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ABSTRACT ARTICLE HISTORY
Inquiry-based lessons have been demonstrated to improve Received 10 September 2018
children’s scientific thinking (i.e. reasoning abilities and domain- Accepted 9 March 2019

specific knowledge). Although empirical evidence shows that

inquiry-based learning requires instruction, research comes from Scientific thinking; inquiry
two approaches that have not been bridged yet: direct instruction learning; direct in’struction;
of scientific reasoning and teacher training of verbal support. We verbal support; primary
investigated how these two types of instruction separately or school; intervention
combined strengthened children’s scientific thinking by

comparing four conditions: baseline, direct instruction, verbal

support, and a combined approach. Effectiveness of an inquiry-

based lesson series on scientific reasoning abilities, vocabulary,

and domain-specific knowledge (near and far transfer) were

studied among 301 fourth graders. Results showed that both

approaches strengthened different components of scientific

reasoning abilities, and that a combination of instructions was

most effective for scientific reasoning abilities, vocabulary, and

domain-specific ~ knowledge. = Domain-specific ~ knowledge

acquisition was strengthened only when both instructions were

provided. It can thus be concluded that each type of instruction

has unique contributions to children’s science learning and that

these instructions complement each other. Our study thus

showed that inquiry-based lesson series when preceded by direct

instruction of scientific reasoning and scaffolded with verbal

support are most effective.

KEYWORDS

Under the umbrella term of twenty-first-century skills, the development scientific thinking
is considered a major goal in STEM (science, technology, engineering, and mathematics)
education (Fischer et al., 2014). Scientific thinking combines the generic ability of scientific
reasoning (i.e. the stages in scientific inquiry: formulate questions, design experiments,
draw inferences and conclusions) with having domain-specific knowledge about science
(Klahr, Zimmerman, & Jirout, 2011). In particular, scientific reasoning is necessary for
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children to acquire domain-specific knowledge about STEM through inquiry (Andersen &
Garcia-Mila, 2017). Inquiry learning is a common way of teaching STEM in the class-
rooms (Organisation for Economic Co-operation and Development [OECD], 2014),
and research has consistently shown that teacher guidance in inquiry-based learning is
essential (Alfieri, Brooks, Aldrich, & Tenenbaum, 2011; Kirschner, Sweller, & Clark,
2006; Lazonder & Harmsen, 2016). However, there is no real consensus on how to best
implement teacher guidance in strengthening children’s scientific thinking. Direct instruc-
tion has been advocated, so that children are explicitly thought how to design and conduct
experiments (Dunbar & Klahr, 2012). Another approach is that teachers support the aca-
demic language that fosters the formulation of questions and drawing inferences and con-
clusions (e.g. Barber, Catz, & Arya, 2006). Helping children to optimally gain from inquiry
learning may best be done by combining the best of both worlds, which up till now have
been studied separately. In the present study, we investigated how an inquiry-based lesson
series’ effectiveness on children’s scientific thinking could best be improved; by imple-
menting a direct instruction, verbal support, or a combined approach in comparison to
baseline.

1. Direct instruction of scientific reasoning abilities

The core abilities that underlie scientific reasoning are in line with the overall stages of the
inquiry cycle: Hypothesis construction, experimentation, and generating conclusions
based on evidence (Klahr, 2000). Hypothesis construction is the process of creating a
hypothesis from a research question, which can be created through various reasoning pro-
cesses, such as analogical and deductive reasoning to move from theory to testable hypoth-
eses. Experimentation consists of designing and conducting experiments in order to obtain
evidence to answer the research question. Conclusions can be generated from the evidence
through logical and inductive reasoning.

Experimentation is the component of scientific reasoning that is most likely to provide
children with the building blocks to apply effective inquiry-based learning (Zimmerman,
2007). An example is that children with better experimentation abilities are better in
acquiring domain-specific knowledge through inquiry (Edelsbrunner, Schalk, Schuma-
cher, & Stern, 2015). Experimentation is central to inquiry learning, because with
setting up and conducting experiments, children also learn how to formulate questions
that are investigable, and how to draw conclusions from the evidence of the experiments.
The strategy to design unconfounded experiment with multiple variables is called the
Control of Variables Strategy (CVS) (Chen & Klahr, 1999). This strategy states that in
order to investigate a single variable (the focal variable), one has to manipulate that vari-
able while leaving the other variables constant (i.e. the control variables). Without instruc-
tion, children tend to manipulate multiple variables at once (Wilkening & Huber, 2004).
This is likely due to their tendency to generate effects, which are often in line with their
own expectations (Dunbar & Klahr, 2012).

It has been shown that CVS skills can improve in children of the upper primary grades
after a single short training. Children that received this instruction showed stronger
improvements in inquiry abilities compared to a group of children in a free exploration
condition, where no instruction on experimentation skills were given (Wagensveld,
Segers, Kleemans, & Verhoeven, 2015). This result has been established consistently, as
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shown by a review of 72 direct CVS instructions (Schichow, Croker, Zimmerman, Héfller,
& Hartig, 2016). Moreover, Lorch, Lorch, Freer, Calderhead, and Dunlap (2017) showed
that CVS can be taught classroom-wide with such a short direct instruction, and that
effects of such a training can even be maintained up to two-and-a-half years later.
Their CVS-instruction used worked examples with good (i.e. valid) and bad (i.e. invalid
or confounded) experimental designs (see Lorch et al., 2014 for the extensive description
of methods). Both proved effective, but the condition where children evaluated bad exper-
iment did maintain their learning gain better. Despite these studies that show the effective-
ness of CVS instruction, it is still unknown whether the acquired experimentation abilities
transfer to gains in new domains in the context of STEM education.

