight on key metrics such as temperatures, humidity, 

water levels, and other relevant data. The dashboard should provide capabilities to 

operate/control the vertical farms as well as some degree of automating the system. These 

functionalities will enable Escari to gain insight into their vertical farming operations and 

allow for real-time adjustments to optimize growth conditions on a larger scale and with less 

user resources.  

The above figures are some examples of such systems to give an idea of the physical 

aspects of the system. Accompanying this setup would be an administration dashboard that 

ideally allows to monitor, control and automate each deployed vertical farm individually in 

the system.  

 

1.4. Scope and Limitations 
The scope of this project encompasses the design and implementation of a custom vertical 

farm management system, with a particular focus on an administration dashboard that 

interfaces with one or many Raspberry Pi-driven vertical farms. Additionally, the project 

involves setting up a physical prototype to test and demonstrate the system on. 

 

Additionally, the system’s development is influenced by several factors, which must be 

taken into consideration to ensure that the system meets the needs of the customer:  

➢ Firstly, the customer has requested the use of a Raspberry Pi instead of a 

microcontroller. While microcontrollers are typically more suited for this type of 

application, the customer's preference for the Raspberry Pi must be accommodated in 

the design of the system. 

➢ Secondly, the customer has requested that the hosting of the system be kept local for the 

time being. This means that the system must be designed to at least operate within a 

local network, rather than being accessible over the internet. Considerations might have 

to be made to accommodate a remote deployment in the future. 

➢ Third, the customer has expressed a desire not to use wireless sensing/actuator 

technologies in the system, despite the advantages of using such technologies for data 

transmission as well as interoperability. While this requirement may limit the 

implementation of the system, it is a requirement that must be accommodated in the 

system’s design. 

➢ Lastly, to make the development of the system feasible – besides the sensor/actuator 

connects, anything more towards the “physical” implementation of the vertical farm is to 

be considered out-of-scope. For example, the positioning of the layered crops, water 

supplication & distribution, light placement etc. will not be considered within the system. 

The customer has agreed to this, if there is some flexibility provided in the 

implementation to accommodate for changing sensor and actuator setups. 
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2. Methodology 
In this chapter, we will describe the methodology that was chosen for this project and how it 

was applied. The project management methodology chosen was a SCRUM-based approach, 

which is an Agile methodology used for software development projects. This methodology 

was chosen because of its flexibility and adaptability. 

2.1. Scrum 
Sprint reviews will be held with the customer after every sprint timeframe. During this sprint 

review, development of the last sprint will be discussed and feedback from the customer 

will be processed into further development.  

Scrum Rule  How? 

Sprint length Fixed 2-week sprint length 

Definition of Done See below 
Table 1: scrum rules for this project 

For a user story to be considered "done" according to the abovementioned Definition of 

Done, the following criteria must be met on a user story: 

1. The user story has been integrated with the existing codebase, and there are no conflicts 

or issues. 

2. The user story has been documented in the appropriate documentation. 

3. The user story has been approved by all stakeholders. 
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3. Research framework 
In this chapter, we will delve into the research questions outlined in Table 2 and discuss the 

approaches taken to address them. For each question, the relevance and context will be 

explained, highlighting how it is connected to the overall development of the project. 

The research questions delve into various aspects of the project, including theoretical 

requirements such as potential system architectures, domain-specific knowledge of vertical 

farming, and an analysis into the theory behind complex system requirements. 

 

Main question 

 

How can a system be realized that allows for remote monitoring, control and 

automations for raspberry pi-based vertical farms? 

 

Sub questions 
 

1. What architectural patterns can be used to implement a system that allows for 

remote monitoring & control as well as automations on vertical farm(s) 

Exploring possible architectures enables the identification of the most appropriate design 

for the system, considering aspects such as scalability, maintainability, and performance. 

2. Which processes from typical vertical farming systems can be translated into 

an IoT-based solution and what is required to accommodate these features?  

A deeper understanding of the vertical farming domain helps in tailoring the system to 

address the specific challenges and requirements unique to this sector. This question will 

look to answer the question on how the chosen hardware helps our system’s functioning 

as a vertical farm.  

3. What are the possible ways to integrate user-defined automations with varying 

levels of complexity into the vertical farm management system? 

This sub-question explores the integration of user-defined automations. An automation 

boils down to triggering some action in the system, such as turning an actuator on/off and 

integrated into the system through an “automations” service.  

Automations can be divided into three separate levels. 

➢ Level 1 

Users can manage automations on a fixed schedule, such as turning on Actuator X 

at 08:00 AM and turning it off at 09:00 AM. 

➢ Level 2 

Users can manage automations based on sensor data, which is considered a 

"dumb" feedback loop. An example would be, "if Sensor X exceeds a certain 

threshold, activate Actuator Y until Sensor X returns to an acceptable range." 

➢ Level 3 

Users can manage automations that consider multiple sensor values, actuator 

states, and user-defined thresholds. This level represents a "smart" feedback loop, 

ideally providing self-correcting behaviors within the vertical farm. This level 
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expands on Level 2 by providing a more extensive and more autonomous 

automation system. 

Table 2: research questions 

 

3.1. Methodologies  
For each research question, a specific methodology or set of methodologies will be 

employed. These methodologies may include, but are not limited to: 

• Literature review: Gathering and analyzing information from relevant publications, 

articles, and documentation to understand the current state of knowledge in the 

domain. 

• Comparative analysis: Examining and comparing different technologies, tools, and 

design approaches to determine their suitability for the project. 

• Prototyping and experimentation: Building and testing prototypes to evaluate the 

feasibility and effectiveness of various design approaches and technologies. 

 

3.1.1.  1 - Architectural Patterns for Remote Monitoring, Control, and 

Automations 

 

3.1.1.1. Approach 

To identify the most suitable architectural patterns, a analysis will be done into existing, 

similar systems. Additionally, an examination of the architecture patterns and their 

applicability to vertical farming will be carried out. This analysis of different architectures 

will help identify key features and patterns that may be implemented in the implementation 

of this project. 

 

3.1.1.2. Monolithic Architecture 

In a monolithic architecture, the entire system is built as a single, tightly coupled unit. For a 

vertical farm, this means that all the components, such as sensor data processing, actuator 

control, and managing automation rules, are part of the same codebase and run within the 

same process. While this approach can simplify development and deployment, it may limit 

scalability and make it difficult to adapt to changing requirements. Additionally, a failure in 

one component may affect the entire system. 

Pros:  

• Simplicity: Developing, testing, and deploying the entire system as a single 

application reduces complexity and simplifies integration between the server-side 

components and dashboarding.  
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• Consistency: A monolithic architecture provides a consistent environment for 

development, which can streamline the process of building and updating the system. 

Cons:  

• Scalability: Scaling a monolithic architecture can be challenging, as any change to 

the system requires the entire application to be redeployed. This can be particularly 

problematic for vertical farming systems that need to accommodate varying 

workloads and adapt to changing requirements.  

• Maintainability: As the system grows in complexity, maintaining and updating a 

monolithic architecture can become increasingly difficult. The tight coupling of 

components makes it harder to isolate and fix issues, and updates to individual 

components may necessitate a complete redeployment of the system. 

 

3.1.1.3. Microservices Architecture 

A microservices architecture decomposes the system into multiple small, loosely coupled, 

and independently deployable services. In the context of a vertical farm, each service could 

be responsible for a specific aspect of the system, such as sensor management, actuator 

control, or automation rule processing. This approach allows for flexibility, scalability, and 

easier maintenance, as each service can be developed, deployed, and scaled 

independently. However, the increased complexity of managing multiple services, ensuring 

proper communication between them, and maintaining consistency across the system could 

be challenging. 

Pros: 

• Scalability: Microservices can be easily scaled by deploying more instances of a 

specific service or using container orchestration platforms like Kubernetes, without 

affecting the rest of the system. 

• Flexibility: Individual services can be developed, tested, and deployed 

independently, allowing for rapid development, updates, and the use of different 

technology stacks for each service as needed. 

• Technology-agnostic: Microservices enable the use of diverse technologies, 

programming languages, or frameworks for each service, as they communicate 

through well-defined interfaces. 

Cons: 

• Complexity: Microservices architecture requires complex coordination and 

communication between services, typically using APIs and messaging systems. This 

can increase development and maintenance efforts, as well as introduce new 

potential points of failure. 

• Consistency: Ensuring data consistency across multiple services can be challenging, 

particularly when implementing distributed transactions or managing shared 

resources. 
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• Security: Inter-service communication can introduce potential security 

vulnerabilities, requiring careful implementation of authentication and authorization 

mechanisms, such as using OAuth 2.0 or JSON Web Tokens (JWT). 

 

3.1.1.4. Serverless Architecture 

In a serverless architecture, the backend logic is broken down into individual functions that 

are executed in response to specific events or triggers. For a vertical farm, this could mean 

having separate functions for processing sensor data, controlling actuators, or sending 

alerts. These functions are managed by a cloud provider when deployed, allowing for 

automatic scaling and reduced operational overhead. However, latency might be an issue 

due to the stateless nature of serverless functions and reliance on external services. 

Pros:  

• Cost-Effective: Serverless architecture only charges for the compute time used, 

reducing costs for idle resources.  

• Scalability: The cloud provider automatically scales the resources based on demand, 

allowing the system to handle variable workloads.  

• Simplified Operations: No need to manage servers, as the cloud provider takes care 

of infrastructure management, enabling developers to focus on writing code.  

• Fine-Grained Implementation: Serverless functions allow for precise implementation 

of features without having to worry about infrastructure, leading to more modular and 

maintainable code. 

Cons:  

• Vendor Lock-In: Serverless architecture relies on cloud provider services, making it 

difficult to switch providers or move to an on-premises environment. Depending on 

the cloud provider service, additional configurations might have to be done to make 

the cloud to Raspberry Pi function properly in a deployed environment. 

• Cold Start: Initial function invocations may experience increased latency due to the 

time required to provision resources.  

• Limited Customization: The serverless environment may impose restrictions on 

runtime environments, available resources, and execution time, potentially limiting 

the customization options of the vertical farming system. 

 

3.1.1.5. Event-Driven Architecture 

An event-driven architecture is centered around the concept of events being produced, 

detected, and consumed by various components within the system. In the context of a 

vertical farm, this could involve sensor data updates, actuator commands, or automation rule 

triggers being treated as events that are propagated throughout the system. Components 

can subscribe to specific events and react accordingly, enabling a highly decoupled and 

flexible architecture. However, managing and debugging event-driven systems can be 
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complex, and ensuring proper event handling and consistency across a complex system 

may introduce its own challenges. 

Pros: 

• Scalability: Components can be scaled independently, allowing the system to handle 

varying workloads efficiently. This can be achieved using techniques such as 

partitioning and replication in the event processing implementation. 

• Resilience: Decoupling event producers and consumers enables the system to 

handle component failures without affecting the entire system, improving fault 

tolerance and error isolation. 

Cons: 

• Complexity: Implementing an event-driven architecture requires complex 

coordination and handling of asynchronous communication. It may involve 

implementing concepts such as message brokers, managing backpressure, event 

ordering, and delivery guarantees (at-least-once, at-most-once, or exactly-once). 

• Debugging: Asynchronous communication can make debugging and tracing issues 

more challenging, as it requires understanding the flow of events and their 

dependencies.  

 

3.1.1.6. Comparing Architectural Patterns for the Vertical Farming System 

 

1. Monolithic Architecture 

Monolithic architectures offer simplicity and consistency, making them relatively easy to 

develop, test, and deploy. However, they may face issues in scalability and maintainability, 

particularly as the system grows in complexity. For a vertical farming system that may 

require continuous updates and improvements, monolithic architectures may not be the 

most suitable choice. 

2. Microservices Architecture 

Microservices architectures provide flexibility and scalability, with individual services that 

can be developed, tested, and deployed independently. However, they introduce 

complexity in terms of coordination and communication between services and may require 

additional security measures. This architecture may be suitable for a vertical farming system 

that demands a high degree of adaptability and the ability to scale services independently. 

3. Serverless Architecture 

Serverless architectures offer cost-effectiveness, scalability, and fine-grained 

implementation of features without worrying about infrastructure management. However, 

they may introduce latency issues, vendor lock-in, and cold start problems. For a vertical 

farming system that requires low-latency communication between components and may 
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need to operate on-premises, serverless architecture might not be the most appropriate 

choice. 

4. Event-Driven Architecture 

Event-driven architectures provide scalability and resilience through decoupled 

components that communicate asynchronously. However, they may introduce complexity in 

coordination and handling asynchronous communication, as well as challenges in 

debugging. For a vertical farming system that needs to handle many events and respond to 

various triggers, this architecture could be suitable, provided that the associated challenges 

are managed effectively. 

Each architectural pattern offers its own set of advantages and disadvantages. When 

selecting an architecture for the vertical farming system, it is essential to consider the 

specific requirements and constraints of the project. Based on the analysis, a microservices 

or event-driven architecture may be the most suitable for the vertical farming system, given 

their inherent scalability and flexibility. 

 

3.1.2.  2 - Translating the Domain into IoT-based Sub-systems 

 

3.1.2.1. Approach 

The approach for this research question entails studying the vertical farming domain to 

comprehend its key processes and requirements to facilitate these processes.  

The research question will try to identify as many processes as possible within a vertical 

farming system and based on these processes, the sensors and actuators will be deduced 

with corresponding requirements that arise for the implementation of the system to facilitate 

support for the identified processes. Literature reviews and case studies will be examined to 

gain insights into the operational aspects of vertical farming. This analysis will aid in 

identifying the sub-systems of these processes and provide an overview of the functional 

domain.  

