
Research group Mechatronics

Enschede, June 7, 2022, version v1.2.2

Additions to "Systems Design and Engineering"

Authors: Victor Sluiter and Mark Reiling

Additions to "Systems Design and Engineering"
SESAME

Page 2 of 45 SESAME Additions to "Systems Design
and Engineering"

Research Group Mechatronics

June 7, 2022, v1.2.2

Table of Contents
Chapter 1 Introduction to the addition to Systems Design and Engineering6

1.1 A word about formality...6

1.1.1 References ... 7

Chapter 2 The Systems Engineering Process ...8

2.1 Addition to 2.3, A practical implementation of SE..8

2.1.1 Agile development.. 8

2.1.2 References ... 9

Chapter 3 Systems Thinking Tracks ... 11

3.1 Addition to 3.13, Risk Thinking..11

3.1.1 Pre-Mortem technique...11

3.1.2 NPR 5326:2019...11

3.1.2.1 References ... 12

3.2 Addition to 3.10, Organizational Thinking..12

3.2.1 Capability Maturity Model (CMM) ... 12

3.2.1.1 Why is this important to Systems Engineering?... 14

3.2.2 References ... 16

Chapter 4 Systems Design Tools ..17

4.1 Addition to 4.7 and 4.13 ; Architecture Decision Records ...17

4.1.1 What is an ADR? .. 17

4.1.2 Using Architecture decisions for reverse architecting and reviewing 19

4.1.3 Related subjects... 19

4.1.3.1 Technical Debt.. 19

4.1.3.2 ARC42.. 20

4.1.4 References ... 20

4.2 Addition to 4.9, FunKey Architecting and ValueFirst ...21

4.2.1 Explanation of ValueFirst / Planguage ... 21

4.2.1.1 Another view on Functions… ... 22

4.2.1.2 … And how values “trickle down” to solutions … ... 22

4.2.1.3 … Leads to comparison matrices!.. 23

4.2.2 References ... 24

4.3 Addition to 4.14, Simulation...25

4.3.1 Other forms of simulation ... 25

4.3.2 Digital Twin ... 25

4.3.3 References ... 26

4.4 Model Based Systems Engineering ..26

Additions to "Systems Design
and Engineering"

SESAME Page 3 of 45

June 7, 2022, v1.2.2 Research Group Mechatronics

4.4.1 MBSE in short .. 26

4.4.2 Benefits and caveats .. 27

4.4.2.1 MBSE for SME ... 28

4.4.3 References ... 29

Chapter 5 Additional subjects ...30

5.1 Requirements Languages ...30

5.1.1 Planguage .. 30

5.1.1.1 Explanation of ValueFirst / Planguage ... 30

5.1.1.2 Examples of research group .. 31

5.1.1.3 Cheat sheet .. 33

5.1.1.4 References ... 34

5.1.2 EARS.. 34

5.1.2.1 Example from usage at the research group ... 35

5.1.2.2 Cheatsheet from Aalto university.. 36

5.1.2.3 References ... 37

5.2 Incremental Delivery of hardware..37

5.2.1 References ... 38

5.2.2 EVO.. 38

5.2.2.1 How to “do” EVO? .. 38

5.2.2.2 References ... 41

5.2.3 Rapid Learning Cycles ... 42

5.2.3.1 Way of thinking ... 42

5.2.3.2 References ... 44

5.3 Product Line Engineering ..44

5.4 A great additional resource..45

List of Figures
Figure 1 Section from [2], p.36 .. 7

Figure 2 Relation between SMEs and their SE tools, from a study on Australian SMEs. 7

Figure 3 From [1] ... 9

Figure 4 Table of contents of NPR 5326.. 12

Figure 5 Example Architecture Decision Record ... 18

Figure 6 Overview of ARC42 documentation template.. 20

Figure 7 Article from Bits & Chips Magazine ... 21

Figure 8 How performance qualities relate to functions. Source: [3] ... 22

Figure 9 Screenshot of ValPlan ... 23

Page 4 of 45 SESAME Additions to "Systems Design
and Engineering"

Research Group Mechatronics

June 7, 2022, v1.2.2

Figure 10 “Impact Estimation Table” recently re-dubbed as “Value Estimation Table”. This table uses
the quantified values (here “objectives”) and costs to make a Performance to Cost
Estimation. Source: [3] .. 24

Figure 11 Examples of Tools, Modelling Languages and Methods for MBSE. Source: [2] 27

Figure 12 When fully embedded in the organization, this integration is possible using MBSE. Source:
[2] .. 28

Figure 13 How performance qualities relate to functions. Source: [1] ... 31

Figure 14 Used with permission by Kai Gilb, www.gilb.com.. 33

Figure 15 EARS language rules. Source: [3]... 35

Figure 16 EVO cycles are small waterfalls. Source: [4]... 38

Figure 17 Cycles in Evo. Source:[4] .. 39

Figure 18 Some delivery needs to be prepared in earlier cycles. This is also planned in EVO. 40

Figure 19 Example Impact Estimation Table. Source: [3].. 41

Figure 20 Still from “When Agile Gets Physical” talk. See[2]... 42

Figure 21 Elements of RLC. Source: [1].. 43

Figure 22 Not every decision is a key decision. Source:[1] ... 43

Figure 23 Learning Cycles Plan. KG=Knowledge Gap, KD=Key Decision. Source: [1]........................ 43

Figure 24 Shortening development by reusing knowledge. Source: [3] .. 44

List of Tables
No tables included in this document

Additions to "Systems Design
and Engineering"

SESAME Page 5 of 45

June 7, 2022, v1.2.2 Research Group Mechatronics

Version Description Saved by Saved on Status

v1.2.2 Reworked part on CMMI,
added authors

Victor Sluiter Jun 7, 2022 9:42
AM

APPROVED

v1.2.1 Minor update, removed
some notes.

Victor Sluiter Dec 24, 2021 3:12
PM

APPROVED

v1.2.0 Added stub about Product
Line Engineering.

Victor Sluiter Dec 24, 2021 3:11
PM

APPROVED

v1.1.0 Added EARS and
Planguage sections,
added EVO and RLC

Victor Sluiter Dec 23, 2021
12:05 PM

APPROVED

v1.0.0 Temporary version to
share with partners

Victor Sluiter Dec 3, 2021 11:02
AM

APPROVED

v0.0.6 Added Agile view Victor Sluiter Dec 2, 2021 10:11
AM

APPROVED

v0.0.5 Added CMM, added MBSE Victor Sluiter Nov 30, 2021
10:06 PM

APPROVED

v0.0.4 Added ValueFirst / Funkey
and skeleton for other
subjects.

Victor Sluiter Nov 29, 2021
11:02 PM

APPROVED

v0.0.3 Added Simulation, and
added formality in
introduction

Victor Sluiter Nov 12, 2021
12:17 PM

IN PROGRESS

v0.0.2 Added ADR Victor Sluiter Nov 10, 2021
10:08 AM

IN PROGRESS

v0.0.1 Initial version Victor Sluiter Nov 3, 2021 2:01
PM

IN PROGRESS

Page 6 of 45 SESAME Additions to "Systems Design
and Engineering"

Research Group Mechatronics June 7, 2022, v1.2.2

Chapter 1 Introduction to the addition to Systems Design
and Engineering

In the SESAME project, we’re investigating what Systems Engineering (SE) methods and solutions
could help the Small to Medium Enterprises (SMEs) to improve their efficiency and quality of design
and production. One of the deliverables that the SESAME project would generate would be an
overview of current “best practices” in SE. This is quite a daunting task, and luckily a lot of prior work
has been done by G. Maarten Bonnema, Karel Th. Veenvliet and Jan F. Broenink in their book
“Systems Design and Engineering”[1].

We decided to take that book as a basis, and describe tools and techniques that seem interesting for
the companies involved in our project in the “framework” of the book by Bonnema et. al. This means
we add information we think is useful to The Systems Engineering Process, the Systems Thinking
Tracks and Systems Design Tools. You can read this information “on its own”, but it is recommended
to keep it next to the book, and read our additions at the corresponding sections of the book.

The last chapter can be read as an Appendix. It takes some subjects that do not neatly fit into the
book, but that we thought were too interesting for this project to leave to our own!

1.1 A word about formality
While researching and thinking about methods and insights that might help the current group of
companies contributing to SESAME, I found it hard to determine what the common feature was that is
needed for these companies, but also for our own work in the research group. During the discussions
we had a lot of overlap on insights on workflows, roles, and ways of communication and
documentation.

It was not that the tools presented should be simple. An A3 Architecture Overview can be quite
complex. The designs made by Hencon, Hollander Techniek and Riwo are not simple. Also, I do not
feel a grudge against documentation. On the other hand, none of the partners feel at home making
strict UML graphs, or using strict architecting techniques and maintain that knowledge among their
employees. That would feel like a waste of time.

While reading the dissertation of Sandra Schröder [2] I found a table with “Formalism” on the
horizontal axis. I think this is something where we can see that where currently most partners are at
“informal”, we’d like to step up to “semi-formal” to improve shareability of designs and thinking tracks
but keep a lot of liberty in implementation that is no longer present in a strict “formal” way of working.

Additions to "Systems Design
and Engineering"

SESAME Page 7 of 45

June 7, 2022, v1.2.2 Research Group Mechatronics

1.

2.

3.

Figure 1 Section from [2], p.36

A similar “view on relationships between SMEs and SE tools can be found in [3]. I think for R&D
departments - even in the context of large enterprises - we’re mostly looking at te “attitude” of Small
SMEs:

Figure 2 Relation between SMEs and their SE tools, from a study on Australian SMEs.

