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Highlights 

 

 Distorted visual feedback caused sensory disturbances in healthy volunteers 

 

 Sensorimotor incongruence had no effect on pain in people with chronic low back pain 

 

 The hypothesis of sensorimotor incongruence as a contributor to pain is not supported 
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Abstract 

Chronic low back pain (CLBP) has major public health implications and underlying mechanisms are 

still unclear. Sensorimotor incongruence (SMI) – an ongoing mismatch between top down motor 

output and predicted sensory feedback - may play a role in the course of chronic non-specific low 

back pain. The hypothesis of this study was that the induction of SMI causes sensory disturbances 

and/or pain in people with CLBP and healthy volunteers. A sample of 66 people (33 people with CLBP 

and 33 healthy volunteers) participated in a visual feedback experiment involving real time images of 

the own lower back – either during movement or in a static position - provided via a live video feed. 

Experimental SMI was induced via distorting visual feedback of the lower back during movement. 

There were no significant differences in sensory disturbances or pain intensity between experimental 

SMI and the other movement conditions in people with CLBP and healthy volunteers (p > .05). Static 

visual feedback had a significant effect on the intensity of sensory disturbances in people with CLBP 

(p = .038) and healthy volunteers (p < .001). In conclusion, experimental SMI did not affect sensory 

disturbances or pain in either group. Therefore, the research hypothesis was not supported.  

 

Perspective 

The results of this study show that sensorimotor incongruence does not cause additional symptoms 

and pain in people with chronic low back pain. The conceptual premise that sensorimotor 

incongruence is an underlying contributor in the course of pain in this population is not supported. 

 

Keywords 

Spinal pain, Chronic pain, Visual feedback, Sensorimotor integration, sensorimotor incongruence 
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Introduction 

Chronic low back pain (CLBP) is a common, complex and hard to treat disorder [20; 21; 40; 42]. The 

global point prevalence of low back pain (LBP) was estimated at 9.4% in 2010, with the highest 

prevalence of 15% in Western Europe [21]. When pain persists and becomes chronic, it has a vast 

socioeconomic impact [42]. Overall, unravelling the underlying mechanisms of CLBP is important to 

improve the effectiveness of care.  

 

It is proposed that sensorimotor incongruence (SMI) – a mismatch between motor intention and 

sensory feedback – may help in unravelling the mechanisms of CLBP. Disturbed integration of 

sensorimotor information processes is associated with pain and symptoms (e.g., balance and motor 

control deficits) in people with CLBP [37]. The SMI-hypothesis, proposed by Harris [18], states that a 

mismatch in sensorimotor integration is present in people with nonspecific chronic pain. This 

mismatch might be related to maladaptive plastic changes within the central nervous system [18] 

and is thought to inevitably contribute to the generation of pain. In a similar manner as motion 

sickness is generated when vestibular information is discordant to visual information [18]. Sensory 

disturbances, which occur in a sensorimotor incongruent state, might be warning signals produced by 

the central nervous system. It is hypothesised that when this incongruent state lasts long enough, or 

is strong enough to reach the individual’s threshold, pain will occur [29; 31]. 

 

Bimanual coordination experiments were conducted to test SMI experimentally [7-9; 16; 30; 32; 36; 

43]. In these experiments, participants sit with a mirror between their limbs while performing 

bimanual movements in a synchronous or asynchronous manner. When asynchronous movements 

are performed, a conflict is created between proprioceptive information from the body and visual 
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information provided by the mirror. This artificial conflict between vision, proprioception and motor 

intention is called experimental SMI. 

 

There is evidence that experimental SMI causes pain and sensory disturbances, such as feelings of 

discomfort or peculiarity in people with chronic musculoskeletal pain [3; 7; 8; 14; 30]. While 

experimental SMI caused no pain in healthy individuals, sensory disturbances were often reported [9; 

14; 16; 32; 36; 43]. Furthermore, SMI has been investigated via a live video feed of the neck in people 

with neck pain, since the relevance of investigating SMI via limb movements in people with spinal 

pain seems arbitrary. It was shown that SMI – e.g. distortions in visual feedback of the neck during 

movement - caused more sensory disturbances but no pain in people with whiplash associated 

disorder [13].  

 

SMI has been studied in various musculoskeletal pain conditions [7-9; 30; 36], but not in people with 

LBP. Given the established impairments in neuromuscular control [6; 19; 23], findings of impaired 

body schema [44] and structural or functional brain changes [24] in people with CLBP, a role for SMI 

in people with CLBP seems plausible. The objective of this study was to determine the effect of 

experimental SMI on sensory disturbances and/or pain in people with CLBP and healthy volunteers. It 

is hypothesised that experimental SMI increases the intensity and frequency of sensory disturbances 

and/or pain in people with CLBP. Furthermore, it is hypothesised that people with CLBP experience a 

higher intensity and frequency of sensory disturbances and/or pain during experimental SMI than 

healthy volunteers.  
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Methods 

 

Design 

This study applied a randomised cross-over experimental design. 

