
Auto Rigging Solution for Remote Mocap

Sessions

Daniël van leeuwen

July 2023

A

1 Abstract

This thesis explores the development and integration of an automatic rigging
tool as part of a web-based remote motion capture platform. The main objec-
tive is to create a custom Auto Rigger using Python for Maya and seamlessly
incorporate it into the existing TPose platform.

The research begins by investigating the process of writing a custom auto-
rigger using Python for Maya. Various rigging techniques and algorithms are
explored to develop a versatile and efficient auto-rigger that can generate rig
setups for different character models. The rigging tool is continuously refined
to improve its capabilities, accuracy, and user experience.

Next, a server-client connection is established to enable file uploading, pro-
cessing, and downloading within the platform. Various system setups are pro-
totyped and researched before the decision is made to make use of the Flask
framework. A connection between the server and Maya is established to run the
auto-rigging tool which results in a rigged character model.

The Three.js Library is effectively utilized to create and display 3D charac-
ters in a web-based environment. The integration of Three.js allows for real-time
rendering, animation, and interactivity of character models. Performance opti-
mizations are implemented to ensure smooth rendering and interactivity, even
with complex animations and high-polygon models.

The developed auto-rigger tool is then integrated into the TPose platform.
User testing and feedback collection help streamline the integration process
and improve user experience. Close collaboration with the TPose development
team ensures consistency in user interface design and workflow. The auto-
rigger is continuously updated based on user feedback and evolving platform
requirements.

In conclusion, this thesis presents a comprehensive approach to creating
and integrating an automatic rigging tool within a web-based remote motion
capture platform. The recommendations include further enhancements to the
auto-rigger, optimization of the server-client infrastructure, and refinement of
Three.js implementation.

A

2 Glossary

Glossary

Asynchronous refers to a programming paradigm or technique that allows
multiple tasks or operations to be executed concurrently or independently.
15

Auto Rigger is a program that automates the rigging process. A

Byte code refers to a low-level representation of code that is intermediate
between the source code and machine code. 8

CORS Protocol stands for Cross-Origin Resource Sharing protocol, it is a
mechanism used by web browsers to control access to resources across
different domains or origins. It is a security feature implemented to protect
users from malicious scripts or unauthorized data access. 14

Data sets refers to a collection of structured or unstructured data that is used
for training, validating, or testing machine learning models or conducting
data analysis tasks. 5

Deep Learning is a sub-field of machine learning that focuses on training
artificial neural networks with multiple layers to perform complex tasks.
It is inspired by the structure and function of the human brain, particularly
the interconnected network of neurons. 5

Dynamic Templates refers to files that contain HTML (or other markup lan-
guages) with placeholders for dynamic content. Templates are used to
generate dynamic web pages by combining static markup with data from
the application. 9

Event-Driven Communication is a paradigm in software development where
the flow of information or actions between components or systems is driven
by events. 8

Framework refers to a pre-established set of tools, libraries, and conventions
that provide a structured approach to building web applications. 3

HTTP Requests stands for HyperText Transfer Protocol, it is a message sent
from a client (such as a web browser) to a server, requesting specific in-
formation or an action to be performed. 15

Interpreter is a software program or tool that executes code written in a
high-level programming language directly, line by line. It translates and
executes the source code statements one at a time, without the need for
prior compilation into machine code. 7

B

Library refers to a collection of precompiled code modules or classes that pro-
vide reusable functionalities and resources to simplify the development of
Java applications. A

Locators are reference objects used to define specific positions or anchor points
on a 3D character model. 9

Maya Autodesk Maya is a powerful and widely-used 3D computer graphics
software. A

MEL stands for Maya Embedded Language. It is a scripting language specifi-
cally designed for Autodesk Maya, a popular 3D computer graphics soft-
ware. MEL is used to automate repetitive tasks, create custom tools, and
enhance the functionality of Maya. 8

Model-View-Controller (MVC) architectural pattern is a design pattern
commonly used in software development to separate the concerns of an ap-
plication into three interconnected components: the model, the view, and
the controller. 9

Motion Capture is a technology used to record human movements and trans-
late it into digital data. 1

NDI Stream stands for Network Device Interface, which refers to a technol-
ogy developed by NewTek that enables the transfer of high-quality video,
audio, and metadata over an IP network. NDI is designed to facilitate
real-time video production and streaming workflows by allowing multi-
ple devices and software applications to communicate and share media
seamlessly. 23

OpenGL refers to a region of memory used to store data that is utilized dur-
ing various stages of the rendering pipeline. Buffers serve as containers
for different types of data, such as vertex data, texture data, or shader
data, and they play a crucial role in efficiently transferring and processing
information on the GPU. 14

Point Clouds are a representation of three-dimensional data composed of in-
dividual points in space. 6

Python is a versatile, high-level programming language known for its simplicity
and readability. A

Raycast is a technique used to determine the intersection of a ray with a scene
or geometry. It involves casting a virtual ray from a specific point in a
given direction and checking for any intersections or collisions with objects
in the scene. 10

C

Retargeted refers to the process of transferring or adapting motion data from
one character to another. 1

Root Values are properties that can be defined once and then referenced and
used throughout the entire CSS stylesheet. They allow you to define values
that can be easily reused, ensuring consistency and simplifying the process
of making changes across multiple styles. 20

Routes refer to the URL patterns that define the endpoints or entry points of
your web application. Routes determine how the application responds to
different HTTP requests made by clients. 9

RPC stands for Remote Procedure Call, it is a component or software service
that enables communication and interaction between different systems or
processes over a network. 17

Skin Binding refers to the process of associating a character’s geometry or
mesh with a skeletal structure or rig. It involves defining the influence or
relationship between the joints of the rig and the corresponding vertices
or points on the character’s mesh. 4

Standalone refers to an application that is self-contained and can run indepen-
dently on a computer or device without requiring additional dependencies
or external resources. 1

Toolkits refer to collections of libraries, modules, and utilities that provide
developers with pre-built components and functions to solve specific pro-
gramming tasks or address particular domains. 8

UV-Mapped means that a two-dimensional coordinate system, called UV co-
ordinates, has been assigned to the vertices of a 3D object’s surface. This
mapping allows textures or images to be accurately applied to the surface
of the object. 24

Vertex Colours also known as per-vertex colours are colour values associated
with individual vertices in a 3D mesh or geometry. 24

Voxel is a three-dimensional counterpart of a pixel (picture element). It stands
for ”volume element” or ”volumetric pixel.” Instead of representing a sin-
gle point in a 2D image, a voxel represents a small volume or unit of space
in a 3D grid. 13

Web-Based refers to systems, services, or applications that are accessed and
operated through a web browser over the internet. 2

WebGL stands for Web Graphics Library and is a JavaScript API (Applica-
tion Programming Interface) for rendering interactive 2D and 3D graphics
within web browsers. 7

D

Contents

1 Abstract A

2 Glossary B

3 Introduction 1
3.1 The Assignment . 1
3.2 The Main Question . 1
3.3 The Sub Questions . 2

4 Methodology 2
4.1 Research . 2
4.2 Development . 2
4.3 Testing . 3

5 Market Analysis 3

6 Advanced Technologies 5
6.1 Neural networks . 5
6.2 Point clouds . 6
6.3 Mesh sequences . 6

7 Supplemental Technologies 7
7.1 Three.js . 7
7.2 MayaPy . 7
7.3 Socket.io . 8
7.4 Watchdog . 8
7.5 Keystone . 8
7.6 Flask . 9

