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Abstract

Recently, we have introduced and modified two graph-decomposition theorems based

on a new graph product, motivated by applications in the context of synchronising

periodic real-time processes. This vertex-removing synchronised product (VRSP), is

based on modifications of the well-known Cartesian product, and is closely related to

the synchronised product due to Wöhrle and Thomas. Here, we recall the definition of

the VRSP and the two modified graph-decompositions and introduce three new graph-

decomposition theorems. The first new theorem decomposes a graph with respect to

the semicomplete bipartite subgraphs of the graph. For the second new theorem, we

introduce a matrix graph, which is used to decompose a graph in a manner similar to

the decomposition of graphs using the Cartesian product. In the third new theorem,

we combine these two types of decomposition. Ultimately, the goal of these graph-

decomposition theorems is to come to a prime-graph decomposition.

Keywords: vertex-removing synchronised product, product graph, graph decompo-

sition, synchronising processes

Mathematics Subject Classification: 05C76, 05C51, 05C20, 94C15

1 Introduction

Recently, we have introduced [5] and modified [2] two graph-decomposition theorems based

on a new graph product, motivated by applications in the context of synchronising peri-

odic real-time processes, in particular in the field of robotics. More on the background,

definitions and applications can be found in two conference contributions [4, 6], two jour-

nal papers [5, 7] and the thesis of the author [3]. We repeat some of the background,

definitions and theorems here for convenience, and for supplying the motivation for the

1

http://arxiv.org/abs/2105.10828v1


research that led to the third, fourth and fifth decomposition theorem that we state and

prove in Section 5.

The decomposition of graphs is well known in the literature. For example, a decompo-

sition can be based on the partition of a graph into edge disjoint subgraphs. In our case,

the decomposition is based on the contraction of a subset of the vertices of the graph, in

such a manner that if V 1 Ă V pGq is contracted giving G1 and V 2 Ă V pGq is contracted

giving G2 we have that the vertex-removing synchronised product (VRSP) of G1 and G2

is isomorphic to G.

The rest of the paper is organised as follows. In the next sections, we first recall

the formal graph definitions (in Section 2), the definition of the VRSP as well as the

graph-decomposition theorems, together with other relevant terminology and notation

(in Section 3), and the notions of graph isomorphism and contraction to labelled acyclic

directed multigraphs (in Section 4). Finally, we prove (in Section 5) the third, fourth and

fifth decomposition theorem.

2 Terminology and notation

We use the textbook of Bondy and Murty [1] for terminology and notation we do not

specify here. Throughout, unless we specify explicitly that we consider other types of

graphs, all graphs we consider are labelled acyclic directed multigraphs, i.e., they may have

multiple arcs. Such graphs consist of a vertex set V (representing the states of a process),

an arc set A (representing the actions, i.e., transitions from one state to another), a set of

labels L (in our applications in fact a set of label pairs, each representing a type of action

and the worst case duration of its execution), and two mappings. The first mapping

µ : A Ñ V ˆV is an incidence function that identifies the tail and head of each arc a P A.

In particular, µpaq “ pu, vq means that the arc a is directed from u P V to v P V , where

tailpaq “ u and headpaq “ v. We also call u and v the ends of a. The second mapping

λ : A Ñ L assigns a label pair λpaq “ pℓpaq, tpaqq to each arc a P A, where ℓpaq is a string

representing the (name of an) action and tpaq is the weight of the arc a. This weight

tpaq is a real positive number representing the worst case execution time of the action

represented by ℓpaq.

Let G denote a graph according to the above definition. An arc a P ApGq is called an

in-arc of v P V pGq if headpaq “ v, and an out-arc of v if tailpaq “ v. The in-degree of

v, denoted by d´pvq, is the number of in-arcs of v in G; the out-degree of v, denoted by

d`pvq, is the number of out-arcs of v in G. The subset of V pGq consisting of vertices v
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with d´pvq “ 0 is called the source of G, and is denoted by S1pGq. The subset of V pGq

consisting of vertices v with d`pvq “ 0 is called the sink of G, and is denoted by S2pGq.