 

Participants 

Study participants were recruited via physiotherapists and general practitioners, pamphlets in 

medical gyms and via social media in the Netherlands. In order to be eligible for participation in this 

study, participants needed to meet the criteria for chronic nonspecific LBP, which was defined as 

having back pain ‘localised below the costal margin and above the inferior gluteal fold’[1] as the main 

symptom, with or without leg pain, for a minimum of 3 consecutive months[1; 26]. People with CLBP 

were excluded from the study if there was any evidence of specific spinal pathology (e.g. hernia, 

spinal stenosis, spondylolisthesis, infection, spinal fracture or malignancy), back surgery in the past 

12 months or a severe chronic disease (e.g. a rheumatological-, cardiovascular-, neurological- or 

psychiatric disorder). Healthy pain free volunteers were recruited via participants (partners or life 

companions), pamphlets in medical gyms and via the staff of the primary practices for physiotherapy. 

Pain free, healthy volunteers were excluded if they had sought medical care for LBP in the past 6 

months, or when suffering from any acute of chronic disease at the time of study participation.  

 

All participants needed to be over 18 years old and proficient in Dutch language. People with severe 

visual impairments, epilepsy, pregnant women (until 1 year after giving birth) and people who had 

any former experience with mirror visual feedback treatment were excluded from the study. All 

participants had to discontinue the use of analgesic and anti-inflammatory drugs for 48 hours prior to 
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the experiment and were instructed to refrain from caffeine and alcohol, and to avoid physical 

exertion 24 hours prior to the experiment [10; 13]. 

 

 

Procedure 

All participants were informed about the experiment via a booklet, but they were held naive to the 

purpose of the study. Participants were told that the goal of the study was to examine the effect of 

various kinds of visual feedback of the back in relation to motor control. Explicitly, no further 

explanation and no mentions were given about pain and other sensations to avoid reporting bias. 

Written informed consent was obtained prior to participation in the study. The study was approved 

by the Human Research Ethics Committee of the “Slotervaartziekenhuis en Reade”, Amsterdam in 

the Netherlands. 

 

Baseline characteristics and general health information were collected via a questionnaire. In 

addition, participants were asked to complete a set of questionnaires in a standardised order at 

baseline: average back pain intensity over the last week was measured using a Numeric Rating Scale 

[22], pain related disability using the Roland Morris Disability Scale [35], the level of pain related 

catastrophizing using the Pain Catastrophizing Scale [38], kinesiophobia using the Tampa Scale of 

Kinesiophobia [39; 41] and the Central Sensitization Inventory [28] screened for the presence of 

symptoms of central sensitization.  

 

After the baseline procedure, a 20 second practice trial was implemented, during which participants 

received visual feedback of the lower back during lateral flexion, in order for them to get acquainted 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

9 

 

with the experimental set up. Thereafter, participants were subjected to the visual feedback 

experiment of the lower back. Waiting periods between conditions, where participants sat down in a 

chair, were implemented to allow for any provoked sensations to return to baseline status 

(maximum of 3 minutes). Measurements were performed by a (blinded) research assistant 

immediately after each condition. To prevent test-order bias, all conditions were performed in a 

computer-generated randomised order. To counter assessor bias, the research assistant was blinded 

to the medical history of the study participants (CLBP or healthy volunteer) and the order of the test 

conditions. 

 

Visual feedback experiment 

This experimental protocol was based on a previous study of our group in people with chronic 

whiplash associated disorder [10; 13] and adopted for the LBP population. The experiment consisted 

of 6 experimental conditions and 2 control conditions (Figure 1). All conditions lasted 20 seconds. 

During all experimental conditions, visual feedback was provided on a television screen placed in 

portrait mode in front of the standing participant (Figure 1). The camera (Logitech C920) was placed 

approximately 150 cm away from the participant, in such a way that the whole upper body was 

visible in a realistic fashion on the screen during the conditions. The distance between the participant 

and the screen was standardized at 90 cm (feet to screen).  