8 Development 9
8.1 How can a custom auto-rigger be written using Python for Maya 9

9 How can a server-client connection be established that allows
the uploading, processing, and downloading of files? 14

10 How can Three.js be effectively utilized to create and display a
3D character in a web-based environment? 19

11 How can the created auto-rigging tool be implemented in the
current TPose platform? 23

12 Testing 24
12.1 Prototype V2 . 24

12.1.1 Case Study . 24
12.1.2 Comparitive Study . 25

E

12.1.3 Time . 26
12.1.4 Conclusions . 27

12.2 Prototype V3 . 29
12.2.1 User Test . 29
12.2.2 Time . 30
12.2.3 Conclusions . 30

13 Conclusions 31

14 Discussion 31

15 Recommendations 32

Appendices 35
.1 Emphatise and Define . 35
.2 Maya Python Auto Rigger 1 . 35
.3 Maya Python Auto Rigger 2 . 35
.4 Auto Rigger Inspiration . 35
.5 Maya Python Auto Rigger 3 . 35
.6 Maya Python Auto Rigger 4 . 35
.7 Geodesic Voxel in Maya Standalone 35
.8 Three JS Server . 35
.9 Socket IO - Server File Upload 35
.10 Use Case Testing . 36
.11 Auto Rigger V2 Use Case Test 2 36
.12 Prototype V2: Use Case Test Render 36
.13 User Testing V3 . 36
.14 Maya Auto Rigger V2 . 36
.15 Maya Python Auto Rigger 5 . 36
.16 From Server to Running the Auto Rigger 36
.17 Quantitative Testing of In-House Models 36
.18 non-Thesis related work performed for Het Nieuwe Kader studio 36
.19 The Blog . 37

F

3 Introduction

In the entertainment industry, the demand for Motion Capture data has wit-
nessed a significant surge. While existing motion libraries cater to certain re-
quirements, there is a growing need for personalized and specific motion capture
data. However, organizing a traditional motion capture shoot entails substantial
costs in terms of logistics, time, and resources. To address this challenge, TPose
has developed a cutting-edge web-based platform that offers clients the conve-
nience of remote motion capture shoots, allowing them to direct the process
from any location worldwide.

During these remote shoots, clients are provided with a comprehensive set
of tools to ensure an immersive experience. The studio employs a live camera
feed, enabling clients to witness the real-time performances of the motion cap-
ture artists. Additionally, a live preview of MVN, the motion capture software
employed for data recording, is made accessible to clients. Furthermore, the in-
tegration of a Three.js environment empowers clients to visualize the captured
motion, which is Retargeted onto a standard model. This interactive preview
enables clients to freely explore and evaluate the motion in a three-dimensional
space.

The current standard 3D model employed for motion preview in Three.js
is T-O, the iconic mascot of TPose. T-O’s anatomical proportions accurately
represent those of a typical human, making it suitable for previewing most types
of motion. However, clients frequently use characters with non-standard pro-
portions, posing challenges in accurately estimating the fidelity of the recorded
data and hindering the mocap artists’ ability to adapt their motions based on
the digital character’s unique proportions.

3.1 The Assignment

The company’s assignment involves the development of an auto-rigging tool
that is specifically designed to integrate with their TPose platform. This tool is
intended to be seamlessly connected to T-Pose within the live motion capture
(mocap) pipeline, rather than functioning as a Standalone tool. The primary
objective is to create a comprehensive and unified solution that leverages the
unique features and advantages offered by T-Pose.

An essential criterion for this project is to ensure that the resulting rig
produced by the auto-rigging tool meets or exceeds the quality standards set by
existing solutions in the industry. The aim is to deliver a rigging solution that
not only matches but potentially surpasses the quality offered by established
options.

3.2 The Main Question

How can an automatic rigging tool be created and integrated as part of a web-
based remote motion capture platform?

1

3.3 The Sub Questions

• How can a custom auto-rigger be written using Python for Maya?

• How can a server-client connection be established that allows the upload-
ing, processing, and downloading of files?

• How can Three.js be effectively utilized to create and display a 3D char-
acter in a web-based environment?

• How can the created auto rigging tool be implemented in the current
TPose platform?

4 Methodology

4.1 Research

In order to get a grasp on what an auto rigger should be, market research was
performed into the current auto rigging tools on the market. To perform this
research, a list of existing auto-rigging tools was created through desk research.
Then each tool was installed and tested by the researcher to uncover its capa-
bilities.

To find out about the academic advancements in the area of auto-rigging, ex-
tensive desk research was performed to find articles related to this topic. There
are not many published papers about the automation of the rigging process since
it is a rather niche subject but the ones that were found contained interesting
concepts.

Additional desk research was performed into various technologies used through-
out the development process.

4.2 Development

Once a clear idea was formulated of what encompasses an automatic rigging
tool. A plan was drawn up for the development of the product. This process
was initially split up into three separate development cycles where a proof of
concept of each part was created before combining the three elements into a
functional prototype. The three cycles were:

Development of an auto-rigging tool in Maya using Python. This process
starting point was a functional automatic rigging tool inside Maya, created
according to the Maya Python tutorial by Mark Schipper (Schipper, 2019).
After extensive debugging, various adaptations, additions, and modifications
were made to the scripts in order to facilitate new and improved features.

Development of a Web-Based 3D interface using Three.js. For this develop-
ment cycle, the starting point was a range of examples provided by the official
Three.js web page. By adapting and combining the information gleaned from
several examples, a functional prototype was created.

2

Development of a server-client connection. This process started with desk
research into the functionality of servers and the basics required to set up a
connection. Based on that research, practical research was performed where a
wide range of attempts was made to find a Framework that could support the
envisioned product.

4.3 Testing

Prototype V2 was created by combining the three development cycles into a
functional product. This Prototype was then tested with both a use case and
by benchmarking.

For the use case, the client delivered a character model and a collection of
motion capture recordings. The application of the prototype on these assets
was performed by the researcher due to the prototype only functioning locally.
The goal of this test was to see if the results produced by the auto-rigger were
satisfactory for implementation in a final product.

The benchmarking was performed by the in-house staff. The goal was to
test both the quality of the results compared to other auto-rigging tools, as well
as the amount of time it takes to run through the process from start to finish.

Based on these results, several issues were identified. A list of actionable
fixes was created and implemented to create Prototype V3.

To test the third prototype, an user test was conducted with TPose employ-
ees. Each was given the task of auto-rigging a model selected at random. After
completing the task of auto-rigging a model, a simple questionnaire was filled
out by the participant to assess the quality of the resulting rig and gain insights
into the usability of the tool. The results are primarily for incorporation into
the recommendations.

5 Market Analysis

There is a wide range of automatic rigging solutions currently on the market,
most are add-ons for existing 3D software, some are stand-alone applications,
and one is fully web-based. Here is a short summary of each tool, each is
described in more detail in appendix .1.

• Quick Rig is a tool inside Autodesk Maya. It is a suitable choice when you
need a fast and intuitive solution for rigging characters within Maya. It
is ideal for projects that require a quick turnaround, such as prototyping,
previsualization, or animation tests. (Autodesk, n.d.)