 

3.1.2.2. Functional Processes within a Vertical Farm (VF) 

Processes within a vertical farm can be considered feature-focused, (hardware-related) sub-

systems of the vertical farm which are required to facilitate operations for these processes. 

These processes of the vertical farm will be identified and analyzed in this section. 

According to an article about the perfect environment for vertical farming (Edinburgh 

Sensors, 2018), Temperature, light, humidity, water supply, nutrient content, and 

atmosphere are all critical factors in vertical farming that must be carefully monitored and 

controlled to ensure optimal crop yields and minimal resource consumption. 
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3.1.2.2.1. Lighting 

Lighting is a crucial factor in vertical farming, as it directly influences plant growth and 

development. To optimize lighting, it is essential to choose the right type of lighting system 

that can be dynamically controlled for factors such as spectrum, intensity, and duration, 

allowing for customization according to specific plant requirements. This sub-system can be 

broken down into several sub-processes: 

Sub-process Context 

Light intensity 

monitoring 

The available light intensity needs to be monitored to ensure 

that the plants receive the required amount of light for their 

growth stage and species. 

Light spectrum control Different plant species and growth stages have specific light 

spectrum requirements. In vertical farms, it is crucial to 

adjust the light spectrum to meet these needs and promote 

optimal growth. 

Light intensity control Adjusting light intensity is essential in a vertical farm to 

ensure that plants receive the necessary amount of light 

without wasting energy or causing photoinhibition. 
Table 3: lighting sub-system 

3.1.2.2.2. Climate Control 

Climate control is vital for maintaining optimal growing conditions in a vertical farm, where 

temperature and humidity fluctuations can negatively impact plant growth and yield. 

Ensuring stable and efficient climate control requires a combination of sensors and actuators 

that monitor and regulate temperature and humidity. The system should be adaptable and 

capable of maintaining a suitable environment across various plant species and growth 

stages. This process can be broken down into several sub-processes: 

Sub-process Context 

Temperature monitoring Monitoring the air temperature is essential for maintaining 

optimal growing conditions in a vertical farm, as 

temperature fluctuations can negatively impact plant growth, 

development, and yield. 

Temperature control Regulating temperature is crucial in a vertical farm to ensure 

that plants are not exposed to extreme temperatures that can 

negatively affect their growth and development. 

Humidity monitoring Humidity plays a vital role in vertical farming, as it affects 

plant transpiration rates, nutrient uptake, and the risk of 

diseases. Monitoring humidity levels is necessary to ensure 

a suitable environment for plant growth. 

Humidity control Controlling humidity in a vertical farm is crucial for 

maintaining a balance between sufficient moisture for plant 

growth and minimizing the risk of diseases related to 

excessive humidity. 

Gas concentration 

monitoring 

Monitoring gas concentrations, such as CO2, is crucial in a 

vertical farm, as these gases directly impact plant growth 

and development. 



 

15 

 

DIGITAL VERTICAL FARMING - BUILDING A RASPBERRY PI-BASED VERTICAL FARM 

WITH MULTI-FARM ADMINISTRATION DASHBOARD 

Gas concentration 

control 

Regulating gas concentrations in a vertical farm is essential 

for maintaining optimal growing conditions and preventing 

the buildup of harmful gases such as CO2. 
Table 4: climate control sub-system 

 

3.1.2.2.3. Water and Nutrient Management 

Water and nutrient management in vertical farming systems directly impact plant health and 

resource utilization efficiency. Traditional irrigation methods, such as flood or drip 

irrigation, may be unsuitable for multi-layered vertical farms, requiring alternative 

approaches. Efficient water and nutrient management systems must precisely monitor and 

control the delivery of water, nutrients, and dissolved oxygen. This involves selecting 

appropriate sensors and actuators to maintain optimal levels while minimizing waste and 

reducing environmental impact. This process can be broken down into several sub-

processes: 

Sub-process Context 

Water and nutrient 

monitoring 

Monitoring the quality and availability of water and nutrients 

in a vertical farm is essential for maintaining optimal 

growing conditions and minimizing waste. 

Water and nutrient 

delivery 

Delivering the right amount of water and nutrients to plants 

in a vertical farm is critical for ensuring optimal growth and 

minimizing waste. 

Nutrient solution 

management 

Maintaining an optimal nutrient solution is essential for 

vertical farming systems, as it ensures that plants receive the 

necessary nutrients for growth and minimizes the risk of 

nutrient imbalances or deficiencies. 

Irrigation control Efficient irrigation scheduling is critical in vertical farming to 

ensure that plants receive the required amount of water and 

nutrients without causing water stress or wasting resources. 
Table 5: water and nutrients sub-system 

 

3.1.2.2.4. Key Environmental Sensing Metrics 

In an IoT-integrated vertical farming system, a variety of sensors can be employed to collect 

data on essential system parameters. The following is a technical overview of the sensors 

that can be implemented with a description of the problem they solve within the vertical 

farm. Based on the biology of plants/crops, environmental metrics may affects plants 

differently. When designing a vertical farm, it’s important to know which metrics are 

relevant and why they are relevant to increase the efficiency of the system (Carbonnel, 

Stormonth-Darling, Liu, Kuziak, & Jones, 2022). 

 

1. Temperature sensors 

1.1. The water temperature affects the solubility of nutrients and the rate of plant 

metabolism, and it can have a significant impact on plant growth and 
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development. In hydroponic systems, the temperature of the water supply can 

affect the uptake of nutrients by the plants, as well as the rate of photosynthesis 

and respiration. If the water temperature is too high or too low, it can cause stress 

to the plants and inhibit their growth. 

1.2. The air temperature affects the plant’s metabolism, growth, and development. In 

vertical farms, it's important to control air temperature to ensure consistent 

conditions for crop growth. Different crops have specific temperature 

requirements for optimal growth, so maintaining a stable temperature is crucial 

for maximizing yield and quality. 

 

2. Humidity sensors 

These devices monitor the relative humidity within the growing environment, crucial for 

mitigating mold growth and promoting healthy plant development. High humidity levels 

can cause issues such as mold and mildew, which can damage or kill plants. On the other 

hand, low humidity levels can cause plants to wilt and dry out, which can also be 

detrimental to their growth and development. Therefore, it's important to maintain the 

appropriate humidity levels to ensure optimal plant growth. 

3. Light 

These sensors assess light intensity and quality, including metrics such as 

photosynthetically active radiation (PAR), which is the range of light wavelengths utilized 

by plants for photosynthesis. Light sensors enable the optimization of artificial lighting 

systems in vertical farming setups, ensuring that plants receive the appropriate light 

spectrum and intensity for efficient photosynthesis and healthy growth. 

4. CO2 

These instruments assess carbon dioxide concentrations in the environment, essential 

for photosynthesis and overall plant growth. Carbon dioxide (CO2) is an essential 

component of photosynthesis, the process by which plants convert light energy into 

chemical energy to produce food. In a closed environment like a vertical farm, the levels 

of CO2 can drop due to the plants consuming it and can be replenished by external 

sources. 

5. pH 

These devices measure the pH level of nutrient solutions or growing mediums, ensuring 

optimal nutrient bioavailability and plant uptake. The pH of a solution will determine the 

solubility of nutrients, and the form they take. Plants can only absorb nutrients that are 

dissolved and in certain forms. The solution may contain all the necessary nutrients, 

however a pH that is too high or low can prevent any uptake. This can be controlled with 

acid or base injectors through peristaltic pump(s). 

6. Electrical Conductivity (EC) 

These instruments quantify the concentration of dissolved salts in nutrient solutions, 

assisting in maintaining optimal nutrient levels for plant growth and development. An 
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electroconductivity (EC) sensor plays an important role in monitoring the nutrient levels 

in a vertical farm. EC is a measure of the ability of a solution to conduct electricity and is 

closely related to the concentration of dissolved salts, specifically ions in the solution. In 

hydroponics, EC is used as a proxy for the concentration of dissolved nutrients in the 

water supply. 

7. Moisture 

These devices measure the water content in the growing medium, assisting in regulating 

irrigation and preventing overwatering or underwatering of the plants. Proper moisture 

levels in the growing medium are essential for healthy root growth and overall plant 

health. By monitoring moisture levels, vertical farming systems can optimize water use 

and maintain ideal growing conditions for the plants. 

8. Oxygen 

These sensors measure dissolved oxygen levels in the nutrient solution, which is critical 

for healthy root development and nutrient uptake. Adequate oxygen levels are 

necessary for root respiration and maintaining the health of beneficial microorganisms in 

the growing medium. Low dissolved oxygen levels can lead to root diseases and 

reduced nutrient uptake by the plants. 

9. Airflow and air pressure 

These sensors monitor air circulation and pressure within the growing environment, 

ensuring proper ventilation and gas exchange for the plants. Adequate airflow is 

essential for maintaining optimal temperature and humidity levels, as well as preventing 

the buildup of harmful gases, such as ethylene, which can negatively affect plant growth. 

10. Pest and disease detection 

Camera-based systems and imaging sensors can help identify signs of pest infestations 

or plant diseases, enabling early intervention and targeted treatments. Early detection of 

pests and diseases can minimize crop loss and reduce the need for excessive pesticide 

use, leading to healthier plants and a more sustainable farming system. 

11. Weight sensing 

These sensors monitor the weight of individual plants or plant parts (such as fruits), 

providing insights into crop yield and growth patterns. By tracking plant weight, vertical 

farming systems can optimize cultivation practices, estimate crop yield, and evaluate the 

effectiveness of different growing conditions and treatments. 

 

3.1.2.3. Integration of Processes, Sensors and Actuators 

This sub-chapter will focus on the integration of the identified processes in the context 

between the processes identified in the chapter prior and the sensors/actuators within the 

vertical farming system. It addresses aspects related to the requirements to facilitate these 

processes for the system, using multiple sensors and actuators. 
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3.1.2.3.1. Integration of Lighting Processes 

The integration of lighting processes relies on input from light sensors, and in turn control 

the output of the lighting system. Typically, these systems use pulse width modulation 

(PWM) to control the intensity and spectrum of light emitted by LEDs. The controller adjusts 

the duty cycle of the PWM signal to regulate the intensity of each color channel, enabling 

the creation of specific light spectra tailored to the plants' requirements. 

 

3.1.2.3.2. Integration of Climate Control Processes 

The integration of climate control processes necessitate relies on input from temperature, 

humidity, and gas concentration sensors. These inputs are processed, and control 

algorithms, such as proportional-integral-derivative (PID) controllers, are employed to 

adjust the actuators. For instance, the PID controller calculates the error between the 

desired setpoint and the current temperature, and it modulates the output to heaters or 

coolers accordingly. The same approach is applied for humidity control and gas 

concentration control using humidifiers, dehumidifiers, and ventilation systems. 

 

 

Figure 5: Light intensity sub-system 

Figure 4: light spectrum sub-system 

Figure 6: gas sub-system 
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3.1.2.3.3. Integration of Water and Nutrient Management Processes 

The control system in a vertical farm collects data from pH, EC, and moisture. Based on this 

data, the control system adjusts peristaltic pumps, solenoid valves, and water pumps to 

maintain the desired nutrient solution composition and irrigation schedule. PID controllers 

or other control algorithms can be utilized to maintain the desired pH and EC levels by 

activating acid or base injectors and nutrient dosing pumps. In addition, moisture sensors 

can be used to regulate irrigation cycles, ensuring proper water and nutrient delivery 

without overwatering, or underwatering the plants. 

 

 

 

 

 

Figure 7: Humidity sub-system 

Figure 9: temperature sub-system 

Figure 8: EC sub-system 
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3.1.2.4. Control strategies 

Expanding upon the previously discussed integrations, control algorithms can be used to 

implement the strategy with which the IoT system can be controlled. Refer to Appendix C

 Control strategies’ for a full analysis on the most common control strategies. 

 

 

3.1.3.  3 - Integrating User-Defined Automations with Varying Levels of 

Complexity into the Vertical Farm Management System 

 

3.1.3.1. Approach 

Without automation, IoT solutions offer little more than visualization dashboards and offline 

data analysis. Automation plays a critical role in ensuring the success of vertical farming 

systems. Similarly, the data itself that is coming from the connected products has little 

inherent value. What matters and is ultimately the goal of all IoT solutions is that specific 

actions are taken to solve very specific, real-world challenges, that are unique for each IoT 

use case. 

However, implementing automation in vertical farming systems presents unique challenges 

due to the complexity and variability of the system. To address these challenges and 

provide an overview on how these challenges can be solved, this sub-question will focus on 

the design of a flexible, adaptable, and user-friendly automations system that facilitates the 

execution of these business rules.  

 

3.1.3.2. Automation Rules Engine 

In the case of an automation rules engine for IoT, business rules represent the core logic that 

governs the behavior of the system. These rules can include trigger events and 

corresponding actions that control the behavior of system components based on sensor data 

and other inputs. The automation rules engine serves as the tool that enables the creation 

and management of these rules. 

Figure 10: moisture sub-system 
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Just as different IoT use cases require different rules engine capabilities, different 

automation use cases may require different levels of automation, with varying degrees of 

complexity and flexibility. The design and implementation of an automation rules engine 

must consider the unique requirements of the specific use case and incorporate the 

necessary capabilities to meet those requirements. In the context of vertical farming 

systems, an automation rules engine can be used to automate tasks such as adjusting 

lighting, irrigation, and temperature control based on sensor data and other system inputs. 

Rules can be created and modified to respond to changing environmental conditions, crop 

growth stages, and other factors that affect the performance of the system. 