2. Training of teacher’s verbal support

Another approach to strengthen children’s scientific thinking is that teachers enrich chil-
dren’s reasoning processes by explicitly supporting their academic language use, for
example, helping them to formulate their questions and by eliciting their arguments
and ideas while reasoning. Over time, children can internalise such scaffolded reasoning,
thus strengthening their own scientific thinking (Mercer, 2013). The rationale behind this
can be found in the intertwined relation of science and language: Language allows for the
creation of complex and abstract representations, and it helps children to represent what
they see and do and subsequently allow them to discuss it (Mercer, 2013). Furthermore,
science lessons are characterised by academic vocabulary and complex syntax structures,
and children are required to use an extensive set of language tools like questioning,
explaining, predicting and reasoning (e.g. Mercer, Dawes, Wegerif, & Sans, 2004).
Indeed, several researchers demonstrated that children with strong linguistic abilities
perform better in scientific tasks like CVS acquisition (Van der Graaf, Segers, & Verhoe-
ven, 2016) and in transfer of the CVS strategy to new domains than children with weak
linguistic abilities (Wagensveld et al., 2015).

Given the strong interrelatedness between children’s linguistic and scientific abilities,
several researchers advocate language-oriented science education (e.g. Barber et al,
2006). It has been argued that centralising language while teaching science may be ben-
eficial for learning both science and language (Vitale & Romance, 2012). There are
indeed strong indications that literacy and science education can be combined in the class-
room to promote both of them (Clark & Lott, 2017). Different aspects of language have
been integrated effectively in science education: reading (Vitale & Romance, 2012),
writing (Nam, Choi, & Hand, 2011) and discourse (Mercer et al., 2004). A crucial com-
ponent in all integrated instructions are teachers’ verbal instruction strategies. It has
been shown that teachers do not use these strategies by themselves in the context of
science, due to a perceived lack of self-efficacy (Van Aalderen-Smeets, Walma van der
Molen, & & Asma, 2012), but a teacher training enables in-service primary school teachers
to apply verbal support strategies in the classroom (Smit, Gijsel, Hotze, & Bakker, 2018).

A crucial component in all integrated instructions are teachers’ language strategies. In
order to diagnose children’s language and inquiry abilities and be responsive to it, teachers
are required to actively use and promote the specialised science language, elicit children’s
explanations and provide feedback, and interactively discuss the inquiry process with stu-
dents. These requirements are completely in line with the suggestions for enhanced
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instruction of inquiry learning that follow from a meta-analyses of effective inquiry learn-
ing (Alfieri et al., 2011). It has been shown that teachers can be effectively trained to apply
these verbal scaffolding techniques and that, as a result, children’s cooperation and under-
standing improves (Gillies, 2004). In addition, a teacher training on language promoting
strategies might improve children’s use of academic vocabulary (Henrichs & Leseman,
2014). However, it is yet unknown what children’s learning gains with respect to the com-
ponents of scientific reasoning and domain-specific knowledge is.

3. The present study

To summarise, inquiry-based lesson series are an ideal instructional method to teach chil-
dren to reason scientifically and to let them acquire domain-specific knowledge in STEM
(OECD, 2014). However, children have difficulties in applying their scientific reasoning
abilities without guidance (Alfieri et al., 2011; Zimmerman, 2007) and as a consequence
will have difficulties to further develop these abilities and to acquire knowledge within
the STEM domains (Lazonder & Harmsen, 2016). Direct instruction beforehand as well
as ongoing verbal support during children’s inquiries can both be beneficial to develop
and apply scientific thinking. It is easy to assume that combining the two may boost teach-
ing of scientific thinking, but such combination has not before been investigated in one
single intervention.

Therefore, in the present study we aimed to bridge the insights from research into direct
instruction on scientific reasoning abilities with those from research into teacher training
of verbal support. We investigated the combined effectiveness of both interventions for
scientific knowledge and multiple scientific reasoning abilities, and compare this to the
unique contribution of each and to a baseline (control) group. Two brief instructions
were designed. The direct instruction consisted of an interactive instruction revolving
around experiments and use of the CVS, but also addressing the hypothesis construction
and evidence evaluation components. The teacher training consisted of instruction on the
inquiry cycle and how verbal support can be provided in the context of inquiry-learning in
STEM education. Teachers were instructed to implement linguistically rich contexts (e.g.
emphasising academic vocabulary and language to structure the thought of the children),
to stimulate children’s elaborate responses, and to provide adequate feedback.

The effectiveness of both instructions was tested in a randomised controlled trial design
with four groups: direct instruction only, verbal support only, combined condition, and a
lesson-series-only (baseline) group (see Figure 1). Note that the baseline group thus is an
inquiry-only group. As a follow-up, children were tested a few weeks after posttest. The

Week 1 Week 2 Week 3-6 Week7/12

All conditions * Baseline: no training All conditions All conditions

T1 (pretest) * Direct instruction: children Inquiry-based T2 (posttest) / T3 (follow-up)

* Scientificreasoning abilities received training program * Scientificreasoning abilities

¢ Vocabulary * Verbal support: teachers * Vocabulary

* Domain specific knowledge received training * Domain specificknowledge
¢ Near transfer ¢ Combined: both trainings ¢ Near transfer
¢ Far transfer were provided ¢ Far transfer

Figure 1. Overview of the time frame and conditions.
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following research questions were addressed: What are the effects of direct instruction,
verbal support, and a combination of both on the effectiveness of an inquiry-based
lesson series as assessed by children’s a) scientific reasoning abilities, b) vocabulary, and
¢) domain-specific knowledge: near and far transfer? We expected the direct instruction
group to improve more on scientific reasoning, mostly on the experimentation component
of scientific reasoning (e.g. Chen & Klahr, 1999) and to a lesser extent on the other com-
ponents. Additional improvement on domain-specific knowledge as acquired during the
inquiry-based lesson series was also expected. Given the focus on the role of language in
the verbal support condition, we expected larger gains on children’s scientific reasoning
and on their vocabulary (Henrichs & Leseman, 2014) compared to baseline condition.
We expected the combined condition to show gains on all domains, as they are all
addressed, and explored whether the combination would have a catalyst effect. On the
long term, we also expected results to best consolidate in this group.

4. Methods
4.1. Participants

A convenience sample of schools in the Netherlands that were in the proximity to one of
the research institutes agreed to participate. Together, there were 12 classrooms (10
schools) that took part in this study. This resulted in 301 participating children (164
girls and 137 boys), that were in 4™ grade of primary school and who spoke Dutch.
These children were 9 years and 5 months old on average (SD = 6 months) and generally
came from middle to upper middle classrooms, as indicated by their parents’ education
(6.9% had attained basic education (ISCED level 0-2), 42.7% had attained upper second-
ary education (ISCED level 3-4), and 50.4% had attained tertiary education (ISCED level
5-8), in comparison to the national average, 26.6%, 41.3%, and 27.9%, respectively (Euro-
stat, 2017). To ensure a heterogeneous sample, all children in the classrooms participated
in the study. Parents gave active consent for their child to participate.