I hope I struck the right chord here, if so, I think you will find the additions presented here interesting
for you!

1.1.1 References
Bonnema, G. Maarten, Karel Th Veenvliet, and Jan F. Broenink. Systems Design and
Engineering: Facilitating Multidisciplinary Development Projects. Boca Raton: CRC Press,
Taylor & Francis Group, 2016.
Schröder, Sandra. “Ontology-Based Architecture Enforcement: Defining and Enforcing Software
Architecture as a Concept Language Using Ontologies and a Controlled Natural Language,”
November 2020. https://ediss.sub.uni-hamburg.de/handle/ediss/8671 .
Tran, Xuan-Linh, Timothy Ferris, Thomas V. Huynh, and Shraga Shoval. “10.2.2 Research on a
Framework for Systems Engineering Tools for Australian Small and Medium Enterprises.”
INCOSE International Symposium 18, no. 1 (June 2008): 1104–19. https://doi.org/10.1002/
j.2334-5837.2008.tb00866.x.

https://ediss.sub.uni-hamburg.de/handle/ediss/8671
https://doi.org/10.1002/j.2334-5837.2008.tb00866.x

Page 8 of 45 SESAME Additions to "Systems Design
and Engineering"

Research Group Mechatronics June 7, 2022, v1.2.2

Chapter 2 The Systems Engineering Process

2.1 Addition to 2.3, A practical implementation of SE

2.1.1 Agile development
In 2.3.5, the Vee model is presented. This model is well known for infrastructure projects and large
scale projects. First note that there is no standardized Vee model. Different companies use different
implementations, and different processes to “go through the Vee”. The most important aspect is that
thinking about the tests should be done while drawing up the requirements.

One of the drawbacks of how the Vee model is regularly used is that first most of te requirements are
“set in stone”, hopefully together with tests in the right side of te Vee. When during implementation and
testing inconsistencies in requirements are found, or requirements are changed, the whole Vee has to
be revisited again. Do the tests still fit the requirements? Are the functional concepts / architectures
still applicable to these new requirements? Do subsystem tests have to be redefined? Do these
changes have implications for other subsystems that are developed? Although it is very good that
these questions are asked, the amount of paperwork to update all documents can be daunting.

When doing innovative projects, the amount of changes during development can be quite large, also
because some requirements are still not completely known. Originating from software development,
another approach can be taken which is agile development, as opposed to the rigid structure that
many Vee model implementations have.

The key to agile development is to have many iterative design changes, where parts of a product are
developed in very short timeframes. These parts are then shown to the end customer, who can
immediately react and change course of the project when needed. Of course it is harder to predict the
duration of the project when doing it this way.

The most well-known method to do agile development is SCRUM. Although the goal is to be agile in
the long run, SCRUM has very strict rules on the execution and scope of the project during the short
incremental changes. In general, SCRUM is well suited for continuous development on software
products, but not for innovative products with lots of (un)known unknowns and lead times for
components[2].

Interesting side note: the term SCRUM was derived from the paper about “The New
Product Development Game” that highlighted some “Corporate Rugby Scores” of
companies that developed faster by letting engineers talk to customers and other
engineers, and develop multiple subsystems simultaneously. This paper was from 1986
and mostly dealt with hardware delivery; cars, printers, copiers, power tools! https://
hbr.org/1986/01/the-new-new-product-development-game

The effect is that currently the most common way of work is to do a Vee model approach, but let the
software development use an agile method, mostly SCRUM. From Managing Requirements Volatility
While ‘Scrumming’ within the V-Model [1]:

However, in the case of large projects (especially safety-critical and medical system development),
it is necessary that requirement specifications are continuously reviewed at every level of the
project, regardless of what development methodology is being followed. This is because regulatory
and legal requirements have to be complied with at an overall system level, and is another reason
why the V model cannot be completely removed – safety and regulatory standards must be
rigorously adhered to, so that there is less work for the Scrum teams.

https://hbr.org/1986/01/the-new-new-product-development-game

Additions to "Systems Design
and Engineering"

SESAME Page 9 of 45

1 https://mechatronicamachinebouw.nl/artikel/maak-sneller-fouten/

June 7, 2022, v1.2.2 Research Group Mechatronics

1.

2.

Figure 3 From [1]

So can’t we be more agile in delivering innovative products with hardware? Yes, we can, but we need
a method that keeps the long term goals in mind: the customer wish and the complete product
lifecycle, as described in the book. This was also highlighted in a very recent article (Nov 2021) in
Mechatronica & Machinebouw: “Maak sneller fouten1“[3]. Two examples of methods for this are
described in Incremental Delivery of hardware(see page 37) .

2.1.2 References
Anitha, P.C., Deepti Savio, and V. S. Mani. “Managing Requirements Volatility While
‘Scrumming’ within the V-Model.” In 2013 3rd International Workshop on Empirical
Requirements Engineering (EmpiRE), 17–23, 2013. https://doi.org/10.1109/
EmpiRE.2013.6615211 .
High Velocity Innovation. “Agile for Hardware: When Agile Gets Physical,” April 19, 2021.
https://highvelocityinnovation.com/agile-for-hardware-when-agile-gets-physical/ .

https://mechatronicamachinebouw.nl/artikel/maak-sneller-fouten/
https://doi.org/10.1109/EmpiRE.2013.6615211
https://highvelocityinnovation.com/agile-for-hardware-when-agile-gets-physical/

Page 10 of 45 SESAME Additions to "Systems Design
and Engineering"

Research Group Mechatronics June 7, 2022, v1.2.2

3. “Maak sneller fouten – Mechatronica&Machinebouw.” Accessed December 2, 2021. https://
mechatronicamachinebouw.nl/artikel/maak-sneller-fouten/ .

https://mechatronicamachinebouw.nl/artikel/maak-sneller-fouten/

Additions to "Systems Design
and Engineering"

SESAME Page 11 of 45

June 7, 2022, v1.2.2 Research Group Mechatronics

Chapter 3 Systems Thinking Tracks

3.1 Addition to 3.13, Risk Thinking

3.1.1 Pre-Mortem technique
To aid in risk thinking, there’s a powerful “trick” that was described in the book Meltdown[1], which in
turn got it from an article in Harvard Business Review[2]. The trick is to do a premortem analysis,
which generates different failure scenarios than simply asking “what could go wrong”. The technique
can be used by yourself, for yourself, but also when working in a team.

When projects fail, it’s normal to do a “postmortem”, i.e. check why the project “died”. The premortem
analysis is done before a project starts, and is done by telling the discussion members to imagine that
x years from now the project failed miserably. The team members are then asked to come up with
reasons why it failed.

Using this prospective hindsight generates other scenarios than asking “what could go wrong?” before
starting the project. Reasons given are clearer story lines leading up to the failure of the project or
design[3]. This works because the human mind is better at explaining certain outcomes than
explaining uncertain outputs. The result of a premortem can be a more diverse list of possible things
that can go wrong, which the systems engineer can keep in mind.

3.1.2 NPR 5326:2019
The Dutch norms committee NEN has published a “Nederlandse Praktijk Richtlijn” (Dutch Practice
Guidelines) for “Quality assurance of custom software development and maintenance”. This guideline,
NPR 5326 was made to prevent software projects requested by the government run out of control. The
risks and control measures mentioned in this free and openly accessible document are usable for any
risky technology development. Please see https://www.nen.nl/npr-5326-2019-nl-262885 for more
detail. In the available download you can even find an Excel sheet to scan your own project for
possible risks.

https://www.nen.nl/npr-5326-2019-nl-262885

Page 12 of 45 SESAME Additions to "Systems Design
and Engineering"

Research Group Mechatronics June 7, 2022, v1.2.2

1.

2.

3.

Figure 4 Table of contents of NPR 5326

3.1.2.1 References
CLEARFIELD, CHRISTOPHER. TILCSIK, ANDRAS. MELTDOWN: Why Our Systems Fail and
What We Can Do about It. Place of publication not identified: ATLANTIC Books, 2019.
Klein, Gary. “Performing a Project Premortem.” Harvard Business Review, September 1, 2007.
https://hbr.org/2007/09/performing-a-project-premortem .
Mitchell, Deborah, J. Russo, and Nancy Pennington. “Back to the Future: Temporal Perspective
in the Explanation of Events.” Journal of Behavioral Decision Making 2 (January 1, 1989): 25–
38. https://doi.org/10.1002/bdm.3960020103 .

3.2 Addition to 3.10, Organizational Thinking

3.2.1 Capability Maturity Model (CMM)
In 1991, the Software Engineering Institute (SEI) of Carnegie Mellon University made a framework to
help government agencies with software projects going out of control (note: this is also the source of
the Dutch NPR in Addition to 3.13, Risk Thinking(see page 11)). SEI came up with the Capability
Maturity Model for Software , updated by Mark Paulk in 1993 [1].

The solution was not a strict set of rules, but a characterization to see what organizations had which
maturity in organizing themselves. The very nice part about it, is that it gives a framework that is more
widely applicable than only software, or even only engineering.

It was observed that many projects don’t deliver quality or timeliness that was expected, even if very
strict processes were promised. On the other hand, some smaller vendors would deliver excellent
result without any disciplined engineering. Repeating those results relied heavily on having the same

https://hbr.org/2007/09/performing-a-project-premortem
https://doi.org/10.1002/bdm.3960020103

Additions to "Systems Design
and Engineering"

SESAME Page 13 of 45

June 7, 2022, v1.2.2 Research Group Mechatronics

individuals doing the sequential projects. This is not sustainable, nor does that give possibilities for
continuous improvement.