Some popular examples include: 

1. Node-RED 

Node-RED is an open-source automation tool that uses a flow-based programming 

model to create automation rules. It allows users to drag and drop nodes onto a 

canvas to define the flow of data and actions. Node-RED is most used as a 

supplementary tool within a larger system. 

2. Home Assistant 

Home Assistant is a popular home automation platform that can be used to control 

various devices and services in a vertical farming system. It includes a rules engine 

that allows users to define automation rules based on trigger events and actions. 

3. Redis 

Redis is an in-memory data structure store that can be implemented as an automation 

engine by providing fast and efficient data storage, retrieval, and communication 

between different components of the system. Since Redis is only a tool, the rest of the 

automation engine will have to be implemented and integrated on top of it. Redis can 

be utilized in an automation engine for: 

- State management: 

Storing system state like sensor data, actuator states, and thresholds for quick 

access and real-time decision-making. 

 

- Caching: 

Improving performance by caching results of complex computations or data 

queries, useful for large data sets or resource-intensive tasks. 

 

- Message queueing/pub-sub 

Facilitating communication between automation engine components, allowing 

real-time reaction to system changes. 

 

- Scheduling/timers 
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Managing scheduled tasks and timers for efficient handling of time-based 

automations without overloading the backend server. 

 

- Data persistence: 

Providing data persistence options to maintain system state, preventing data 

loss, and ensuring automation engine reliability. 

 

4. OpenHAB 

OpenHAB is another open-source home automation platform that can be used to 

automate vertical farming systems. It includes a rule engine that supports a wide 

range of trigger events and actions. 

5. AppDaemon 

AppDaemon is a Python daemon that provides a structured environment for writing 

automation apps/scripts for home automation projects. It works well with Home 

Assistant(documentation is focused on HA) and other home automation platforms that 

support MQTT messaging and can also be used as a standalone service. AppDaemon 

allows users to write automations using a sandboxed Python runtime. The daemon 

will then listen for specified events and trigger the specified scripts accordingly.  

6. Mycodo 

Mycodo is an open-source environmental monitoring and automation system 

designed for various applications, including vertical farming. It offers a robust rules 

engine that enables users to create and manage automation rules based on sensor 

data and other inputs. This allows for the implementation of customized control 

strategies for different system components, such as lighting, irrigation, and 

temperature control. With its user-friendly interface and extensive customization 

options, Mycodo provides a versatile solution for managing automations in vertical 

farming systems. 

During the analysis of the chosen vertical farm software (Mycodo), it was observed 

that Mycodo offers many functionalities through its own dashboard UI which may be 

used in the implementation of a vertical farm, such as PID controls, triggers and 

actions, but these functionalities were not (yet) accessible through the Mycodo API. 

This limitation posed a challenge in the development of an automation engine since 

the ideal solution is for the automation engine to be hosted on the Raspberry Pi with 

server-side support to manage these automation rules without depending on the 

server. The server could then be used to manage individual automation engine 

instances per vertical farm/Raspberry Pi. 

However, development on the Raspberry Pi, and more specifically Mycodo, has been 

avoided because of time and scope constraints and also since the development of the 

dashboard and its surrounding server components are the focus of the project. This 

led to designing the user-defined automations within the context of the server, where 
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the automations engine should be able to at least consume the Mycodo API to 

autonomously control all the vertical farms. Once a base for this system is functional, 

it should be possible to modify the Mycodo API to facilitate more features through the 

automation engine.  

 

3.1.3.3. Integration of the automation rules engine and the server 

In conclusion, various approaches can be employed to integrate an automation rules engine 

for vertical farming systems. Considering the findings of research sub-question 1 - 

Architectural Patterns for Remote Monitoring, Control, and Automations’ and tools analyzed 

in this report, the following architectures may be considered: 

 

1. Hasura and Node-RED based approach 

In this approach, the system utilizes Raspberry Pi with Mycodo and Node-RED for complex 

automation logic. A server-side custom automation service manages automations through 

Hasura scheduler API, invoking domain services for various vertical farming processes. 

Domain services can trigger Node-RED flows, leveraging the full Mycodo ecosystem for 

advanced features. 

Side of 

system 

Main components Description 

Raspberry Pi - Mycodo 

- Node-RED 

Mycodo and a Node-RED instance will be 

deployed per Raspberry Pi. The Node-RED 

instance will be responsible for any complex 

automation logic that isn’t available through 

the Mycodo API directly. 

Server - Automation 

service(hasura) 

- Domain services 

The server will contain a general automation 

service which facilitates management of 

automations through the Hasura scheduler 

API. This service will then, based on the 

user-defined rules, invoke the domain 

services. A domain service is responsible for 

one or multiple vertical-farming processes 

as described in chapter 3.1.2.2: ‘Functional 

Processes within a Vertical Farm (VF)’ 

The domain services may then invoke the 

Node-RED API to start a flow from within the 

Raspberry Pi. This is helpful, since the 

Mycodo API lacks support for some 

(advanced) features and this approach lets 

us define fine-grained flows that may 

completely utilize the Mycodo ecosystem 
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Table 6: Using Hasura and Node-RED 

 

2. Redis based approach 

In this approach, the system is divided into two main components: 

- On the Raspberry Pi side, Mycodo is used to control the vertical farm independently, 

while the server interacts with the Mycodo API to build additional logic based on 

available features. 

- On the server side, it consists of an automation service using Redis as a job queue and 

domain services. Redis serves as a job scheduler, enabling event-driven services for 

vertical farm operations. The execution of complex business rules can be achieved by 

chaining events generated from the scheduler service. 

Side of 

system 

Main components Description 

Raspberry 

Pi 

- Mycodo Mycodo is used to drive the vertical farm 

independently from the server. The server may 

invoke the Mycodo API and build additional logic on 

top. 

Server - Automation 

service (Redis 

as a job queue) 

- Domain 

services 

In this scenario, Redis may be implemented as a job 

scheduler and may be employed to facilitate 

scheduler-like features (for example, controlling 

actuators on a vertical farm when specific events 

occur).  

If the backend supports event-driven services, this 

approach opens the possibility to functionally narrow 

down each service and invoke each service based on 

events generated from the scheduler service. These 

events could then be chained according to the 

business rules required. 

Table 7: redis approach 

 

3. Mycodo-focused approach 

In this approach, the system has two main components: 

- On the Raspberry Pi side, Mycodo and Node-RED are used. Mycodo provides many 

features through its UI, and by modifying the existing Mycodo API, more complex 

functionalities can be supported. Node-RED can facilitate communication between 

components if needed. This approach has the advantage of keeping the automation 

engine as part of the vertical farm itself, managed by an API per vertical farm. However, 
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the downside is that the existing logic in Mycodo's automation engine needs to be 

analyzed and implemented per use case without breaking any existing functionalities. 

- On the server side, an automation management service is used to consume the newly 

added Mycodo API endpoints. This approach simplifies implementation since all 

complex logic is contained within the Mycodo instance. 

 

Side of 

system 

Main components Description 

Raspberry 

Pi 

- Mycodo 

- Node-RED 

Since Mycodo offers many features through its own UI, 

it’s possible to modify the existing Mycodo API to 

support more complex functionalities. These 

functionalities can then be invoked by a client to 

manage automations. Where required, Node-RED can 

be used to facilitate the communication between 

multiple components. 

The benefit of this approach would be that the 

automation engine will be part of the vertical farm 

itself, with a management API per vertical farm. 

The downside of this approach would be that the 

existing logic in Mycodo’s automation engine would 

need to be analyzed and implemented per use case 

without breaking any existing functionalities.  

Server - Automation 

management 

service 

The server will need to contain only a management 

service which consumes the newly added Mycodo API 

endpoints. Since all complex logic is contained in the 

Mycodo instance, this approach would be easier to 

implement compared to the other approaches. 

Table 8: Mycodo-centric approach 

 

3.1.3.4. Automations: level 2 

Mycodo, with its built-in InfluxDB instance, offers the capability to create feedback loops 

ranging from basic to complex logic. InfluxDB Checks API is a part of the InfluxDB 

monitoring and alerting framework. It uses the data stored in InfluxDB and the Flux query 

language to define checks. The API continuously evaluates the data against specified 

conditions or thresholds, which are defined using Flux scripts. 

The Checks API works in conjunction with other components of the InfluxDB monitoring and 

alerting framework, such as notification rules and endpoints, to provide a comprehensive 

solution for monitoring and alerting. 
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• Checks: These are user-defined scripts written in Flux that query the data and 

evaluate it against specific conditions. The check generates a status (OK, Info, Warn, 

or Crit) based on the outcome of the evaluation. 

• Notification Rules: These are associated with checks and determine how the alerts 

should be handled when a specific status is generated. Users can define different 

notification rules for different status levels. 

• Notification Endpoints: These are the destinations for the alerts generated by the 

checks and notification rules. Examples of notification endpoints include email, 

Slack, PagerDuty, and (custom) HTTP endpoints. 

An example use case in the context of IoT systems, the Checks API can be used to monitor 

the health and status of individual devices. Users can create checks to alert them when 

devices go offline, when sensor readings exceed defined limits, or when other anomalies 

are detected.  

Another example use case is anomaly detection in time-series data, such as sudden spikes 

or drops in a metric. Users can set up checks to trigger alerts when such anomalies are 

detected, helping in identifying and addressing potential issues. 

 

3.1.3.4.1. Analysis 

The InfluxDB API can be used in the dashboard for multiple vertical farms in several ways to 

enhance the monitoring, analysis, and decision-making process for these systems. Some of 

the use cases to utilize the InfluxDB API are: 

1. Alerts and Notifications: Using InfluxDB Checks API, the dashboard can be configured to 

generate alerts and notifications based on user-defined thresholds and conditions. This 

helps in identifying and addressing issues promptly, ensuring optimal performance and 

preventing potential problems. 

2. Custom Feedback Loops: By utilizing InfluxDB's capabilities, the server can create 

custom feedback loops that automate actions based on specific conditions or thresholds. 

For instance, if a particular sensor value exceeds a pre-defined limit, the dashboard can 

trigger a webhook or another action to adjust an actuator, maintaining the desired 

environmental conditions. 

Overall, the InfluxDB Checks API provides a flexible system facilitating level 2 automations 

easily. Feedback loops can be created and custom webhooks may be exposed for the 

InfluxDB instance to consume. These webhooks may contain pretty much any kind of 

business logic, providing a lot of flexibility to implement simple or complex checks. This 

also let’s us conclude that, with the right backend components in place, the Checks API may 

also be used as part of level 3 automations.  

 

3.1.3.5. Automations: level 3 

With a basic feedback loop in place, for example by using the InfluxDB checks API, it’s now 

possible to expand upon the automation’s engine with more complex and customizable 
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automation rules in place, the next step is to make this automation engine a bit smarter. This 

can be achieved by implementing advanced control mechanisms and utilizing real-time 

sensor data as input for automation rules.  

 

3.1.3.5.1. Real-time sensor data ingestion (MQTT) 

Utilizing sensor data as input for automation rules can lead to more responsive and 

adaptable automation systems. This can be achieved by employing the MQTT (Message 

Queuing Telemetry Transport) protocol for communication between the server and the 

vertical farm system. 

By integrating MQTT into the automation engine, the server can: 

• Subscribe to sensor data from the vertical farm system and receive real-time updates 

• Use the received sensor data as input for evaluating automation rules and making 

decisions 

• Publish commands to the vertical farm system to adjust system parameters (e.g., 

lighting, irrigation, temperature) in real-time based on the evaluated automation 

rules 

• Easily integrate with MQTT-enabled data processing engines such as Apache Kafka 

 

3.1.3.5.2. Architecture Analysis 

With a stream of different sensor data available, it is time to analyze what server components 

are required to facilitate a (generic) control engine and how this might be designed. While 

reading about more complex systems for the IoT domain, an architecture proposal was 

found which uses open-source tools to implement an automation rules engine (Veneri & 

Capasso, 2018). 

This design, on a high-level, contains all the components required to implement an 

extensive automation component for our IoT-based system, such as the vertical farm. As 

requirements become more complex, similar components may be added to facilitate the 

infrastructure for our specific requirements. Refer to Appendix D Industrial Internet-of-

Things OSS architecture’ for an overview of this architecture. 

A summary of the most important components can be described as follows: 

- The controllers collect and send sensor data to an MQTT broker and persist the data into 

a data store (locally on either the controller in the physical environment, or through a 

gateway-like component).  

- The data is also persisted into a time-series based database, except this time it’s on a 

remote location(server).  

- The asset registry module stores information about the assets and the relationships 

between them. These could be physical assets, devices, and systems within an industrial 

setting. This registry serves as the single source of truth for asset data 

- The data from the remote storage is queried by the advanced analytics component, which 

may contain (long running) background-processes based on specific requirements and 



 

28 

 

DIGITAL VERTICAL FARMING - BUILDING A RASPBERRY PI-BASED VERTICAL FARM 

WITH MULTI-FARM ADMINISTRATION DASHBOARD 

strategies. The advanced analytics module queries asset data from the asset registry 

module.  

- Apache Kafka is used as a both an event-dispatcher and as a rules-engine using Kafka 

streams. Kafka then processes the data received from the MQTT broker and publishes 

the processed data to an analysis module.  

- The analysis module analyzes the data for real-time operations. The difference between 

this analytics module and the advanced analytics module is that this one is for fast data-

processing analytics, while the advanced module is meant for long-running data-

processing analytics. 

- By using these components, the platform is now able to produce operations to execute, 

based on data processed from the controllers. 