4.2. Design

We conducted a randomised controlled trial design with a pretest (T1), direct posttest (T2)
and long-term test (T3) (see Figure 1). The follow-up test was conducted five weeks after
the inquiry-based lesson series. Classrooms were randomly assigned to one of the four
conditions. These conditions differed in instruction before the inquiry-based lesson
series: Child instruction (CI) or not and teacher training (TT) or not. All children received
the inquiry-based lesson series in four successive weeks, twice a week for one hour with
one week holiday in between. Children were assessed on scientific reasoning, vocabulary,
and near and far transfer of domain-specific knowledge.

4.3. Materials

4.3.1. Intervention materials
4.3.1.1. Inquiry-based lesson series. The inquiry-based lesson series consisted of six
inquiry-based science lessons (approximately 60 minutes each) on the topic of
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(solidity of) constructions. The inquiry-based lesson series was inspired by a similar
themed lesson series as developed in a previous study (Gijsel, Vrielink, & Kiers, 2016).
The main goal of the inquiry-based lesson series was threefold: to increase children’s
domain-specific knowledge concerning constructions, to foster their scientific abilities
and to develop children’s language abilities. To teach what determines the solidity of
constructions, four topics (i.e. variables) were investigated during the lessons, using
hands-on materials. These variables were: Materials, shapes, profiles, and
connections.

To ensure that children could exercise with all scientific reasoning components, lessons
were structured along the inquiry cycle. In the first lesson, children oriented on the topic of
solid constructions and the design problem was introduced; building a solid bridge. The
second and third lesson started with confrontation and exploration with the topic at
hand (materials, shapes, profiles, and connections), followed by the generation of ques-
tions and hypotheses. For example, in the second lesson, children were introduced to
profiles via a classroom discussion of what types of profiles exist and what kind of charac-
teristics these have. Next, the teacher guided the discussion towards how profiles might be
used to make constructions more solid. Children then started a short inquiry in small
groups, in which they folded their own paper profiles (tube profile versus quadrilateral
profile). They formulated a hypothesis concerning the solidity and set up an experimental
design in which both types of profiles were compared concerning their capability to carry
weight. Then, children conducted their experiments. Finally, children wrote down a con-
clusion followed by a classroom discussion. Worksheets guided children throughout all
phases of the inquiry cycle. Afterwards, in the fourth lesson, children made a draft of
their bridge, which was built, presented and discussed in lesson 5 and 6. Transfer was
made to other constructions in the final lesson.

4.3.1.2. Child instruction. The aim of this direct instruction was to teach children how to
recognise, design, and conduct valid experiments, via the learning of the Control of Vari-
ables Strategy (CVS). The instruction was based on the invalid experiments instruction by
Lorch and colleagues (2014) and adapted to suit the age of children and the goals of this
study. The instructor (i.e. the first author of this paper) was introduced to the children as a
guest teacher for one day. He first introduced the topic, which was experimentation. Next
the materials were introduced, which were two large, wooden ramps with four variables
each (see Chen & Klahr, 1999). This introduction was done by setting up an invalid exper-
iment, where not all variables were controlled, so children could identify which variables
were manipulated and which were controlled. The next step was to correct the experimen-
tal set-up, which was done interactively. The example was concluded by letting the balls
roll down the slope of the ramps.

The main component of the instruction was correcting two invalid experiments. After
introduction of the invalid experiment, children recreated the settings of one of the ramps
using their own small replica of the wooden ramps. This was done in pairs. Children were
asked to set up the other ramp correctly for a valid experiment. They used worksheets for
this. The instructor and the teacher aided in this process by drawing children’s attention to
what a correct design is and what the settings of the variables were. Each experiment ended
with letting the balls roll and drawing conclusions about the variable that was investigated.
This was done by the children and thereafter by the instructor using the two large, wooden
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ramps in front of the class. We chose for this activity to draw attention to the role of exper-
iments in the inquiry process, because by conducting the experiment and drawing con-
clusions based on the results one can decide whether the research question was
answered. Another reason was to motivate the children.

A third experiment was included to help children to transfer the CVS strategy from the
wooden ramps experiment to another domain. For this a paper-and-pencil test was used
with an experiment about drink sales (Chen & Klahr, 1999). Children could choose how
they would set up two lemonade stalls, two possible opening times of the stand (at 12:00 or
at 15:00), whom to sell the lemonade to (older or younger children), and what type of
drink they would sell (lemonade or iced tea). Children were asked to design an experiment
that investigated the effect of opening hours on how many drinks would be sold. After they
filled in their answers on the worksheet, the experiment was discussed interactively.
Finally, it was concluded that experiments can be invalid and they can be made valid
by applying the CVS. Also, the experimenter stressed that experimentation strategies
like during the experiments with the wooden ramps can be used in other settings, such
as drink sales and many more.

4.3.1.3. Teacher training. The teacher training on verbal support was a 3-hour training, led
by the third author of this paper, who drew on her experience in language-oriented science
lessons. The training was designed around four types of learning experiences: experience,
reflection, conceptualising, and application (Bijkerk & Van der Heide, 2006). The main
goal of the training was to increase teachers’ awareness of the role of language in science
and to provide them with instructional strategies to promote the quality of children’s
language during their science lessons. First, the nature of science was elucidated and teachers
got acquainted with the basic elements of inquiry-based science education and the major
role of language in science. A distinction was made between school vocabulary, domain-
specific vocabulary, and research-related vocabulary. Secondly, participants watched a
video in which another teacher provided a language-oriented science lesson about sound
and acoustics to Grade 6 children. We selected this video, because it included several
good examples of instructional strategies. Participants reflected on these strategies to
promote children’s language. Afterwards, a group discussion about teachers™ observations
took place. Finally, three components of language-developing strategies were explained in
detail and illustrated with short video’s (Verhallen & Walst, 2001): (1) teachers’ use of
language and questioning; (2) teachers’ interactional abilities; and (3) teachers’ feedback.
At the end of the training, all teachers were provided with hand-outs of the presentation.