For disjoint nonempty sets X,Y Ď V pGq, rX,Y s denotes the set of arcs of G with one

end in X and one end in Y . If the head of the arc a P rX,Y s is in Y , we call a a forward

arc (of rX,Y s); otherwise, we call it a backward arc.

The acyclicity of G implies a natural ordering of the vertices into disjoint sets, as

follows. We define S0pGq to denote the set of vertices with in-degree 0 in G (so S0pGq “

S1pGq), S1pGq the set of vertices with in-degree 0 in the graph obtained from G by deleting

the vertices of S0pGq and all arcs with tails in S0pGq, and so on, until the final set StpGq

contains the remaining vertices with in-degree 0 and out-degree 0 in the remaining graph.

Note that these sets are well-defined since G is acyclic, and also note that StpGq ‰ S2pGq,

in general. If a vertex v P V pGq is in the set SjpGq in the above ordering, we say that v is at

level j in G. This ordering implies that each arc a P ApGq can only have tailpaq P Sj1pGq

and headpaq P Sj2pGq if j1 ă j2.

A graph G is called weakly connected if all pairs of distinct vertices u and v of G are

connected through a sequence of distinct vertices u “ v0v1 . . . vk “ v and arcs a1a2 . . . ak

of G with µpaiq “ pvi´1, viq or pvi, vi´1q for i “ 1, 2, . . . , k. We are mainly interested

in weakly connected graphs, or in the weakly connected components of a graph G. If

X Ď V pGq, then the subgraph of G induced by X, denoted as GrXs, is the graph on vertex

set X containing all the arcs of G which have both their ends in X (together with L, µ and

λ restricted to this subset of the arcs). If X Ď V induces a weakly connected subgraph

of G, but there is no set Y Ď V such that GrY s is weakly connected and X is a proper

subset of Y , then GrXs is called a weakly connected component of G. Also, the set of arcs

of GrXs is denoted as ArXs. If X Ď ApGq, then the subgraph of G arc-induced by X,

denoted as GtXu, is the graph on arc set X containing all the vertices of G which are

an end of an arc in X (together with L, µ and λ restricted to this subset of the arcs). If

X Ď A arc-induces a weakly connected subgraph of G, but there is no set Y Ď A such that

GtY u is weakly connected and X is a proper subset of Y , then GtXu is called a weakly

connected component of G.

In the sequel, throughout we omit the words weakly connected, so a component should

always be understood as a weakly connected component. In contrast to the notation in

the textbook of Bondy and Murty [1], we use ωpGq to denote the number of components

of a graph G.

We denote the components of G by Gi, where i ranges from 1 to ωpGq. In that case,

3



we use Vi, Ai and Li as shorthand notation for V pGiq, ApGiq and LpGiq, respectively. The

mappings µ and λ have natural counterparts restricted to the subsets Ai Ă ApGq that

we do not specify explicitly. We use G “
ωpGq
ř

i“1

Gi to indicate that G is the disjoint union

of its components, implicitly defining its components as G1 up to GωpGq. In particular,

G “ G1 if and only if G is weakly connected itself. Furthermore, we use
ωpGq
Y
i“1

Gi to denote

the graph with vertex set
ωpGq
Y
i“1

Vi, arc set
ωpGq
Y
i“1

Ai with the mappings µipaiq “ pui, viq and

λpaiq “ pℓpaiq, tpaiqq for each arc ai P Ai.

A subgraph B of G according to the above definition is called bi-partite if there exists a

partition of non-empty sets V1 and V2 of V pBq into two partite sets (i.e., V pBq “ V1 YV2,

V1 X V2 “ H) such that every arc of B has its head vertex and tail vertex in different

partite sets. Such a graph is called a bipartite subgraph, and we denote such a bipartite

subgraph of G by BpV1, V2q. A bipartite graph BpV1, V2q is called complete if, for every

pair x P V1, y P V2, there is an arc a met µpaq “ px, yq or µpaq “ py, xq in BpV1, V2q. We

call BpV1, V2q a trivial bipartite graph if |V1| “ |V2| “ 1. A bipartite subgraph BpV1, V2q

is semicomplete if, for every pair x P V1, y P V2, an arc xy is in BpV1, V2q or an arc yx is

in BpV1, V2q, or for every pair x P V1, y P V2, there is no arc xy in BpV1, V2q and there is

no arc yx in BpV1, V2q.

