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Abstract—Accurate sound field reproduction in rooms is often
limited by the lack of knowledge of the room characteristics.
Information about the room shape or nearby reflecting bound-
aries can, in principle, be used to improve the accuracy of
the reproduction. In this paper, we propose a method to infer
the location of nearby reflecting boundaries from measurements
on a microphone array. As opposed to traditional methods,
we explicitly exploit the loudspeaker directivity model—beyond
omnidirectional radiation—and the microphone array geometry.
This approach does not require noiseless timing information of
the echoes as input, nor a tailored loudspeaker-wall-microphone
measurement step. Simulations show the proposed model outper-
forms current methods that disregard directivity in reberverant
environments.

Index Terms—Room geometry estimation, sparse recovery,
beamforming, room acoustics, image source model, spatial room
impulse response, loudspeaker directivity model

I. INTRODUCTION

The sound field produced by a loudspeaker system in an
enclosed space is primarily—but not exclusively—determined
by the loudspeakers characteristics and their position relative
to the room walls [1]. “Smart” loudspeakers including built-in
microphone arrays are becoming ubiquitous. Often sound field
reproduction using these high-end systems has to comply with
strict quality requirements: The listening experience should be
good irrespective of where the loudspeaker is placed in the
room. Reflections of sound from the surfaces in the room —
the locations of which are unknown in practice — result in
inaccurate sound reproduction [2]. One could try to infer a
total or partial estimate of the room shape using the built-in
microphones, and use this information to improve the quality
of the sound field generated by the loudspeaker system.

The problem addressed in this paper is the following: given
a system composed of a co-located microphone array of
known geometry and a co-located loudspeaker set with known
directivity; estimate the location of reflecting surfaces close to
the system.

Existing methods that estimate the location of reflecting
surfaces by emitting a known signal using a loudspeaker are
classically carried out as follows: First, the room impulse
response (RIR) is estimated as a step in calculating the time of
arrival (TOA). GCC-PHAT [3] is an established algorithm to
achieve this. Further consider a compact microphone array,
beamforming can be used to calculate a steered-response.
This results in improved robustness against uniform spatially
uncorrelated noise. In this setting, the microphone array ge-
ometry can be exploited as prior for the TOA estimation. In a

scenario where the echoes need to be sorted, greedy methods
are often used [4], [5]. The performance of these methods usu-
ally degrades with reverberation—i.e. reflecting boundaries—,
especially when received echoes have overlap in time (which
happens due to finite measurement bandwidth). Moreover, the
echo sorting problem is computationally demanding.

The problem can be relaxed by including information
about the loudspeaker-wall behavior and solving the source
localization problem jointly. In particular, explicit loudspeaker
modeling is often neglected and simplified to omnidirectional
or highly directive models [6]. In [7], the loudspeaker-wall
interaction is implicitly considered by constructing a dictio-
nary from experimental measurements. That method improves
performance in an ideal scenario, but it is not robust when the
scenario deviates from the measured dictionary.

In this paper, we propose a measurement model that explic-
itly includes loudspeaker directivity and the microphone array
geometry. We use this model to solve an inverse problem:
from microphone measurements it outputs an estimation of the
nearby reflecting boundaries. This approach does not require
noiseless timing information of reflections, nor a tailored
loudspeaker-wall-microphone measurement dictionary. As in-
dicated by the simulations, the proposed algorithm shows
improved performance compared to current methods that dis-
regard loudspeaker directivity.

II. PROPOSED METHOD

We propose a novel microphone signal model that maps
the location of image sources to microphone measurements.
Then, the problem of estimating the location of reflecting
surfaces is solved as an inverse problem. We first describe the
signal model in the continuous domain. After discretization
it is reformulated in matrix-vector form. Finally, the inverse
problem is posed as an `1-regularized convex optimization
problem.

Similar to the image source method [8], our signal model
is based on geometric acoustics, i.e. the concept of sound
waves is replaced by sound rays that travel in a narrow
path and reflect specularly. We assume that all image sources
lie on a horizontal plane in order to model vertical planar
surfaces in the room. Although presumably extensible to three
dimensions, we consider for simplicity that the ceiling and
floor reflectors fully absorb. We further assume that the center
of the loudspeaker system lies at the origin, thus coinciding
with the geometric center of a uniform circular array.
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Fig. 1: Model setup. To the right a loudspeaker system and a
circular microphone array. The center dot represents the origin
of coordinates. To the left an image source that models sound
reflection. A reflected sound ray is depicted. The angles φ,
ϕ, and θ denote the angle of the image source position, the
emission angle, and the angle representing a position on the
microphone array, respectively.