4.3.2. Measures

4.3.2.1. Scientific reasoning abilities. The Scientific Reasoning Inventory (SRI) measures
components of scientific reasoning in a paper-and-pencil multiple choice task. The task
was based on the Argumentative Sensemaking Measure developed for middle school
(Bathgate, Crowell, Schunn, Cannady, & Dorph, 2015) and adapted to elementary
school by Van de Sande, Verhoeven, Kleemans, and Segers (in press). The subtasks are
based on validated scientific reasoning tasks from previous research (Chen & Klahr,
1999; Kuhn & Dean, 2005; Schroder, Bodeker, & Edelstein, 2000). The test was shown
to be reliable and valid in 11- to 12-year-olds, i.e. Grade 6 (Van de Sande et al., in
press). The first subtask measured coordination of theory and evidence (hypothesis
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generation and evidence evaluation). In this subtask children received a text and had to
select one of four alternative research questions that best covers the research in the
story. Other type of questions were to interpret data from a matrix. The second subtask
was an assessment of how skilled children were in applying the Control of Variables Strat-
egy. The final subtask was a syllogistic reasoning task.

One item was added in the present study to complement a story with one question
about syllogistic reasoning, so all stories had two questions. The SRI in the present
study consisted of 9 items about coordination of theory and evidence, 7 items about exper-
imentation, and 8 items about syllogistic reasoning. The syllogistic reasoning items were
presented in pairs. Each pair was about the same proposition.
4.3.2.1.1. Confirmatory factor analysis. To test whether the inventory covered the same
components in Grade 4 in the present study as in the Grade 6 of the previous study
(Van de Sande et al., in press), a confirmatory factor analysis (CFA) was performed. A
model was built with three components and the corresponding items. The components
were allowed to covary. Covariances were added between syllogistic reasoning items
that were pairs. Four items did not load as expected and they were removed from the
model. Those were two syllogistic reasoning items and two experimentation items. The
final model had a strong fit (Tabachnick & Fidell, 2001), X2(164) =153.14, p,=.718,
CFI =1.00, TFI =1.02, RMSEA < .001, SRMR =.050. Only one question did not load sig-
nificantly on the component of experimentation, p =.058. As this was close to significance
and in the expected direction, the path was not omitted from the model. Therefore, it can
be concluded that the same components of the SRI were found in Grade 4 as in Grade 6,
which confirms the SRI’s content validity.

Reliability was assessed for the SRI as a whole and per component (see Table 1). All
coefficients indicated good reliability, except for experimentation at T1, but reliability
was good at T2 and T3.

4.3.2.2. Vocabulary. This test was developed to measure the academic and domain-
specific vocabulary that was taught and used during the inquiry-based lesson series
about constructions and consisted of 25 questions about academic and domain-specific
vocabulary, such as what is a research question and what is an architect. All questions
were multiple-choice questions with four options. The maximum score was 25 correct.
Reliability was good, Cronbach’s & =.60 (T1), .75 (T2), and .77 (T3), Guttman’s A, = .61
(T1), .77 (T2), and .78 (T3).

4.3.2.3. Domain-specific knowledge: near transfer. Near transfer was assessed through
the domain-specific knowledge that children gained with the inquiry-based lesson series
about constructions. Two tests were developed for the current study, the tower test and

Table 1. Reliability coefficients of the SRI and its components.

Cronbach’s a Guttman’s A,
T T2 T3 T T2 T3
Scientific reasoning inventory (n = 20) .64 83 .84 67 .84 .85
Coordination of evidence and theory (n=9) .63 67 71 64 .68 71
Experimentation (n =5) .39 74 74 40 74 74

Syllogistic reasoning (n = 6) .80 .85 .89 .81 .85 .89
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the bridge test. The tower test aimed at assessing children’s active knowledge about con-
structions. Through an open-ended question they were asked to indicate as much as poss-
ible about how they would build a tower that was tall and strong. To score this assessment,
we developed a strict annotation protocol, in collaboration with a professional construc-
tion engineer, that followed the dimensions as included in the inquiry-based lesson series
(i.e. materials, shapes, profiles, and connections) and four other main categories of con-
structions. For each of these variables that the children mentioned they received one
point. Two independent raters rated the answers of approximately 10% of the subjects.
Unsure cases were discussed with the authors. The overall agreement of the raters was
moderate to substantial (Landis & Koch, 1977), the intraclass correlation (ICC) was .72,
and Cohen’s x =.55. A maximum of eight points could be scored on the tower test.

The second test of near transfer, the bridge test, was a set of six multiple-choice ques-
tions. Children were asked to identify the strongest bridge out of four bridges. Within
these options we varied the dimensions that were taught in the inquiry-based lesson
series. One item was removed, because it showed an item-total correlation that was too
low. The following reliability analysis showed acceptable reliability, Cronbach’s a=.19
(T1), .66 (T2), and .66 (T3), Guttman’s A, =.30 (T1), .68 (T2), and .68 (T3), except for
T1, but this can be explained by the complete novelty of the required knowledge. The
maximum number of correct was five.

4.3.2.4. Domain-specific knowledge: far transfer. Far transfer was assessed with a test
about constructions, but with a topic that was not part of the inquiry-based lesson
series. Four different objects were presented and the task was to explain how these
could be made stronger. Just as for the tower test, the answer were scored with an
answer sheet. The four variables that were part of the inquiry-based lesson series were
scored. Reliability analyses revealed that there was low agreement between the raters on
one of the four objects. The low agreement remained after one additional instruction by
one of the researcher. Therefore, the object was removed from analyses. The three remain-
ing objects showed fair to substantial interrater reliability (Landis & Koch, 1977), the ICC
was .64 and Cohen’s x =.32. The total score was 12 points.