Of course, our requirements will differ from this system and the constraints will also be 

different. However, as mentioned before, the high-level functionalities can be implemented 

with similar approaches to fulfill our specific requirements. 

 

3.1.3.5.3. Alternative Implementation 

An alternative to the previously 

mentioned server architecture to 

facilitate for level 3 automations is to 

leverage InfluxDB's Checks API. This 

approach allows users to manage 

checks on individual data points and 

assign notification rules(triggers) based 

on the data point's status (OK, Info, 

Warn, or Crit). 

These webhooks may then in turn 

invoke the Mycodo API directly or the 

server if complex business logic is 

required. By utilizing the InfluxDB 

Checks API, the server and dashboard 

can provide a more streamlined experience for users managing multiple vertical farms or 

Raspberry Pis.  

The Checks API enables users to define custom checks and conditions for each data point, 

which helps in identifying any issues or anomalies in real-time. These checks can be based 

on specific thresholds or patterns, offering flexibility in monitoring different aspects of the 

vertical farms. Furthermore, the Checks API allows for seamless integration with other 

InfluxDB components, such as notifications and alerting systems. This ensures that users are 

promptly informed about any critical events or deviations, enabling them to take 

appropriate action as needed. 

 

Figure 11: diagram showcasing the check mechanism from InfluxDB (Dotis-

Georgiou, 2021) 
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4. System design 
As mentioned before, the primary objective of this project is to research, analyze, design 

and implement a vertical farm setup with IoT integrations, working in conjunction with a 

central management dashboard that allows for management, such as monitoring, control 

and automations of many such vertical farms. 

The development of such systems requires a multidisciplinary approach, combining 

knowledge from agriculture, engineering, and computer science. This is why an extensive 

design was made to narrow down the scope of the system and potential approaches to 

developing such a system.  

 

4.1. Use Cases 
This section presents a series of use case scenarios to illustrate the functionality and 

interactions between the user, server and vertical farm. Refer to Appendix A  Use case 

descriptions for more information about each use case. 

4.2. Requirements Analysis 
Based on the system description provided in the prior chapters, the rest of the system’s 

requirements are defined by following the Holistic Requirements Model (HRM). The HRM 

works by categorizing requirements into 3 categories. 

 

Figure 12: use case diagram, displaying the core 

functionalities of the system. 
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4.2.1. Operational requirements 

The operational requirements are a set of statements that define how a system should be 

operated, maintained, and supported to ensure its proper functioning and availability.  

# Requirement Description 

1 Performance The system must perform its intended function in a reliable, efficient, and 

effective manner. It must meet the performance standards that a user might 

expect from an admin dashboard.  

2 Scalability The system needs to be scalable to accommodate evolving user demands, 

while maintaining optimal performance and functionality. In our context, 

scalability refers to the ability to support multiple vertical farms/Raspberry 

Pi’s that are deployed and operated simultaneously. 

3 Maintainability The system must be designed to be easily maintained, updated, and 

repaired. In case of an error, the user should know what has happened and 

how to fix the issue without having to debug the codebase.  

4 Usability The system must be designed with a user-friendly interface and clear 

documentation to ensure ease of use 

5 Reliability The system must be reliable, meaning it should perform its functions without 

errors, failures or unexpected behavior 
Table 9: operational requirements 

 

4.2.2. Functional requirements 

The functional requirements are a set of statements that define what the system should do, 

and how it should behave under various conditions. These requirements describe the 

features, capabilities, and behaviors that the system must have to meet the needs of its users 

or stakeholders. These requirements have been prioritized by applying the MoSCoW 

framework. 

# Requirement Description 

1 User authentication 

and authorization 

The dashboard should provide a secure login system for users. 

2 Provisioning a 

vertical farm into the 

system 

The dashboard must allow users to add and configure 

Raspberry Pi devices for each vertical farm, including 

specifying farm location, device name, and other relevant 

information. 

3 Displaying sensor 

data 

The dashboard must display real-time and historical sensor 

data from each Raspberry Pi device, including temperature, 

humidity, light, and nutrient levels. 

4 Controlling actuators The dashboard must enable users to manually control 

actuators connected to the Raspberry Pi devices, such as 

lights, pumps, and fans. 

5 Adding automation 

rules 

The dashboard must allow users to create and configure 

automation rules for individual vertical farms based on sensor 

data, time schedules, or other triggers. 
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6 Managing 

automation rules 

The dashboard should enable users to edit, delete, and 

enable/disable automation rules for each vertical farm. 

7 Monitoring and 

notifications 

The dashboard should provide real-time monitoring of the 

vertical farms and allow users to configure alerts for specific 

events, such as critical sensor readings or system failures. 

8 Multi-farm 

management 

The dashboard must support the management of multiple 

vertical farms, allowing users to switch between farms. 

9 System backup and 

recovery 

The dashboard should allow users to create and restore 

backups of their vertical farm data and configurations, 

ensuring data safety and business continuity in case of system 

failures, expansion or data loss. 
Table 10: functional requirements 

 

4.2.3. Non-functional requirements 

Non-functional requirements refer to the characteristics of the system that describe how it 

should perform, behave, or appear, but are not directly related to the system's specific 

features or functions. 

# Requirement Description 

1 Performance The system should be able to handle large data volumes without 

experiencing significant delays or performance degradation. For example, 

the system should be able to process large numbers of data points in the 

charts without performance issues arising 

2 Reliability The system should be highly reliable and available at all times, with a 

minimum uptime of 99.9%. For example, the system should have a failover 

mechanism in case of server failure 

3 Scalability The system should be able to scale up or down as needed to accommodate 

changes in user demand or data volume. For example, the system should be 

able to handle an increase in data traffic when connecting more vertical 

farms without performance degradation 

4 Usability The admin dashboard should be intuitive and user-friendly, allowing users 

to easily navigate and access the system's features and functions. The rest of 

the system should also allow for ease of use, for example for further 

development by other developers 

5 Maintainability The system should be easy to maintain and update, with clear 

documentation and well-organized code 
Table 11: Non-functional requirements 

 

4.3. User stories 
Refer to Appendix E User stories’ for an overview of formulated user stories. 
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4.4. Decision-Making Process and Criteria 
This section aims to provide a comprehensive overview of the chosen system architecture 

for the system and design of its components. By specifying the criteria for each component 

required in our system, we will compare possible options for implementing these 

components. Following is a list of considerations for each component that need to be made 

before specifying details about the implementation of the component.  

4.4.1. Vertical Farm Software Criteria 

Below are the criteria as specified for the software driving the vertical farm: 

# Criteria Description 

1 Data storage The choice of data storage solution should be made. This 

includes deciding on the type of databases to use, such as SQL 

or NoSQL, and where to store the data, such as on the 

Raspberry Pi, on-premises or in the cloud. 

There are two types of storage components for our system: 

➢ One for storing sensor data, ideally a time-series based 

engine. 

➢ One for storing application(s) data 

2 Sensor integration The vertical farm software should facilitate a straightforward 

process for integrating a diverse range of sensors into the 

system.  

 

➢ Should be able to connect to a wide range of sensors.  

➢ Should be able to configure the connected sensors (for 

example, setting the pin number) 

➢ Should be able to read out the connected sensors. 

*: Ideally, the chosen platform should have an API of the 

chosen Raspberry Pi software and should enable a client to 

configure a (physically) connected device when required as 

well as other CRUD-like operations for sensors. 

3 Actuator integration The vertical farm software should facilitate a straightforward 

process for integrating a diverse range of actuators into the 

system. This includes accommodating various communication 

protocols, enabling seamless addition of actuators and 

providing the means to interact with the actuators. Ideally, 

CRUD-like operations should be exposed through an API that 

allows other applications to manage the actuators. 

4 Automation 

capabilities 

Decisions must be made regarding the choice of automation 

engine. This includes selecting the appropriate tools and 

determining how to trigger automation rules based on sensor 

readings or other events. 

 

Automations can be divided into three separate levels. 
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➢ Level 1 

Users can manage automations on a fixed schedule, 

such as turning on Actuator X at 08:00 AM and turning it 

off at 09:00 AM. 

 

➢ Level 2 

Users can manage automations based on sensor data, 

which is considered a "dumb" feedback loop. An 

example would be, "if Sensor X exceeds a certain 

threshold, activate Actuator Y until Sensor X returns to 

an acceptable range." 

 

➢ Level 3 

Users can manage automations that consider multiple 

sensor values, actuator states, and user-defined 

thresholds. This level represents a "smart" feedback 

loop, ideally providing self-correcting behaviors within 

the vertical farm. This level expands on Level 2 by 

providing a more extensive and more autonomous 

automation system.  

 
*: This criterion is shared with the server, as automations might 

be solved on either side of the system. 

5 User-friendly 

configuration 

Overall, the vertical farm software should be easily 

configurable on an individual basis. This may include a 

(custom) web-based interface, through an API or other tooling. 

6 API availability Should have one or more API’s for interacting with the 

connected sensors, actuators, (runtime) data, sensor data, 

automations etc. 
Table 12: criterions used to compare existing vertical farming platforms 

 

4.4.2. Server Components Criteria 

The server will be responsible for any API requests that need to be made by the dashboard. 

This could be for querying some data, or for anything to do with automations. Aside from the 

implementation details, the server should be describable as a REST API. Where these API’s 

live are not important for the time being. 

For the server components, the following considerations need to be evaluated.   

# Criteria Description 

1 API The server should have well-structured, consistent and intuitive 

APIs for the dashboard to consume.   

2 Authentication The server should have proper authentication mechanisms for the 

APIs to ensure that only authorized users and services can access 

the API 
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3 Error Handling The server should have a consistent and informative error handling 

strategy for the APIs, providing meaningful information and dealing 

with the request-response cycle accordingly 

4 Asynchronous 

Processing 

The server should support asynchronous processing for time-

consuming/background tasks. 

5 Logging and 

Monitoring 

Each server component should support comprehensive logging and 

monitoring mechanisms in place to track performance, identify 

bottlenecks and quickly debug issues. 

6 Automation 

capabilities 

Decisions must be made regarding the choice of automation engine. 

This includes selecting the appropriate tools and determining how 

to facilitate the infrastructure required for automation rules based 

on sensor readings or other events. 

Automations could be divided into three separate levels of 

complexity. 

➢ Level 1 

Users can manage automations on a fixed schedule, such as 

turning on Actuator X at 08:00 AM and turning it off at 09:00 

AM. 

 

➢ Level 2 

Users can manage automations based on sensor data, which 

is considered a primitive feedback loop. An example would 

be, "if Sensor X exceeds a certain threshold, activate 

Actuator Y until Sensor X returns to an acceptable range." 

 

➢ Level 3 

Users can manage automations that consider multiple sensor 

values, actuator states, and user-defined thresholds. This 

level represents a smart feedback loop, ideally providing 

self-correcting behaviors within the vertical farm. This level 

expands on Level 2 by providing a more extensive and more 

autonomous automation system.  

 
*: This criterion is shared with the vertical farm(software), as 

automations might be solved on either side of the system. 
Table 13: server criterions 

4.4.3. Considered Options 

4.4.3.1. Vertical Farm Software 

To gain more information about Raspberry Pi-based vertical farm systems and their 

technical workings, I looked for existing projects which solved similar problems by 

providing an environmental monitoring platform and carried out a multi-criteria analysis.  

The two contenders were Mycodo and Home Assistant, because compared to other tools 

they’re just a lot more complete. Mycodo is a platform meant for environmental monitoring, 

while Home Assistant is meant as a generic tool in the bigger context of home automation 

(including environmental monitoring/control).  
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To carry out a multi-criteria analysis for Mycodo and Home Assistant, we will evaluate each 

platform based on the criteria specified in  Table 12. The evaluation will be based on a scale 

of 1 to 5, with 1 being the lowest (poor) and 5 being the highest (excellent). 

 

4.4.3.1.1. Mycodo 

Mycodo is an open-source platform for environmental monitoring and automation. It is 

designed to allow users to monitor and control a range of environmental parameters. 

Mycodo is highly customizable, with a user-friendly web interface that allows users to 

configure their monitoring and control systems according to their specific needs. It supports 

a wide range of sensors and controllers, including popular devices such as the Raspberry Pi. 

Mycodo also includes a range of data logging and visualization tools, allowing users to 

analyze historical data and trends over time. On top of all these features, Mycodo provides a 

rest API for integration with other applications. 

# Criteria Score 

1 Sensor support 5 

2 Actuator support 5 

3 API availability 4 

4 Data storage 5 

5 Configuration storage 3 

6 Automation capabilities 5 

 Total 27 

Table 14: Mycodo MCA scores 

• Sensor support: Mycodo supports I2C, 1-Wire, SPI, and GPIO-based sensors, offering 

extensive compatibility with various environmental sensors, including custom sensor 

integrations. Mycodo is designed in a modular fashion; there are pre-made modules for 

specific sensor models (including the Atlas Scientific ecosystem) as well as the ability to 

programmatically create a custom implementation if required.  

• Actuator control: Mycodo provides a powerful and flexible platform for actuator control 

in vertical farming, with support for a wide range of actuators and interfaces such as I2C, 

1-Wire, SPI and GPIO-based actuators. The REST API makes it easy to integrate the 

functionalities of these actuators with external applications and tools such as an admin 

dashboard. 

• API availability: Mycodo features a RESTful API that allows for common functionalities to 

be integrated into external applications 
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• Data storage: Mycodo uses InfluxDB for time-series data storage, enabling efficient 

retrieval and visualization of sensor data. This data can be queried through the Mycodo 

API as well as directly through the InfluxDB API.  

