
$(ECHO ECHO) ECHO $(ECHO): COMMAND LINE POETICS

FLORIAN CRAMER

DESIGN

Most arguments in favor of command line versus graphical user interface
(GUI) computing are flawed by system administrator Platonism. A com-
mand like cp test.txt /mnt/disk is, however, not a single bit closer to
a hypothetic truth of the machine than dragging an icon of the file.txt
with a mouse pointer to the drive symbol of a mounted disk. Even if it were
closer to the truth, what would be gained from it?

The command line is, by itself, just as much an user interface abstracted
from the operating system kernel as the GUI. While the desktop look and
feel of the GUI emulates real life objects of an analog office environment,
the Unix, BSD, Linux/GNU and Mac OS X command line emulates teletype
machines that served as the user terminals to the first Unix computers in the
early 1970s. This legacy lives on in the terminology of the virtual terminal
and the device file /dev/tty (for teletype) on Unix-compatible operating
systems. Both graphical and command line computing are therefore media;
mediating layers in the cybernetic feedback loop between humans and ma-
chines, and proofs of McLuhan’s truism that the contents of a new medium
is always an old medium.

Both user interfaces were designed with different objectives: In the ca-
se of the TTY command line, minimization of typing effort and paper
waste, in the case of the GUI, use of – ideally – self-explanatory analo-
gies. Minimization of typing and paper waste meant to avoid redundan-
cy, keeping command syntax and feedback as terse and efficient as possi-
ble. This is why cp is not spelled copy, /usr/bin/ not /Unix Special
Resources/Binaries, why the successful completion of the copy com-
mand is answered with just a blank line, and why the command can be re-
peated just by pressing the arrow up and return keys, or retyping /mnt/disk
can be avoided by just typing !$.

The GUI conversely reinvents the paradigm of universal pictorial sign
languages, first envisioned in Renaissance educational utopias from Tom-
maso Campanella’s City of the Sun to Jan Amos Comenius illustrated

1

$(ECHO ECHO) ECHO $(ECHO): COMMAND LINE POETICS 2

school book “Orbis Pictus”. Their design goals were similar: usability, self-
explanatory operation across different human languages and cultures, if ne-
cessary at the expense of complexity or efficiency. In the file copy operation,
the action of dragging is, strictly seen, redundant. Signifying nothing more
than the transfer from a to b, it accomplishes exactly the same as the space
in between the words – or, in technical terms: arguments - test.txt and
/mnt/disk, but requiring a much more complicated tactile operation than
pushing the space key. This complication is intended as the operation simu-
lates the familiar operation of dragging a real life object to another place.
But still, the analogy is not fully intuitive: in real life, dragging an object
doesn’t copy it. And with the evolution of GUIs from Xerox Parc via the
first Macintosh to more contemporary paradigms of task bars, desktop swit-
chers, browser integration, one can no longer put computer-illiterate people
in front of a GUI and tell them to think of it as a real-life desk. Never mind
the accuracy of such analogies, GUI usage is as much a constructed and
trained cultural technique as is typing commands.

Consequentely, platonic truth categories cannot be avoided altogether.
While the command line interface is a simulation, too – namely that of
a telegraphic conversation – its alphanumeric expressions translate more
smoothly into the computer’s numeric operation, and vice versa. Written
language can be more easily used to use computers for what they were con-
structed for, to automate formal tasks: the operation cp *.txt /mnt/disk
which copies not only one, but all text files from the source directory to a
mounted disk can only be replicated in a GUI by manually finding, selec-
ting and copying all text files, or by using a search or scripting function
as a bolted-on tool. The extension of the commmand to for file in *;
do cp $file $file.bak; done cannot be replicated in a GUI unless this
function has been hard-coded into it before. On the command line, usage
seamlessly extends into programming.

In a larger perspective, this means that GUI applications typically are di-
rect simulations of an analog tool: word processing emulates typewriters,
Photoshop a dark room, DTP software a lay-out table, video editors a video
studio etc. The software remains hard-wired to a traditional work flow. The
equivalent command line tools – for example: sed, grep, awk, sort, wc
for word processing, ImageMagick for image manipulation, groff, TeX or
XML for typesetting, ffmpeg or MLT for video processing – rewire the tra-
ditional work process much like cp *.txt rewires the concept of copying a
document. The designer Michael Murtaugh for example employs command
line tools to automatically extract images from a collection of video files in
order to generate galleries or composites, a concept that simply exceeds the
paradigm of a graphical video editor with its predefined concept of what
video editing is.