 

Visual feedback of the back was provided either during movement (lateral flexion) or in a static 

position and either in a congruent or incongruent (distorted) manner. Visual feedback of the back 

during movement was provided in 2 conditions: the ‘incongruent movement condition’ and 

‘congruent movement condition’. The incongruent movement condition was the most relevant as 

this aimed to create experimental SMI. Participants were asked to continuously side flex the lower 
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back in a submaximal way guided by a metronome (www.metronomeonline.com) at a pace of 40 

beats per minute during the movement conditions. In the congruent movement condition, the image 

of the participant’s back on the television screen moved in the same direction as the participant was 

moving towards (congruent feedback). While, in the incongruent movement condition, the visual 

feedback was congruent during the first 6 side flexing actions, after which the image was suddenly 

switched whereby the side flexion was shown mirrored (incongruent visual feedback).  

 

Static visual feedback was provided in 4 conditions. In 2 conditions, visual feedback of the back was 

provided from behind in a congruent or incongruent manner. In the ‘congruent static back 

condition’, the back was shown correctly. In the ‘incongruent static back condition’, the back was 

shown in a distorted manner as if it was positioned in a lateral lumbar shift. Static visual feedback of 

the left upper body, arm and hand – in a congruent and incongruent manner - was provided in 2 ‘arm 

conditions’. The ‘congruent arm condition’ showed the upper body, arm and hand in a congruent 

manner and the ’incongruent arm condition’ showed the arm and hand in a distorted manner by 

bulging the image. Visual feedback of the upper body, arm and hand was provided to investigate the 

effect of visual feedback of a non-painful region (for the CLBP group). Participants were asked to 

keep their trunk as stationary as possible during the static conditions.  

 

A picture of an apple was shown on the screen in the 2 control conditions; either during side flexion 

of the lower back (analogous to the movement conditions) or in a static position. The apple is 

considered as a neutral image since it has no association with body perception, therefore it 

controlled for sensations produced by moving the lower back (e.g., fatigue, muscle pain, stiffness). 

The image of the apple was also shown on the screen during the waiting periods between conditions.  
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Outcome measures 

Sensory disturbances and pain (as a separate outcome) were the primary outcome measures. These 

outcomes were based on previous studies investigating SMI [32] and were assessed by the blinded 

research assistant directly after each condition. Sensory disturbances were divided into six 

categories: pain, discomfort, perceived temperature- or weight changes, perceived additional- or loss 

of limbs and feelings of peculiarity [7-9; 13; 32]. Perceived additional- or loss of limbs was substituted 

for balance disturbance for people with LBP. When participants experienced a painful feeling, this 

was defined as pain, whereas discomfort was defined as a sensation which felt uncomfortable (but 

did not feel painful). Similar, feelings of peculiarity constituted all sensations which did not feel 

uncomfortable but felt peculiar. All sensations combined were defined as sensory disturbances. 

These were assessed by asking 2 questions in the following order: ‘How did it feel?’ and ‘Were you 

aware of any changes in your body?’. Participants rated perceived symptoms on a Visual Analogue 

Scale (VAS) (0 mm = no sensation to 100 mm = the worst possible sensation). Every single perceived 

symptom was individually rated on a VAS (e.g. when a participant reported pain and dizziness, both 

symptoms were individually scored on a VAS). The highest VAS score was used in the analysis. 

 

The sense of body ownership over the lower back (presented) on the television screen was measured 

at baseline (during the practice trial) and during the incongruent movement condition to account for 

any loss of body ownership due to manipulation of visual feedback during movement which could 

interfere with the onset of SMI. Participants rated the perceived sense of body ownership over the 

lower back on the television screen via the question ‘I felt as if the lower back on the screen was my 

own lower back’ which was scored on a 7-point Likert scale, ranging from strongly disagree (---) to 

strongly agree (+++). This question was originally designed as a part of the rubber hand illusion 

questionnaire by Botvinick and Cohen [4] and was adapted for this study to the region of the lower 

back.  
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Sample Size 

A priori, a sample size calculation for a between groups Mann-Whitney U test was performed using 

G*power 3.1. Data of reported sensory disturbances from the people with CLBP in the pilot trial 

(n=15) of this experiment were used for this calculation. Power was set at 0,8, alfa was set at 0,05 

(two-sided) and the effect size was calculated at 0,75. Standard deviations of the group means were 

used to calculate the effect size. The mean of sensory disturbances in the CLBP group was 5.24 (± 

11.85) and the mean of sensory disturbances in the healthy participants was 1.72 (± 21.34). Equal 

sized sample groups were assumed (meaning the allocation ratio of N1 to N2 is 1). For between 

group effects, the sample size was calculated at 31 participants per group. 