4.4. Procedure

We conducted a small pilot of the inquiry-based lesson series before the start of this study,
which led to some small, additional improvements. Testing took place in the classroom
and children filled in paper-and-pencil tests. This was done in two sessions of approxi-
mately 45 minutes with a break in between. One of the researchers or research assistants
supervised these sessions together with the teacher of that class. Before the lesson series
and after the pretest, there was child-based instruction, teacher training, a combination
of both, or neither of them, depending on the condition the classroom was in. The
child instruction was an one hour lesson that was provided in the classroom by the first
author. The teacher training took place at one of the research institutes. Teachers
visited the research institute for a three hour training session provided by the third
author. The inquiry-based lesson series consisted of six lessons (approximately 60
minutes each) in a period of four weeks and took place between the pretest and posttest.
In all conditions, only the teacher guided the inquiry-based lesson series. Multiple actions
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were undertaken to check the treatment fidelity. First, a random selection of the class-
rooms (eight lessons in total) was visited by two researchers to observe the lessons.
These lessons were audio- and videotaped. During the observations, the researcher was
seated out of sight of the children as much as possible. Secondly, teachers were asked to
keep track of their lessons and their experiences in a logbook. Third, teachers were inter-
viewed about their experiences with the lesson series afterwards. Topics in the interviews
included employability of the instruction, teachers’ preparations and implementation of
the lesson series (amount of time, use of additional materials), an evaluation of the
lesson goals and an overall evaluation of the lesson series. In all, these three information
sources indicated that the teachers followed the instructions about the lesson series pro-
vided by the researchers and that classroom processes were comparable. It was unlikely
that the teachers spent additional time on either the topic (solid constructions) or on
inquiry learning, as it is more time-consuming than their usual science lessons. The postt-
est took place in the week following the inquiry-based lesson series, while the long-term
posttest was assessed 5 weeks after the posttest.

5. Results
5.1. Effects of instructional condition on the learning gains

Before analyses were conducted, missing values in the data were inspected. Visual inspec-
tion indicated that the missing data was mostly grouped per measurement, indicating that
the participant was absent during one specific measurement. There were no further indi-
cations of patterns in the missing data. The analyses performed in this study excluded

Table 2. Means and standard deviations (between brackets) for scientific reasoning, vocabulary, and
near and far transfer of domain-specific knowledge over time and per condition.

Baseline Direct instruction Verbal support Combined
M (SD) M (SD) M (SD) M (SD)
Scientific reasoning
Coordination of theory and evidence T1 4.49 (2.13) 4,63 (2.34) 495 (2.28) 4.19 (2.10)
T2 4.82 (2.34) 5.16 (2.52) 5.87 (1.92) 4.83 (2.42)
T3 5.11 (2.31) 5.26 (2.43) 5.99 (2.10) 4.53 (2.37)
Experimentation T 1.30 (1.20) 1.25 (1.14) 1.27 (1.13) 1.29 (1.17)
T2 1.36 (1.31) 3.11 (1.73) 2.20 (1.52) 3.07 (1.66)
T3 1.79 (1.54) 292 (1.71) 2.27 (1.71) 2.79 (1.74)
Syllogistic reasoning T 341 (2.12) 3.68 (2.07) 4.20 (1.94) 3.44 (1.99)
T2 4.24 (1.96) 4.15 (2.15) 4.61 (1.99) 4.06 (2.09)
T3 4.65 (2.13) 4.25 (2.20) 4.95 (1.83) 4.11 (2.18)
Vocabulary T 11.12 (3.90) 11.37 (3.29) 12.94 (3.70) 12.12 (3.09)
T2 13.54 (4.47) 13.53 (4.71) 15.20 (4.39) 15.32 (3.38)
T3 13.83 (4.38) 14.40 (4.74) 15.30 (4.73) 14.50 (4.03)
Near transfer
Bridge T 0.56 (0.77) 0.83 (0.88) 0.83 (1.00) 0.69 (0.75)
T2 1.81 (1.61) 1.86 (1.38) 1.25 (1.27) 2.01 (1.56)
T3 1.73 (1.52) 1.51 (1.45) 1.21 (1.39) 1.32 (141)
Tower T 1.39 (0.94) 1.13 (0.89) 1.37 (0.95) 1.43 (0.89)
T2 229 (1.11) 2.21(1.21) 2.65 (0.94) 249 (1.25)
T3 2.03 (1.01) 2.00 (0.96) 2.19 (0.94) 249 (1.12)
Far transfer
Objects T 2.68 (1.08) 2.22 (1.14) 2.49 (1.03) 2.33 (1.16)
T2 2.87 (1.43) 2.31(1.28) 2.59 (1.35) 2.52 (1.44)

T3 2.75 (1.40) 2.41 (1.34) 2.45 (1.17) 3.00 (1.34)
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missing values. Table 2 gives an overview of the descriptive statistics of the dependent vari-
ables over time, across the four conditions.

To examine learning gains in scientific thinking (i.e. scientific knowledge and scien-
tific reasoning), paired samples t-tests were conducted to reveal overall progress over
time (from T1 to T2). Next, it was investigated whether the conditions had an effect
on the change over time by conducting regression analyses with planned contrasts on
performance at T2. To control for possible differences between children at T1, the
first predictor in the regression analysis was performance on each specific test at T1.
Planned contrasts were used to investigate effects of direct instruction and verbal
support compared to baseline, as well as the combined condition. The planned contrasts
were direct instruction versus baseline, verbal support versus baseline, and combined
versus baseline. These contrasts were entered as additional predictors into the
regression analyses. Conditions with instruction (direct instruction, verbal support,
or combined) were dummy coded as 1 and baseline as —1, while the conditions that
were not relevant for the specific contrast were coded as 0. This way, positive regression
coefficients indicated that the condition with instruction performed better than the
baseline condition.

Regarding scientific reasoning, performance on T2 was higher than on T1 for all com-
ponents of scientific reasoning (coordination of theory and evidence, #(267)=4.84, p
<.001, d=0.28, experimentation, #(266) = 8.78, p <.001, d = 0.78, and syllogistic reason-
ing, #(264) =4.45, p <.001, d=0.27). The components of scientific reasoning at T2 were
predicted by their performance on T1. Coordination of theory and evidence was also pre-
dicted by the contrast verbal support versus baseline and experimentation by the contrast
direct instruction versus baseline, whereas neither condition related to syllogistic reason-
ing at T2 (see Table 3). The positive values of the contrasts indicated that the instructions
(direct instruction and verbal support) contributed positively to performance at T2 com-
pared to baseline.