A. Continuous Measurement Model

Our model is determined by three main components: Spec-
ular reflection modeled by equivalent image sources, a loud-
speaker with a non-homogeneous directivity response, and
a co-located circular microphone array. Consider the set S
containing the spatial locations of K image sources of first
order, i.e. S = {rk}K−1k=0 for rk ∈ R2 and K > 0. In
this work we restrict ourselves to first-order images since
we are considering only dominant reflections. In general the
contributions of these sources dominate the early part of the
room impulse response. For convenience spatial locations are
expressed in polar coordinates, i.e. r = (R,φ), for R ∈ R+

and φ ∈ E = [0, 2π) the angular support.
We start the analysis describing a theoretical circular array

with a continuous aperture. A practical microphone array is
later modeled by sampling the continuous aperture in space.
Let the signal received by the continuous array be denoted
by y(t, θ), with θ ∈ E . Here we assume a fixed array radius.
Dependence on the radius is therefore not stated explicitly.
The signal model is given by the following map:

R2 → L2(R, E) (1)
S 7→ y(t, θ),

where L2 is Lebesgue’s space of finite energy signals. In this
paper, the goal is to obtain an approximation of the inverse
of the map stated in (1), i.e. to recover the image source
locations from signal measurements at different angles (i.e.
array positions). In later sections we show that the inverse
problem can be posed as a convex optimization problem in
the discrete domain. The three main components of our model
are introduced next.

1) Image Source locations: The loudspeaker system emits a
known signal x(t). The sound is reflected specularly at a wall.
Estimation of the source location is derived from an estimation
of the wall’s position. This is depicted in Fig. 1. The received
signal y can be written as

y(t, θ) =

(
x ∗

(
hdp(·, θ) +

∑
r∈S

hs(·, θ, r)

))(
t
)
, (2)

where ∗ denotes convolution, hdp(t, θ) is the channel response
of the direct path from the loudspeaker to a microphone
located at θ, and hs(t, θ, r) models the path from an image
source to a point on the circular array. The direction of arrival
of sound rays corresponding to first (and in some cases second)
order reflections coincides with the angle formed by the wall’s
normal point and the center of the array, as seen in Fig. 1.

2) Loudspeaker Directivity: Let us define an angle-
dependent loudspeaker system response in the far-field (at a
distance R0), and denote it by γ0(t, ϕ), where ϕ ∈ E . We
assume this function is known (e.g. it has been measured
a priori), and the system is linear time-invariant. Then we
can extrapolate the loudspeaker impulse response at distances
R > 0,

R0

R
γ0

(
t− R−R0

vc
, ϕ

)
, (3)

where vc denotes the speed of sound in m/s which is assumed
constant and known. Note that (3) constitutes a (simplified)
model for loudspeaker system directivity.

3) Circular-array response: Without loss of generality we
set the center of the circular array at the origin of coordinates.
Image sources are assumed to be in the far field. It is therefore
reasonable to assume signal attenuation due to the distance is
approximately equal at all positions on the array’s circumfer-
ence. The array response is then determined by relative delays
between positions on the circumference. These delays can be
inferred from the direction of arrival of incoming sound, and
the array geometry. For the uniform circular array, it is easy
to show, referring to (2) and (3), that [9], [10]

hs(t, θ, R, φ)=
R0

R
γ0

(
t−R−R0

vc
−Ra
vc

cos (θ − φ) , φ

)
, (4)

where Ra is the radius of the array. For this particular
geometry and image source set S , the angle ϕ = φ in Eq. (4).
The function hs(t, θ, R, φ) represents the response (including
loudspeaker directivity) at an angle θ in the array due to a im-
age source located at r (recall that r = (R,φ)). In an enclosed
space (e.g, a room), the channel response including all sources
contributions is given by h(t, θ) :=

∑
r∈S hs(t, θ, R, φ). Let

us now express h as a convolution integral, this is

h(t, θ) =

∫
E

∫
R+

hs(t, θ, R
′, φ′)uS(R′, φ′)dR′dφ′, (5)

where uS(R,φ) :=
∑

r′∈S(R0/R)δ(R − R′, φ − φ′). The
key observation is that the above can be decomposed as three
convolutions:

h(t, θ) =

∫
R

∫
E
δ

(
t− t′ − Ra

vc
cos(θ − φ′)

)
∫
R+

γ0(t′ − R′ −R0

vc
, φ′)uS(R′, φ′) dR′dφ′dt′,

(6)

which can be interpreted as a linear convolution in time—
proportional to distance—to extrapolate the loudspeaker im-
pulse response, and a two-dimensional convolution to com-
pute the relative microphone delays. In the next section, we
discretize (6) and reformulate it in matrix-vector form.