CMM puts organizational processes in “maturity levels”, where Level 1 is completely unmanaged, and
Level 5 is completely quantitatively managed throughout the project. These levels are also named
Initial, Repeatable, Defined, Managed, Optimizing. By assessing your organizational processes, you
can try to optimize by advancing one of the processes one step, and then try to remain that level, very
much like a lean Plan-Do-Check-Act cycle.

Michael Edson and Nik Honeysett have done a great job to explain how they used CMM in software
projects in the Getty Museum and the Smithsonian institute [2]:

As a “quick scan” you can use the following chart, from [2] and [3]. The columns are the maturity
levels, the rows are the way the maturity levels “act” on internal processes, people, integrating new
technology and how process information is measured:

Page 14 of 45 SESAME Additions to "Systems Design
and Engineering"

2 https://www.leidraadse.nl/assets/files/leidraaddownload/Leidraad_V3_SE_web.pdf

Research Group Mechatronics June 7, 2022, v1.2.2

3.2.1.1 Why is this important to Systems Engineering?
First of all, don’t (just) take my word for it. The CMM(I) is also described in the “Leidraad Systems
Engineering2”[5], meant for civil engineering projects:

https://www.leidraadse.nl/assets/files/leidraaddownload/Leidraad_V3_SE_web.pdf

Additions to "Systems Design
and Engineering"

SESAME Page 15 of 45

June 7, 2022, v1.2.2 Research Group Mechatronics

Seccond, think about what level your current Systems Engineering practice is, and what you would like
it to be in your organization. Level 1 is probably not your goal, as everything is “panic-driven”. Level 5
seems very nice, but it’s very, very organized, maybe too “stiff” for a company that needs more agility
and freedom to make quick choices (see Organizational Thinking).

The third aspect that is important is to realize that different people in different companies act on
different CMM levels. Being “mechanical engineer” for ASML is a completely different story than being
a “mechanical engineer” for a small engineering bureau. The first will work in an organization of Level
4-5, and will have very tight ties with the company tools and regulations. The latter will have more
liberty, more contact with the people they are working for, but also less structure in their job; maybe the
organization is Level 1-2. The realization of the different levels is especially important when
considering the deliverables of a project, particularly for things like certification and documentation.
This could lead to a better realization of what is required to collaborate successfully.
To let these people talk about the deliverables of their “mechanical engineering” you’d need to find
common ground, which is something the Systems Engineer could do, maybe by explicitly showing the
difference in Capability Maturity. This helps to mutually estimate the amount of work, the skills and
experience needed in the team, and in general expectation management.

Having different CMM between vendors (or colleagues) you can get (from[4]):

Page 16 of 45 SESAME Additions to "Systems Design
and Engineering"

Research Group Mechatronics June 7, 2022, v1.2.2

1.

2.

3.

4.

5.

6.

3.2.1.1.1 A small note on Level 1….
Sometimes, having no process can boost innovation, but often this is not sustainable. I can
recommend reading “Skunk Works: A Personal Memoir of My Years at Lockheed”[6] about the cross-
sectional team of “individual heroes” that was pulled out of Lockeed Martin to create the secret “Skunk
Works” team to design the “impossible to fly” F-117 fighter plane. It’s an action novel for engineers,
and shows both opportunities and threats for this type of organization.

3.2.2 References
Paulk, Mark C., Bill Curtis, Mary B. Chrissis, and Charles V. Weber. “Capability Maturity Model
for Software, Version 1.1:” Fort Belvoir, VA: Defense Technical Information Center, February 1,
1993. https://doi.org/10.21236/ADA263403.
Michael Edson. “Good Projects Gone Bad: An Introduction to Process Maturity.” 14:18:59 UTC.
https://www.slideshare.net/edsonm/good-projects-gone-bad-an-introduction-to-process-
maturity .
Paulk, Mark C., ed. The Capability Maturity Model: Guidelines for Improving the Software
Process. The SEI Series in Software Engineering. Reading, Mass: Addison-Wesley Pub. Co,
1995.
“Good Projects Gone Bad: An Introduction to Process Maturity - [PPT Powerpoint].” Accessed
November 30, 2021. https://cupdf.com/document/good-projects-gone-bad-an-introduction-to-
process-maturity-5584a0437a32e.html .
“Welkom | Leidraad Voor Systems Engineering.” Accessed December 1, 2021. https://
www.leidraadse.nl/ .
Rich, Ben R., and Leo Janos. Skunk Works: A Personal Memoir of My Years at Lockheed. 1.
paperback ed. A Back Bay Book Military Histsory, Technology. Boston: Little, Brown, 1994.

https://doi.org/10.21236/ADA263403
https://www.slideshare.net/edsonm/good-projects-gone-bad-an-introduction-to-process-maturity
https://cupdf.com/document/good-projects-gone-bad-an-introduction-to-process-maturity-5584a0437a32e.html
https://www.leidraadse.nl/

Additions to "Systems Design
and Engineering"

SESAME Page 17 of 45

June 7, 2022, v1.2.2 Research Group Mechatronics

Chapter 4 Systems Design Tools

4.1 Addition to 4.7 and 4.13 ; Architecture Decision Records
The focus in 4.7 is on Architectures, the focus of 4.13 is on documentation.

Large parts of the Systems Engineering work is done on legacy systems; upgrades have to be made
to existing systems, or even duplications need to be made while original parts are no longer available.
It is important to be able to get clear what “forces” were into play when the original system was built,
and what forces are at play now. For instance, a polluting but reliable diesel engine was no problem 10
years back, especially because electrical engines, drives and the battery systems were not as
powerful then. When (re-) designing now, what new solution should be chosen?

Architecture Decsision Records (ADRs) can be used to either get clarity on a current design, or to
reverse architect an existing system. In “Systems Design and Engineering” not much is being said
about dealing with legacy systems, or how to make sure that your systems design is going to be
valuable to engineers working on your project in the future. This is why I’d like to discuss “Architecture
Decision Records” and some related tools.

4.1.1 What is an ADR?
From Nygards blog[1]:

One of the hardest things to track during the life of a project is the motivation behind certain
decisions. A new person coming on to a project may be perplexed, baffled, delighted, or infuriated
by some past decision. Without understanding the rationale or consequences, this person has only
two choices:
* Blindly accept the decision
* Blindly change it
It's better to avoid either blind acceptance or blind reversal.

An Architecture Decision Record is a document of 1-2 pages that describes an architectural decision.
An architectural decision is a decision that impacts multiple system aspects (such as maintainability,
performance, reliability). Examples are: “SQL database will be used for all data storage”, “Robot will
use differential drive“ or “All parts should be manufacturable in our own workshop“. The general format
is:

Title

Status
What is the status, such as proposed, accepted, rejected, deprecated, superseded, etc.?

Context
What is the issue that we're seeing that is motivating this decision or change?

Decision
What is the change that we're proposing and/or doing?

Consequences
What becomes easier or more difficult to do because of this change?

Page 18 of 45 SESAME Additions to "Systems Design
and Engineering"

3 https://www.cognitect.com/blog/2011/11/15/documenting-architecture-decisions
4 https://github.com/joelparkerhenderson/architecture-decision-record
5 https://personal.utdallas.edu/~chung/SA/zz-Impreso-architecture_decisions-tyree-05.pdf
6 https://youtu.be/41NVge3_cYo

Research Group Mechatronics June 7, 2022, v1.2.2

•
•
•

•

The “rules” for ADRs coming from the original proposal by Nygard3 [1] are:

ADRs are reviewed by the design team.
After an ADR is accepted, it is immutable, no changes can be made.
The decision is voiced in an active tense (not: “robots should be made serviceable” but “we will
make robots serviceable”).
When a decision is changed, the previous ADR is marked as “superceded”, and a new ADR is
made with the new decision, and the new Context & Consequences

Over time, multiple formats have been created, among with tools to maintain them4[2]. There is a lot of
background information on why it is good to make ADRs, among which Articles from IEEE Focus5[3]
and a very instructional video from IBM6 [4].

In software “best practices” these ADRs are stored in the code repository. For hardware use, the
decision of where to put them may need some team deliberation….

https://www.cognitect.com/blog/2011/11/15/documenting-architecture-decisions
https://github.com/joelparkerhenderson/architecture-decision-record
https://personal.utdallas.edu/~chung/SA/zz-Impreso-architecture_decisions-tyree-05.pdf
https://youtu.be/41NVge3_cYo

Additions to "Systems Design
and Engineering"

SESAME Page 19 of 45

7 http://www.dcar-evaluation.com
8 https://www.vanheesch.net/papers/dcar-ieeeSW.pdf

June 7, 2022, v1.2.2 Research Group Mechatronics

Figure 5 Example Architecture Decision Record

4.1.2 Using Architecture decisions for reverse architecting and
reviewing

When using ADRs is a known practice, this can be used to review current architectures for decisions
that are no longer valid (updated insights from design team, or altered legislation, or changed
viewpoint from customer, or ….). This review method can also be used to reverse architect an existing
product, i.e. determine the decisions that were made when the product was made, and write these
down. It is of course very helpful to have one of the original contributors to the product available when
doing this.

A systematic way of doing this is the Decision Centric Architecture Review (DCAR) method7[5], also
described in IEEE Focus8[6].