Regarding vocabulary, performance on T2 was better than on T1, #269) =13.17, p
<.001, d=0.66. T1 predicted T2, as well as the contrast of combined versus baseline
(see Table 3), indicating that the combination of instructions was more effective than
baseline.

Near transfer performance on T2 was better than on T1: bridge test, #(267) = 10.37, p
<.001, d=0.89, and tower test, £(266) = 13.23, p <.001, d = 1.01. Near transfer on T2 was
predicted by its performance on T1, the contrast between combined and baseline, and the
contrast between verbal support and baseline. The beta-value of the contrast between
verbal support and baseline suggested that the baseline condition improved more on
domain-specific knowledge than verbal support, because the coefficient was negative
(see Table 3). However, given that the means differ only slightly (see Table 2), and the
possibility of suppression effects in regression analysis, we performed an extra check. A
regression analysis with T1 and only the contrast of verbal support versus baseline as pre-
dictors, showed that the contrast did not significantly predict performance on domain-
specific knowledge at T2, p =.796. The tower test on T2 was predicted by T1, but not
by the planned contrasts.

Finally, regarding far transfer, the children scored better on T2 than on T1, #(284) =
2.01, p=.037, d=0.14. Performance on T2 was predicted by performance on T1, and
not by the planned contrasts.
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Table 3. Dependent variables (in cursive), independent variables, and their B and [?]-values for the

regression analyses of T2, as well as the amount of explained variance of the regression.

Independent variable

Coordination of theory and evidence T2
Coordination of theory and evidence T1
Direct instruction versus baseline
Verbal support versus baseline
Combined versus baseline

Experimentation T2
Experimentation T1

Direct instruction versus baseline
Verbal support versus baseline
Combined versus baseline

Syllogistic reasoning T2
Syllogistic reasoning T1

Direct instruction versus baseline
Verbal support versus baseline
Combined versus baseline

Vocabulary 72

Vocabulary T1

Direct instruction versus baseline
Verbal support versus baseline
Combined versus baseline

Domain-specific knowledge: near transfer
Bridge test T2

Bridge test T1

Direct instruction versus baseline

Verbal support versus baseline
Combined versus baseline

Tower test T2

Tower test T1

Direct instruction versus baseline
Verbal support versus baseline
Combined versus baseline

Domain-specific knowledge: far transfer
Objects test T2

Objects test T1

Direct instruction versus baseline
Verbal support versus baseline
Combined versus baseline

RZ

31

27

A7

07

.07

B

0.56
-0.14
0.57
—0.08

—0.07
0.65
—0.18
0.60

0.51
—-0.16
0.11
—0.06

0.82
—-0.43
—0.10

0.84

0.29
0.09
—0.47
0.35

0.26
-0.17
0.23
0.07

0.39
—0.22
—0.04

0.01

SE (B)

.05
21
21
21

53**
-.04

7%
-.02

-.05
27%*

-.07
25%*

S51**
—-.06
-.02

67**
-.07

-.02
4%

J7%*
—:22**
7%
21%*

-1

.04

32%%
=11
-.02

*p < .05, *p < .01.

5.2. Follow-up test

As a follow-up, the children were tested six weeks after the inquiry-based lesson series and
thus five weeks after posttest (T2). The same analysis plan as for T2 was followed, which

means that paired samples t-tests and regression analyses were performed.

Performance on T3 was better than on T1 for all components of scientific reasoning
(coordination of theory and evidence, #(267) =5.32, p <.001, d =0.30, experimentation,
#(265) =9.38, p<.001, d=0.84, and syllogistic reasoning, #261)=6.09, p<.001, d=
0.36). Performance on T3 was the same as on T2 for coordination of theory and evidence,
#261) =0.96, p=.339, d=0.05, and experimentation, #(261) =0.39, p=.698, d=0.02.
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Performance did increase slightly on the syllogistic reasoning component, #(257) = 2.45, p
=.015, d = 0.12. The same effects were found for T3 as for T2: T1 predicted performance at
T3 for all components of scientific reasoning (see Table 4). Verbal support versus baseline
predicted coordination of theory and evidence. Experimentation was predicted by direct
instruction versus baseline and combined versus baseline. Whether the performance at
T3 was better in the direct instruction or combined condition, while taking T1 into
account, was investigated by an additional regression analysis. The planned contrast com-
bined versus direct instruction and experimentation at T1 were the predictors. The effects
were not significant, which is in line with the comparable increase from T1 to T3 in both
conditions (see Table 2). No planned contrast predicted syllogistic reasoning.

Table 4. Dependent variables (in cursive), independent variables, and their B and [?]-values for the
regression analyses of T3, as well as the amount of explained variance of the regression.

Independent variable R? B SE (B)