• Auto Rig is a window inside SideFX Houdini. it is a powerful option
for rigging characters in Houdini, especially if you’re working on complex
projects that require advanced rigging features, like creature animations
or procedural setups. It is well-suited for VFX, game development, and
high-end character animation. (“Autorigs”, 2023)

3

• Auto Character System is a Rigging and animation toolset for bipedal
characters for Modo. The Auto Character System in Modo is a great
choice if you prefer a streamlined and integrated workflow within Modo.
It is suitable for various projects, including game development, charac-
ter design, and animation, offering customization options and a range of
animation helpers. (“Auto Character System 3”, 2023)

• The Auto Rig Pro add-on for Blender is a powerful tool that simplifies the
process of character rigging and animation. It provides extensive automa-
tion options and compatibility with other Blender add-ons, making it a
versatile choice for both simple and complex character animation projects,
such as short films, commercials, or game development. (Artell, 2023)

• The Rigify add-on in Blender is a powerful tool for creating character rigs
and animations. It offers simplicity and ease of use, making it a good
choice for beginners or projects with straightforward character animation
requirements, like educational animations or personal projects. (Team,
2023)

• AccuRig by Reallusion is a feature-rich standalone tool designed to sim-
plify the process of rigging characters for animation. It is a suitable option
if you are using Reallusion software like Character Creator and iClone for
character creation and animation. It provides a cohesive pipeline for cre-
ating and animating characters within the Reallusion ecosystem, making
it ideal for game development, virtual production, and real-time character
animation. (“Free Auto Rig for any 3D Character — AccuRIG”, 2023)

• Mixamo is an online platform and service by Adobe that offers a range of
powerful features for character animation and rigging. It is a convenient
choice when you need a vast library of pre-built animations and a quick
and easy way to apply them to your characters. It is particularly useful
for projects that require a large variety of character animations, such as
game development, virtual reality experiences, or animated presentations.
(“Mixamo”, 2023)

These programs all require different levels of user input but all are generally
based on the same principles;

• A mesh is provided by the user

• The auto rigger generates a generic skeleton shape

• The user adjusts the shape to fit their mesh

• a skeleton is generated and constraints are applied such as Skin Binding,
IK/FK switches, and animation controllers

This appears to be the expected workflow for every existing auto-rigger.

4

6 Advanced Technologies

Throughout the years there have been many researches that go into the simpli-
fication and improvement of rigging and animation. Several technologies have
been discussed and considered for this research but none were applicable to the
current situation for various reasons.

6.1 Neural networks

Figure 1: Example of the RigNet workflow Xu et al., 2020

Neural networks, particularly Deep Learning techniques, have been employed
in the field of computer graphics and animation to automate the rigging pro-
cess. These networks can be trained on large Data sets of pre-rigged characters,
where the input is the geometry or pose of the character, and the output is the
corresponding rig parameters. (Xu et al., 2020)

By leveraging neural networks, the automatic rigging process can be learned
and generalized from examples, enabling the network to predict the rigging
parameters for a given character model. This approach eliminates the need for
manual rigging, which can be time-consuming and require expertise in character
animation.

5

6.2 Point clouds

Figure 2: A variation of meshes rigged using point clouds (Xu et al., 2019)

To rig a mesh using Point Clouds, the point cloud data can be processed and
analyzed to extract important information, such as the positions and connectiv-
ity of the underlying geometry. This information can then be used to generate
a mesh that closely represents the object’s surface.

Once the mesh is created from the point cloud, the rigging process involves
defining a skeleton or an articulated structure that controls the deformations
and movements of the mesh. The skeleton typically consists of joints and bones
that are connected in a hierarchical manner to mimic the object’s underlying
structure.

The point cloud data can be utilized in rigging by associating each point with
the nearest bone or joint in the skeleton. This association allows the mesh to be
influenced by the movements of the corresponding bones, resulting in realistic
deformations during animation. (Xu et al., 2019)

6.3 Mesh sequences

Figure 3: cat model rigged using a mesh sequence (Le and Deng, 2014)

6

A mesh sequence, also known as a vertex animation sequence or a deformation
sequence, is a collection of meshes that represent the changing shape of an object
over time. Each mesh in the sequence typically corresponds to a specific frame
or keyframe of an animation.

To rig a mesh from a mesh sequence, the rigging process involves defin-
ing a skeleton or an articulated structure that controls the deformations and
movements of the mesh at each frame. The skeleton typically consists of joints
and bones that are connected in a hierarchical manner to mimic the object’s
underlying structure. (Le and Deng, 2014)

While these technologies are interesting developments in the field of automat-
ing the rigging process, they are not applicable for an auto-rigger designated to
be part of a remote motion capture pipeline. While these techniques simplify
the rigging process to the point where little to no user input is required, the
output skeleton is very unpredictable. This would require a lot of manual work
for the following step in the motion capture pipeline, retargeting.

7 Supplemental Technologies

during the development and practical research, a number of technologies were
researched and applied. A short summary and explanation are given below of
the most significant supplemental technologies used.

7.1 Three.js

Three.js is a popular JavaScript library created by Ricardo Cabello (Cabello,
2010) that provides a framework for creating and displaying interactive 3D com-
puter graphics in web browsers. It simplifies the process of working with We-
bGL, a web-based graphics API, by providing a higher-level abstraction and a
range of useful features.

With Three.js, developers can easily create and manipulate 3D scenes, in-
cluding rendering and animating objects, applying materials and textures, han-
dling lights and shadows, and incorporating camera controls. It abstracts away
the complexities of low-level WebGL programming, allowing developers to focus
on creating engaging and visually appealing 3D content.

This library is used by both TPose and popular websites such as Mixamo,
making it a logical choice for developing the auto-rigger.

7.2 MayaPy

MayaPy refers to the Python Interpreter utilized within Autodesk Maya, a
prominent 3D computer graphics application. It allows users to leverage the
power and flexibility of the Python programming language to script and auto-
mate various tasks in Maya (“The Maya Python Interpreter, MayaPy”, 2023).

As the Python interpreter embedded in Maya, MayaPy provides direct access
to the Maya API (Application Programming Interface) and extensive libraries

7

specifically designed for working with Maya’s features and functionalities. This
includes the ability to manipulate 3D objects, create and modify animations,
control rendering settings, and interact with the overall scene and assets.

With MayaPy, users can develop custom tools, write scripts, and create
plugins that extend Maya’s capabilities. Python’s intuitive syntax and ex-
tensive library ecosystem make it a popular choice for automating repetitive
tasks, building complex workflows, and integrating Maya with other software or
pipelines.

By utilizing MayaPy, artists, animators, and developers can enhance their
productivity and efficiency in working with Maya, enabling them to accomplish
tasks more effectively and streamline their creative processes.

7.3 Socket.io

Socket.IO is a widely used JavaScript library that facilitates real-time, bidirec-
tional communication between web clients and servers. It establishes persistent
connections, enabling instant data transfer and Event-Driven Communication.
By abstracting the underlying protocols, Socket.IO simplifies the handling of
real-time data through a high-level API that supports event-based messaging
(Arrachequesne, 2023).

It works seamlessly across platforms and devices, supporting both server-side
frameworks and client-side JavaScript. With additional features like rooms and
namespaces, Socket.IO allows for targeted communication and offers built-in
support for handling disconnections and errors. Its versatility has made it pop-
ular for applications requiring real-time synchronization and communication,
such as collaborative apps, multiplayer games, and chat systems.

7.4 Watchdog

Watchdog is a Python library that simplifies file system monitoring. It provides
an interface for detecting changes in files and directories, allowing for real-time
responses or automated actions. With Watchdog, developers can easily monitor
specific directories or files, abstracting the complexities of file system events
across platforms. The library aims to automate tasks triggered by file system
changes, offering flexibility and an intuitive API for monitoring and responding
to modifications, additions, or deletions in the file system (Gorakhargosh, 2023).

7.5 Keystone

Keystone is a command line script that simplifies the distribution of Python
Toolkits in Autodesk Maya. By pointing it at a folder containing the toolkit,
Keystone compiles Python files into Byte code, packages them into a compressed
archive, generates a startup script, and compiles everything into a self-contained
MEL file. This single-source distribution requires no additional infrastructure,
making it convenient for Maya users (Theodore, 2023).

8

7.6 Flask

Flask is a lightweight and widely used web framework written in Python. It
offers a simple yet powerful approach to web application development, following
the Model-View-Controller (MVC) architectural pattern. By defining Routes,
handling requests, and rendering Dynamic Templates, developers can easily
create web applications and APIs using Python (Ronacher, 2023).

The strength of Flask lies in its minimalistic and modular design. It allows
developers to choose and incorporate only the necessary components and exten-
sions based on their specific project requirements. Flask offers essential features
such as URL routing, request handling, session management, and template ren-
dering. Integration with popular databases like SQLAlchemy and SQLite en-
ables seamless data storage and retrieval. Additionally, Flask’s rich ecosystem
of extensions provides additional functionalities such as authentication, form
validation, and API development.