4.1.3 Related subjects

4.1.3.1 Technical Debt
A subject that was discussed with partners quite often is that at the end of a development process a
product was in the field, but maybe not fully verified, or not fully documented. Or that changes to a
robot “in the field” would be made to quickly get it going, but never document the change, impeding
support and further development. This is called “tecnical debt”. In [7]:

Technical debt is a metaphor for describing a design or implementation construct that is expedient in
the short term, but that sets up a technical context that can make a future change more costly or
impossible. Causes related to planning and management are protagonists among those responsible
for creating technical debt. For example, tight schedules, competitiveness, changes in business
prioritization, and business dynamics are responsible for creating a turbulent environment that leads
to technical debt .

or [8]:

http://www.dcar-evaluation.com
https://www.vanheesch.net/papers/dcar-ieeeSW.pdf

Page 20 of 45 SESAME Additions to "Systems Design
and Engineering"

9 http://Cognitect.com

Research Group Mechatronics June 7, 2022, v1.2.2

1.

2.

3.

4.

5.

6.

7.

8.

The technical debt (TD) metaphor, coined by Cunning-ham [1], has been used to describe the trade-
off betweenshort-term benefits gained by delaying certain development activities and the costs of
implementing these activities in the future.

ADRs might help to quickly capture important decisions in the architecture, and thereby reduce the
technical debt in a quick and acceptable way.

4.1.3.2 ARC42
If a larger framework is needed to store the Architectural Decisions in, ARC42 [9] can be used. ARC42
is an open standard to document (software) architecture. In this framework you can find the
Architecture Decisions in section 9.

Figure 6 Overview of ARC42 documentation template

4.1.4 References
Nygard, Michael. “Documenting Architecture Decisions.” Cognitect.com9, 00:00 500. https://
www.cognitect.com/blog/2011/11/15/documenting-architecture-decisions .
Henderson, Joel Parker. Architecture Decision Record (ADR), 2021. https://github.com/
joelparkerhenderson/architecture-decision-record .
Tyree, J., and A. Akerman. “Architecture Decisions: Demystifying Architecture.” IEEE Software
22, no. 2 (March 2005): 19–27. https://doi.org/10.1109/MS.2005.27 .
Software Engineering Institute, Carnegie Mellon University. SATURN 2017 Talk: Architecture
Decision Records in Action, 2017. https://www.youtube.com/watch?v=41NVge3_cYo .
uwe. “DCAR – Decision-Centric Architecture Review | A Lightweight Method for Software
Architecture Evaluation.” Accessed November 10, 2021. http://www.dcar-evaluation.com/.
Heesch, Uwe van, Veli-Pekka Eloranta, Paris Avgeriou, Kai Koskimies, and Neil Harrison.
“Decision-Centric Architecture Reviews.” IEEE Software 31, no. 1 (January 2014): 69–76.
https://doi.org/10.1109/MS.2013.22 .
Rebouças de Almeida, Rodrigo, Rafael Ribeiro, Christoph Treude, and Uirá Kulesza. Business-
Driven Technical Debt Prioritization: An Industrial Case Study, 2020.
Rebouças de Almeida, Rodrigo, Uirá Kulesza, Christoph Treude, D’angellys Feitosa, and
Aliandro Lima. Aligning Technical Debt Prioritization with Business Objectives: A Multiple-Case
Study, 2018. https://doi.org/10.13140/RG.2.2.16106.21441

http://Cognitect.com
https://www.cognitect.com/blog/2011/11/15/documenting-architecture-decisions
https://github.com/joelparkerhenderson/architecture-decision-record
https://doi.org/10.1109/MS.2005.27
https://www.youtube.com/watch?v=41NVge3_cYo
http://www.dcar-evaluation.com/
https://doi.org/10.1109/MS.2013.22
https://doi.org/10.13140/RG.2.2.16106.21441

Additions to "Systems Design
and Engineering"

SESAME Page 21 of 45

June 7, 2022, v1.2.2 Research Group Mechatronics

9. Starke, Dr Gernot. “Arc42 Template Overview.” arc42. Accessed November 10, 2021. https://
arc42.org/overview/ .

4.2 Addition to 4.9, FunKey Architecting and ValueFirst
The book describes how needs from stakeholders are explicitly adressed by FunKey. Although the
examples are really clear in the book “Systems Design and Engineering”, this aspect is not directly
highlighted in the original thesis[1] or paper[2]. The description as in the book did remind me of the
methodology described in “Competitive Engineering[3]” and other resources that describe both the
requirements language “Planguage” and the “ValueFirst” method that deals with how Functions,
Qualities and stakeholders interact.

Before diving into technicalities I’d like to share
an article from Bits& Chips Magazine: https://
bits-chips.nl/artikel/system-requirements-
defined-by-cascades-of-creativity/ [4] . It
explains the “way of thinking” behind
Competitive Engineering quite well. Cees
Michielsen worked at ASML and DAF, and
although he doesn’t mention Gilb in this
interview, he has acknowledged in personal
conversation that his insights are strongly based
on the Gilb methodology.

Figure 7 Article from Bits & Chips Magazine

4.2.1 Explanation of ValueFirst / Planguage

ValueFirst is driven by quantified requirements. For a more thorough explanation please see the
section on Planguage(see page 30) .

https://arc42.org/overview/
https://bits-chips.nl/artikel/system-requirements-defined-by-cascades-of-creativity/

Page 22 of 45 SESAME Additions to "Systems Design
and Engineering"

Research Group Mechatronics June 7, 2022, v1.2.2

Figure 8 How performance qualities relate to functions. Source: [3]

4.2.1.1 Another view on Functions…
The view of “Functions” in Competitive Engineering / ValueFirst seems different than the view of
Functions in FunKey. In ValueFirst, the definition of a Function is “What the System Does”. But that is
usually taken quite shallow, a car will mainly have a function “transporting from A to B”. The focus is
much more on the performance criteria (values) that are seen as criteria “how good a system is at
doing its function”. In this example, values could be how maintenance friendly the car is, or what the
expected cost per km is, the maneuverability of the car, or how good it impresses the neighbors. All
these “values” are the items that you actually take into mind when buying a car.

4.2.1.2 … And how values “trickle down” to solutions …
When “transporting from A to B” is the function of a car, multiple solutions can be found to do that, for
instance using an electric car, or a second hand diesel car, or a new petrol car. All these solutions
contribute in some way to the values of the car as described above, but also have their own values.
For instance, maneuverability could be split into different subtasks, or in different values such as “ease
of steering” and “visibility of environment”. This last value could be increased by adding a new sub-
solution which is a rearview camera. This way, it is possible to keep track of why something is
important for the overall design of the product. It also makes it possible to quickly explain to a designer
of a sub-sub-part of a system why it “has to look great” or “be very cheap” (probably both). The
importance of this way of thinking is also highlighted by Cees Michielsen in [4]:

During his training session, Michielsen explains that, in a system, the highest layer of abstraction is
the level with the most general requirements, ie the system needs to be fast or have a certain look.
But as you go down deeper into the system, it gets much more detailed. Suddenly, the layers are
referring to different subjects or using different languages to express the requirements, which can
be a little tricky for engineers to keep the information flowing.
“That’s the real objective of requirements engineering, finding different ways to ensure that the data
continues to cascade from top to bottom and from stakeholder needs to implementation, all without

Additions to "Systems Design
and Engineering"

SESAME Page 23 of 45

June 7, 2022, v1.2.2 Research Group Mechatronics

losing any information,” suggests Michielsen. “I think if I were to summarize the challenge for
requirements engineering, I would say that it lies mainly in the cascading of information throughout
each abstraction or decomposition layer.”

In ValPlan, a commercial tool to track these value requirements, stakeholders and solutions,
connection looks like this for a project where a product is made for robotizing a part of the firefighting
tasks:

Figure 9 Screenshot of ValPlan

Looking at the stakeholder level, the “functions” of the stakeholder are “what the stakeholder does”. In
the case of Saxion it’s “Innovate” and “Create Reports”, in the case of the Firefighters it’s “Extinguish
Fire”, “Train Firefighters” and “innovate”. Values on this level are “Fire-Control” and “Open Source”.
The connection of a Value to a Function is a “boolean”, this could be seen as the in the FunKey
table.

The interesting part is that we can also see how at the Product Level solutions contribute to values on
the Stakeholder level. One of the lessons we learned while making this overview is that we could
make a very nice technical product, but that we do have to provide training for firefighters in order to
make it usable in the field.

At the product level, the products again have functions and those functions have values, being
realized by solutions at the “Solutions” level. Of course the model can extend further both to the left
and to the right. What is important to realize is that a solution at level n+1 for a value in level n is a
fixed functionality at level n+2 . For most people in the project, knowing the Products, Functions,
Values of their own level, the level below them and the level above them is enough. Systems
Engineers might want to take one level more…

4.2.1.3 … Leads to comparison matrices!
Because solutions contribute to many values we have to make tradeoffs. The Value Estimation Table
can give insight in the efficiency of a solution. Because of the quantification of the values, we can see
how completely different solutions compare or contribute to those values. Not all solutions and all
values need to be in this table, multiple tables can be made for different subselections. Although the
values are quantified, at this stage the numbers do not need to have scientific accuracy, as long as the
source of the quantification is clear. The design team can use the table as a discussion piece.

This technique was used in the Nena project to choose what prototypes needed to be made to quickly
test some requirements. We could have used an older robot and rebuilt that, which would have helped
in testing navigation abilities, but would not have helped in judging whether the overall design would

Page 24 of 45 SESAME Additions to "Systems Design
and Engineering"

Research Group Mechatronics June 7, 2022, v1.2.2

1.

2.

3.

4.

be sized right, and no tests with the intended drive train could be done. The output of the table was
that a prototyped aluminum bar frame would give the most “value” for little cost.