 

 

 

Statistical analysis 

Statistical analysis was performed using IBM SPSS version 22.0 for Windows (IBM Corp., Armonk, 

New York). Normality was tested with the Kolmogorov-Smirnov goodness-of-fit test combined with 

visual inspection of the data. Differences between groups on baseline characteristics were analysed 

using an independent t-test (age), a Pearson chi-square test (sex) and a Fisher’s exact test (pain 

medication and antidepressants). A Friedman’s test was used to compare the intensity of the 

outcomes (reported sensory disturbances and pain) across the movement and static conditions 

within each group. The movement conditions model tested for any increase in sensations due to 

experimental SMI (a mismatch between motor planning and sensory [visual] input), while the static 

conditions model tested for any increase in sensations solely due to a distortion of visual feedback of 
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the body. A Related-Sample Cochran’s Q test was used to compare the frequency of reported 

outcomes across the movement and static conditions within each group. Herewith, the frequency of 

reported outcomes represented the number of people who reported sensations. In case of a 

significant result, pairwise comparisons were performed using a Dunn-Bonferroni correction for 

multiple comparisons. A Mann-Whitney Test was used to compare the intensity and Pearson chi-

square test was used to compare the frequency of sensory disturbances between groups on all three 

incongruent conditions and the control condition with movement. A Wilcoxon signed rank test was 

used to test for any difference in the sense of body ownership over the lower back on the screen 

between baseline and the incongruent movement condition. For all comparisons, p < .05 (two-sided) 

was considered statistically significant. Data are reported as mean and standard deviation (SD) or 

median and inter quartile range (IQR).  
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Results 

 

Baseline characteristics 

A convenience sample of 66 people were included in this study (n=33 in the CLBP group and n=33 in 

the healthy volunteers group). All participants completed the experiment and there were no missing 

data for any of the sensory disturbance outcome measures. Groups were matched for gender and 

age. At baseline, there were no statistically significant differences between groups for any of the 

outcome variables or demographic characteristics (Table 1).  

 

Sensory disturbances during the visual feedback experiment  

Table 2 provides an overview of the frequencies of sensory disturbances which were reported during 

the visual feedback experiment. Pain, discomfort, balance disturbances and feelings of peculiarity 

were reported in both groups (range 0,4% - 22,4%), while perceived temperature or weight changes 

were not reported. No other symptoms were reported.  

 

Within-group differences of reported sensory disturbances between movement conditions 

The Friedman analysis showed no significant effect of visual feedback during movement on the 

intensity of sensory disturbances in people with CLBP (χ2(2) = 2.111, p = .348) and healthy volunteers 

(χ2(2) = 2.947, p = .229). Table 3 provides an overview of the effects of the movement conditions on 

sensory disturbances. The Related-Sample Cochran’s Q test showed no significant effect of visual 

feedback during movement on the frequency of sensory disturbances in people with CLBP (χ2(2) = 

.545, p = .761) and healthy volunteers (χ2(2) = 2.333, p = .311).  
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Within-group differences of reported pain between movement conditions 

Visual feedback during movement had no significant effect on pain intensity in people with CLBP 

(χ2(2) = 2.136, p = .344) and healthy volunteers (χ2(2) = 2.000, p = .368) (Table 3). The Related-

Sample Cochran’s Q test showed no significant effect of visual feedback during movement on the 

frequency of pain in people with CLBP (χ2(2) = .600, p = .741) and healthy volunteers (χ2(2) = 2.000, p 

= .368). 

 

Within-group differences of reported sensory disturbances between static conditions 

Static visual feedback had a significant effect on the intensity of sensory disturbances in people with 

CLBP (χ2(4) = 10.143, p = .038) and healthy volunteers (χ2(4) = 21.560, p < .001). Whereas, post-hoc 

comparisons revealed no significant differences between the static visual feedback conditions in both 

groups. Table 4 provides an overview of the effects of the static visual feedback conditions on 

sensory disturbances.  

 

Static visual feedback had a significant effect on the frequency of sensory disturbances in people with 

CLBP, χ2(4) = 10.261, p = .036. Post-hoc comparisons revealed no significant differences between 

conditions. Static visual feedback had a significant effect on the frequency of sensory disturbances in 

healthy volunteers, χ2(4) = 19.000, p = .001. Post-hoc analysis revealed that the frequency of sensory 

disturbances was significantly higher during the incongruent static back condition (21.2%) than the 

static control condition (0%), padjusted = .031. Furthermore, the frequency of sensory disturbances was 

significantly higher during the incongruent “arm” condition (24.2%) than the congruent “arm” 

condition (3%), padjusted = .031, and significantly higher during the incongruent “arm” condition 

(24.2%) than the static control condition (0%), padjusted = .007. Figure 2 provides an overview of the 

frequency of reported sensory disturbances during the static visual feedback conditions.   
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Within-group differences of reported pain between static conditions 

Static visual feedback had no significant effect on pain intensity in people with CLBP (χ2(4) = 4.654, p 

= .325) and healthy volunteers (χ2(4) = .000, p = 1.000). Furthermore, static visual feedback had no 

significant effect on the frequency of pain in people with CLBP, χ2(4) = 6.222, p = .183. None of the 

healthy volunteers reported pain during all static conditions.  