What sets Flask apart is its simplicity and ease of learning. Even developers
new to web development or Python can quickly grasp its concepts and start
building applications. The active Flask community further contributes to its
popularity, offering extensive documentation and abundant online resources to
support developers in their Flask projects. Overall, Flask is a versatile web
framework that empowers developers to create web applications and APIs effi-
ciently using Python, making it a favoured choice for projects of various sizes
and complexities.

8 Development

8.1 How can a custom auto-rigger be written using Python
for Maya

Based on the market research of what is expected by a client when using an
auto-rigger and the company’s requirement of having a platform-native auto-
rigging solution, the decision was made to write a custom auto-rigger using the
MayaPy interpreter. This will allow the auto rigger to be fully integrated into
the remote motion capture pipeline and run on a back-end server without the
need for UI graphics to be loaded. The Maya Python auto-rigger scripts written
by Mark Schipper have been used as a base to expedite the development process.

In appendix .2, the adjustments needed to make the initial setup functional
are described and the creation of a Maya-based auto-rigger is completed. From
there on, in appendix .3, the creative process begins with changing the way
Locators are placed. Appendix .4 describes how inspiration was drawn from
the Mixamo web interface which resulted in a similar idea where the user places
locators on a 2D image of the model to indicate the location of a limited number
of joints.

9

Figure 4: a diagram sketch of the process with which locators are placed from
a 2D view

By placing an orthographic camera in the -z direction in front of the model,
a flat 2D image is created. The next step is placing locators over the locations
of the joints. From each locator, a Raycast function is called and the location
of where the model is hit is stored. For a rig, the bones have to be inside the
model, not on the surface. To calculate the center of the point where the model
is hit, a second raycast is created in the negative direction of which the hit
location is also stored. Then the average between the two hits is calculated and
a new locator is placed in the center of the points.

10

Figure 5: a diagram sketch of the rigging process separated into two steps

Appendix .5 describes how this process quickly revealed a weakness: the
hands of 3D characters are for the majority angled with the palms facing down,
which makes it impossible to place locators on individual fingers. Since hand
motion capture is a major part of the TPose motion capture pipeline, a solution
had to be found.

By separating the rigging process into two steps, with the camera changing
from -z to -y and repositioning to the wrist locator, it was made possible to
accurately add locators to the fingers.

11

Figure 6: a diagram sketch of a concept for the rigging process with 7 steps

In appendix .6, a brief consideration for a 5-step system was considered to
facilitate placing the jaw, feet, and face locators from their respective angles.
This was however abandoned due to being overly complex, the jaw not being
motion captured, and the position of the feet being automatically calculable.

Additionally, three extra steps were considered for advanced rigging features
such as arm twist, foot roll, and volume preservers. This concept was discarded
at a later stage in order to keep the auto-rigger easy to use and integrate into
the TPose pipeline.

in appendix .14 and appendix .15 the attempted implementation of these
steps is described. This process was never finished in its entirety during this
research in favour of focusing on the next sub-questions.

The last step in the automatic rigging process is the skin binding. Within
Maya, there are 4 weight painting options for the bind skin function:

• Closest Distance; this function assigns weights to vertices based on the
closest distance to nearby bones or joints. It provides localized influence
and accurate deformations, ensuring that vertices are primarily affected
by the nearest bone or joint. This method is commonly used to achieve
precise control over specific parts of a character’s mesh during animation.

• Closest in Hierarchy; this function determines the nearest bone or joint for
each vertex of the character’s mesh by evaluating the hierarchical relation-
ship between the mesh and the skeleton. By considering the hierarchy, this
method ensures accurate influence and deformation of the vertices during
character animation.

12

• Heatmap; this function assigns weights to vertices based on their proxim-
ity to bones or joints in the skeleton. The weights are represented visually
as a heatmap, with warmer colours indicating higher weights and stronger
influence. This method allows for smooth and gradual transitions in ver-
tex influence, resulting in realistic mesh deformations during character
animation.

• Geodesic Voxel; this function divides the character’s mesh into voxels and
assigns weights to each Voxel based on the geodesic distances to nearby
bones or joints. By considering the local geometry and proximity, this
method provides accurate and realistic deformations during character an-
imation.

Each option was tested on the same model performing the same motion, the
results are displayed in figure 7

(a) Closest Distance skin bind
method performed on the

Blacksmith model

(b) Closest in Hierarchy skin bind
method performed on the

Blacksmith model

(c) Error message when applying
the Heatmap skin bind method

(d) Geodesic Voxel skin bind
method performed on the

Blacksmith model

Figure 7: Test results from the bind methods

As is immediately apparent, only the geodesic voxel method provides a sta-
ble solution binding the skin without the possibility of manually adjusting the
weighting afterwards.

Both Closest in Hierarchy and Closest Distance struggle with keeping the
limbs separate from the torso when the model is not in a T-Pose. Addition-
ally, the lines between different influences are very apparent, causing inorganic
deformations.

13

The Heatmap bind method proves to be impractical due to its clear limi-
tations when it comes to the models it works on. This Blacksmith model had
clean topology but some gaps in its shape, causing the heatmap to be unable
to fill the shape.

Because Geodesic Voxel uses the geodesic distance, also known as the short-
est path, to calculate weights, it won’t be able to jump across bigger gaps in
the character mesh such as between the forearm and the side of the torso. This
preserves the shape of the model much better and creates very organic deforma-
tions. Geodesic Voxel also supports models with degenerate and non-watertight
geometry. (Dionne and De Lasa, 2013)

During the research, an issue was uncovered with the Geodesic Voxel method.
In order to voxelise the mesh, it relies on creating an OpenGL which in turn
requires a GPU to load. This is an issue when running the standalone version
of Maya to execute the auto-rigger code, since no GUI is created, the GPU can
not be accessed and no OpenGL buffer is created.

Several approaches were considered when searching for a solution to this
issue, but in the end, the decision was made to delegate the task of running the
Geodesic Voxel without the need for an OpenGL buffer to the Autodesk Team.
This does mean that the auto-rigger will have to start the full version of Maya
which decreases its processing speed and it will require the server it runs on to
have a GPU which incurs some additional costs.

More details about resolving the issue with the Geodesic Voxel bind method
can be found in appendix .7

9 How can a server-client connection be estab-
lished that allows the uploading, processing,
and downloading of files?

In order to facilitate a web-based service to clients in remote locations, a system
for communication has to be set up. During the research, several systems were
considered.

For the initial server prototype, a Socket.io JavaScript server was used with
a JavaScript client. The process is covered in appendix .8. During development,
several issues were encountered such as the CORS Protocol not allowing access
to files from places that are not on the web. Eventually, a basic server-client
setup was achieved that allows the client to upload a file to the server which is
then opened and displayed by a Three.js page containing the proof of concept.
A video of this setup can be found in appendix .9.

To establish a connection between the server and the Python-based auto-
rigging script, it was decided to create a basic Python server to replace the
JavaScript server. Several frameworks were tested to run the Python server.

• Gunicorn, short for “Green Unicorn,” is a Python WSGI (Web Server
Gateway Interface) HTTP server. It is designed to efficiently handle in-
coming HTTP requests and serve Python web applications. Gunicorn

14

acts as a middle layer between the web application and the web server,
managing the communication and providing concurrency and scalability
(Chesneau, 2023) This server was discarded because it only works on Linux
devices and this research was performed on a Windows device.

• Waitress is a pure-Python, production-ready WSGI server designed to
serve web applications. It is known for its simplicity, reliability, and ease
of use. Waitress implements the WSGI specification, allowing it to han-
dle HTTP requests and communicate with web applications written in
Python. (“Waitress”, 2022) This server was discarded because it does not
support Socket.IO libraries.