B. Discrete Measurement Model
The system defined by h(t, θ) is described by the model’s

three main components: the image source locations, the di-
rectivity information of the loudspeaker, and the influence of
the microphone array geometry. It is further assumed that we
can know a reasonably accurate discrete version of h(t, θ), the
array geometry, and the loudspeaker’s directivity. We then aim
at exploiting this information in order to find the image source
locations corresponding to the dominant reflecting boundaries.
Note first that in a real scenario it is necessary to have
a preprocessing stage. In particular, with the right choice
of excitation signals it is possible to perform an accurate
deconvolution [11]. Moreover the direct path hdp(t, θ), can
in principle be estimated from anechoic measurements and be
subtracted from the process.

We consider that the input to our system is a discrete version
of h(t, θ) denoted by h[n,m] for time steps n = 0, . . . , Nh−1
and microphone indexes m = 0, . . . ,M − 1. In other words,
we assume we can obtain h[n,m] from measurements y(t, θ).
We show below how to decompose this system into its three
different building blocks.

1) Image Source Locations: We first discretize R2 uni-
formly in polar coordinates. Our microphone measurements
are sampled in time at fs Hz for M distinct microphones.
We use a stepsize for the radial distance of ∆R = vc/fs,
and an angular stepsize ∆θ = 2π/(MP ) for some integer
P ≥ 1 representing an upsampling factor in the angle domain.
We restrict the image source distances to a range between
Rmin = Ra and Rmax = Tvc/fs+Ra for some integer T ≥ 1.
Image source locations are then assigned to a closest point
in this discretized set. We create the corresponding Voronoi
regions in R2 by using this discrete set of points as generators.
Thus, we have TMP Voronoi regions denoted as V (g) for
generator g ∈ R2. We define a two-dimensional function that
conveys the information about the sources locations, i.e.

s[q, p] :=

K−1∑
k=0

R0

Rk
1V (q vcfs ,p

2π
MP )(rk), (7)

where the generator is given in polar coordinates and the
ranges of q and p follow from the definitions above. The indi-
cator function 1V (q vcfs ,p

2π
MP )(rk), takes the value 1 whenever

the kth image source location falls in the qth, pth Voronoi
region, and 0 otherwise. In other words, s[q, p] represents the
different modeled spatial locations.

2) Loudspeaker Directivity: The loudspeaker model
γ0(t, θ) representing the directivity of the loudspeaker is
discretized as

v[n, p] := γ0

( n
fs
− R0fs

vc
,

2πp

MP

)
, (8)

for n = 0, . . . , Nv − 1 and p = 0, . . . ,MP − 1.
3) Array Geometry: Microphone signals are obtained by

spatial sampling of the model’s continuous aperture. The
microphone positions on the circular aperture are modeled as,

µ[n, p] :=

{
1 if n =

⌈
fs
Ra
vc

(
1− cos

(
2πp
MP

))⌉
,

0 otherwise
, (9)

for n = 0, . . . , Nµ − 1, where d·e denotes the ceiling oper-
ator. Analogous to (6), we express h[n,m] in terms of two-
dimensional and one-dimensional discrete convolutions, i.e.

h[n,m] =

M−1∑
m′=0

Nh−1∑
nh=0

µ
[
n− nh, (mP −m′)mod MP

]
Nv−1∑
nv=0

v[nh − nv,m′]s[nv,m′]

=µ[nP,m] ∗n,m
(
v[n,m] ∗n s[n,m]

)
.

(10)

C. Inverse Problem

We pose the inverse problem as a linear system of equations.
In this manner, we relate the vector of image locations to the
linear system estimates at each of the microphones. Let us
define s(p) as a vector of size T , with elements s

(p)
q := s[q, p],

and let
s :=

[
[s(0)]>, . . . , [s(MP−1)]>

]>
, (11)

where > denotes transposition. Note s is of size TMP . The
channel impulse responses to each microphone are arranged
in a vector of size NhM as

h :=
[
[h(0)]>, . . . , [h(m)]>, . . . , [h(M−1)]>

]>
, (12)

where h(m) has size Nh, with elements h
(m)
n := h[n,m];

it is the vector representation of the impulse response to
microphone m. The forward model is now posed as

h = Φs + n, (13)

where Φ is a matrix of size NhM × TMP representing the
operation in Eq. (10), and n is a noise term.