 

Ownership 

There were no significant differences in the sense of body ownership over the lower back on the 

screen between baseline and the incongruence movement condition in both groups (p > .05; data 

not shown).   

 

Between-group differences 

There was a significant difference between people with CLBP and healthy volunteers in the median 

intensity of sensory disturbances (U = 350.5, p = .002) and the frequency of sensory disturbances 

(x2(1) = 8.9, p = .003) during the incongruent movement condition. Table 5 provides an overview of 

the between-group differences. There were no significant differences between people with CLBP and 

healthy volunteers in sensory disturbances during the incongruent static back condition and the 

incongruent arm condition (p > 0.05). Furthermore, there was a significant difference between 

people with CLBP and healthy volunteers in the median intensity of sensory disturbances (U = 335.5, 

p < .001) and the frequency of sensory disturbances (x2(1) = 11.9, p = .001) during the control 

condition with movement. 
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Discussion 

The aim of this study was to determine the effect of experimental SMI on sensory disturbances 

and/or pain in people with CLBP and healthy volunteers. The results of this study show that 

experimental SMI does not affect sensory disturbances or pain in either group, therefore the 

research hypothesis - that incongruent visual feedback increases sensory disturbances and/or pain – 

is not supported. The intensity and frequency of sensory disturbances were not higher during 

experimental SMI. The same results were found for pain as an outcome. Although a significant effect 

of static visual feedback on sensory disturbances was found in both groups, post hoc analyses did not 

reveal any significant differences between conditions in the CLBP group. However, the healthy 

volunteer group showed an increase in frequency of reported sensory disturbances when static 

visual feedback of one’s own body was shown in a distorted manner. 

 

The results of this study show that experimental SMI is not related to the onset of sensory 

disturbances and/or pain in people with CLBP. Current results are consistent with studies that were 

unable to find a within-group association of SMI and bodily sensations [13; 43]. In contrast, there are 

studies which do show an effect of SMI on sensory disturbances in healthy individuals [5; 16] and 

people with whiplash associated disorder [7; 8]. Similarly, a recent meta-analysis showed that 

movement of the arms with incongruent visual feedback (maximum incongruence) increased the 

odds of pain compared to movement with congruent visual feedback (minimum incongruence) in 

people with fibromyalgia and complex regional pain syndrome (OR = 1.67; 95% CI 1.25 - 2.24), 

however not in people with chronic whiplash associated disorder [3]. Although, these results partly 

support the hypothesis of SMI, the odds are moderate and could also reflect the analgesic effect of 

congruent visual feedback in people with fibromyalgia and complex regional pain syndrome. This is 

substantiated by impaired analgesic responses to visual feedback of the neck in people with chronic 

whiplash associated disorder [10]. In general, results are inconsistent and further studies with 
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rigorous methodology are needed to clarify underlying mechanisms and replicate current results of 

SMI in people with CLBP.   

 

Pain, discomfort, balance disturbances and feelings of peculiarity were reported in both groups 

during the experiment. This is in line with the results of reported sensory disturbances in previous 

studies [5; 7-9; 13; 16; 30; 32; 36; 43]. In this study, the highest frequencies in people with CLBP were 

found for pain (22%) and discomfort (11%), while frequencies were lower in the healthy volunteer 

group (pain 0% and discomfort 6%). Furthermore, the intensity of sensory disturbances was 

significantly higher in people with CLBP than healthy volunteers during experimental SMI. However, 

this difference between people with CLBP and healthy volunteers was also found during the control 

condition with movement. Aggravation of sensations due to movement could be a logical 

explanation for this result. It seems less plausible that a conflict between vision and proprioception 

played a role in this increase of sensory disturbance reports in people with CLBP. This is consistent 

with the study of Boesh et al, which showed that the odds for experiencing sensory disturbances due 

to a sensorimotor conflict was not significantly different between people with chronic pain and 

healthy volunteers [3].  