• Eventlet is a lightweight concurrency library for Python that allows for
the easy development of highly concurrent and scalable applications. It is
built on top of Greenlet, a micro-threading library, and provides a simple
and intuitive API for writing asynchronous code. (“Eventlet Networking
Library”, 2023) While functional, it was unclear during the research when
a user connected and disconnected from the server.

• Uvicorn is a lightning-fast, lightweight ASGI (Asynchronous Server Gate-
way Interface) server that is specifically designed to run Python web appli-
cations. It leverages the power of Asynchronous programming to provide
high-performance and efficient handling of HTTP Requests. (“Uvicorn”,
2023) Initially, this server managed to run Socket.IO and displayed when
a connection was established to a client as well as when a client discon-
nected, but when combining it with the earlier file-upload system, it was
unable to load the Socket.IO files.

The research stagnated on running a Socket.IO server. Since Socket.IO is
a JavaScript library and the server language has been changed to Python, the
decision was made to scrap the Socket.IO library and continue development
using Flask.

Using this framework allowed for easy use of the POST and GET request
methods used in HTTP. GET requests are used to request data from the server,
and POST requests are used to submit data to the server. By following an
example found on ’GeeksForGeeks.org’ (GeeksforGeeks, 2023), the server-client
setup was adapted into a flask server serving an HTML template containing
a Three.js script alongside a static folder with all the Three.js modules. This
made it possible to route the user from the upload page to the Three.js page
by responding to the POST and GET requests received by the server. It also
allowed the uploaded file to be queried and the file path to be sent to the Three.js
content on the next page which ensured the client shows the correct file to the
user.

With the server receiving requests, the next step was to start the auto-rigger
from the server. In order to facilitate this process, three different approaches
were considered:

15

Figure 8: a diagram of the first considered approach

For this idea, the client uploads an fbx file, a JSON file of the locator posi-
tions is generated, the Watchdog library is used to detect these uploads, once
completed it runs a command in MayaPy which would return a rigged character
which is then sent to the server and the server sends it to the client.

Figure 9: a diagram of the second considered approach

The second considered approach was that while the server is running, a
separate script watches over the folder structure of the server, once a folder
contains two files (the uploaded fbx and the generated JSON file) it will trigger
a new instance of MayaPy that looks for files in the folder it is triggered in.
Then Watchdog is used to check for the MayaPy output to then upload it to
the server.

This idea was discarded because constantly checking every folder on the
server can quickly become a drain on resources

16

Figure 10: a diagram of the third considered approach

This third considered approach was to have a clone of each client on the
server side to facilitate the uploading of files to the server. Since the upload
function of the server was working it might have been possible to replicate this
on both sides. Keystone was also incorporated to run the auto-rigger from the
server since no solution seemed apparent.

Along with these concepts, an attempt was made to employ Keystone as
a way of starting the auto-rigger from the server. This attempt was however
unfruitful and has been written about in detail in appendix .16.

While Keystone was being researched, a different way of accessing the Python
command line in Maya was discovered Theodore, 2014. Since the Maya com-
mand port is unavailable when running a standalone version, an RPC server can
be used to run a Maya Standalone that does accept remote commands. This
RPC server is started from the command line by calling:

cd C:Program FilesAutodeskMaya2023bin
mayapy.exe Path/to/Documents/maya/2023/scripts/standaloneRPC.py

This revealed that Python scripts can be called through a script by running
MayaPy with a path to the desired Python script as an argument.

To incorporate this concept into the Flask Python Server, the subprocess.call()
function was used when the JSON file was uploaded to the server through a
POST request.

17

Figure 11: a diagram of the final approach

The final network setup consists of a Flask Python Server that routes the
user through two html templates; the upload page where the unrigged character
fbx is uploaded, and the Three.js page where the positions of the locators are
provided by the user. The server is being served using Waitress. Once the
user input is submitted, a JSON with the data and the FBX file are sent to
the Maya Python interpreter which in turn runs the auto-rigging scripts. The
rigged character is then uploaded to the TPose platform where the client can
use it during a shoot to preview recorded motion.

18

10 How can Three.js be effectively utilized to
create and display a 3D character in a web-
based environment?

To create a basic 3D environment in Three.js and display it in the web browser,
you need three elements:

• A scene; is a container where 3D objects, lights, cameras, and other ele-
ments are organized and rendered. It represents the virtual environment
where the 3D graphics and animations are displayed.

• A camera; represents the viewpoint through which the 3D scene is ob-
served and rendered. It controls the perspective, framing, and visibility
of the scene, allowing developers to define how the 3D world is viewed by
the user.

• A renderer; is responsible for converting the virtual 3D scene into a 2D
image that can be displayed on the screen. It utilizes WebGL or the 2D
canvas API for rendering, handles lighting, shading, and visual effects,
and provides customisable settings for the output display.

For this research, a simple scene containing an orthographic camera facing
in the -z direction was created. In order to display the uploaded 3D model,
a component called FBX Loader was imported and utilized. An FBX loader
is a component used to import and parse 3D models saved in the FBX file
format. It enables developers to bring in complex scenes, meshes, animations,
and materials created in software packages supporting FBX. The loader converts
the FBX data into a format compatible with Three.js, allowing developers to
incorporate FBX models into their Three.js projects.

Figure 12: the simple Three.js environment with a 3D character mesh and
spheres as Locators

19

In order to create locators that allow the user to indicate where the joints
will be placed, the Drag Controls example found in the Three.js documentation
website was used and modified. Drag Controls is a utility that enables interac-
tive dragging and manipulation of 3D objects within a scene. It simplifies the
implementation of object-dragging functionality and enhances user interaction
by allowing intuitive object manipulation through mouse or touch input.

“Lil-gui” is a commonly utilized user interface (UI) tool within the Three.js
ecosystem. It offers an interface for dynamically adjusting the properties of
JavaScript objects during run time. As a preferred choice by Three.js, it
serves as a standard UI component, providing seamless integration with Three.js
projects. With its modern web standards and user-friendly enhancements, “lil-
gui” offers an efficient and intuitive way to interact with and modify JavaScript
object properties in real time.

Figure 13: default style sheet

It comes with a built-in style sheet for ease
of use, but in order to more seamlessly inte-
grate the auto-rigging system into the TPose
platform, the choice was made it write a new
style sheet based on style elements found on
the TPose website.

This process took two steps, first re-
search was performed into how the style sheet
worked and how it could be adapted dynam-
ically. The first version made use of the vari-
ables exposed in the kitchen sink demo which
are used as Root Values in the overall style
sheet. These allowed for manual-style adap-
tation while the script was running, but that

was not the desired way of handling things.
For the second version, the default style sheet was uncovered in the web page

inspector. By stopping the lil-gui window from using the preset style sheet but
instead manually applying the style sheet through the ¡style¿ tag in the HTML
page, it was possible to remove rather than overwrite values.

With help from the in-house designer, Nick, and the TPose website, a match-
ing UI style was created for the final prototype.

20

(a) Closest Distance skin bind
method performed on the

Blacksmith model

(b) Closest in Hierarchy skin bind
method performed on the

Blacksmith model

Figure 14: Test results from the bind methods
21

Data has to be transferred from the Three.js page to the Python auto-rigging
tool in Maya. In order to facilitate the transfer of data between two different
languages, JSON (JavaScript Object Notation) files are often used. JSON is a
lightweight, human-readable data format commonly used for data interchange
between web applications and services. It serves as a language-independent
format for representing structured data, making it easy for different systems to
exchange information. (“JSON”, 2023)

The values that had to be transferred between Three.js and Python were:

• the positions of the body locators

• the positions of the left- and right-hand locators

• the direction of the camera used to place the hand locators

• the skin bind quality parameter

All these values were written out into a dictionary with a corresponding
key to access each value. By concatenating the created dictionaries together, a
single ’JsonContent’ value is created which is then turned into a file using the
’JSON.stringify()’ function. This file is then invisibly submitted to a form and
uploaded alongside the uploaded 3D model.