Coordination of theory and evidence T3

Coordination of theory and evidence T1 0.60 .05 S57%*

Direct instruction versus baseline -0.07 .20 —.02

Verbal support versus baseline 0.61 .20 .18%*

Combined versus baseline —0.41 .20 -.12
37

Experimentation T3

Experimentation T1 -0.14 .09 -.10

Direct instruction versus baseline A1 a7 a7

Verbal support versus baseline —0.09 .18 -.03

Combined versus baseline 0.35 a7 .15*%
.07

Syllogistic reasoning T3

Syllogistic reasoning T1 0.55 .05 53**

Direct instruction versus baseline —0.26 .19 —-.09

Verbal support versus baseline 0.24 .19 .08

Combined versus baseline —0.18 .19 —.06
.30

Vocabulary T3

Vocabulary T1 0.74 07 S57%*

Direct instruction versus baseline 0.35 .38 .06

Verbal support versus baseline 0.19 40 .03

Combined versus baseline —0.06 .38 -.01
34

Domain-specific knowledge: near transfer
Bridge test T3

Bridge test T1 0.38 .10 23%*

Direct instruction versus baseline 0.00 15 .00

Verbal support versus baseline —0.25 15 -.12

Combined versus baseline —0.09 15 —-.04
.07

Tower test T3

Tower test T1 0.11 .07 .10

Direct instruction versus baseline —0.20 a1 -.15

Verbal support versus baseline 0.05 a1 .04

Combined versus baseline 0.33 12 22%*
.05

Domain-specific knowledge: far transfer
Objects test T3

Objects test T1 0.35 .07 29%*

Direct instruction versus baseline —0.24 a3 -13

Verbal support versus baseline —-0.23 a3 -.13

Combined versus baseline 0.44 15 22
12

*p < 05, **p < 01.
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Scores on the vocabulary test at T3 were higher than T1, #(268) =11.14, p <.001, d =
0.64, and did not differ from T2, #(261) = 0.11, p = .915, d < 0.01. Performance on the voca-
bulary test at T3 was only predicted by its performance on T1. Scores on near transfer of
domain-specific knowledge were higher at T3 than T1: bridge test, #(265) = 7.60, p <.001, d
=0.59, and tower test, #(241) = 10.87, p <.001, d = 0.93, but lower at T3 compared to T2:
bridge test, #(260) = 3.12, p =.002, d = 0.21, and tower test, #(236) = 2.21, p =.028,d =0.17.
Near transfer, as measured with the bridge test, at T3 was only predicted by itself at T1.
The tower test was predicted by the contrast of combined versus baseline. Scores on the
far transfer test were higher at T3 than T1, #(259) =2.93, p =.004, d=0.22, and did not
differ from T2, #(273) =0.92, p =.358, d=0.06. Far transfer at T3 was significantly pre-
dicted by both T1 and the contrast between combined and baseline.

6. Discussion

The aim of the present study was to investigate the effects of a short child-based direct
instruction on scientific reasoning and a training of teacher’s verbal support, combined
or in isolation, as pre-instructions to the effects on scientific thinking of a STEM-based
lesson series. The effectiveness was evaluated by assessing children’s scientific thinking,
i.e. their scientific reasoning abilities and scientific knowledge (vocabulary and domain-
specific knowledge). The results revealed that both the direct instruction on scientific
reasoning and ongoing verbal support during the full process of inquiry learning
boosted the effectiveness of the inquiry-based lesson series and that, as expected, the com-
bined condition led to the largest overall learning gains.

6.1. Scientific reasoning abilities

As expected, additional and in some cases differential effects of both instruction were
found to the different scientific reasoning abilities.

6.1.1. Coordination of theory and evidence

With reference to coordination of theory and evidence, all groups increased over time, but
direct instruction and the combined condition did not show an additional effect compared
to the baseline condition, while the verbal support condition did on both posttest and
follow-up.

Contrary to our hypothesis, the direct instruction did not result in additional improve-
ments on the coordination of theory and evidence. This may be due to the fact that the
direct instruction was mainly focused on experimentation, while other aspects of scientific
reasoning were addressed more implicitly. As a result, the direct instruction affected
experimentation (in line with Lorch et al., 2014), but did not transfer to an increase in
the coordination of theory and evidence. This explanation should be interpreted with
caution, because the way these abilities are assessed appears to be related to the effective-
ness of instruction. In the present study, the assessment did not incorporate the link
between hypotheses and evidence on one hand with experimentation on the other
hand. When this link is more explicitly part of the assessment, effects of direct instruction
can be found (Klahr & Nigam, 2004).
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As expected, the verbal support condition did have an additional effect compared to
baseline. Others have also found that verbal support can help children in their scientific
activities (Clark & Lott, 2017), but the present study is the first to show that stronger
verbal support leads to an additional improvement on coordination of theory and evi-
dence. It should be noted that teachers had to make a transfer themselves after the training
to inquiry in the classroom. The effect of verbal support on coordination of theory and
evidence is in line with other studies showing the dependency of scientific reasoning on
language and linguistic abilities, such as the critical role of meaning in deductive reasoning
(Kuhn & Franklin, 2007), and the role of the teacher herein (Mercer et al., 2004). Another
argument for the effectiveness of verbal support on the coordination of theory and evi-
dence is that the inquiry cycle starts with the hypothesis, where this new process of
inquiry is introduced, as well as the new concepts about which hypothesis should be con-
structed and finally outcomes should be translated into theoretical frameworks, which are
verbal representations. Children describe the world around them using models that are
more than descriptions of the observable and also include unseen hypothetical entities
that interact to produce emergent behaviour (Lehrer & Schauble, 2000). Language can
support such models, as it enables abstract and complex forms of thought (Mercer, 2013).

It is surprising, therefore, that the combined condition did not show an additional
improvement on coordination of theory and evidence. Perhaps the inclusion of the
direct instruction focused both teachers (who were also present during that instruction)
and children on experimentation, which might make them talk more about experimen-
tation and therefore less about coordination of theory and evidence. This speculation
calls for further examination through classroom observations to get a better understanding
of the ongoing process.

6.1.2. Experimentation

With regard to experimentation, the direct instruction and combined condition showed
the largest learning gains on posttest and follow-up. The verbal support did not differ
from baseline.

Children that received the direct instruction either in isolation of in the combined con-
dition improved more than the baseline condition, and the improvement did retain in the
long-term compared to baseline. This result is in line with previous studies that show effec-
tiveness of only a brief CVS intervention to the development of experimentation abilities
in the short-term (Chen & Klahr, 1999; Wagensveld et al., 2015) and long-term (Lorch
et al., 2017). This result can be explained by the relevancy of direct instruction in exper-
imentation (Schichow et al., 2016). The present results add to the existing literature that
such an instruction improves the effectiveness of an inquiry-based lesson series in teaching
children experimentation abilities compared to no preceding instruction before the
inquiry-based lesson series.

There were no effects of verbal support on experimentation. The verbal support aimed
to help children explain and reason during their inquiries, but it might not have remedied
children’s natural tendencies to manipulate more variables than one (Wilkening & Huber,
2004). This does not mean that experimentation does not depend on verbal factors (e.g.
Van der Graaf et al., 2016; Wagensveld et al., 2015), only that experimentation is an
ability that requires a direct focus.
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6.1.3. Syllogistic reasoning

Although syllogistic reasoning developed over time in all children, there were no differen-
tial effects per condition. For additional improvement on syllogistic reasoning, a different
instruction may be needed. The verbal approach seemed promising, as brain activation
during syllogistic reasoning revealed a verbal network, but when semantic content is
lacking, a different network is recruited that suggests that abstract syllogisms are solved
using spatial models (Goel, Buchel, Firth, & Dolan, 2000). Syllogistic reasoning, therefore,
may be more a part of general ability than the other factors in the construct of scientific
reasoning.