• Configuration storage: Mycodo stores configuration settings in an SQLite database, 

which can be backed up and restored easily. However, these configurations can’t be 

changed through the REST API. 

• Automation capabilities: Mycodo offers a Python-based conditional rule-engine system 

for creating complex automation rules based on sensor data, time-based events, or other 

conditions. The API provides the ability to drive actuators in a semi-automated way by 

means of providing a duration to the actuator state. 

 

4.4.3.1.2. Home Assistant 

Home Assistant is an open-source platform for home automation that allows users to control 

and monitor a wide range of smart home devices and systems. It is designed to be highly 

flexible and customizable, with support for a wide range of devices and protocols. 

When it comes to vertical farming with a Raspberry Pi, Home Assistant can be a useful tool 

for managing and automating various aspects of the setup. For example, Home Assistant can 

be used to control and monitor environmental factors such as temperature, humidity, and 

lighting, as well as to automate tasks such as watering and nutrient delivery. 

 

# Criteria Score 

1 Sensor support 5 

2 Actuator support 5 

3 API availability 3 

4 Data storage 3 

5 Configuration storage 4 

6 Automation capabilities 3 

 Total 23 

Table 15: Home Assistant MCA score 

• Sensor support: Home Assistant supports I2C, 1-Wire, SPI, and GPIO-based sensors, as 

well as integration with various environmental monitoring platforms through custom 

integrations or native support. 

• Actuator control: Home Assistant supports various actuators and allows users to control 

them through the user interface or automation rules, using GPIO, I2C, SPI, or other 

communication protocols. 
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• API availability: Home Assistant allegedly features a RESTful API built on Python and the 

Flask web framework, supporting CRUD operations for devices, data, configurations, 

and automation rules. The API is however quite poorly documented, which makes me 

question whether all of the listed features are accessible through the API. 

• Data storage: Home Assistant uses SQLite or other compatible databases (e.g., MySQL, 

PostgreSQL) for storing sensor data, managed by the SQLAlchemy ORM. 

• Configuration storage: Home Assistant stores configuration settings in YAML files or its 

integrated storage system, which uses an SQLite database. 

• Automation capabilities: Home Assistant has a Python-based automation engine, 

allowing users to create complex rules and triggers for controlling connected devices. 

The automation system is built on the Home Assistant Core, which is based on Python 

and the AsyncIO library. Users can define automation rules in YAML files or create 

scripts using Python, enabling advanced customization and flexibility in automating 

various tasks in the vertical farming system.  

The multi-criteria analysis conducted on Mycodo and Home Assistant reveals that Mycodo is 

the better option for a Raspberry Pi-based vertical farming system due to its specific domain 

of environmental monitoring and many of the features being well documented. Mycodo 

scored higher than Home Assistant in almost all criteria except configuration storage, 

making it well-suited for managing and optimizing the environmental conditions in a vertical 

farming system. Mycodo's support for a wide range of sensors and actuators, flexible 

automation capabilities, and REST API, as well as its use of InfluxDB for data storage and 

visualization, offer powerful capabilities for monitoring and analyzing sensor data. 

 

4.4.3.2. Server 

 

4.4.3.2.1. Hasura with Serverless Functions 

Since it’s part of the graduation company’s technology stack; Hasura and Serverless 

Functions have been tested against the requirements of our system. Hasura is an open-

source engine that provides real-time GraphQL APIs on top of existing databases, enabling 

developers to quickly build and deploy scalable, high-performance applications with a 

simple and flexible API. It supports a wide range of databases, including PostgreSQL and 

MySQL, and offers features like authentication, authorization, and event-driven 

programming. 

The approach of the graduation company is meant for cloud-driven apps where hasura is 

used to act as the primary backend service by providing interfaces that allow developers to 

implement common backend features in an easier and more declarative way. For example, 

serverless functions can be mapped to hasura actions and then these actions can be 

consumed by a front-end client directly, cron jobs are available, 

authentication/authorization is provided, and table-based event CRUD triggers can be 

management out-of-the-box. These features provide a solid foundation to easily build web 
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apps that fit the cloud-environments of the current development landscape. 

 

However, when considering the company stack for an IoT-based system such as the vertical 

farm, using serverless functions adds a configuration overhead to facilitate communication 

between serverless functions and the vertical farms. If serverless functions would be used, it 

would also limit the amount of flexibility of the server compared to developing a custom 

backend server. 

 

 

 

# Criteria Score 

1 API 4 

2 Authentication 3 

3 Error Handling 2 

4 Asynchronous Processing 3 

5 Logging and Monitoring 3 

6 Automation capabilities 2 

 Total 17 

Table 16: hasura + serverless MCA scores 

The multi-criteria analysis provides an evaluation of using Hasura with serverless functions 

for the core of the backend implementation of the system. 

Here is a summary explaining why each criterion received its respective score: 

1. API: Hasura offers a robust and flexible API through real-time GraphQL, allowing for 

efficient development and deployment of high-performance applications. The API's 

versatility and simplicity make it a strong choice, resulting in a high score. 

2. Authentication: Hasura provides basic authentication and authorization features, which 

can offer an adequate level of security for the system. However, it may not be as 

comprehensive or customizable as a custom-built authentication solution, thus receiving 

a moderate score. 

3. Error Handling: While Hasura has some error handling capabilities, it may not be as 

consistent or informative as a custom backend solution. This may lead to difficulties in 

managing and addressing errors in the system, which is why it receives a lower score. 

4. Asynchronous Processing: Hasura supports asynchronous processing through one-off 

scheduled and cron-based events. These events can be configured with retry options for 

extra reliability. This  
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5. Logging and Monitoring: Hasura provides some logging and monitoring features, but 

they may not be as comprehensive or customizable as a custom backend solution. 

Engine related logs are also written to a file, which makes integration with other 

logging/monitoring systems difficult. 

6. Automation capabilities: Hasura's automation capabilities may not be as flexible or 

extensive as a custom backend solution, especially when considering the specific 

requirements of the system. This limitation in automation support leads to a lower score. 

The cron scheduler could be implemented to function as a basic rule engine. However, 

this approach introduces a couple of new issues into the system. For example, the 

scheduler uses Postgres for storing metadata. This metadata is wrapped around a 

primitive implementation which does not scale with the number of vertical farms.  

4.4.3.2.2. Custom Backend Server 

Developing a custom backend provides several advantages over using Hasura (with 

serverless functions). For example: 

1. Fine-grained control 

A custom backend allows for complete control over the architecture, implementation, and 

functionality. This enables the development of features and optimizations tailored 

specifically to the vertical farming use case, resulting in better performance and efficiency. 

2. Integration flexibility 

A custom backend provides the flexibility to integrate with a wider range of third-party 

services, patterns, tools, and libraries. 

3. Scalability and performance 

By developing a custom backend, the system can be optimized for specific requirements, 

ensuring better performance and scalability. This can lead to lower latency and more 

efficient resource utilization. 

4. Security 

With a custom backend, there is full control over the security implementation, allowing the 

system to meet specific security requirements and standards.  

5. Maintenance and support 

With a custom backend, there is complete control over the system's development, 

maintenance, and support, allowing for the addressing of issues and implementation of 

improvements in a timely manner. This can be especially beneficial in an evolving system 

like a vertical farm. 

 

# Criteria Score 

1 API 5 
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2 Authentication 5 

3 Error Handling 5 

4 Asynchronous Processing 4 

5 Logging and Monitoring 4 

6 Automation capabilities 4 

 Total 27 

Table 17: Implementing a custom backend scores 

 

4.5. System Architecture 
 

4.5.1. Vertical Farm Components 

To get started, a Raspberry Pi-based vertical farm would need to be developed to be able to 

monitor and control the metrics and test the rest of our system against. The Raspberry Pi 

serves as the foundation of our vertical farm system; therefore, it is crucial that we select an 

implementation that aligns with our initial requirements and leaves room for potential future 

enhancements. To design the functional aspects of a vertical farm, the following building 

blocks will need to be considered: 

Component Description 
Rack The rack is the physical setup that is going to contain the implemented 

system. This component will not be a part of this project as there are too 

many variables involved to fine-tune specific rack-related configurations 

for a vertical farm. However, new sensors might be added, water 

supplication and distribution lines might change, etc.,  

so the system’s design must take into consideration that the configuration 

of the rack might change by making these changes reflect back on the 

system’s components. 

 

Raspberry Pi 

Software 

The Raspberry Pi must run a software platform which essentially makes it 

possible to drive all the functions that the Raspberry Pi would need to 

fulfill its role as the vertical farm controller.  

Raspberry Pi 

Hardware 

The hardware consisting of the Raspberry Pi itself, as well as any sensor- 

and actuator device. One option would be that the sensors & actuators 

are hardcoded into the config of the Raspberry Pi, but a better solution 

would be to have a dynamic system in place that keeps track of 

connected sensors & actuators so that any hardware setup will work with 

the system. 
Table 18: Components of a vertical farm 

 

For a proof-of-concept, it would be possible to use a simulated/virtual setup for the 

Raspberry Pi, which would essentially publish sensor data somewhere and keep track of 
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some actuator states. The virtual device could then expose functionalities that mimic a 

physical Raspberry Pi. However, since the implementation of the dashboard also depends 

on the implementation of the vertical farm and it’s API(s), a minimum physical setup will be 

set up and integrated into the proof-of-concept. This approach also increases the testability 

of the system. 

 

4.5.1.1. Mycodo 

Mycodo has been chosen as the Raspberry Pi software to drive the vertical farm. Mycodo 

provides us with the entire infrastructure required to start prototyping rapidly on other parts 

of the system instead of building such an advanced tool which would take well over the 

period of the graduation project. Mycodo provides us with abstractions over common 

components and features of a greenhouse setup and keeps track of all this state in a python 

application packaged as a convenient Linux system service.  

Mycodo will provide the base for our vertical farm, so that the development of the project 

can focus on other parts of the system’s development. Through initial testing of the API, it 

was concluded that it should be possible to extend a Mycodo runtime into a scalable 

management dashboard by consuming the API it provides. These tests were done by setting 

up a Mycodo instance on a Raspberry Pi, retrieving an API token, and doing HTTP requests 

through the OpenAPI/Swagger endpoints (UI) that Mycodo provides.  

 

4.5.1.2. Hardware 

A Raspberry Pi will be responsible for controlling and monitoring various aspects of the 

vertical farm using sensors and actuators. These sensors will be used to monitor 

environmental factors such as temperature, humidity, and nutrient levels. The actuators will 

then be used to adjust these factors in real-time based on the sensor data. 

During the first phase of the project, a proposal was 

The Atlas-scientific ecosystem is a collection of sensing modules designed for use in 

hydroponic and aquaponic systems. The ecosystem includes a wide range of sensors for 

monitoring environmental parameters such as pH, dissolved oxygen, conductivity, and 

temperature, as well as actuators for controlling pH and dissolved oxygen levels.  

The Atlas-scientific ecosystem is perfect for this project, as it allows for a high-quality 

system, easy interfacing, and a no-soldering solution. The only downside of choosing the 

Atlas-Scientific sensors is the financial aspect. Because they are very expensive compared to 

alternatives since the Atlas-Scientific devices have been designed for industrial purposes 

where precision is crucial and environmental factors are much harsher. However, after 

discussing the benefits with the customer, we agreed upon this hardware implementation, 

and they were provided in week 6 of the project. 

The following hardware has been provided for the proof-of-concept of the system: 

➢ Atlas-scientific Whitebox T3 carrier board 
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➢ Atlas-scientific EZO pH sensor 

➢ Atlas scientific EZO CO2 sensor 

➢ Atlas-scientific EZO Humidity sensor 

➢ Atlas-scientific EZO EC sensor 

 

Based on the results of research sub-question 3.1.2.2: ‘Functional Processes within a Vertical 

Farm (VF)’, the following sensors and actuators have also been added to the proof-of-

concept phase: 

➢ Water pump 

➢ Solenoid Valve 

➢ 2x 12VDC Fan 

➢ 2x LED matrix 

➢ Liquid temperature probe 

➢ Camera 

This has resulted in the following hardware diagram for the vertical farm: 

 

Figure 13: Hardware diagram 
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4.5.2. Server Components 

Based on the findings of research sub-question in chapter 3 - Integrating User-Defined 

Automations with Varying Levels of Complexity into the Vertical Farm Management System’, 

the following application architecture diagram has been created to facilitate the server with 

the infrastructure required to implement a similar(but minified) platform of a web-based 

industrial IoT-platform: 

A combination of event-driven microservices can be utilized. This should ensure that the 

server is designed in a modular, scalable, and maintainable manner while separating 

concerns within the system. Following is a description of each component: 

1. API Gateway 

The API Gateway is a common practice when using microservices. It acts as a single entry-

point for all client requests and routes them to the appropriate microservices. The benefits 

of using an API Gateway include improved security, centralized authentication, and 

potentially load balancing. 

2. Auth Service 

The Auth Service is responsible for authenticating clients using JWT (JSON Web Tokens). 

The API Gateway consults the Auth Service before allowing a client to access any 

microservices, ensuring that only authorized clients can access the system. By separating 

the authorization process into its own service, we can also easily integrate a cloud-based 

authentication provider. 

3. Data Services 

Data services include a collection of microservices that integrate with various data solutions, 

such as Hasura, cloud services, and the Mycodo API. These services facilitate the retrieval 

and storage of sensor data from the InfluxDB instance (either on the Raspberry Pi or the 

server). 