$(ECHO ECHO) ECHO $(ECHO): COMMAND LINE POETICS 3

The implications of this reach much farther than it might first seem. The
command line user interface provides functions, not applications; methods,
not solutions, or: nothing but a bunch of plug-ins to be promiscuously plug-
ged into each other. The application can be built, and the solution invented,
by users themselves. It is not a shrink-wrapped, or – borrowing from Roland
Barthes – a readerly, but a writerly interface. According to Barthes’ distinc-
tion of realist versus experimental literature, the readerly text presents itself
as linear and smoothly composed, “like a cupboard where meanings are
shelved, stacked, safeguarded”.(1, p.200) Reflecting in contrast the “plura-
lity of entrances, the opening of networks, the infinity of languages”,(1, p.5)
the writerly text aims to make “make the reader no longer a consumer, but a
producer of the text”.(1, p.4) In addition to Umberto Eco’s characterization
of the command line as iconoclastically protestant and the GUI as idola-
trously catholic, the GUI might be called the Tolstoj or Toni Morrison, the
command line the Gertrude Stein, Finnegans Wake or L.A.N.G.U.A.G.E
poetry of computer user interfaces; alternatively, a Lego paradigm of a self-
defined versus the Playmobil paradigm of the ready-made toy.

Ironically enough, the Lego paradigm had been Alan Kay’s original
design objective for the graphical user interface at Xerox PARC in the
1970s. Based on the programming language Smalltalk, and leveraging ob-
ject oriented-programming, the GUI should allow users to plug together
their own applications from existing modules. In its popular forms on Mac
OS, Windows and KDE/Gnome/XFCE, GUIs never delivered on this pro-
mise, but reinforced the division of users and developers. Even the fringe
exceptions of Kay’s own system – living on as the Squeak project – and Mil-
ler Puckette’s graphical multimedia programming environments MAX and
Pure Data show the limitation of GUIs to also work as graphical program-
ming interfaces, since they both continue to require textual programmation
on the core syntax level. In programmer’s terms, the GUI enforces a sepa-
ration of UI (user interface) and API (application programming interface),
whereas on the command line, the UI is the API. Alan Kay concedes that
“it would not be surprising if the visual system were less able in this area
[of programmation] than the mechanism that solve noun phrases for natural
language. Although it is not fair to say that ‘iconic languages can’t work’
just because no one has been able to design a good one, it is likely that the
above explanation is close to truth”.(2, p.25)

MUTANT

CORE CORE bash bash CORE bash

$(ECHO ECHO) ECHO $(ECHO): COMMAND LINE POETICS 4

There are %d possibilities. Do you really
wish to see them all? (y or n)

SECONDS
SECONDS

grep hurt mm grep terr mm grep these mm grep eyes grep eyes mm grep hands
mm grep terr mm > zz grep hurt mm >> zz grep nobody mm >> zz grep
important mm >> zz grep terror mm > z grep hurt mm >> zz grep these mm >>
zz grep sexy mm >> zz grep eyes mm >> zz grep terror mm > zz grep hurt mm
>> zz grep these mm >> zz grep sexy mm >> zz grep eyes mm >> zz grep sexy
mm >> zz grep hurt mm >> zz grep eyes mm grep hurt mm grep hands mm grep
terr mm > zz grep these mm >> zz grep nobody mm >> zz prof!

if ["x‘tput kbs‘" != "x"]; then # We can’t do this with "dumb" terminal
stty erase ‘tput kbs‘

DYNAMIC LINKER BUG!!!

Codework by Alan Sondheim, posted to the mailing list ärc.hiveön July
21, 2002

In a terminal, commands and data become interchangeable. In echo
date, date is the text, or data, to be output by the ëchocommand. But if
the output is sent back to the command line processor (a.k.a. shell) – echo
date - sh – date is executed as a command of it own. That means: Com-
mand lines can be constructed that wrangle input data, text, into new com-
mands to be executed. Unlike in GUIs, there is recursion in user interfaces:
commands can process themselves. Photoshop, on the other hand, can pho-
toshop its own graphical dialogues, but not actually run those mutations
afterwards. As the programmer and system administrator Thomas Scoville
puts it in his 1998 paper The Elements Of Style: UNIX As Literature, “UNIX
system utilities are a sort of Lego construction set for word-smiths. Pipes
and filters connect one utility to the next, text flows invisibly between. Wor-
king with a shell, awk/lex derivatives, or the utility set is literally a word
dance.”(3)