6.2. Vocabulary

Only the combined direct instruction and verbal approach showed effective to further
strengthen vocabulary gains. The findings that either instruction alone did not lead to
an increase in vocabulary might be explained by their synergetic effects in that both
have different strengths, but those do no lead to a significant improvement. While
direct instruction on scientific reasoning did not explicitly focus on vocabulary, it might
have strengthened vocabulary learning by providing children the reasons to learn and
use new concepts. Verbal support, on the other hand, did focus on vocabulary use, but
teachers were not instructed to highlight why the concepts were relevant. Therefore, the
combination showed an improvement in vocabulary. Direct instruction could have
helped in understanding why concepts should be learning. It has been shown that high-
lighting the ‘why’, i.e. promoting the purpose for learning, improved academic achieve-
ment in science and mathematics (Yeager et al, 2014). Verbal support helped in
learning and using the concepts by eliciting explanations and providing contexts. Both
explanation and context stimulate vocabulary learning of primary school children
(Cain, 2007).

Vocabulary at the follow-up was not predicted by any contrast. The scores were higher
than on the pretest. It might be that the words in the vocabulary test are not usually used in
the classroom and that our inquiry-based lesson series was an exception. Most words were
related to the topic, i.e. solid construction, or to inquiry. Since the topic was dealt with, it is
likely that classes moved forward to a new topic. Also, inquiry learning is not common in
primary school classrooms (OECD, 2014).

6.3. Domain-specific knowledge: near and far transfer

In line with the results for vocabulary, only domain-specific knowledge effects were found
when combining both types of instruction. Direct instruction might have helped in setting
up and understanding experiments and verbal support in guiding the inquiry, including
drawing of conclusions. This results is in line with findings that the inquiry process can
be stimulated leading to knowledge acquisition (Lazonder & Harmsen, 2016), and explains
why the combination showed improvements in domain-specific knowledge on both near
and far transfer while the individual instructions did not.

For the posttest effects were found for one test of near transfer and on the follow-up
for the other test of near transfer. An explanation for this result might be the type of
questions that were used. The first test used was a multiple choice task, while the
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second one consisted of open-ended questions. Given that open-ended questions
measure the quality of active processing of relevant concepts during learning (Ozuru,
Briner, Kurby, & McNamara, 2013), it can be assumed that the combined condition pro-
moted active processing leading to more robust knowledge. This effect is visible in the
follow-up, because some knowledge seems to be forgotten in the other conditions, but
not in the combined condition. On the other hand, multiple choice relies more on
topic-specific knowledge (Ozuru et al., 2013). This would be present directly after learn-
ing and therefore the combined condition showed an effect on the multiple choice ques-
tions at posttest.

What is left to be explained is how the near transfer effects moved from one test (the
bridge test) at posttest to the other test (the tower test) at follow-up. These tests differed in
the response options, the bridge test consisted of multiple choice questions and the tower
test was an open-ended question. Multiple choice questions rely more on topic-specific
knowledge and open-ended questions measure the quality of active processing of relevant
concepts during learning (Ozuru et al., 2013). Topic-specific knowledge would be present
directly after learning and effects on learning as well. In contrast, active processing would
lead to more robust knowledge and effects of improved active processing in the combined
condition are more easily visible at a follow-up test, because there is no forgetting, while
children in the other conditions appear to forget some knowledge.

Interestingly, the combined condition led to improvements on the near, but not the far
transfer task on posttest, and vice versa for the follow-up. This indicated that time had an
effect on how the knowledge was stored; from episodic to long-term memory. Memories
can undergo changes over time, such as an emergence of awareness for what had been
learned earlier (Robertson, 2009). In addition, performance has been shown to be
affected by metacognitive awareness via strategic control (Whitebread, 1999). Metacogni-
tive awareness was likely to be boosted by verbal support, as it promoted reflection. Stra-
tegic control was improved by the direct instruction on scientific reasoning.

6.5. Limitations and suggestions

The present study is the first to show that pre-instructions improve the effectiveness of an
inquiry-based lesson series as revealed by higher scores on coordination of theory and evi-
dence, experimentation, vocabulary, and domain-specific knowledge: near and far trans-
fer. However, some limitations can be identified. One is that we did not study the
effectiveness of the inquiry-based lesson series compared to a business as usual control
group. The present results showed an overall improvement, which indicated that the
inquiry-based lesson series was effective in stimulating children’s scientific thinking.
Although unguided inquiry often is not effective (Kirschner et al., 2006), a comparison
would allow for conclusions about the inquiry-based lesson series. This is a topic for
future research. Another limitation is that the quality of the inquiries during the lesson
series was not formally assessed, nor the role of the teachers. Video-tapes of lessons
would provide rich information, which would add to the understanding of the underlying
processes. It would be interesting to study to whether the quality of the conclusions pre-
dicts domain-specific knowledge (Van der Graaf, Segers, & Verhoeven, 2018). Finally, due
to practical reasons the direct instruction on scientific reasoning was provided by one of
the authors. It therefore remains to be investigated whether teachers can apply such



18 J. VAN DER GRAAF ET AL.

instruction themselves to the children in their own classroom with brief instructions, or
whether they need further training beforehand.

6.6. Conclusion and implications

To conclude, inquiry learning in primary education is feasible and both a direct instruc-
tion of scientific reasoning and verbal support during inquiry learning improved the effec-
tiveness of an inquiry-based lesson series. Moreover, the combination of both
strengthened the effects on scientific reasoning and scientific knowledge most. Children
showed larger learning gain in scientific reasoning, vocabulary, and domain-specific
knowledge. Therefore, we suggest using inquiry learning in the primary school classroom
and prepare it by instructing children about experimentation and training teachers in
verbal support. This way, children can train important twenty-first-century skills, such
as scientific reasoning, and independently acquire scientific knowledge.
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