 

Interestingly, in healthy volunteers, more sensory disturbances were reported when viewing a 

distorted image of one’s own back. While a similar pattern was found in the CLBP group, post hoc 

analyses did not find such differences. This could be due the conservative nature of post hoc analyses 

combined with the relatively high frequency of sensory disturbances during the control condition in 

people with CLBP. There are previous studies that support a symptom-increasing effect of distorted 

visual feedback in people with chronic pain [33], while others show an opposite analgesic effect of 

distorted visual feedback in people with pain and healthy volunteers [12; 27; 34]. Furthermore, there 

is increasing evidence of the analgesic effect of congruent visual feedback in healthy volunteers and 
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people with (low) back pain [11; 12; 45]. We found a (non-significant) lower number of reported 

sensory disturbances during congruent static visual feedback compared to incongruent static visual 

feedback, which might be reflected by the positive effect of this intervention in people with CLBP. 

This might have important implications for developing new visual feedback interventions for people 

with CLBP. However, until now, effects seem highly variable and future research is needed to further 

elucidate the effects of distorted and congruent visual feedback.  

  

Limitations 

The results need to be interpreted with caution due to some limitations. It remains unknown 

whether experimental SMI created a warning signal that was threatening enough to cause a 

sensorimotor conflict, as proposed by Harris in his SMI theory [18]. In the current study, the mirrored 

movements shown on the screen during side flexion created incongruence between top down motor 

planning and real time visual feedback. It is proposed that sensory disturbances reported during SMI 

are warning signals due to this incongruence. The idea is that when this incongruence lasts or 

reaches the individual threshold, this might result in pain [29; 31; 32]. Visual feedback sessions were 

delivered for a short time interval (20 seconds). Even though this interval is congruent with previous 

research, this might be too short to trigger pain due to incongruence. According to the theory of SMI, 

there is a (continuous) internal mismatch within the sensorimotor system which drives the 

nociceptive system in people with chronic pain [15; 18]. Placing someone in an environment of 

incongruence will therefore increase the level of threat and exacerbate existing symptoms. In this 

study, people did often report that they felt confused by the sudden mismatch between visual 

feedback and motor output, which might indicate that the mismatch was effective in generating a 

conflict, however this mismatch did not evoke significantly more bodily sensations compared to the 

other conditions. Participants could, however, have a clear understanding of what caused the 

mismatch, which might have diminished the level of threat. It remains uncertain whether our 
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experimental set-up - placing someone in an environment of conflicting visual feedback (from a third 

person perspective) for 20 seconds - was threatening enough to cause an error in information 

processing. It seems unlikely that any loss of body ownership during the manipulation of visual 

feedback interfered with the onset of SMI, since there were no differences between baseline 

ownership and ownership during the incongruent movement condition. Adapting questions from the 

rubber hand illusion questionnaire, to measure the sense of body ownership during different 

experimental set ups, has been done before to discriminate between experimental conditions [2; 17; 

25; 27]. Despite, the validity of the current ownership-measure in people with CLBP remains 

unknown. Additionally, the lower back was (partly) visible in side view during the ‘arm’ conditions. 

Even though participants were clearly instructed to focus solely on their arm, it remains possible that 

some participants have also focussed on their lower back during the ‘arm’ conditions. This means 

that during these conditions, some participants could have experienced sensations because of 

focussing on their whole upper body and back and not solely by focussing on their arm.   

 

Strengths of this study include the randomized cross-over experimental design, the multiple 

conditions controlling for various major sources of bias, blinding of the research assistant, sample 

size compliant with the a priori sample size calculation, recruitment of people through various 

primary care settings to limit selection bias and the computer-generated randomisation of 

measurement order and order of test conditions. While previous studies have focussed of the effects 

of SMI on pain in people with musculoskeletal pain, this is the first study to investigate SMI in people 

with CLBP.  

 

Conclusion 
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The results of this study show that a sensorimotor conflict, created by a live video feed, does not 

increase sensory disturbances or pain in people with CLBP and healthy volunteers. Therefore, the 

hypothesis that SMI increases sensory disturbances or pain in people with nonspecific chronic pain is 

not supported. Further studies are needed in order to substantiate these results of the effects of 

incongruent visual feedback during movement in people with CLBP.  
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Figure Legends 

 

Figure 1 Visual feedback experiment of the back 

Top row; the experimental setup of the visual feedback experiment of the lower back.  

Middle row (from left to right); visual feedback of the back shown during a static position correctly, 

visual feedback of the back during a static position shown distorted, visual feedback of the back 

during movement shown correctly and visual feedback of the back during movement shown 

mirrored.  

Bottom row; visual feedback of the left upper body and arm shown correctly, visual feedback of the 

left upper body and arm shown bulged and the image of the apple which was provided during the 

static and movement control conditions. 