In net.art, jodi’s OSS comes closest to a hypothetic GUI that eats itself
through photoshopping its own dialogues. The Unix/Linux/GNU command
line environment is just that: A giant word/text processor in which every sin-
gle function - searching, replacing, counting words, sorting lines - has been
outsourced into a small computer program of its own, each represented by

$(ECHO ECHO) ECHO $(ECHO): COMMAND LINE POETICS 5

a one word command; words that can process words both as data [E-Mail,
text documents, web pages, configuration files, software manuals, program
source code, for example] and themselves. And more culture-shockingly for
people not used to it: with SSH or Telnet, every command line is network
transparent, i.e. can be executed locally as well as remotely. echo date
- ssh user@somewhere.org builds the command on the local machine,
runs it on the remote host somewhere.org, but spits the output back onto the
local terminal. Not only do commands and data mutate into each other, but
commands and data on local machines intermingle with those on remote
ones. The fact that the ARPA- and later Internet had been designed for dis-
tributed computing becomes tangible on the microscopic level of the space
between single words, in a much more radical way than in such monolithic
paradigms as uploading or web applications.

With its hybridization of local and remote code and data, the command
line is an electronic poet’s, codeworker’s and ASCII net.artist’s wet dream
come true. Among the poetic constraints invented by the OULIPO group,
the purely syntactical ones can be easily reproduced on the command line.
POE, a computer program designed in the early 1990s by the Austrian ex-
perimental poets Franz Josef Czernin and Ferdinand Schmatz to aide poets
in linguistic analysis and construction, ended up being an unintended Unix
text tool clone for DOS. In 1997, American underground poet ficus stran-
gulensis called upon for the creation of a text synthesizer which the Unix
command line factually is. Netwurker mez breeze consequently names as a
major cultural influences of her net-poetical mezangelle work #unix [shel-
led + otherwise], next to #LaTeX [+ LaTeX2e], #perl, #python and #the
concept of ARGS [still unrealised in terms of potentiality].1 Conversely, ob-
fuscated C programmers, Perl poets and hackers like jaromil have mutated
their program codes into experimental net poetry.

The mutations and recursions on the command line are neither coinci-
dental, nor security leaks, but a feature which system administrators rely
on every day. As Richard Stallman, founder of the GNU project and initial
developer of the GNU command line programs, puts it, “it is sort of para-
doxical that you can successfully define something in terms of itself, that
the definition is actually meaningful. [...] The fact that [...] you can define
something in terms of itself and have it be well defined, that’s a crucial part
of computer programming”.(4)

When, as Thomas Scoville observes, instruction vocabulary and syntax
like that of Unix becomes second nature,(3) it also becomes conversational
language, and syntax turns into semantics not via any artificial intelligence,
but in purely pop cultural ways, much like the mutant typewriters in David

1Yet unpublished as of this writing, forthcoming on the site http://www.cont3xt.net

http://www.cont3xt.net

$(ECHO ECHO) ECHO $(ECHO): COMMAND LINE POETICS 6

Cronenberg’s film adaption of Naked Lunch. These, literally: buggy, type-
writers are perhaps the most powerful icon of the writerly text. While Free
Software is by no means hard-wired to terminals – the Unix userland had
been non-free software first –, it is nevertheless this writerly quality, and
break-down of user/consumer dichotomies, which makes Free/Open Sour-
ce Software and the command line intimate bedfellows.

[This text is deliberately reusing and mutating passages from my 2003
essay Ëxe.cut[up]able Statements", published in the catalogue of ars elec-
tronica 2003.]

http://www.digitalartistshandbook.org/node/13

LITERATUR

[1] Roland Barthes. S/Z: An Essay. Hill & Wang, 1991. 3
[2] Alan Kay. User Interface: A Personal View. In Brenda Laurel and Joy S.

Mountford, editors, The Art of Human-Computer Interface Design, pa-
ges 191–207. Addison-Wesley, 1990. 3

[3] Thomas Scoville. The Elements Of Style: UNIX As Literature, 1998.
[Online; accessed 18-January-2009]. 4, 5

[4] David Bennahum. Interview with Richard Stallman, 1997. [Online;
accessed 28-April-2011]. 5

	Design
	Mutant
	Literatur