Figure 10 “Impact Estimation Table” recently re-dubbed as “Value Estimation Table”. This table uses the
quantified values (here “objectives”) and costs to make a Performance to Cost Estimation. Source: [3]

Note that these tables are different from FunKey coupling matrices. These are not used as much for
architecting, where functions are coupled to key requirements (see section above), but to couple key
requirements (values) to potential (partial) solutions.

4.2.2 References
Bonnema, Gerrit Maarten. “FunKey Architecting: An Integrated Approach to System Architecting
Using Functions, Key Drivers and System Budgets,” April 3, 2008. https://research.utwente.nl/
en/publications/funkey-architecting-an-integrated-approach-to-system-architecting
Bonnema, G. Maarten. “Insight, Innovation, and the Big Picture in System Design.” Systems
Engineering 14, no. 3 (2011): 223–38. https://doi.org/10.1002/sys.20174 .
Gilb, Tom, and Lindsey Brodie. Competitive Engineering: A Handbook for Systems Engineering,
Requirements Engineering, and Software Engineering Using Planguage. Oxford Burlington,
MA: Butterworth-Heinemann, 2005.
“System Requirements Defined by Cascades of Creativity – Bits&Chips.” Accessed November
29, 2021. https://bits-chips.nl/artikel/system-requirements-defined-by-cascades-of-creativity/ .

https://research.utwente.nl/en/publications/funkey-architecting-an-integrated-approach-to-system-architecting
https://doi.org/10.1002/sys.20174
https://bits-chips.nl/artikel/system-requirements-defined-by-cascades-of-creativity/

Additions to "Systems Design
and Engineering"

SESAME Page 25 of 45

10 https://www.reden.nl/software/reves-dse
11 https://mechatronicamachinebouw.nl/artikel/prespective-en-qing-zetten-schouders-onder-versnelling-digital-

twinning/.

June 7, 2022, v1.2.2 Research Group Mechatronics

•

•

•

•

•

•

4.3 Addition to 4.14, Simulation
Section 4.14 in “Systems Design and Engineering” is a bit “sparse” on simulation. It only deals with
dynamic simulation and discusses numerical integration methods which are applicable to linear(ized)
models.

When talking about Systems Engineering and simulation, other aspects come to mind too:

4.3.1 Other forms of simulation
FEM analysis; a part is modeled by building it up out of many small elements that have a
certain physical property. Depending on this property, the simulation can be used for many
purposes. Examples are:

simulating the deformation of parts under load. Generally this is not done in dynamic
fashion, but mechanical parts can be tested for edge cases of mechanical load
distribution. The output is whether a part or part assembly is strong enough for what it is
meant to do. Based on the output, parts can be made lighter, stronger, or another
material can be chosen.
simulating thermal distribution in a product. For example, simulate whether a printed
circuit board with power electronics can be used in a housing without natural convection,
in a hot environment. How will the heat distribution be towards temperature sensitive
analog circuits in the same housing?

Computer program simulation; the software and hardware environment in which a piece of
software is being used can be simulated using pre-programmed models. The behaviour of the
computer code that is under design can be inspected with simulated stimuli / responses instead
of the “real” environment. One of te most used terms for simulating the external environment is
“hardware-in-the-loop simulation”
A mockup is a simulation of part of the complete system, to elicit stakeholder feedback. Some
products are almost entirely completely computer simulated for end users before they are
realized in its physical form. An example is a traffic control system that was tested on operators
with simulated camera views on the traffic systems (trains, cars, cyclists, traffic lights and a
bridge) before the actual bridge was built. This way, the systems engineer can learn a lot about
the requirements of the real product before large investments are made.
In Design Exploration, one of the first phases of new development, “quick and dirty” models are
being made to attain basic understanding of the problem at hand. Some system behaviour can
sometimes also be described in small code snippets. One of the tools that can combine these
small “knowledge snippets” and calculate back and forth between them using MonteCarlo
parameter variation is Reves DSE10.

4.3.2 Digital Twin
Recently, the term “Digital Twin” has gotten a lot of attention. Although it is hard to give an accurate
description, and the term is used for different kinds of simulation, the general gist is that a “real”
product has a simulated “twin” in simulation. Some of these twins are purely simulation, others are
able to use inputs from the physical world and simulate the intended behaviour. The difference
between an “standalone” simulation of one specific part of the product is that the “digital twin” is able to
simulate across technical domains. Using Model Based Systems Engineering(see page 26) will help in
creating and maintaining a digital twin. A recent article in Mechatronica & Machinebouw11 [1] highlights
that making a digital twin also needs a lot of investment of the organization to let multiple disciplines
communicate with each other; a job well suited to a systems engineer.

https://www.reden.nl/software/reves-dse
https://mechatronicamachinebouw.nl/artikel/prespective-en-qing-zetten-schouders-onder-versnelling-digital-twinning/.

Page 26 of 45 SESAME Additions to "Systems Design
and Engineering"

12 https://www-sciencedirect-com.saxion.idm.oclc.org/topics/computer-science/system-engineering-approach
13 https://www-sciencedirect-com.saxion.idm.oclc.org/topics/computer-science/maintainability

Research Group Mechatronics June 7, 2022, v1.2.2

1.

2.

4.3.3 References
“Prespective en Qing zetten schouders onder versnelling digital twinning –
Mechatronica&Machinebouw.” Accessed November 12, 2021. https://
mechatronicamachinebouw.nl/artikel/prespective-en-qing-zetten-schouders-onder-versnelling-
digital-twinning/ .

4.4 Model Based Systems Engineering
The subject of Model Based Systems Engineering (MBSE) is not discussed in the book Systems
Design and Engineering, but it has taken such a flight in the recent years that I felt compelled to
discuss it here.

4.4.1 MBSE in short
The subject of MBSE is a very large one, and it’s hard to thoroughly in a few words. Despite that, I’ll
try.

In traditional Systems Engineering, documents are the captivation of knowledge about the system.
Requirements documents, Functional Design Documents, Interface Descriptions and Test reports all
describe how a system was designed, and what the relations of those systems are. The more complex
a product becomes, the harder it is to keep all those documents “in sync” and the harder it is to find
the information that you need, or to get a good overview of how a certain parts are related to each
other. In Model Based Systems Engineering, the “model” of the system is the “single source of truth” of
everything that relates to the system under design. Documents can be made, but these are artefacts,
generated from the model.

Just to be clear, in general a “model” here is a “boxes and lines” model, not a 3D model or a dynamic
model, although those should ideally be driven by the properties stored in the MBSE model. The
MBSE model’s purpose is to contain all information about connections, sequences and other relations
between all parts in the system, be it electrical, mechanical, hydraulics or software. In many cases,
engineers already have this knowledge, and mostly already have some diagrams describing the
relations. However, these diagrams usually are not consistent between each other. The purpose of
MBSE is to have diagrams that are always consistent, and that for different purposes (stakeholder
analysis, insight in an engineering problem) different diagrams can be made that highlight different
system aspects.

To put it in another way, see this introduction from the paper “The Long and Winding Road: MBSE
Adoption for Functional Avionics of Spacecraft.”[1]:

Interest in Model-Based Systems Engineering (MBSE) over the traditional approach to systems
engineering, Document-Based Systems Engineering (DBSE), is growing. With DBSE, project and
design information is stored in documents and must be manually maintained and transferred
between domains. The traditional DBSE approach12 is labour-intensive and consists mostly of
manual analysis, review and inspection .
MBSE is the formalised application of modelling to support system requirements, design, analysis,
optimisation, verification and validation. By using interconnected models to store, represent and
relate this information and data, projects can expect improvements in consistency, communication,
clarity, visibility, maintainability13, etc. – thus addressing issues associated with cost, complexity and
safety.

To create these models, a modelling language is needed. To create the diagrams and check for
internal consistency, a tool is needed that can check the consistency of the diagrams, and export

https://mechatronicamachinebouw.nl/artikel/prespective-en-qing-zetten-schouders-onder-versnelling-digital-twinning/
https://www-sciencedirect-com.saxion.idm.oclc.org/topics/computer-science/system-engineering-approach
https://www-sciencedirect-com.saxion.idm.oclc.org/topics/computer-science/maintainability

Additions to "Systems Design
and Engineering"

SESAME Page 27 of 45

14 https://static.sw.cdn.siemens.com/siemens-disw-assets/public/ny8JDhe7Nsrg3dBdPRxrL/en-US/MBSE---
MBSE-For-Dummies_tcm27-101485.pdf

June 7, 2022, v1.2.2 Research Group Mechatronics

information to third party tools. To know what kind of diagram is needed for what kind of information, a
method is needed. From MBSE for Dummies14[2]:

Figure 11 Examples of Tools, Modelling Languages and Methods for MBSE. Source: [2]

Different languages need different tools, and have different focus points. For example, the Arcadia
method, supported by the open source Capella tool is focused on keeping an “explainable”
architecture view. The lowest level it deals with is “physical level”, which are individual components.
But to add “real physical parameters” such as for example wheel friction or steering radii of robots and
how those affect driving behavior, a plugin is needed and this is outside the Arcadia “method”. On the
other hand, the SysML language is very good at making low level physics models, but does not have a
single clear method to model the system. Because it originates from UML, it also is highly based on
concepts from object oriented software engineering such as inheritance and encapsulation, concepts
that are nonexistent in Arcadia / Capella.