We conclude this section by showing how matrix Φ is
explicitly constructed. In brief we show that it has a block
Toeplitz structure which, after proper zero-padding makes
it amenable to implement using the FFT. We model the
microphone array and the loudspeaker directivity contributions
using matrices A and D, respectively. Let IN denote the
identity matrix of size N × N and let us define the zero-
padding matrix Wa×b as

Wa×b =

[
Ib

0a−b×b

]
, (14)

for some positive integers a ≥ b. Denote by FM the normal-
ized DFT matrix of size M ×M . Then,

Φ :=
(
IMNh ⊗

[
1,0P−1

])
AD (IMP ⊗WNh×T ) . (15)

where ⊗ is the Kronecker product. We give next explicit
expressions for the matrices A and D.

1) Loudspeaker Directivity D: We form a vector by con-
catenating the angle-dependent directivity responses in (8)

v :=
[
[v(0)]>, . . . , [v(p)]>, . . . [v(MP−1)]>

]>
, (16)

of size NvMP , where v(p) has size Nv and elements v
(p)
n :=

v[n, p]. Then we define

D := (IMP ⊗ FNh)
−1

Λv (IMP ⊗ FNh) , (17)



where
Λv := diag

{(
IMP ⊗ FNhW(Nh×Nv)

)
v
}
, (18)

where diag{b} is a diagonal matrix with entries given by the
elements in vector b.

2) Array Geometry A: We make a vector of size NµMP

m :=
[
[m(0)]>, . . . ,[m(MP−1)]>

]>
, (19)

where m(p) has size Nµ, and has elements m
(p)
n := µ[n, p].

Then,

A := (FMP ⊗ FNh)
−1

Λm (FMP ⊗ FNh) , (20)

where

Λm :=diag
{

(FMP⊗ FNh)
(
IMP ⊗W(Nh×Nµ)

)
m
}
. (21)

D. Solution to the Inverse Problem

The solution of the inverse problem consists of extracting
the image source locations s from the channel estimates h,
i.e. an estimation of the inverse of the forward model in
Eq. (13). The system of equations in Eq. (13) is in general
overdetermined since NhM > TMP . It is possible to inter-
pret Φ as a large dictionary of reflections where each column
captures the channel response due to a single image source. In
principle, the indexes in s corresponding to non-zero values
in the solution carry image source location information. We
estimate the inverse of the forward model in Eq. (13) using
two different approaches.

First note that the magnitude of delay-and-sum steered-
response can be computed using A>. Also the matched filter
for the loudspeaker directivity response involves multiplication
with D>. Then, the cross-correlation delay-and-sum estimate
is given by

ŝCC-DAS = |Φ>h|, (22)

where | · | denotes element-wise absolute value. It is important
to emphasize that this is a generalization of the methods
presented in [3] and [9]. Therein, the loudspeaker is assumed
omnidirectional. These approaches are known to be biased
for loudspeaker impulse response mismatches and for closely
spaced sources [10].

Moreover, note that the vector s is sparse since only a few
candidate positions will be occupied by the unknown image
sources. We therefore pursue a sparcity promoting solution,
i.e. we write the problem as an `1-regularized least squares
problem,

ŝsparse = arg min
s∈RTMP

‖h−Φs‖22 + λ ‖s‖1 , (23)

where λ > 0 is a regularization parameter.

III. EXPERIMENTAL RESULTS

A. Setup

We evaluate the performance of the proposed algorithm in
two different scenarios and compare it with other methods.
We focus on two factors that influence performance. First, the
assumption of an omnidirectional directivity pattern whereas

Fig. 2: Measured loudspeaker directivity function.