Figure 14: server architecture proposal 
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4. Message Broker (Redis) 

The Redis message broker enables communication between microservices, facilitating 

event-driven flows. It allows for the efficient handling of events and messages, ensuring 

smooth and reliable data flow between services. 

5. MQTT Broker 

The MQTT Broker subscribes to sensor data from the Raspberry Pi’s, enabling real-time 

updates and communication between the server and the vertical farm system. 

6. Data Ingestion Service 

The Data Ingestion Service processes data received from the MQTT broker and makes sure 

that the data is available throughout the server where required, for example persisting the 

data or propagating the data to another service. A possible implementation of this service 

might use Apache Kafka. 

7. Data Analysis Service 

The Data Analysis Service processes real-time sensor data from the Data Ingestion Service 

and produces events for the Automation Rules Engine, as well as other services if required. 

This enables dynamic adjustments to the automation rules based on data analysis. As seen in 

Figure 14, this service is optional. This is because level 2 automations can technically also 

be achieved by performing simple threshold checks and comparing the current value to it. 

Based on the result, an automation rule may or may not be triggered.  

8. Automation Service 

The Automation Service manages scheduler-like functionalities to control automations 

through its own queue. It coordinates the timing and execution of automation tasks. These 

tasks could be based on a cron expression, an interval or when specific events are 

produced/consumed. 

9. Domain Services (lighting, irrigation, climate):  

Domain services communicate with the vertical farms to perform certain (vertical farm 

related) tasks, such as switching lights or water pumps on or off. Since it should also be 

possible to invoke these services without the automation service, using an event-driven 

microservice architecture allows us to write the logic once and reuse in any other service. 

 

4.6. Technology Stack 
 

4.6.1. Front-end framework: React 

React is a widely used JavaScript framework that facilitates the development of dynamic web 

UI’s. It allows developers to create reusable components, which can be easily integrated 

with other libraries and frameworks. React also provides a virtual DOM for efficient updates 

and rendering of UI components. 
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The options regarding this choice were really between any component-based framework. 

React is already part of the company stack(and the project boilerplate) and is also the most 

mature front-end framework with a big developer community for support and 

documentation. It should also be easier to ask for help regarding react from coworkers. 

 

4.6.2. Back-end framework: NestJS 

NestJS provides a scalable and efficient framework for developing server-side components 

in Typescript within a NodeJS runtime. It is a versatile platform with a declarative yet 

customizable approach to backend development and offers plugins for many tools required 

for the project, including MQTT protocol, Kafka, Redis, and even Hasura/GraphQL, if 

desired. It’s a very mature framework with extensive documentation and tutorials available.  

NestJS supports microservices as well as event-driven architectural patterns, allowing one 

project to contain multiple microservices, where the NestJS framework provides the 

necessary tools for implementing these services. A key advantage of NestJS is its modular 

approach to backend development, which allows for separate development and 

independent deployment of each module, making it easier to manage and maintain the 

backend. 

However, the microservice-based approach, combined with a message broker for service-

to-service communication, enables the use of different frameworks or runtimes if required. 

For instance, if a specific library is not supported in a NodeJS environment, an alternative 

framework or runtime may be employed, if it has support for communication with the 

message broker’s protocol. This flexibility ensures that the project can adapt to various 

requirements without being limited by a single technology stack. 

 

4.7. Mycodo API integration 
The Mycodo install script installs 4 packages which compose the Mycodo runtime: 

1. Nginx 

Nginx is a popular, lightweight, and high-performance web server and reverse 

proxy server. Nginx hosts the Mycodo web interface, which provides users with 

access to the dashboard, settings, and various control options for their vertical farm 

or environmental monitoring system. Nginx also acts as a reverse proxy for the 

Mycodo runtime and routes HTTP requests to the right internal port.  

Figure 15: Mycodo software architecture 
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2. Flask API 

A lightweight web framework used for creating the Mycodo RESTful API to manage 

and control the system 

3. Mycodo daemon 

A background service that continuously runs, responsible for managing sensors, 

actuators, and automation rules 

4. InfluxDB 

A time-series database used for storing sensor data and other time-based metrics 

collected by Mycodo 

 

 

While testing the Mycodo Flask API during the initial phase of the project, some conclusions 

could be drawn around how from a technical context, the API could be integrated with the 

system. This section describes the motivation for the design around the Mycodo API. The 

following conclusions were drawn: 

# API endpoint Takeaways 

1 /api/camera This endpoint allows clients to fetch the last camera image, but this 

only works with the Raspberry Pi cam-module and not with a USB 

camera as a USB camera’s Mycodo implementation persists the 

images to the file system. 

2 /api/controllers This endpoint allows clients to query and update the state of any 

Mycodo controller by providing a unique_id path parameter. A 

Mycodo controller is an abstraction over sensors(inputs) and 

actuators(outputs). 

3 /api/daemon This endpoint allows clients to query the status of the Mycodo daemon 

and returns the RAM usage and the Mycodo daemon state. 

4 /api/functions This endpoint allows clients to query configuration settings related to 

all or just one Mycodo function. A Mycodo function is a python script 

wrapped as an action. This action can be triggered by other Mycodo 

components. 

This endpoint does not allow clients to manage functions through the 

API. 

5 /api/inputs This endpoint allows clients to query configuration settings related to 

all or just one Mycodo input. A Mycodo input is a sub-abstraction of a 

Mycodo controller, implemented for sensors. One input in this case 

equals the configuration settings for one physical sensor. 

6 /api/measurements This endpoint allows clients to create, query sensor data from the 

InfluxDB instance as three implementations: 

1. Measurements found within a time range from start 

date to end date 

2. Last measurement found within a duration from past to 

present 

3. Measurements found within a duration from the past to 

present 
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7 /api/outputs This endpoint allows clients to query configuration settings related to 

all or just one Mycodo output. A Mycodo output is a sub-abstraction of 

a Mycodo controller, implemented for actuators. One output in this 

case equals the configuration settings for one physical actuator. 

8 /api/pids This endpoint allows clients to query configuration settings related to 

all or just one Mycodo PID controller. A Mycodo PID controller is a 

self-contained and easy to configure PID implementation. PID 

controllers can be managed through the Mycodo UI, but not through 

the API. 

9 /api/settings This endpoint allows clients to query many different configuration 

settings. Some of these include a ‘duplicate’ endpoint with a different 

response body(*). The complete list consists of:  

- Device measurements 

- Inputs(*) 

- Measurements(*) 

- Outputs(*) 

- PIDs(*) 

- Triggers 

- Units (of measurement) 

- Users 
Table 19: Mycodo API analysis 

A key takeaway from the Mycodo API design is the assignment of a unique_id property to 

assets within the runtime, such as sensors and actuators. This unique_id can be queried 

through the API and used in subsequent requests. 

 

4.8. Data Storage and Retrieval 

4.8.1. Application data storage 

Until now, a system architecture has been designed where little to no consideration was 

taken for the choices regarding databases and general storage strategies. Application data 

is the data that is required for consumption by either the dashboard or server-side services.  

 

4.8.2. Asset Registry 

Since the configuration for assets per vertical farm can change at any time, the 

implementation should facilitate a flexible enough implementation for this asset registry 

component so that the most up-to-date asset information is highly available.   

Based on the findings of chapter 4.7: ‘Mycodo API integration’. We discussed importance of 

the unique_id within Mycodo so to simplify the integration of Mycodo into the system, a 

logical design choice would be to implement an asset registry centered around the assets 

(inputs/outputs) tracked in Mycodo. This can be achieved by periodically fetching the 

assets and updating the asset registry accordingly. Consequently, any service that requires 

information about an asset(like it’s unique_id) can query the asset registry instead of 

performing network requests to the Mycodo API every time 'metadata' about an asset is 

needed. Given the extensive use of the unique_id metadata property by Mycodo for various 

API operations, this approach streamlines the process and enhances system efficiency. 
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By implementing an asset registry and synchronizing it with Mycodo's assets, the system can 

better manage and utilize the unique_id metadata property associated with the assets, 

reducing the need for frequent API calls and improving overall performance. This design 

choice also ensures that the system remains organized and maintainable, as all the asset 

information is centralized and easily accessible. 

 

Implementing a (self-updating) asset registry also comes with a major benefit for the 

operational requirements of the system; since part of the asset registry functionalities is 

managed by Mycodo, synchronizing these assets also means that the server will support 

vertical farms with differing sensor- and actuator setups. 

 

4.8.3. Sensor Data Storage 

Another important consideration that had to be made while designing the system, is the 

sensor data storage. It was concluded that Mycodo provides an InfluxDB instance which fits 

the needs of our system. The benefit of using this method, is that any data related to a 

specific vertical farm is contained within that environment, locally, while being available 

through the API.   

The drawback of using storage locally on the Raspberry Pi is that any time sensor data has to 

be queried, it will have to be processed over the network. Depending on the number of data 

points returned, this approach may not be very performant, but it provides more flexibility. 

If advanced data analytics becomes a consideration, an alternative method for storing 

sensor data might have to be employed. 

 

4.8.4. Querying InfluxDB data 

With the choices made regarding the system architecture up until now, there are two 

different methods to query sensor data from a vertical farm: 

The Mycodo API uses the InfluxDB API under the hood, so this would be the recommended 

method of querying sensor data. However, the integration process looks slightly different, 

and both offer different pros and cons.  

 

1. Using the Mycodo API 

To query sensor data using the Mycodo API, an HTTP request would have to be made to the 

/api/measurement endpoints, providing the required authentication and parameters. The 

API will return the requested sensor data in a structured format. Refer to chapter 4.7: 

Mycodo API integration for the three endpoints provided by the /api/measurements route. 

These endpoints have the following parameters: 

 Endpoint Parameters Response interface 

1 /api/measurements/historical/ - Unique_id: string List of measurements 

- Unit: string 

- Channel: integer 
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- Epoch_start: integer 

- Epoch_end: integer 

2 /api/measurement/last - Unique_id: string Single measurement 

- Unit: string 

3 /api/measurement/past - Channel: integer List of measurements 

- Past_seconds: integer 

Table 20: querying sensor data through the Mycodo API 

 

2. Directly through InfluxDB 

To query sensor data directly from InfluxDB, a client library is required that supports 

InfluxDB's API. InfluxData provides an official client library for Node.js environments, which 

allows seamless interaction with InfluxDB. The primary advantage of using this approach, as 

opposed to the Mycodo API, is the ability to leverage Flux queries. Flux is InfluxData's 

functional data scripting language designed for querying, analyzing, and acting on time 

series data. Features of the flux query language include transforming the queried data, 

calculating common mathematical functions, aggregation, conditional logic, custom 

functions and more.  

Utilizing Flux queries provides greater flexibility when it comes to parametrizing and 

customizing data retrieval. This approach should be used for complex and tailored queries 

to suit specific use cases.  

A con about this approach is that, to communicate with the InfluxDB instance directly, the 

consumer needs to have the proper InfluxDB credentials, bucket name and org id. These 

can be set when provisioning a device into the system, but ideally a user shouldn’t have to 

worry about these magic strings as it’s an additional configuration overhead as well as extra 

room for errors in the integration of query data for the front-end.  

 

5. Development of the system 
This chapter will describe the technical implementation of the system and the system’s 

implementation process will be described.  

Since server management was also a non-functional requirement, cockpit has been added to 

the install script of Mycodo to include it with the installation by default. Cockpit allows users 

to perform server administration tasks through a web UI hosted on the Raspberry Pi. Cockpit 

allows for the monitoring of system resources, managing network connections, updating 

software packages, managing user accounts, and performing basic server administration 

tasks, all through an intuitive and user-friendly web interface. By including Cockpit in the 

default installation of Mycodo, users can easily manage and maintain their Raspberry Pi 

without the need for additional tools or extensive command-line knowledge. 
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For a summary of what the physical system looks like, refer to Appendix B Development 

of the physical Farm’. This was not included in this chapter to keep the focus of the project 

on the software of the system. 

5.1. Back-end Development 
The backend has been developed using a microservices and event-driven approach. This 

has mostly been accomplished by using the NestJS framework. After considering a couple of 

final designs, this is the architecture design that has been settled on for the proof-of-

concept. This architectural approach with microservices and a message broker helps to 

decouple the services, improving scalability and reliability of the overall system. This 

approach also makes it easy to expand on the system with new modules without being 

limited in frameworks/programming languages. 

 

5.1.1. Assets Registry 

As described in chapter 4.8.2: Asset Registry, devices, sensors and actuators (assets) are 

tracked in the asset registry. Since the asset registry will be used as the source of truth for 

the dashboard, the flow for querying sensor data and visualization in our system follows a 

specific process that ensures accurate and up-to-date information as well as a generic 

interface to assets from the Mycodo runtime. This allows services which require information 

Figure 16: final backend architecture, based on the Industrial IoT architecture 
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about assets(like a unique_id), to query the information from the assets registry for usage in 

subsequent requests. For the proof-of-concept, a PostgreSQL database has been used in 

conjunction with hasura to facilitate a datastore that acts as an asset registry by keeping 

track of raspberry pi’s, their sensors and actuators. 

 

5.1.2. Data service 

In the backend, two types of data can be distinguished: sensor data and application data. 

The data service implements methods to manage both types of data, providing a unified 

interface for data storage, retrieval, and manipulation. As the implementation of this 

“service”, hasura has been used during the proof-of-concept phase, because this was 

initially the chosen backend engine. This decision was driven by the company technology 

stack preference and for its instant GraphQL API. At the start of the project’s development 

phase, GraphQL was so ingrained into the app that switching, to a HTTP-based approach 

with an ORM for example, would take a good amount of time and refactoring. 