4.4.2 Benefits and caveats

The benefit of using MBSE is that it becomes easier to communicate system behavior. The systems
engineer can use the model to verify that engineers understand the relations between their disciplines,
and to communicate (expected) system behavior with stakeholders. Also, because the engineers “feed
back” information about how systems are realized, it is possible to let the model check whether certain
scenarios remain feasible.

https://static.sw.cdn.siemens.com/siemens-disw-assets/public/ny8JDhe7Nsrg3dBdPRxrL/en-US/MBSE---MBSE-For-Dummies_tcm27-101485.pdf

Page 28 of 45 SESAME Additions to "Systems Design
and Engineering"

15 https://indico.esa.int/event/386/contributions/6225/attachments/4267/6446/1105%20-
%20MBSE%20in%20an%20SME%20Context.pdf

Research Group Mechatronics June 7, 2022, v1.2.2

Figure 12 When fully embedded in the organization, this integration is possible using MBSE. Source: [2]

As already indicated both by Jon Holt [3] and Jenkins[4] a full implementation is not necessary. A
company can start by modelling part of a product, or a certain abstraction level of the product.

A strong caveat of MBSE is therefore the effort needed to create and especially to maintain the model.
Changes in any domain that is integrated into the model should be fed back to the model. Ideally, the
CAD tools used for electrical and mechanical engineering should be directly coupled to the model, and
the designs should only be “views” of the model in that specific domain. Some vendors try to do this as
much as possible, for example Dassault has an integration between SysML and SolidWorks, and
Siemens provides a full toolchain for their products. The drawback is that this is a very strong vendor
lock-in, and the maintenance of these models will take time. Even if this is understood by the
engineers who would like to use this tooling, the organization needs to change to use a “model centric”
way of work. This is one of the reasons that MBSE is mostly used in very large organizations that deal
with aerospace or medical (Lockheed Martin, Thales, ESA, NASA, Philips are strong promotors).
These companies have many, many subcontractors but the need for safety and system maintenance
is large enough to pay for the overhead needed to maintain a model.

Some open source and free options exist for MBSE, but most tools are commercial.

4.4.2.1 MBSE for SME
To my delight, ESA already investigated the usage of MBSE for small and medium enterprises [4].
Because ESA uses MBSE in their own missions, it would help them if subcontractors could also use
MBSE. The full talk can be found here on Youtube: https://youtu.be/5WzdVxMWm1U .

Jenkins [4] sees three scenarios for SMEs15 and whether they should adopt MBSE or not:

https://youtu.be/5WzdVxMWm1U
https://indico.esa.int/event/386/contributions/6225/attachments/4267/6446/1105%20-%20MBSE%20in%20an%20SME%20Context.pdf

Additions to "Systems Design
and Engineering"

SESAME Page 29 of 45

June 7, 2022, v1.2.2 Research Group Mechatronics

•
•

•

•

•
•
•
•

•

•

•
•
•

•

•

•

•
•

1.

2.
3.

4.

Sce-
nario

Company Advise

1 Small company producing
simple systems

MBSE is NOT recommended
MBSE is not something that will add much value to the
company
In a small team its easier to keep track of everyone’s
work
Information management is not a big problem

2 A company transitioning
from single to multi-
missions, increasing
workforce and increased
employment of grads/
people early in their
career and CAN afford the
time and cost of adoption

MBSE IS recommended
MBSE helps to enforce a standardised SE process
This helps to ensure that all outputs are consistent
Makes it easier to teach newcomers the company SE
process
MBSE helps aid the SE process to ensure the system is
well defined
MBSE helps to manage information – ensures traceability

3 A company transitioning
from single to multi-
missions, increasing
workforce and increased
employment of grads/
people early in their
career and CANNOT
afford the time and cost of
adoption.

MBSE is NOT recommended
MBSE provides benefits to the SE process of an SME
However if the SME cannot afford time and cost of
adopting MBSE then adoption could be detrimental
For MBSE to be accessible to SMEs I recommend the
following needs to happen:

Accessibility to MBSE resources – case studies,
suggested tools, strengths & weaknesses of tools
MBSE to mature – more people becoming experts,
best way to use the tool
Proof of ROI
Mitigate vendor locking worry

4.4.3 References
Gregory, Joe, Lucy Berthoud, Theo Tryfonas, Alain Rossignol, and Ludovic Faure. “The Long
and Winding Road: MBSE Adoption for Functional Avionics of Spacecraft.” Journal of Systems
and Software 160 (February 1, 2020): 110453. https://doi.org/10.1016/j.jss.2019.110453 .
Kaelble, Steve. “MBSE For Dummies®, Siemens Special Edition,” 2022, 53.
Swiss Society of Systems Engineering - SSSE. Jon Holt - Scarecrow Consultants, 2019. https://
www.youtube.com/watch?v=VnBWyc-Srqg .
Jenkins, Rhiannon Caitlin. “MBSE in an SME Context,” n.d., 17.

https://doi.org/10.1016/j.jss.2019.110453
https://www.youtube.com/watch?v=VnBWyc-Srqg

Page 30 of 45 SESAME Additions to "Systems Design
and Engineering"

16 http://concepts.gilb.com/Glossary

Research Group Mechatronics June 7, 2022, v1.2.2

Chapter 5 Additional subjects
The following subjects did not directly fit into the “Thinking Tracks” and “Systems Design Tools”, but
were stumbled upon during the interviews, and therefore given a place in this section. Any subject
discussed here could deserve its own complete book, but we’re just scratching the surface here to
highlight what these subjects could do for companies in the SESAME project.

5.1 Requirements Languages
In the interviews with companies we found that many problems arise from vague or incomplete
requirements, or from getting many requirements that actually do not describe the customer wish.
These problems might be alleviated by using more formal requirements languages.

These languages force the users to shape natural language, which is open for multiple interpretations,
into more concise requirements. Of course this requires training of all stakeholders to use this more
formal notation. The methods presented here are -from experience in the research group- easily
learnable and transferrable.

5.1.1 Planguage

5.1.1.1 Explanation of ValueFirst / Planguage
When you need to buy a car and specify its “features” (has >3 doors, has a steering wheel, has a car
radio…), you could find a car that does its function (transporting people from A to B) for less than EUR
200. Why do most of us spend more money? Because we don’t necessarily want the features, we
want to have the function, but with reliability, comfort, good looks, low cost per mile, …. Why do people
pay $1400 for an Apple Hermes watch instead of $400 for a standard Apple Watch, while both have
the same features? It’s because they buy “style” or “exclusiveness”. Planguage is the requirements
language made to capture those subjective values and ValueFirst is the method to look at those
functions and values from different product “levels”. Please take a look at Addition to 4.9, FunKey
Architecting and ValueFirst(see page 21) for an example project where this has been used on different
levels.

The benefits of specifying (high level) requirements this way is that it sometimes becomes clear what
other products might be necessary besides your first intuitive guess. For instance, we found out in a
research project at Saxion that “Training time” was a very important parameter, and in order to test
that, we also needed to make a clear instruction for usage of the equipment we developed.

The user requirements are quantified using “ValueFirst” methodology as described by Tom and Kai
Gilb. In ValueFirst, the requirements of a function (here: chip alignment) are on the “values”. The
reason a user likes a product, is because the functions of the product have values that are interesting.
For example, if you consider buying a new car you could buy the cheapest second hand one (which
fits the requirement “4 wheels and a steer”), but you don’t because you pay more for things like “style”
or “reliability” or “comfort”. Those things are the values, and they can be larger or smaller. The
specification of these value requirements is done using Planguage. Each value is measured on a
scale, and the way it is measured is called the meter. The ambition of each value is the
“management summary” of what we want to achieve with the value. Terms can be found in the Gilb
glossary16. On the scale, we can express what we want to achieve within this project (the goal level),
but also what is the current state of the art (record) or at which value the function as a whole is so bad
that even if all other values surpass the goal level, the function is not good (fail level. For example
comfortable car which looks good but with a rotten chassis).

http://concepts.gilb.com/Glossary

Additions to "Systems Design
and Engineering"

SESAME Page 31 of 45

June 7, 2022, v1.2.2 Research Group Mechatronics

To make the scale and meter reusable in different situations, qualifiers are used. These are the words
in [brackets]. For example: Scale: [area] domination in defined [time], where a goal could be to have
[area=world] and [time=one year] to say we’d like to have world domination within a year.

Resources can be expressed in the same way in order to make tradeoffs of which values are
contributed to against which cost.

Figure 13 How performance qualities relate to functions. Source: [1]

5.1.1.2 Examples of research group
Here are some examples (slightly altered to hide project specific details) where the research group
used Planguage to capture “User Requirements”, the requirements that should be “validated”.