22

11 How can the created auto-rigging tool be im-
plemented in the current TPose platform?

Figure 15: The TPose dashboard design as of June 2023

The development of the TPose platform was still ongoing at the conclusion
of this research. As a result, the upcoming chapter will primarily consist of
theoretical speculation based on the existing development plans.

The TPose platform functions as a website that enables clients who have
scheduled remote motion capture shoots to access their accounts. Once logged
in, clients gain access to a dashboard equipped with various features. Among
these features is a page where clients can upload their shot list before the shoot
begins. TPose then reviews and approves the shot list to ensure that the client’s
expectations align with what is feasible. Additionally, clients can specify the
character they wish to use for each shot, enabling the interface to dynamically
switch between characters during the shoot.

The platform provides a dedicated environment for the shoot itself. Clients
receive an NDI Stream that showcases the live output from the link motion
capture suit in MVN, a retargeted version presented through Three.js on a
character, a camera view of the mocap artist in the studio, and conferencing
options such as video connections and chat windows. After the shoot, clients
can access a list of their recordings, view them after reprocessing, and download
them.

As an additional feature, the auto-rigger tool will be integrated into the
dashboard, enabling users to add un-rigged characters to the character library.
This library allows users to select a character and preview their data with it.
However, before the smooth integration of this feature, adjustments needed to be

23

made to the rigging and exporting processes of the characters to align with the
retargeting performed in the Three.js environment. These adjustments involved
posing the character to a clean T-Pose after rigging and skinning, as well as
setting the joint orientation from the standard xyz to yxz.

12 Testing

12.1 Prototype V2

12.1.1 Case Study

Figure 16: A screenshot of the model used in the use case inside of the three.js
environment

Upon completion of the second prototype, the researcher was approached for a
potential use case for the auto-rigger. A student from Zuyd University of Ap-
plied Sciences created a 3D model using the sculpting tool Nomad and recorded
motion capture data using the MVN Link suit. They were struggling with
rigging their character and retargeting it to the motion capture data which is
exactly what this tool is designed to do. Since the prototype was not running
online yet, the tool was applied to the delivered assets by the researcher rather
than the user.

The delivered assets had various issues that had to be resolved before they
could work in the auto-rigger. These were primarily issues related to conforming
to industry standard practices such as the model having proper topology, as well
as Nomad-specific issues such as the textures being stored as Vertex Colours
rather than UV-Mapped textures.

After these issues were resolved, the auto-rigger worked as desired and an
acceptable result was achieved. The result satisfied the users’ needs for both

24

the quality of the rig and the amount of time it took.
For the full account of the Use Case Test, you can consult appendix .10,

additionally, videos of the result can be found in appendix .11 and appendix .12

12.1.2 Comparitive Study

The first actively tested prototype was dubbed ‘V2’ due to the preceding pro-
totypes for uploading files, automatic rigging, and displaying the 3D model in a
web browser being considered the first versions of their respective development
branches. During the testing of Prototype V2, a wide range of 34 characters was
gathered from both in-house sources as well as the Unreal Marketplace. These
characters varied greatly in complexity, proportions, and attributes, but were
all generally considered to qualify as ‘humanoid’. The full extent of the testing
can be found in appendix .17, in this paper, only the comparative part of the
testing will be covered.

While most issues are apparent, with the goal being to be on par with
existing solutions, a comparison is needed. By running a selection of the more
challenging models through similar software, a good idea of what the current
auto-rigger lacks can be formed. By applying a similar skinning test animation
to each model, a good comparison can be made. AccuRig did not have the
same skinning test as Mixamo and TPose, the decision was made that it is still
possible to judge the results.

• Aurora performed quite well in all three auto-rigging tools. The only issue
found in the TPose auto-rigger is in the armpits deforming along with the
arms. Something along the lines of volume preservers could resolve this
issue.

• Crunch was one of the models with very clear issues, it was interesting to
see how other auto-riggers dealt with the intersecting limbs. The results
from the TPose auto-rigger and AccuRig are quite similar, the model
animates nicely but has long stretched artefacts between the legs and
hands. Mixamo was unable to process this model, likely due to its machine
learning algorithm being unable to clearly define the limbs.

• Especially the head of the Goblin character was a challenge in each auto-
rigger. Since there is no real torso on this character, the ‘head’ bone tends
to create odd deformations in the face. This model pushes the bound-
aries of what can be considered a humanoid character so these results are
expected.

• GRIM is an odd robotic creature controlled by a goblin shape between
its legs. Both AccuRig and TPose manage to preserve this goblin shapes
volume quite nicely, weighing it to the torso rather than the legs. In
Mixamo however, this shape is folded flat. Otherwise, this model moves
as desired, in TPose there are some small shoulder issues which again can
be solved with some form of volume preservers.

25

• Sevarog causes issues in each auto-rigging software due to its long strands
and lack of legs. In Mixamo the strands turn into jagged artefacts, in
TPose and AccuRig they retain their shape better but still rigidly move
along with the bones. For the legs, in Mixamo the longest strands are
calculated as the legs which works somewhat, in TPose there is an issue
where the feet are placed automatically but they don’t hit the mesh, caus-
ing them to be placed in an odd location which causes some artefacts in
the head. in AccuRig the longest strands are also made into the legs, but
there is also an option to ‘mask’ out certain limbs so they don’t affect the
model.

• The Skeleton King is a challenge for every auto-rigger due to its asym-
metry, large prop and lack of topology. AccuRig picks up the large props
on the body the best but also struggles with the large sword and the
head hunching forward. TPose clearly struggles with this model the most,
causing a lot of big artefacts on the cape, sword, and other asymmetric
parts. It is likely that some of this can be mitigated by adding asymmetry
support to the auto-rigger.

12.1.3 Time

Character Time to place locators Time to run the rig
Aurora 0:58 0:45
Crunch 0:44 N.a.N.
Goblin 0:31 0:57
GRIM 1:03 1:13
Sevarog 1:05 1:18

Skeleton King 1:03 0:57
Average 0:54 1:02

Mixamo Time

Character Time to place locators Time to run the rig
Aurora 1:05 0:48
Crunch 0:53 1:19
Goblin 1:04 0:40
GRIM 1:14 1:09
Sevarog 1:16 0:58

Skeleton King 1:00 0:40
Average 1:05 0:56

TPose Time

26

Character Time to place locators Time to run the rig
Aurora 4:19 0:24
Crunch 4:53 0:37
Goblin 2:55 0:47
GRIM 2:27 0:24
Sevarog 4:00 0:18

Skeleton King 3:49 0:16
Average 3:44 0:28

Accurig Time

Comparing the time it took to go through the process from upload to finished
rig provides insight into the fluidity of using the tool. Both Mixamo and TPose
are pretty simplistic in the amount of work needed to rig a character, and the UI
is quite intuitive allowing for a quick workflow. AccuRig takes almost 3,5 times
longer to place the locators, this is in part due to having to manually place the
locators on both hands manually and having to correct the wrongly predicted
location of the locators. For TPose, the hand locators also have to be manually
placed but the location of both the body and hand locators is not calculated
through machine learning, instead, it places them in the approximate human
proportions which can save a lot of time compared to Mixamo where they have
to be dragged from the left side of the screen to the model and AccuRig which
often misplaces the locators.

12.1.4 Conclusions

There are certain requirements for a model to be processed by the current auto-
rigger:

• It must be a .fbx file.

• The .fbx file must contain a single mesh object.

• The model must have sufficient topology for deformations.

• The model must be largely symmetrical.

• The model can not contain large props.

• The models’ limbs can not intersect each other.

• The skin quality must be higher when the model almost intersects.

• The hands of the model must be visible.

• The model must have clearly defined limbs.

• The model must be humanoid.

• The model must be placed in the center of the scene.