 

Figure 2 Healthy volunteers experience more sensory disturbances due to distorted visual feedback 

of their own body 

Abbreviations: CLBP, chronic low back pain 

* Significant post hoc comparisons 
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Table Legends 

Table 1 Participant characteristics 

* Values are mean ± SD unless otherwise indicated.  

Abbreviations: m, median; IQR, interquartile range; NA, not applicable; NRS, Numeric Rating Scale, 

RMDS, Roland Morris Disability Scale, TSK, Tapa Scale of Kinesiophobia, PCS, Pain Catastrophizing 

Scale, n, number. 

§ a Pearson chi-square test was used to conduct the analysis.  

₸ an independent t-test was used to conduct the analysis. 

‡ a Fisher’s exact test was used to conduct the analysis. 

 

Table 2 The frequencies of sensory disturbances reported in both groups 

Abbreviations: CLBP, chronic low back pain.  

 

Table 3 The effect of visual feedback during movement on reported sensory disturbances and pain in 

people with chronic low back pain (n=33) and healthy volunteers (n=33) 

Abbreviations: VAS, Visual Analogue Scale (0 – 100); CLBP, chronic low back pain; HV, healthy 

volunteers. 

 

Table 4 The effect of static visual feedback on reported sensory disturbances and pain in people with 

chronic low back pain (n=33) and healthy volunteers (n=33) 

Abbreviations: VAS, Visual Analogue Scale (0 – 100); CLBP, chronic low back pain; HV, healthy 

volunteers.  
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§ The frequency of sensory disturbances was significantly higher during the incongruent static back 

condition than the static control condition based on post-hoc testing. 

₸ the frequency of sensory disturbances was significantly higher during the incongruent arm 

condition than the congruent arm condition and significantly higher during the incongruent arm 

condition than the static control condition based on post-hoc testing. 

 

Table 5 Differences between people with chronic low back pain and healthy volunteers in reported 

sensory disturbances  

Abbreviations: CLBP, chronic low back pain; VAS, Visual Analogue Scale (0 – 100) 

* Values are median (interquartile range). 

§ A Mann-Whitney Test was used to conduct the analysis.  

‡ a Pearson chi-square test was used to conduct the analysis.  

 

 

Table 1 Participant characteristics* 

 
 Chronic Low Back 

Pain (n=33) 
 

Healthy volunteers 
(n=33) 

P Value 

Sex (female), n (%) 21 (63.6%) 21 (63.6%) 1.0 §  

Age, years 

Range in years 

39.6 ± 11.9 

21 – 66 

39.2 ± 12.9 

20 – 61 

 .914₸  

Disease duration, m (IQR) 

Range in months 

36 (4.5 - 150) 

3 – 540 

NA 

 

 

Pain (NRS)  

Range 

5.2 ± 2.0 

2 - 9 

NA  

Pain location, n (%) 

Unilateral 

Bilateral 

 

13 (39.4%) 

20 (60.6%) 

 

NA 

 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

35 

 

Pain medication, n (%) 4 (12.1%) 0 (0%)  .114‡  

Antidepressants, n (%) 2 (6.1%) 1 (3%) 1.0‡  

Disability (RMDS) 

Range 

6.0 ± 4.2 

0 - 18 

NA  

Kinesiophobia (TSK) 

Range 

31.0 ± 6.0 

26 – 47 

NA  

Pain catastrophizing (PCS) 

Range 

11.5 ± 8.3 

0 – 34 

NA  

Central sensitisation (CSI) 

Range 

30.9 ± 9.6 

16 - 55 

NA  
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Table 2 The frequencies of sensory disturbances reported in both groups 

 
Sensory disturbances Visual feedback experiment 

categories  CLBP group (n=33) Healthy volunteers (n=33) 

Pain  22,4% 0,4% 

Discomfort 10,7% 5,5% 

Temperature changes 0% 0% 

Weight changes 0% 0% 

Balance disturbances 1,8% 0,4% 

Feelings of peculiarity 4,0% 4,0% 
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Table 3 The effect of visual feedback during movement on reported sensory disturbances and pain in 

people with chronic low back pain (n=33) and healthy volunteers (n=33).  