5.1.1.2.1 TestCapability
Ambition: make sure that this product can do many, many types of tests, place one machine at the
client, which can test most paint types.
Scale: scale of 0-10 whether [selected users] think that the chosen design of alignment and paint
cartridge is suitable to expand to other tests, where
0=can only be used for a single paint type, device should be completely redesigned to do anything
else than detect <known paint types>.
3 = to change test to other paint types, the alignment concept should be largely redesigned
5 = to change test to other paint types, the alignment concept is OK, but other parts (paint cartridge,
test machine) need <major redesign>.
7 = will be able to replace current pigment paint based tests with less than 10 man year development
time on paint cartridge.
10 = can comfortably test > 90% of paint types with less than 1 man year development time on
cartridge once paint test type is known.
Meter: show the concept to [selected users] and ask to score based on the scale given. Average the
results
[selected users] = 1 person of {Sigma, Gamma, Sikkens}

Page 32 of 45 SESAME Additions to "Systems Design
and Engineering"

Research Group Mechatronics June 7, 2022, v1.2.2

Goal: 5 ← Guess by Victor

5.1.1.2.2 Ease of Use - OperatorTraining
Stakeholders: Paint shops, Sikkens, Sigma
Ambition: Make sure that almost anyone can do a test with minimal training
Scale: Number of minutes training required to be able to do a <succesful paint test> within a specified
[time] using the [setup].
Meter: Record time from beginning of training activity until user is able to start a measurement with
<succesful> paint clarification in [setup] within [time] after receiving a sample. Average over 5 users.
Goal [setup=demonstrator, time=120s]: 10 min.
Past [setup = manual lab equipment, time=300s]: 2400 minutes ← Cindy, 40h training @ paint lab

Additions to "Systems Design and Engineering" SESAME Page 33 of 45

June 7, 2022, v1.2.2 Research Group Mechatronics

5.1.1.3 Cheat sheet

Figure 14 Used with permission by Kai Gilb, www.gilb.com

Page 34 of 45 SESAME Additions to "Systems Design
and Engineering"

17 https://www.researchgate.net/publication/224079416_Easy_approach_to_requirements_syntax_EARS
18 https://www.researchgate.net/publication/335535918_Ten_Years_of_EARS

Research Group Mechatronics June 7, 2022, v1.2.2

1.

5.1.1.4 References
Gilb, Tom, and Lindsey Brodie. Competitive Engineering: A Handbook for Systems Engineering,
Requirements Engineering, and Software Engineering Using Planguage. Oxford Burlington,
MA: Butterworth-Heinemann, 2005.

5.1.2 EARS
The Easy Approach to Requirements Syntax was developed by Alistair Mavin from Rolls Royce
airplane engine development. It was presented to the public in 200917 [1]. The problem that the team
from Rolls Royce was trying to solve was that requirements written down in Natural Language
(“normal” English) suffer from many potential problems: ambiguity, vagueness ,complexity, omission,
duplication, wordiness, inappropriate implementation. Explanations for these terms are given in [1]. To
solve this, Mavin made some simple rules on how to write requirements down, thereby slightly
structuring the text. To the surprise of the team of Rolls Royce, this worked remarkably well, and the
following year they published how rewriting a certification specification solved many of the original
problems[2]:

Following the initial EARS publication, many companies adopted it18[3,5]. Success stories come from
Toshiba Aerospace, IBM, Intel and even from partners in the nuclear domain. Some companies
adopted EARS a bit[4], but most stayed with the basic rules:

https://www.researchgate.net/publication/224079416_Easy_approach_to_requirements_syntax_EARS
https://www.researchgate.net/publication/335535918_Ten_Years_of_EARS

Additions to "Systems Design
and Engineering"

SESAME Page 35 of 45

19 https://www.researchgate.net/publication/308970788_Listens_Learned_8_Lessons_Learned_Applying_EARS

June 7, 2022, v1.2.2 Research Group Mechatronics

Figure 15 EARS language rules. Source: [3]

The application of EARS in our own research group has led to a clearer way of writing requirements. If
you want to implement EARS in your organization, it is worth reading the “Listens learned19” paper[5]
from Mavin.

5.1.2.1 Example from usage at the research group
In our own group, we use EARS, combined with a rationale that explains the reasons for the
requirements (important!), and a MoSCoW rating (Must, Should, Could, Would). This way, a
requirement can be written down that is “nice to have” (use sparingly).

https://www.researchgate.net/publication/308970788_Listens_Learned_8_Lessons_Learned_Applying_EARS

Page 36 of 45 SESAME Additions to "Systems Design
and Engineering"

Research Group Mechatronics June 7, 2022, v1.2.2

5.1.2.2 Cheatsheet from Aalto university
source: https://aaltodoc.aalto.fi/bitstream/handle/123456789/12861/D5_uusitalo_eero_2012.pdf

https://aaltodoc.aalto.fi/bitstream/handle/123456789/12861/D5_uusitalo_eero_2012.pdf

Additions to "Systems Design
and Engineering"

SESAME Page 37 of 45

20 http://www.agilecio.net/blog/scrum-is-een-methode-agile-een-mindset

June 7, 2022, v1.2.2 Research Group Mechatronics

1.

2.

3.

4.

5.

5.1.2.3 References
Mavin, Alistair, Philip Wilkinson, Adrian Harwood, and Mark Novak. Easy Approach to
Requirements Syntax (EARS), 2009. https://doi.org/10.1109/RE.2009.9 .
Mavin, Alistair, and Philip Wilkinson. Big Ears (The Return of Easy Approach to Requirements
Engineering), 2010. https://doi.org/10.1109/RE.2010.39 .
Mavin Mav, Alistair, and Philip Wilkinson. “Ten Years of EARS.” IEEE Software 36, no. 5
(September 2019): 10–14. https://doi.org/10.1109/MS.2019.2921164 .
Bhatt, Devesh, Anitha Murugesan, Brendan Hall, Hao Ren, and Yogananda Jeppu. The CLEAR
Way To Transparent Formal Methods, 2018. https://doi.org/10.13140/RG.2.2.10946.89289.
Mavin, Alistair, Philip Wilkinson, Sarah Gregory, and Eero Uusitalo. Listens Learned (8 Lessons
Learned Applying EARS), 2016. https://doi.org/10.1109/RE.2016.38 .

5.2 Incremental Delivery of hardware
As discussed in Addition to 2.3, A practical implementation of SE(see page 8) , Systems Design and
Systems Engineering describes the classic V-model approach. Many companies see the successes of
agile software development (early releases, early customer feedback, quick turnaround on changing
requirements), and wonder whether this can not be translated to hardware.

SCRUM as a method for agility (remember: implementing SCRUM doesn’t make you Agile20[1]!) does
not transfer easily to hardware. It also suffers from being able to churn out lots of code with high
velocity, but maybe not generating the right thing. This is a larger problem for hardware, where lead
times and material costs are adding constraints on how often you can iterate within a time frame,
something that is neglected by most software development methods.

After looking for methods to incrementally deliver and / or design hardware, I think two methods are fit
for usage in small and medium enterprises because they

https://doi.org/10.1109/RE.2009.9
https://doi.org/10.1109/RE.2010.39
https://doi.org/10.1109/MS.2019.2921164
https://doi.org/10.13140/RG.2.2.10946.89289
https://doi.org/10.1109/RE.2016.38
http://www.agilecio.net/blog/scrum-is-een-methode-agile-een-mindset

Page 38 of 45 SESAME Additions to "Systems Design
and Engineering"

21 http://concepts.gilb.com/dl66

Research Group Mechatronics June 7, 2022, v1.2.2

•
•

1.

are described in enough detail
and have been proven to use in real hardware projects

These methods are EVO and RLC, as described in the next chapters.

Something worth noting, is that both these methods put considerable effort on the project leader to
maintain progress and maintain structure. These methods cannot be used without commitment and
knowledgeability of both the team members and their project leader.

5.2.1 References
Agile CIO. “Scrum Is Een Methode, Agile Is Een Mindset.” Accessed December 22, 2021. http://
www.agilecio.net/blog/scrum-is-een-methode-agile-een-mindset .

5.2.2 EVO
Although EVO is not very well known it is predecessing the SCRUM and the Agile Manifesto, it is
“Agile avant la lettre”. EVO is a project management and development methodology devised by Tom
and Kai Gilb, and is described in Competitive Engineering[1]. As such, it heavily relies on Planguage,
so please the Planguage(see page 30) and Addition to 4.9, FunKey Architecting and ValueFirst(see page
21) chapter for more background information. More explanation is given in booklets on the website of
Niels Malotaux [2]. EVO is also described well in Larmans “Agile and Iterative Development: A
Manager’s Guide.”[3], the chapter on EVO can be downloaded here21. To quote Larman:

[EVO] emphasizes—short iteration by iteration—making maximum progress towards the client’s
current highest-priority requirements, for the lowest cost. And each iteration, delivering into the
hands of some stakeholders some useful results, so that early benefit and feedback is achieved.
This is the practice of client-driven adaptive planning and evolutionary delivery.

The idea behind EVO is that you know what “values” your customer has (through Planguage
requirements), and that you know how long your project will last. What EVO is trying to prevent is that
a project is at its deadline, and nothing is delivered. The core “promise” is that value is generated
every cycle. So your customer should get something “interesting” every 2-3 weeks, based on which
you can check whether your mutual understanding of the values is still correct (if not, the customer is
not happy with your delivery). When the project deadline has passed, and due to whatever
circumstances the full product is not finished yet, the customer will already have some delivered (sub)
systems that provide value.

5.2.2.1 How to “do” EVO?
There are several ways to look at EVO. For one, it’s a Plan-Do-Check-Act cycle, on several levels.
Each short EVO cycle of 1-2 weeks you check whether you can plan and deliver what you promised to
deliver. Key here is that each cycle the team decides what to do to contribute to at least one of the
values and finishes that. If you can’t finish what you’ve promised, you have to promise less in the next
cycle to adjust your estimate of how much you can do. These very short cycles are in fact short
waterfalls.

Figure 16 EVO cycles are small waterfalls. Source: [4]

http://www.agilecio.net/blog/scrum-is-een-methode-agile-een-mindset
http://concepts.gilb.com/dl66

Additions to "Systems Design
and Engineering"

SESAME Page 39 of 45

June 7, 2022, v1.2.2 Research Group Mechatronics

Figure 17 Cycles in Evo. Source:[4]

On a larger scale, by delivering value and checking the stakeholders' reactions, you can see whether
your deliveries are creating value, see the cycles on the right.