27

While this list seems long, It is comparable to the list provided by Mixamo:

Figure 17: A screenshot of the Mixamo FAQ page “Mixamo”, 2023

Some notable differences are that for my auto-rigger it must be a .fbx file
where Mixamo accepts .fbx, .obj and .zip files, the skin quality is something
supplied by the user, the hands having to be visible for the manual placement
for the fingers, and the TPose auto rigger does support floating heads.

AccuRig by Reallusion does not have a list like this using it has revealed the
following: It supports both .obj and .fbx files. The characters can be in T-pose,
A-pose, multi-mesh, or even photo scanned. Characters with large accessories
are not supported

When it comes to supporting less than 5 fingers, that is not something that
will be implemented in the auto-rigger itself, while it does support less-fingered
characters, the mocap data will always contain 5 so in order to record data for
a character with 3 fingers, the index and middle finger of the mocap actor will
have to be physically tied together, as well as the ring and pinky finger.

Certain requirements uncovered during this test have been selected to be
improved upon in the next prototype phase:

28

• Allow .fbx files that contain a model made of multiple parts.

• Allow .obj files

• Support for asymmetrical models

• Explain skin bind quality to the user

• Add ‘advanced’ volume preservers for models with arms close to their torso

• Consider IK legs for digitigrade characters

• Find out why the fingers sometimes don’t turn the right way

• Make sure the root motion matches the mocap data

12.2 Prototype V3

Figure 18: A screenshot of the Prototype V3 being used on the Blacksmith
model

12.2.1 User Test

For this round of testing, users were tasked with spinning a wheel of names and
then rigging the resulting character using the auto-rigger. During the rigging
process, the researcher observed the users but did not actively interfere. Once
the rigging was completed, the user was asked to fill out a survey, during this
process the user was left unsupervised to promote honesty and anonymity.

After the first test, a significant issue that would impact further testing was
uncovered. The auto-rigging process was not a circular process, meaning the
user leaves the three.js environment and is redirected to the Maya file. This was
quickly mitigated by creating a loading screen animation, Automatically having

29

Maya run in the background, and adding a three.js preview of the model on the
final page of the process.

A full account of the test results can be found in appendix .13

12.2.2 Time

Character Time to place locators Time to run the rig
Aurora 0:58 1:08
Crunch 0:45 0:47
Goblin 0:51 0:37
GRIM 0:49 0:45
Sevarog 0:51 0:45

Skeleton King 1:41 0:36
Average 0:59 0:45

By comparing the time it took to go through the process from upload to finished
rig in Prototype V3 to Prototype V2 insight can be gained into whether or not
the implemented improvements caused any issues with the fluidity of using the
tool. While the difference is by no means significant, one outlier can be seen
in the time it took to place the locators for the Skeleton King. This was due
to the Skeleton King being asymmetrical and thus requiring the placement of
locators on both hands thanks to the newly implemented asymmetry support.
A comparison to Mixamo and Accurig was omitted from this test due to the
results not being any different from the previous test.

12.2.3 Conclusions

The testing revealed a range of remaining issues with the auto-rigger, primarily
in the UI/UX direction. This was expected since the UI/UX had not been
through testing before and was not the primary focus of this research. The
most prevalent of the issues was that the tool was lacking a clear narrative to
guide the user through the steps. This could be solved by a range of options,
from numbering the buttons to sectioning off portions of the UI and adding
explanatory text.

There were also issues with the rig itself, mainly in the feet and the fingers.
Since the root motion of the recorded data does not scale with the retargeting
to the model, the feet often float when the knees are bent. The fingers also often
behave strangely, in part due to the skinning but there are also some rotational
issues in the bones that need to be resolved.

Overall the quality of the resulting rig was acceptable for previewing recorded
motions and the process of rigging was easy to follow regardless of the UI/UX
issues experienced.

Some of the issues uncovered during this test will be resolved during the
remainder of the development period, others will be left as recommendations at
the end of the report.

30

13 Conclusions

In order to develop an automatic rigging tool that can be integrated as part
of a web-based remote motion capture platform several challenges have to be
overcome.

To address the first sub-question, the creation of a custom auto-rigger using
Python for Maya involves leveraging the powerful capabilities of the MayaPy
interpreter to automate the rigging process. This requires in-depth knowledge
of Python scripting and Maya’s rigging functionalities to design an efficient
and customisable auto-rigger that can generate rig setups for various character
models.

The establishment of a server-client connection is vital for enabling the
seamless uploading, processing, and downloading of files within the platform.
This involves implementing robust file transfer protocols and managing client-
server communication. By employing suitable web development technologies
and frameworks, such as Flask, along with appropriate file-handling mecha-
nisms, a reliable server-client connection can be achieved.

The effective utilization of Three.js, a popular JavaScript library for 3D
rendering, is crucial in creating and displaying a 3D character in a web-based
environment. Leveraging the capabilities of Three.js, developers can import and
manipulate 3D character models, view animations, and render them in real time
within the web interface. This requires a solid understanding of Three.js APIs,
3D modelling principles, and web graphics rendering techniques.

Finally, the integration of the created auto-rigging tool into the current
TPose platform requires careful consideration of the platform’s architecture and
workflows. This involves designing a user-friendly interface for users to access
and utilize the auto-rigger seamlessly within the platform. Additionally, the rig-
ging tool must be adapted to align with the platform’s existing file management,
character library, and motion capture workflow.

By addressing these sub-questions and considering the technical require-
ments and design principles, an automatic rigging tool can be successfully
created and integrated into a web-based remote motion capture platform like
TPose, enabling users to streamline the rigging process, facilitate previewing
motion on a custom character, and enhance the overall motion capture experi-
ence.

14 Discussion

The chosen manner of testing the prototypes was befitting of technical research
such as this one. It allowed the researcher to uncover a range of flaws with the
product that could be addressed in the following development cycle. It could
be argued that since the testing was performed by the researcher itself rather
than the user, the validity of the testing is in question. However, since the
testing was performed in order to compare the results of various models with
existing auto-riggers, the variable of various users utilizing the auto-rigger was

31

intentionally left out.
For the second round of testing, the variable of rigging a randomized 3D

model from a pool of selected models interfered somewhat with the statistical
test results since some models performed better than others in the auto-rigger.
This did however allow for a wider range of feedback to be gathered during the
observation part of the testing which accounted for a significant portion of the
results.

The created auto-rigger is functional but also still has several issues that are
hard to ignore. The fact that the auto-rigger is unable to run in Maya standalone
is a big downside for the seamless integration into the TPose platform. Various
rotational issues in the rig are also cause for concern if not addressed in the near
future. The ease of use of the tool is however comparable to other auto-rigging
tools, as well as the speed at which the model is processed.

Overall the created tool fulfils the needs of the client, but optimally a few
weeks of additional development and thorough testing is performed to really
round off and polish out all the remaining issues.

15 Recommendations

Based on the research and development conducted for the creation and integra-
tion of an automatic rigging tool as part of a web-based remote motion capture
platform, the following recommendations are proposed:

Further Enhancements to the Automatic Rigging Tool:

• The Geodesic Voxel bind skin method could be recreated in a way that
does not require access to an OpenGL buffer by employing more mod-
ern Python libraries. This would allow the auto-rigger to run in Maya
standalone and therefore not require a server with a GPU to run.

• Additional constraints could be created using the auto-rigger to allow for
easy manual animation such as inverse kinematics on the legs, double
elbows, and arm twists.

• Conduct usability testing and gather feedback from professional anima-
tors and riggers to identify areas for improvement and optimize the user
experience of the auto-rigger.

Robust Server-Client Infrastructure:

• Strengthen the server-client connection by implementing secure file trans-
fer protocols, ensuring data integrity, and optimizing file processing and
downloading speeds.

• Implement a task queue on the server for more scalability, allowing mul-
tiple users to submit a rigging request at the same time without crashing
the process.