Group Variable Congruent 
Moving 

Incongruent 
Moving 
 

Control Moving P-value 

CLBP Sensory disturbances  
 
Median intensity (VAS), (IQR)

 

 
Frequency, n (%) 
 

 
 
0 (0 - 44.5) 
 
13 (39.4)

 

 

 
 
0 (0 - 40)

 

 
15 (45.5)

 

 
 
0 (0 - 46) 
 
14 (42.4) 

 
 
p = .348 
 
p = .761

 

 Pain 
 
Median intensity (VAS), (IQR)

 

 
Frequency, n (%) 
 

 
 
0 (0 - 16.5) 
 
10 (30.3)

 

 
 
0 (0 - 35) 
 
12 (36.4) 

 
 
0 (0 - 28) 
 
11 (33.3)

 

 
 
p = .344 
 
P = .741 

HV 
 

Sensory disturbances  
  
Median intensity (VAS), (IQR) 
 
Frequency, n (%) 
 

 
 
0 (0 – 0) 
 
1 (3) 
 

 
 
0 (0 – 0) 
 
4 (12.1) 

 
 
0 (0 – 0) 
 
2 (6.1) 

 
 
p = .229 
 
p = .311 

 Pain 
 
Median intensity (VAS), (IQR) 
 
Frequency, n (%) 
 

 
 
0 (0 – 0) 
 
0 (0) 
 

 
 
0 (0 – 0) 
 
0 (0) 
 

 
 
0 (0 – 0) 
 
1 (3) 
 

 
 
P = .368 
 
P = .368 
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Table 4 The effect of static visual feedback on reported sensory disturbances and pain in people with 

chronic low back pain (n=33) and healthy volunteers (n=33). 

Group Variable Congruent  
back 

Incongruent 
back 

Congruent  
arm 

Incongruent  
arm 

Control 
(static) 

P-value 

CLBP Sensory disturbances  
 
Median intensity (VAS), (IQR)

 

 
Frequency, n (%) 
 

 
 
0 (0 - 0) 
 
5 (15.2) 

 
 
0 (0 - 37) 
 
13 (39.4) 

 
 
0 (0 - 3.5) 
 
7 (21.2) 

 
 
0 (0 - 63) 
 
12 (36.4) 

 
 
0 (0 - 26) 
 
11 (33.3) 

 
 
p = .038 
 
p = .036

 

 Pain 
 
Median intensity (VAS), (IQR)

 

 
Frequency, n (%) 
 

 
 
0 (0 - 0) 
 
3 (9.1) 

 
 
0 (0 - 0) 
 
6 (18.2) 

 
 
0 (0 - 0) 
 
5 (15.2) 

 
 
0 (0 - 0) 
 
7 (21.2) 

 
 
0 (0 - 0) 
 
7 (21.2) 

 
 
p = .325 
 
P = .183 

HV 
 

Sensory disturbances  
  
Median intensity (VAS), (IQR)

 

 
Frequency, n (%) 
 

 
 
0 (0 - 0) 
 
2 (6.1) 

 
 
0 (0 - 4.5) 
 

7 (21.2)
 §

 

 
 
0 (0 - 0) 
 
1 (3) 

 
 
0 (0 - 3.5) 
 

8 (24.2)
 ₸

 

 
 
0 (0 - 0) 
 
0 (0) 
 

 
 
p = <.001 
 
p = .001 

 Pain 
 
Median intensity (VAS), (IQR)

 

 
Frequency, n (%) 
 

 
 
0 (0 - 0) 
 
0 (0) 
 

 
 
0 (0 - 0) 
 
0 (0) 
 

 
 
0 (0 - 0) 
 
0 (0) 
 

 
 
0 (0 - 0) 
 
0 (0) 
 

 
 
0 (0 - 0) 
 
0 (0) 
 

 
 
P = 1.00 
 
P = 1.00 
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Table 5 Differences between people with chronic low back pain and healthy volunteers in reported 

sensory disturbances  

 

 CLBP  

(n=33) 

Healthy volunteers 

(n=33) 

P Value 

Incongruent Moving 

Median intensity (VAS), (IQR)
 

Frequency, n (%) 

 

0 (0 - 40)
 

15 (45.5) 

 

0 (0 – 0) 

4 (12.1) 

  

.002
§ 

.003‡ 

Incongruent back 

Median intensity (VAS), (IQR)
 

Frequency, n (%) 

 

0 (0 - 37) 

13 (39.4) 

 

0 (0 - 4.5) 

7 (21.2) 

 

.257
§ 

.111‡ 

Incongruent arm 

Median intensity (VAS), (IQR)
 

Frequency, n (%) 

 

0 (0 - 63) 

12 (36.4) 

 

0 (0 - 3.5) 

8 (24.2) 

 

.132
§ 

.288‡ 

Control Moving 

Median intensity (VAS), (IQR)
 

Frequency, n (%) 

 

0 (0 - 46) 

14 (42.4) 

 

0 (0 – 0) 

2 (6.1) 

 

< .001
§ 

.001‡ 

 

 