 

5.1.3. Synchronization service 

The synchronization service is responsible for keeping the asset registry updated by 

periodically fetching the latest data from the Mycodo API. This service ensures that any 

changes made to the assets, such as adding new sensors or actuators or changing Mycodo 

configurations, are reflected in the asset registry and available to the other services. 

One method to implement these synchronizations is through cron jobs. Cron jobs can be 

executed periodically to fetch asset metadata from the vertical farms and update the asset 

registry with the newly fetched data. This would look as follows: 

This service has only one responsibility: synchronize vertical farms assets with the data 

service. 

Figure 17: synchronization sequence diagram 
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5.1.4. Automation service 

The automation service is designed to handle automated tasks and processes within the 

system. To implement this service, the decision was made to use a redis-based 

implementation, because it’s fast, lightweight, and easy to deploy. Another factor is that 

because NestJS was the chosen (main) backend framework, using their integrated modules 

became an option; one of these options was the Bull npm package.  

The automation service has its own instance of redis which acts as a queue system. Bull 

provides an interface on top of this queue to provide powerful features. The bull API can be 

used to manage scheduled jobs as well as one-off jobs. The specified queue then processes 

the jobs in a queue based on the implemented processor classes. These classes listen for 

specific events and further process the job based on methods annotated with the @Process 

annotation. To implement the automations on levels one, two and three, this processing 

mechanism can be utilized to process small tasks and propagate other events into the 

message broker. Since the data passed to a job is arbitrary, it’s possible to pass all the 

required information into the job and unpack the data in the processor class. 

 

5.1.5. Actuator service 

Actuator control is implemented by providing methods for managing and controlling 

actuators based on their respective unique_id, allowing for a consistent and efficient 

approach to actuator control within the system. 

The actuator service implements the /api/outputs API endpoint of Mycodo to provide 

actuator-focused functionalities like changing the state of an actuator. 

Just as sensors are assets, actuators are also treated as assets in the context of Mycodo. This 

is why the metadata related to actuators is also synchronized by the synchronization service 

through cron jobs. When this metadata is required, it is queried from the asset registry. 

Figure 18: actuator control sequence diagram with relation to server components and their role 
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5.2. Front-end Development 
This section will explain the front-end development process and how it relates to the 

features defined during the analysis and design phases of the project. The most important UI 

components and their interactions will be described within the context of use cases and user 

stories.  

The boilerplate project from the graduation company was used to allow for quick 

prototyping. This boilerplate contains built-in features such as light/dark mode, a routing 

system, utility hooks, styled UI components and more. 

 

5.2.1. Vertical Farm Provisioning 

Provisioning a new vertical farm in the admin dashboard is a simple process. First, Mycodo 

must be installed and correctly configured, after which the local IP address of the Raspberry 

Pi will be displayed on the terminal. To add a new Raspberry Pi to the system, to the 

designated screen and provides details such as the Raspberry Pi name, IP address and API 

tokens. Once the new Raspberry Pi is added, the server has all the information about a 

vertical farm to allow the dashboard to consume the available APIs to communicate with the 

farm. 

Then, the 

dashboard will 

display the newly 

added raspberry pi 

in the drop-down 

menu on the top bar 

if the Pi is 

reachable on the 

network. Cron jobs 

execute a round of 

ping-pong/health to 

check if the 

Raspberry Pi’s 

known to the 

system are 

reachable on the 

network and 

updates their 

‘online’ status 

accordingly in the 

asset registry. 

 

 

Figure 19: device provisioning screen 
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5.2.2. Vertical Farm Selection 

A drop-down menu in the header of the page periodically fetches a list of "online" 

Raspberry Pi’s that have been provisioned into the server. It then displays these devices in 

the dropdown list.  

Figure 20 displays the page containing a table to view registered devices. Here we can see 

that, since this screenshot was taken while I was working from home, the Raspberry 

Pi(called Home) shows a green(online) status in the table, and it’s also the only device 

showing up in the drop-down menu.  

When a user selects a device from the list in the header, the application sets a global 

state(in-memory, by using the Jotai npm package) containing information about the 

currently selected Raspberry Pi, including the IP address and Mycodo token. This IP 

address is then used to dynamically target the correct Mycodo API server by constructing 

HTTP requests based on the currently selected Raspberry Pi. 

 

5.2.3. Data Monitoring and -Visualization 

The charts page displays line charts of data collected from various sensors connected to a 

Raspberry Pi in the selected vertical farm. Users can filter the sensor data on a time range to 

be displayed on the charts, with intervals ranging from 15 minutes to 1 week. Refer to 

Appendix F Data monitoring page’ for a full screenshot of the data monitoring page. Here 

you can see that the charts are based on the hardware connected. Note that the page does 

not fit on one A4 sized paper so the full window had to be cut, but there are more charts 

available. 

 

Figure 20: overview of registered devices, with real-time 'online' status 
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5.2.4. Actuator control 

The UI displays a list of card-like components, each representing a single actuator. Metadata 

is displayed on the actuator’s card, such as IDs, interfaces, actuator type and more in one 

quick overview.  

If the actuator has a state associated with it, a toggle button is displayed, allowing the user to 

turn the actuator on or off. The current state of the actuator is represented by the color of the 

toggle button, with blue indicating "on" and gray indicating "off." 

 

 

 

Figure 21: screen containing actuator controls. Each card represents an actuator  
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6. Conclusion 

6.1. Summary of the project 
The project aimed to design and implement a proof-of-concept for a multi-farm management 

dashboard for vertical farms, utilizing Raspberry Pi and Mycodo for sensor data and actuator 

control. The main goal was to provide a practical system for monitoring and controlling 

multiple vertical farms from a single dashboard through both hard- and software.  

Initially the project would be implemented using the company-provided technology 

stack(based on serverless functions). This would’ve been an appropriate strategy, but the 

customer kept adding constrains such as local hosting. This led to the work done to become 

obsolete as serverless functions are pretty much just method calls in a local environment 

with less flexibility.   

After this, a lot of research was done on various methodologies and architectural patterns to 

establish a robust foundation for the project. This phase included the evaluation of different 

vertical farm-related sub-systems/processes and the integration of user-defined 

automations with varying levels of complexity. The reason these research questions were 

chosen is to serve as an addition to the (proof-of-concept) result of this project. The research 

shows the thought process behind the system’s design and concludes potential strategies to 

incorporate the findings into the system through different methods. 

The Mycodo API was integrated into the system, and various data storage and retrieval 

methods were implemented, including the creation of an asset registry for device, sensor 

and actuator management. 

The resulting system provides a robust and user-friendly platform for managing multiple 

vertical farms, with features such as monitoring of sensor data, actuator control, automation. 

The project also improved the maintainability of the system by incorporating the server 

administration tool Cockpit, which simplifies Raspberry Pi management and maintenance. 

In conclusion, the project almost successfully delivered a multi-farm management 

dashboard for vertical farms(automations have not been integrated with the front-end yet), 

demonstrating the potential of Raspberry Pi and Mycodo in creating scalable and efficient 

agricultural systems.   

 

6.2. Reflection on the main research question 
The main research question entails: "How can a system be realized that allows for remote 

monitoring, control and automations for raspberry pi-based vertical farms?". 

 

After doing this project, I can confidently say that there is no “best-approach” to develop a 

monitoring/control & automations system for vertical farms. There are just a lot of factors 

involved from the domain itself, as well as the different options to implement such systems 

being practically endless – so the answer will always end up being “it depends on your 

specific requirements”. There have been some implementation choices during this project 
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as well which can still use improvement, such as incorporating more cloud technologies, 

optimizing the communication between physical components and in general applying more 

common IoT patterns. One takeaway from this project is also that many IoT appliances have 

the same internal workings, and it take a little bit of creativity to get to an end2end product.  

 

7. Reflection 
 

7.1. Assignment 
The project provided me with a variety of learning opportunities and challenges, mainly due 

to the frequent changes in scope during its development. This wasn't entirely negative, as I 

had a lot of freedom as a student, but receiving more focused feedback would have helped 

in narrowing down the scope and making clearer decisions based on the requirements. 

My research framework also had to be reworked several times because of the shifting 

project scope, which led to some lost time and a few obsolete tasks. In the early stages, I 

spent a significant amount of time researching how to create a custom module for controlling 

the Raspberry Pi, sensors, and actuators in the vertical farm. However, since the customer's 

primary expectation was a multi-farm dashboard and the project had a clear timeframe, I 

decided to use an existing platform for driving the vertical farm and focus on developing the 

server and dashboard to manage the scope. 

Despite these obstacles, I found the technical aspects of the project enjoyable and gained 

valuable insights into various interesting topics. It required me to explore the technical 

aspects of vertical farming, IoT, and building custom apps on top of an IoT system. As a 

developer, I am typically involved in web-based projects, so this assignment took me out of 

my comfort zone and taught me a lot. 

I believe that if the project had clearer boundaries from the start, the results would have 

been significantly better. For instance, while the automations work on the server-side, I 

haven't had the chance to integrate them with the front-end yet. Looking back, I think the 

project, as it was proposed to Saxion before starting the graduation, should not have been 

accepted. But this is, of course, in hindsight. A lot of energy was spent fine-tuning the project 

boundaries, requirements, and scope. While this experience has taught me valuable 

lessons, a more focused starting point would have likely led to a more polished result. 

 

7.2. Personal development 
During the graduation, the biggest issue was that I wasn’t getting the domain-related help I 

needed. On top of this, I had to research, get acquainted with, and implement a system 

surrounding a vertical farm which I knew nothing about.  

It also didn’t help that the customer kept changing the boundaries of the system (hardware 

connections, testing out different vertical farm setups/solutions that I had to take into 

consideration during development. So, I had to adapt and create a system generic enough 

where these factors didn’t matter as much, hence the implementation had to take this into 
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consideration and be built around being a generic enough solution to facilitate the features 

independently from the hardware configuration on the Raspberry Pi.   

On a personal level, I learned a lot about project management and managing client 

expectations. The customer told me that he appreciated my communication style, always 

keeping him in the loop, whether the progress was good or bad. For example, I faced some 

health issues in the past couple of months, and I learned that these situations can be 

managed effectively if communicated promptly with relevant parties (company supervisor, 

customer). 

Moreover, starting a project from scratch, analyzing high-level requirements, and 

continuously managing the project's boundaries, scope, and re-assessing previously 

gathered requirements provided me with valuable insights into potential pitfalls and 

strategies to maintain an overview of a project. These experiences have been both 

challenging and rewarding, contributing to my growth as a professional. 

 

7.3. The company 
My experience at ProfitFlow was quite fun but chaotic, largely due to previously mentioned 

reasons, but also because of the startup environment. Limited domain-related resources 

within the company made it challenging to receive the necessary support for my graduation 

project as nobody really had knowledge of IoT. This may have led to me spending more 

time researching, but not making choices in a timely manner as I didn’t have technical 

feedback regarding some choices. 

Despite these challenges, the company itself was enjoyable to be a part of, as the average 

age was around 25, and it was clear that everyone was working towards building the 

company up and becoming better engineers. The dynamic and youthful atmosphere made 

for an engaging work environment. 
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Appendix 

Appendix A  Use case descriptions 
 

Name Display Sensor Data 

Actors End user 

Pre-conditions - There is at least one sensor connected to the selected 

vertical farm. 

- The user is logged into the dashboard. 

- The user has the appropriate API tokens set up 

Post-conditions - The user can view sensor data of the connected sensors 

with means of filtering on date and time 

Main Success Path - The user navigates to the page containing sensor data. 

- The system retrieves and displays the sensor data on the 

page 

Alternative path None 
Table 21: Use case description, display sensor data 

Name Actuator Switching 

Actors End user, system 

Pre-conditions - The actuators are installed and properly connected to the 

system. 

- The user is logged into the dashboard. 

- The user has the appropriate API tokens set up 

Post-conditions - The actuator is switched on or off according to the user’s 

choice 

Main Success Path - The user navigates to the page containing the actuators. 

- The system displays an overview of available actuators. 

- The user selects the desired actuator and switches it on or 

off with a single click 

Alternative path None 
Table 22: Use case description, actuator switching 

Name Provision New Vertical Farm 

Actors End user 

Pre-conditions - The new Raspberry Pi is configured correctly (Mycodo 

installed and configured, permissions/tokens generated, 

database configured) 

- The user is logged into the dashboard 

Post-conditions - The dashboard is able to interact with the vertical farm 

- The network status of the vertical farm is continuously 

updated and displayed accordingly on the dashboard 

Main Success Path - The user navigates to the page containing the “provision 

new vertical farm” flow. 

- The system displays a form for the user to configure the 

vertical farm. 
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- The user fills out the form and submits it to the system. 

- The system displays the network connectivity for the new 

vertical farm 

Alternative path None 
Table 23: Use case description, provision new vertical farm 

Name Add automation rule 

Actors End user 

Pre-conditions - The user is logged into the dashboard. 

- The vertical farm is setup and correctly configured 

Post-conditions - The vertical farm has switched the state of an actuator for 

the specified amount of time, at the specified datetime 

Main Success Path - The user navigates to the page containing automations. 

- The user navigates to the “create automation” flow page. 

- The user specifies the actuator to add an automation to 

- The user specifies a datetime(start-end) with a state for the 

actuator. 

- The user submits the new automation. 

- The system registers the ‘fixed schedule’ automation 

Alternative path None 
Table 24: Use case description, add automation rule 

Name Remove automation rule 

Actors End user 

Pre-conditions - The user is logged into the dashboard. 

- The vertical farm is setup and correctly configured. 