32

• When integrating the auto-rigger into the TPose environment, the net-
working system using Flask will either have to be modified or converted
to match the networking system employed by the TPose platform.

Optimization of Three.js Implementation:

• Improve upon the existing retargeting workflow, allowing partial transfer
of rotation would allow for more advanced rigging features in the preview
such as double elbows and arm twists.

• Conduct performance optimizations to ensure smooth real-time rendering
and interactivity of the 3D character models, especially when dealing with
complex animations and high-polygon models.

• Provide customization options within the web interface to allow users to
adjust graphics settings based on their device capabilities and network
conditions.

By implementing these recommendations, the automatic rigging tool can
be enhanced to provide more advanced rigging features and a smoother user
experience. The server-client infrastructure can be further optimized for secure
and efficient file transfer and processing. The Three.js implementation can be
refined to deliver high-quality 3D character rendering and interactivity. Finally,
the integration with the TPose platform can be strengthened to provide seamless
access to the auto-rigging functionality for platform users.

33

References

Arrachequesne, D. (2023). Socket.IO. https://socket.io/docs/v4/
Artell. (2023). Rig Features — AutoRigPro Doc documentation. http://www.

lucky3d.fr/auto-rig-pro/doc/rig behaviour doc.html
Auto Character System 3. (2023). https://www.autocharactersystem.com/
Autodesk. (n.d.). Quick Rig Tool. https://help.autodesk.com/view/MAYAUL/

2022/ENU/?guid=GUID-DC29C982-D04F-4C20-9DBA-4BBB33E027EF
Autorigs. (2023). https://www.sidefx.com/docs/houdini/character/autorigs.

html
Cabello, R. (2010). Ricardo Cabello. https://ricardocabello.com/
Chesneau, B. (2023). Gunicorn - Python WSGI HTTP Server for UNIX. https:

//gunicorn.org/
Dionne, O., & De Lasa, M. (2013). Geodesic voxel binding for production char-

acter meshes. https://doi.org/10.1145/2485895.2485919
Eventlet Networking Library. (2023). https://eventlet.net/
Free Auto Rig for any 3D Character — AccuRIG. (2023). https://actorcore.

reallusion.com/auto-rig#rig-characters
GeeksforGeeks. (2023). Flask HTTP methods handle GET POST requests.

GeeksforGeeks. https://www.geeksforgeeks.org/flask-http-methods-
handle-get-post-requests/

Gorakhargosh. (2023). Watchdog. https://github.com/gorakhargosh/watchdog
JSON. (2023). https://www.json.org/json-en.html
Le, B. H., & Deng, Z. (2014). Robust and accurate skeletal rigging from mesh

sequences. ACM Transactions on Graphics, 33 (4), 1–10. https://doi.
org/10.1145/2601097.2601161

Mixamo. (2023). https://www.mixamo.com/
Ronacher, A. (2023). Flask 2.3.2. https://flask.palletsprojects.com/en/2.3.x/
Team, B. D. (2023). Rigify — Blender Manual. https : //docs . blender . org/

manual/en/2.81/addons/rigging/rigify.html
The Maya Python Interpreter, MayaPy. (2023). https://help.autodesk.com/

view/MAYACRE/ENU/?guid=GUID-D64ACA64-2566-42B3-BE0F-
BCE843A1702F

Theodore, S. (2014). Earth calling maya.standalone! http ://techartsurvival .
blogspot.com/2014/04/earth-calling-mayastandalone.html

Theodore, S. (2023). Keystone. https://github.com/theodox/keystone
Uvicorn. (2023). https://www.uvicorn.org/
Waitress. (2022). https://pypi.org/project/waitress/
Xu, Z., Zhou, Y., Kalogerakis, E., Landreth, C., & Singh, K. P. (2020). RigNet.

ACM Transactions on Graphics, 39 (4). https : / / doi . org / 10 . 1145 /
3386569.3392379

Xu, Z., Zhou, Y., Kalogerakis, E., & Singh, K. P. (2019). Predicting Anima-
tion Skeletons for 3D Articulated Models via Volumetric Nets. arXiv
(Cornell University). https://doi.org/10.48550/arxiv.1908.08506

34

Appendices

.1 Emphatise and Define

A blog post at:

https://danthelionvfx.wordpress.com/2023/03/12/emphatize-and-define/

.2 Maya Python Auto Rigger 1

A blog post at:

https://danthelionvfx.wordpress.com/2023/02/01/maya-python-auto-rigger/

.3 Maya Python Auto Rigger 2

A blog post at:

https://danthelionvfx.wordpress.com/2023/02/01/maya-python-auto-rigger-2-2/

.4 Auto Rigger Inspiration

A blog post at:

https://danthelionvfx.wordpress.com/2023/02/01/maya-python-auto-rigger-2/

.5 Maya Python Auto Rigger 3

A blog post at:

https://danthelionvfx.wordpress.com/2023/02/01/maya-python-auto-rigger-3/

.6 Maya Python Auto Rigger 4

A blog post at:

https://danthelionvfx.wordpress.com/2023/02/02/maya-python-auto-rigger-4/

.7 Geodesic Voxel in Maya Standalone

A blog post at:

https://danthelionvfx.wordpress.com/2023/04/04/geodesic-voxel-in-maya-standalone/

.8 Three JS Server

A blog post at:

https://danthelionvfx.wordpress.com/2023/03/14/three-js-server/

.9 Socket IO - Server File Upload

A Youtube video at: https://youtu.be/IAj1eGSF1Ic \newline

A demo of the Socket.IO server receiving an uploaded file,

displaying it on the next page, and saving position values to a text file

35

.10 Use Case Testing

A blog post at:

https://danthelionvfx.wordpress.com/2023/05/03/use-case-testing/

.11 Auto Rigger V2 Use Case Test 2

A Youtube video at: https://youtu.be/6ZukKXc0h-s

.12 Prototype V2: Use Case Test Render

A Youtube video at: https://youtu.be/_IwFw3Y1NZY

.13 User Testing V3

A blog post at:

https://danthelionvfx.wordpress.com/2023/06/14/user-testing-v3/

.14 Maya Auto Rigger V2

A blog post at:

https://danthelionvfx.wordpress.com/2023/02/02/maya-auto-rigger-v2/

.15 Maya Python Auto Rigger 5

A blog post at:

https://danthelionvfx.wordpress.com/2023/02/06/maya-python-auto-rigger-5/

.16 From Server to Running the Auto Rigger

A blog post at:

https://danthelionvfx.wordpress.com/2023/03/21/from-server-to-running-the-auto-rigger/

.17 Quantitative Testing of In-House Models

A blog post at:

https://danthelionvfx.wordpress.com/2023/05/11/quantitative-testing-of-in-house-models/

.18 non-Thesis related work performed for Het Nieuwe
Kader studio

Several tasks have been picked up by the researcher while working on the Bach-
elor Thesis Various blog posts at:

https://danthelionvfx.wordpress.com/2023/03/20/oorlogs-pad-door/

https://danthelionvfx.wordpress.com/2023/03/03/ran-d-mask/

https://danthelionvfx.wordpress.com/2023/03/03/ran-d-portal-creation/

36

https://danthelionvfx.wordpress.com/2023/02/06/touchdesigner-xsens-link/

https://danthelionvfx.wordpress.com/2023/02/01/camera-tracking-with-trackmen/

https://danthelionvfx.wordpress.com/2023/02/01/camera-tracking-with-htc-vive-puck/

https://danthelionvfx.wordpress.com/2023/01/30/camera-tracking-with-antilatency/

https://danthelionvfx.wordpress.com/2023/01/30/touch-designer/

.19 The Blog

A lot of the work done during this bachelor thesis has been recorded on a blog
page, this might give insight into the development of the professional products
and the timeline at which it happened.

https://danthelionvfx.wordpress.com/tpose-progress-blog/

37

