

How can we explain the relation between appuse and physical activity and health?

Joan Dallinga, Marije Baart de la Faille-Deutekom, Cees Vervoorn, Matthijs Mennes and Harmen Bijwaard

Introduction

"Dam tot Damloop"

50,000 participants

6.4 and 16 km run

Recreational runners

DIFFERENCES BETWEEN APP USERS AND NON-APP USERS

IN PHYSICAL ACTIVITY, PERCEIVED HEALTH AND LIFESTYLE, AND SELF-IMAGE

16KM **Running event**

INCREASE RUNNING PHYSICAL ACTIVITY

57,8%

42,2%

FEEL HEALTHIER

57,2%

+++++

42,8%

Introduction

How can we explain this?

- More physically active
- Healthier lifestyle
- Higher intention to maintain behavior

ASE model

Functions

Aims

1. Determine the attitude, social influence and self-efficacy of running app users

Determine which functions app users prefer

Methods

- Recreational running event 16 & 6.4 km (n
 - = 1,670, response rate 38.8%)
- Online survey
 - Age (years)
 - Gender (M/F)
 - BMI (kg/m²)

Methods

- Attitude (Likert scale 1-7)
- Social influence (Likert scale 1-7)
- Self-efficacy (Likert scale 1-7)
- Importance of app functionalities (1-4)

Analysis

- Selection of app users
- Descriptives
- Top 3 most and least important

Subject characteristics

		N (%)
Gender	Male	333 (45.9)
	Female	393 (54.1)
BMI	Underweight (BMI < 19 kg/m²)	22 (3.7)
	Normal weight (BMI 19-25 kg/m ²)	342 (57.3)
	Overweight (BMI >25 kg/m ²)	233 (39.0)
		Mean ± SD
Age	(years)	39.3 ± 9.7

Attitude

Social influence

Self-efficacy

3 most applicable

- 1. I am persistant about running
- 2. I am motivated for running
- 3. Running with an app motivates me

3 least applicable

- Via a running app I am part of a running community
- 2. If I run I want to be guided by a professional trainer
- 3. Family members who run use app

Functions prior to running

Functions during running

Functions after running

4 most important

- 1. Monitoring speed
- 2. Monitoring progression
- 3. Looking back on route
- Monitoring personal records

4 least important

- 1. Train in a team
- Being part of a running community
- 3. Encouragement to go running
- 4. Sharing activies with others

Conclusion I ASE

Conclusion II functions

- Monitoring = important
- Sharing data, running community, train in team = not important

Discussion

- Do current app functions match with what people want?
- Apps mostly not evidence based (Direito 2014; West 2012; Cowan 2014)
- Advice: adjust current apps
- Self-efficacy & apps

Take home message

Ultimate goal: develop evidence based app for specific groups

- @DallingaJoan
- @krachtvansport

j.m.dallinga@hva.nl