- There is an automation rule to delete 

Post-conditions - The automation rule is removed from the schedule of the 

vertical farm 

Main Success Path - The user navigates to the page containing automations. 

- The user specifies the automation to remove. 

- The system displays a confirmation dialog. 

- The user confirms the prompt. 

- The system removes the specified automation from the 

schedule 

Alternative path - The user can also cancel the prompt 
Table 25: Use case description, remove automation rule 

Name Display automation rules 

Actors End user 

Pre-conditions - The user is logged into the dashboard. 

- There is at least one automation to display. 

- The vertical farm is setup and correctly configured. 

Post-conditions - The user can view all the scheduled automations that are 

currently in effect in their system. 

Main Success Path - The user navigates to the page containing automations. 

- The system displays an overview of automations 

Alternative path None 
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Table 26: Use case description, display automation rules 

Name Execute automation 

Actors System 

Pre-conditions - There is at least one automation to execute. 

Post-conditions - The automation has been executed at the specified 

datetime 

Main Success Path - The scheduler polls the automations periodically 

- The scheduler executes the automation with specified 

configuration and parameters 

Alternative path None 
Table 27: Use case description, executing automations 
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Appendix B Development of the physical Farm 
 

Since the primary focus of the graduation project isn’t on the hardware, this section refers to 

photos from Appendix X. Based on these photos, a summary of the development process 

will be described. This is also why considerations like power distribution to the system 

won’t be discussed. 

The development of the hardware began with the assembly of the necessary components: 

the Raspberry Pi, Atlas-scientific electronics, GPIO expansion board, and the 8-channel 

relay board, as shown in Figure 22. Once these components were prepared, the next step 

was to connect the actuators to the relay board. 

The choice to use a relay board was made for two primary reasons. First, a relay board is 

essential when controlling high-voltage devices, such as LED matrices or water pumps, 

through a controller like the Raspberry Pi. Second, relays are driven by the GPIO pins of the 

Raspberry Pi and are compatible with Mycodo.  

The system is neatly contained in an old closet that wasn’t being used at the office, and a 

separate wooden container has been modified to fit the Raspberry Pi with most of its cables 

packed away. 

 

Figure 22: physical prototype 
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Appendix C Control strategies 
 

This section will delve into potential control strategies that can be employed for the 

controller components within the vertical farming system. These control algorithms can be 

adapted and integrated into various configurations, ranging from basic scripts to complex 

multi-component applications and even in low level electronic circuits.  

It is important to note that specific implementation details are not covered in this section, as 

the focus is on understanding the core theory behind the control strategies. 

 

I. Open-Loop Control 

An open-loop control strategy is a type of control system in which the output is determined 

solely by the input, without considering any feedback from the system. In this approach, the 

controller calculates the control action based on a predefined relationship between the 

input and the desired output, but it does not take into account the actual output or any 

external disturbances. 

 

Pros Cons 

1. Simplicity 

2. Easy to implement 

3. Low computational cost 

1. No compensation for external 

disturbances or system changes 

2. No feedback 

3. Terrible control performance 

Example 

Consider driving a car with a speed limit of 50 km/h. While driving, your 

speedometer malfunctions, leaving you without any feedback on your actual speed. 

As you approach a steep hill, you instinctively press the gas pedal 20% harder to 

maintain the speed limit, based on your previous driving experience. 

 

In this scenario, the control strategy is pressing the gas pedal 20% harder. However, 

due to the absence of feedback from the broken speedometer, you have no way to 

monitor and adjust your performance to ensure you are maintaining the desired 

speed of 50 km/h. This situation illustrates an open-loop control strategy, where the 

output (speed) is determined solely by the input (pressing the gas pedal) without 

considering any feedback from the system. (Nian, 2018) 
Table 28: open loop control pros and cons 

II. Proportional, Integral, Derivative (PID) Control 

Proportional, integral, derivative (PID) control is by far the most popular controller in 

industry today. It is extremely robust, easily implemented and intuitive. PID controllers are 

used for error rejection.  

The basic idea behind a PID controller is to read a sensor, then compute the desired 

actuator output by calculating proportional, integral, and derivative responses and summing 

those three components to compute the output (National Instruments, 2023) 
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The PID controller achieves this through three components: proportional, integral, and 

derivative actions. These actions work in tandem to reduce the error, improve the system's 

response, and minimize overshoot or oscillations. 

There are three components to PID controllers: 

1. Proportional Control 

Proportional control aims to minimize the current error. The controller gain, Kp, is the 

hyperparameter in this case. Increasing Kp results in larger control actions being taken, 

while reducing it leads to smaller control actions. 

2. Integral Control 

Integral control is designed to minimize past errors. The integral gain, Ki, is the 

hyperparameter for this component. Integral gain effectively eliminates offset in the 

proportional gain. For instance, if the current error is 10, the proportional gain would make 

a large change in input to resolve this error. However, this input might be excessive. 

Integral gain is employed to mitigate this effect. 

3. Derivative Control 

Derivative control focuses on minimizing future errors. The derivative gain, Kd, is the 

hyperparameter in this situation. This control examines the rate of change in the error and 

adjusts accordingly. In industrial settings, proportional-integral controllers are often very 

effective, making the derivative control component unnecessary in some cases. 
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Pros Cons 

1. Fast performance 

2. Minimal overshoot of 

setpoint 

3. Easy to implement 

4. Corrects disturbances 

through feedback 

 

4. Does not optimize the 

process 

5. Fine-tuning might be 

required (often) 

6. Fine-tuning might be 

cumbersome 

7. One controller applies to one 

control action 

Example 

Consider driving a car at a speed of 50 km/h. You have a reliable speedometer and 

come across the same steep hill. Initially, you press the gas pedal 20% harder to 

maintain your speed. However, the speedometer reads 65 km/h, so you ease off the 

gas pedal to pressing only 10% harder. Now you are traveling at 45 km/h. Then, you 

decide to press a little harder and finally reach the desired speed of 50 km/h. 

 

Your action of pressing the gas pedal is the control action, and this time, you have 

feedback from the speedometer. This feedback allows you to adjust your speed 

quickly until the desired speed is achieved. In terms of PID control, the initial action 

of pressing the gas pedal 20% harder is the proportional control, as it attempts to 

offset the difference between your current speed and the desired speed limit. The 

integral control comes into play when you adjust your pedal pressure after realizing 

that pressing 20% harder again would result in going 65 km/h. By remembering the 

previous outcome, the integral control helps stabilize your control action. Finally, the 

small adjustments made to reach the desired speed of 50 km/h can be attributed to 

the derivative control, which considers the rate of change in the error (speed 

difference) and adjusts accordingly. (Nian, 2018) 
Table 29: PID pros and cons 

The diagram below illustrates the basic flow of a PID controller: 

 

 

Figure 23: Basic illustration of a PID feedback loop 
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III. Model Predictive Control (MPC) 

Model predictive control (MPC), also referred to as moving horizon control or receding 

horizon control, is one of the most successful and most popular advanced control methods. 

The basic idea of MPC is to predict the future behavior of the controlled system over a finite 

time horizon and compute an optimal control input that, while ensuring satisfaction of given 

system constraints, minimizes an a priori defined cost functional. (Allgower, n.d.) 

The main idea behind MPC is to make proactive adjustments to the system based on 

predictions, instead of merely reacting to errors or disturbances. 

The MPC strategy consists of the following steps: 

1. Formulate a model: A mathematical model of the system is developed, capturing its 

dynamics and interactions between different variables. This model can be based on first 

principles, empirical data, or a combination of both. 

2. Define the prediction horizon: The prediction horizon is the time window over which 

future behavior of the system is predicted. It plays a crucial role in the performance of 

the controller, as it determines the number of future time steps that will be considered 

when making control decisions. 

3. Define the control horizon: The control horizon is the time window over which control 

actions are optimized. It is usually shorter than the prediction horizon, as it is more 

computationally efficient to optimize control actions over a smaller time window. 

4. Optimize control actions: At each time step, the controller uses the system model to 

predict future behavior over the prediction horizon. It then optimizes control actions 

over the control horizon to minimize a predefined cost function, subject to constraints on 

inputs and outputs. This cost function typically represents a trade-off between system 

performance and control effort. 

5. Implement the first control action: The first optimized control action is applied to the 

system, and the process is repeated at the next time step, using updated information 

about the system state. 

 

Model predictive control (MPC) is a widely used advanced control strategy in the industry, 

and its popularity can be attributed to three main factors: 

 

- MPC provides the best control performance when the model used for implementation 

accurately represents the system dynamics. 

- Users can readily comprehend why the controller recommends specific actions by 

examining the underlying models. This transparency offers a significant advantage over 

AI-powered control methods, which can sometimes be perceived as "black boxes." 

- MPC does not need to directly change the control actions (even though it can), rather, it 

can recommend the best operating strategies to the operators of the plant to maximize 

the profit. This allows MPC to be used in conjunction with PID controllers. This concept is 

called supervisory control. 
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Pros Cons 

1. Fine-grained control 

2. Understandability/transparency 

3. Allows for high levels of 

optimization 

4. Provides the ability to handle 

constraints 

1. Complexity in 

implementation/maintenance 

2. Necessity for highly accurate 

process models 

3. Performance depends on the quality 

of the process models 

4. Might require periodic updating 

Example (direct control) 

While driving down the street at 50 km/h, this time you have a map of the road with 

incline information and the manufacturer's documentation, which provides models for 

adjusting the gas pedal pressure based on different inclines to maintain specific 

speeds. For instance, if the hill's incline is 25 degrees, pressing the gas pedal by 30% 

will keep the speed at 50 km/h. In this scenario, the speed limit serves as the 

constraint. 

 

By utilizing the road incline data from the map and the speed model from the 

manufacturer, the MPC controller can efficiently plan the gas pedal press sequence, 

ensuring that the car consistently travels at exactly 50 km/h. 

Example (supervisory control) 

Imagine the same scenario as before, but this time, the MPC controller acts like a 

driving instructor, while the driver represents a PID controller. The MPC has no direct 

contact with the car but optimizes its performance by recommending ideal driving 

techniques every minute or so. 

 

Over time, the car's condition will deteriorate, causing the manufacturer's speed 

equations to become inaccurate, which will negatively affect the controller's 

performance. Consequently, updating the models will be necessary to regain optimal 

control of the car. (Nian, 2018) 
Table 30: MPC pros and cons 

Figure 24 below illustrates the basic flow of an MPC controller: 

Figure 24: MPC feedback loop 
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Appendix D Industrial Internet-of-Things OSS architecture 
 

This architecture is based on principles from the domain of Industrial Internet-of-Things 

(IoT). Industrial IoT refers to the application of IoT technologies in industrial settings, such as 

manufacturing plants, supply chain operations, and energy management systems. It involves 

the use of interconnected sensors, actuators, and devices that collect, process, and transmit 

data to optimize industrial processes, improve efficiency, and reduce costs. 

While researching existing systems for “large-scale” operations, the term was introduced 

into the context of the project through a book called ‘Hands-on Industrial Internet-of-Things’. 

The most important takeaway from the book was the proposal for an industrial IoT platform 

using open-source technologies: 

 

 

 

 

 

 

 

Figure 25: Industrial IoT based architecture for implementing an automation rules engine 



 

72 

 

DIGITAL VERTICAL FARMING - BUILDING A RASPBERRY PI-BASED VERTICAL FARM 

WITH MULTI-FARM ADMINISTRATION DASHBOARD 

Appendix E User stories  
Below are the user stories concluded from the functional requirements  

Title Priority Points 

Provision Vertical Farm Must 5 

User story: 

As a user, I want to easily provision and connect a new Raspberry Pi powered 

vertical farm to the system, so I can start managing the vertical farm through the 

admin dashboard. 

 

Title Priority Points 

Sensor data visualization Must 3 

User story: 

As a user, I want to view sensor data, such as temperature, humidity, light, pH, 

Electroconductivity and CO2 of my connected vertical farms, so I can monitor their 

environmental conditions and make informed decisions. 

 

Title Priority Points 

Actuator control Must 5 

User story: 

As a user, I want to easily control actuators of my vertical farms, such as turning 

on/off lights or water pumps, through the admin dashboard, so I can optimize the 

growing environment for my crops.  

 

Title Priority Points 

Automation Rules Must 8 

User story: 

As a user, I want to create and manage automation rules with a fixed schedule for 

various tasks, such as watering or lighting, so I can maintain optimal growing 

conditions for my crops without manual intervention. 

 

Title Priority Points 
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Receive Alerts Should 4 

User story: 

As a user, I want to receive alerts when certain conditions or events occur, such as 

dangerous temperature levels or sensor measurements in extreme highs/lows, so I 

can take appropriate actions to address the issue and maintain the proper growing 

environment for the crops. 

 

Title Priority Points 

Automatic Self-Correction Could 8 

User story: 

As a user, I want the system to automatically self-correct certain environmental 

metrics within specified boundaries, so I can ensure optimal growing conditions 

without constant manual adjustments. 

 

Title Priority Points 

Server management Must 2 

User story: 

As a user, I want the vertical farm to integrate with a server management tool, so I 

can monitor and manage the Raspberry Pi on the OS-level so that the vertical farm is 

(semi) manageable by a non-developer. 

 

Title Priority Points 

Server management API Could 5 

User story: 

As a user, I want the server management tool of the vertical farm to be integrated 

with the admin dashboard, so I can monitor and manage the Raspberry Pi on the OS-

level through the admin dashboard so that the vertical farm is (semi) manageable by 

a non-developer. 
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Appendix F Data monitoring page 

Figure 26: datamonitoring page 