the loudspeaker is directive. Second, the ability to resolve
echoes whenever there exist more than one reflecting bound-
ary. In particular, we consider the loudspeaker deconvolution
techniques GCC-PHAT [12], cross-correlation delay-and-sum
(CC-DAS) [3], [9], and `1-regularized least squares (LS) [7].
In GCC-PHAT localization is performed through trilateration
based on the TOA estimates of the array. An overview of
these methods is provided in Table I. In high quality systems, a
loudspeaker with high bandwidth that radiates homogeneously
in a wide angle range is desired. The directivity function
used in the experiments in depicted in Fig. 2. It is obtained
from measurements in anechoic conditions. In order to assess
performance in estimating location, i.e. r̂, under additive white
Gaussian noise (AWGN), we have used two different metrics:
the mean squared error MSE(r̂) = ‖r− r̂‖2, and the error
rate, i.e. localization is incorrect if ||r− r̂||2 > ε for ε = 0.01,
where r is the true source location. The MSE and the error rate
can reveal the differences in performance regarding precision
and accuracy respectively, i.e. a consistent bias in the estimate
against correct estimates. In the experiments, we have chosen
fs = 48 kHz, Ra = 0.035 m, and M = 6 microphones. The
angle-dependent system impulse response γ0(t, ϕ) is measured
for 12 uniform angles and truncated to Nv = 50 samples. The
parameters of the image source candidate locations are set to
T = 78 and P = 2 resulting in h having 936 entries. The
value for λ parameter in Eq. (23) was determined empirically.

B. Results

1) Single Wall: In the simulations, the wall is rotated 30◦

around the system at a fixed distance of 0.5 m to obtain
12 wall-relative positions. This results in different DOAs and
loudspeaker impulse responses. Experiments are made for each
of the 12 different DOA’s and 50 different noise realizations
per DOA. The results here reported are averaged over the
whole set of 12 × 50 experiments. It is also assumed that
the unknown image source is exactly located at one of the
predefined points of candidate locations. We expect methods
assuming an omnidirectional impulse response to introduce
biases when the loudspeaker is directional [3]. Indeed, Figures
3a and 3b show the results of locating a single wall versus the
SNR. Methods not accounting for directionality have a fixed
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(d) Corner error rate

Fig. 3: Performance comparison of various methods for localizing image sources in the presence of AWGN.

TABLE I: Comparison of methods used in experimental setup.
Methods with * denote proposed.

Method LS Model Deconvolution Geometric loc.
GCC-PHAT γ0(t) GCC-PHAT LS Trilateration
CC-DAS-OMNI γ0(t) Cross Corr. Delay and Sum
CC-DAS* γ0(t, ϕ) Cross Corr. Delay and Sum
`1 reg. LS OMNI γ0(t) Sparse deconv. Plane wave resp.
`1 reg. LS* γ0(t, ϕ) Sparse deconv. Plane wave resp.

bias. This manifests itself in a higher error rate. GCC-PHAT
specifically has here poor performance. This can be attributed
to a TOA estimation that is not geometrically constrained by
the microphone locations which makes the trilateration process
more sensitive. This problem is significantly reduced in the
proposed directivity-aware methods, namely CC-DAS and `1-
regularized LS.

2) Two Walls: We place the system in a 90◦-degree corner
equidistant to the two walls forming it. As before, the system
is also rotated to average over several realizations. We require
each of the methods to provide two location estimates. GCC-
PHAT is not considered here due to its poor performance in
the single-wall case and the fact that TOAs would need to be
sorted out to their corresponding sources, which falls outside
the scope of this work. In the two-walls case both reflections
arrive very close in time at the microphones. Steered-response
power methods usually have difficulty in this scenario [3], [9].
We expect sparse recovery methods to be less affected by time
smearing. As can be seen in Fig. 3c and 3d, methods not con-
sidering directivity are biased. When considering only MSE it
seems that to be able to correctly resolve individual echoes
is more relevant than the inclusion of a directivity model,
which would explain why CC-DAS methods underperform
here. The bias introduced, however, hinders performance with
respect to accuracy. It can be observed that `1-regularized LS
consistently attains the best performance. This suggests that,
by introducing a directivity model, sparse recovery methods
are able to further reduce the uncertainty in echo detection.

IV. CONCLUSIONS

We present a method for robust estimation of reflecting
boundaries that incorporates a loudspeaker directivity model.
The times of arrival of echoes are estimated in a joint

step where both microphone array geometry and loudspeaker
directivity are considered. The method is shown to decrease
localization error and improve the accuracy compared to cross-
correlation-based methods when more than one reflecting
boundaries are present. Future work can involve an extension
of this method to multi-driver systems, and extending the
model to account for room boundaries in three dimensions.

REFERENCES

[1] F. Jacobsen and P. M. Juhl, Fundamentals of general linear acoustics.
John Wiley & Sons, 2013.

[2] T. Betlehem and T. D. Abhayapala, “Theory and design of sound
field reproduction in reverberant rooms,” The Journal of the Acoustical
Society of America, vol. 117, no. 4, pp. 2100–2111, 2005.
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