Delivering hardware incrementally means that you have to plan ahead, and “deliverables” can also be
simulation models, a mockup, or an addition to an existing product to test whether a new solution
actually improves one of the values. In fact this is what Gilb actively promotes: try to get something
physical as soon as possible to check whether your stakeholder’s values improve!

In order to continually create new delivery, some work has to be planned to happen in the “backroom”,
invisible to the stakeholders. See figure below:

Page 40 of 45 SESAME Additions to "Systems Design
and Engineering"

Research Group Mechatronics June 7, 2022, v1.2.2

Figure 18 Some delivery needs to be prepared in earlier cycles. This is also planned in EVO.

One aspect of this is to know what solutions are create lots of value for a low effort. In the NENA
project, an aluminum mockup was a quick and easy way to test some key assumptions. Other
possibilities could have been to make changes to our existing robots, or to immediately create a
simulation model. Choosing which solution to choose first is done by using Value Estimation Tables.
See Addition to 4.9, FunKey Architecting and ValueFirst(see page 21) for an “apples against oranges”
example, and below an example for how solutions (Server Cluster, High performance hardware)
contribute to values (Responsive Browsing, System Reliability) at some cost. By quantifying the
values, a result can be calculated which yields a ratio of cost / performance. By discussing this with
your team, you can check whether you can already generate something that already creates some
value for your customer in the next cycle, and lots of value before the project ends!

Additions to "Systems Design
and Engineering"

SESAME Page 41 of 45

June 7, 2022, v1.2.2 Research Group Mechatronics

1.

Figure 19 Example Impact Estimation Table. Source: [3]

For more background information, I recommend to read the very well written booklets by Niels
Malotaux [2].

5.2.2.2 References
Gilb, Tom, and Lindsey Brodie. Competitive Engineering: A Handbook for Systems Engineering,
Requirements Engineering, and Software Engineering Using Planguage. Oxford Burlington,
MA: Butterworth-Heinemann, 2005.

Page 42 of 45 SESAME Additions to "Systems Design
and Engineering"

Research Group Mechatronics June 7, 2022, v1.2.2

2.

3.

4.

“N R Malotaux - Consultancy: Booklets / Downloads.” Accessed December 23, 2021. https://
www.malotaux.eu/index.php?id=downloads .
Larman, Craig. Agile and Iterative Development: A Manager’s Guide. Agile Software
Development Series. Boston, Mass.: Addison-Wesley, 2004.
Malotaux, Niels. Evolutionary Project Management Methods. 1.6., n.d. https://www.malotaux.eu/
doc.php?id=2.

5.2.3 Rapid Learning Cycles

Figure 20 Still from “When Agile Gets Physical” talk. See[2]

Rapid Learning Cycles (RLC) was developed by Katherine Radeka, and is described in her book “The
shortest distance between you and your new product”[1]. Several companies in de Twente region are
using Rapid Learning Cycles as a development method.

The method originated from trying to adapt SCRUM to hardware development, which failed[2]. After
some iterations, a method was found that tries to pull learning to the first part of the project, and tries
to push decisions to later stages of the project, thereby taking time to make mistakes while you still
can, and use the lessons learned to choose good implementations at a later moment. In current
practice, we often see the reverse; a solution is chosen too soon, implemented, and while the full
product is tested, a lot is learned about why this was not the good choice, and expensive respins have
to be made.

5.2.3.1 Way of thinking
In RLC, you start of with a Core Hypothesis on your new product idea (e.g.: companies need a better
robot to palletize small packages). From that Core Hypothesis, you derive Key Decisions. These are
the decisions that have very high impact on your product, and which have great unknowns. To fill up
the unknowns, you describe your knowledge gaps; what is needed to know to make a Key Decision?
To fill those knowledge gaps, you do activities:

https://www.malotaux.eu/index.php?id=downloads
https://www.malotaux.eu/doc.php?id=2

Additions to "Systems Design
and Engineering"

SESAME Page 43 of 45

June 7, 2022, v1.2.2 Research Group Mechatronics

Figure 21 Elements of RLC. Source: [1]
Figure 22 Not every decision is a key decision.

Source:[1]

Please note, that Key decisions are not only derived from technical issues, but also from the
customer and business model issues! For instance, knowing whether something is sold as a one-off
product (MRI-scanner) or as a service (“MRI scan as a service”, pay per scan) greatly impacts design
choices.

Before and during the project, the team monitors what key decisions are still open, and how to get
enough knowledge to close them. A planning board is maintained to show the progress. At so-called
“Integration Events”, multiple Key Decisions can be made in the presence of multiple stakeholders.

Figure 23 Learning Cycles Plan. KG=Knowledge Gap, KD=Key Decision. Source: [1]

5.2.3.1.1 Documentation, shareability
One of the good features of RLC is that documentation is lightweight and highly shareable. Each
Knowledge Gap learning cycle is concluded with a Knowledge Gap report, which summarizes what is
learned, and how. The Key Decisions are taken based on those reports, and generate their own Key
Decision reports. In the default templates these are simple A4 / A3 documents. Not only does this help
in the discussion with stakeholders, it also helps in sharing insights across projects. According to
Scania[3] this really works:

Page 44 of 45 SESAME Additions to "Systems Design
and Engineering"

Research Group Mechatronics June 7, 2022, v1.2.2

1.

2.

3.

Figure 24 Shortening development by reusing knowledge. Source: [3]

5.2.3.2 References
Radeka, Katherine. The Shortest Distance between You and Your New Product: How
Innovators Use Rapid Learning Cycles to Get Their Best Ideas to Market Faster, 2017.
High Velocity Innovation. “Agile for Hardware: When Agile Gets Physical,” April 19, 2021.
https://highvelocityinnovation.com/agile-for-hardware-when-agile-gets-physical/ .
Johansson, David, and Victor Persson. “Integrating Rapid Learning Cycles into Hardware
Development - a Practical Improvement Project within Chassis Development at Scania CV AB.”
Chalmers University of Technology, 2016. https://publications.lib.chalmers.se/records/fulltext/
238022/238022.pdf.

5.3 Product Line Engineering
Feature-based Product Line Engineering is a way of designing products by configuring them from
existing features. A product is described with a “Bill of Features” that includes or excludes subsets of
existing parts. Many large organizations have seen benefits of this approach, mostly in defense and
automotive markets.

Although organizations clearly have lower costs due to the combined maintenance of common
sections, it does take a management paradigm shift to think about how costs / benefits are shared
over these common assets.

As with Model Based Systems Engineering(see page 26) , applying PLE will need experts to use tooling
to succesfully use configured assets in your factory. The question is whether small and medium
enterprises can come up with creative solutions to use the benefits of PLE without having to buy all the
necessary tooling.

This chapter may need serious updating. For now I put some links to useful resources
here, if requested I can try to summarize the wealth of information here.

https://highvelocityinnovation.com/agile-for-hardware-when-agile-gets-physical/
https://publications.lib.chalmers.se/records/fulltext/238022/238022.pdf

Additions to "Systems Design
and Engineering"

SESAME Page 45 of 45

22 https://biglever.com/wp-content/uploads/2018/11/PLE_Industrial_Mainstream_whitepaper.pdf

June 7, 2022, v1.2.2 Research Group Mechatronics

•
•

•

Explanation on website: http://www.productlineengineering.com/overview/what-is-ple.html
This paper was also published in an INCOSE magazine, and does a great job of showing in
detail what choices have to be made to fully implement Product Line Engineering:
PLE_Industrial_Mainstream_Whitepaper_2020.pages (biglever.com)22 \
The INCOSE PLE primer. It is available for download from https://www.incose.org/incose-
member-resources/working-groups/analytic/product-lines, although you might need to make an
account for this. This Primer of less than 10 pages also does a nice job of showing not only the
benefits, but also the organizational context that needs to be changed in order to effectively
work with PLE.

5.4 A great additional resource
In civil engineering, stakes are high to “develop the right thing”, when thinking about tunnels, railroads
or pipelines. From this sector, another “guideline” was made, that is very comprehensible and gives a
lot of practical examples. This Leidraad SE was mentioned in the introduction of Systems Design and
Systems Engineering, but deserves special attention here! Go to http://www.leidraadse.nl to download
it.

http://www.productlineengineering.com/overview/what-is-ple.html
https://biglever.com/wp-content/uploads/2018/11/PLE_Industrial_Mainstream_whitepaper.pdf
https://www.incose.org/incose-member-resources/working-groups/analytic/product-lines
http://www.leidraadse.nl

	Introduction to the addition to Systems Design and Engineering
	A word about formality
	References

	The Systems Engineering Process
	Addition to 2.3, A practical implementation of SE
	Agile development
	References

	Systems Thinking Tracks
	Addition to 3.13, Risk Thinking
	Pre-Mortem technique
	NPR 5326:2019

	Addition to 3.10, Organizational Thinking
	Capability Maturity Model (CMM)
	References

	Systems Design Tools
	Addition to 4.7 and 4.13 ; Architecture Decision Records
	What is an ADR?
	Using Architecture decisions for reverse architecting and reviewing
	Related subjects
	References

	Addition to 4.9, FunKey Architecting and ValueFirst
	Explanation of ValueFirst / Planguage
	References

	Addition to 4.14, Simulation
	Other forms of simulation
	Digital Twin
	References

	Model Based Systems Engineering
	MBSE in short
	Benefits and caveats
	References

	Additional subjects
	Requirements Languages
	Planguage
	EARS

	Incremental Delivery of hardware
	References
	EVO
	Rapid Learning Cycles

	Product Line Engineering
	A great additional resource