If necessary, we divide V into mutually disjoint subsets with a cardinality that is a

prime number. We denote the union of mutually disjoint subsets V1, . . . , Vn of V with the

same cardinality pi as pV piqn. Hence, |pV piqn| “ n ¨ pi.

In the next two sections, we recall some of the definitions that appeared in [5].

3 Graph products

Instead of defining products for general pairs of graphs, for notational reasons we find

it convenient to define those products for two components Gi and Gj of a disconnected

graph G. We start with the next analogue of the Cartesian product.

The Cartesian product GilGj of Gi and Gj is defined as the graph on vertex set

Vi,j “ Vi ˆ Vj , and arc set Ai,j consisting of two types of labelled arcs. For each arc

a P Ai with µpaq “ pvi, wiq, an arc of type i is introduced between tail pvi, vjq P Vi,j

and head pwi, wjq P Vi,j whenever vj “ wj; such an arc receives the label λpaq. This

implicitly defines parts of the mappings µ and λ for GilGj . Similarly, for each arc a P Aj

with µpaq “ pvj , wjq, an arc of type j is introduced between tail pvi, vjq P Vi,j and head

pwi, wjq P Vi,j whenever vi “ wi; such an arc receives the label λpaq. This completes the
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definition of Ai,j and the mappings µ and λ for GilGj . So, arcs of type i and j correspond

to arcs of Gi and Gj , respectively, and have the associated labels. For k ě 3, the Cartesian

product G1lG2l ¨ ¨ ¨ lGk is defined recursively as ppG1lG2ql ¨ ¨ ¨ qlGk. This Cartesian

product is commutative and associative, as can be verified easily and is a well-known fact

for the undirected analogue.

Since we are particularly interested in synchronising arcs, we modify the Cartesian

product GilGj according to the existence of synchronising arcs, i.e., pairs of arcs with

the same label pair, with one arc in Gi and one arc in Gj .

The first step in this modification consists of ignoring (in fact deleting) the synchronis-

ing arcs while forming arcs in the product, but additionally combining pairs of synchro-

nising arcs of Gi and Gj into one arc, yielding the intermediate product which we denote

by Gi b Gj . An example of the intermediate product is given in Figure 3.

To be more precise, Gi b Gj is obtained from GilGj by first ignoring all except

for the so-called asynchronous arcs, i.e., by only maintaining all arcs a P Ai,j for which

µpaq “ ppvi, vjq, pwi, wjqq, whenever vj “ wj and λpaq R Lj, as well as all arcs a P Ai,j for

which µpaq “ ppvi, vjq, pwi, wjqq, whenever vi “ wi and λpaq R Li. Additionally, we add arcs

that replace synchronising pairs ai P Ai and aj P Aj with λpaiq “ λpajq. If µpaiq “ pvi, wiq

and µpajq “ pvj , wjq, such a pair is replaced by an arc ai,j with µpai,jq “ ppvi, vjq, pwi, wjqq

and λpai,jq “ λpaiq. We call such arcs of Gi b Gj synchronous arcs. The second step in

this modification consists of removing (from Gi b Gj) the vertices pvi, vjq P Vi,j together

with the arcs a with tailpaq “ pvi, vjq and the arcs b with headpbq “ pvi, vjq for which

pvi, vjq has in ´ degree ą 0 in GilGj but in ´ degree “ 0 in Gi b Gj . The removal of

these vertices is then repeated in the newly obtained graph, and so on, until there are

no more vertices with in ´ degree “ 0 in the current graph with in ´ degree ą 0 in

GilGj and there are no more vertices with out ´ degree “ 0 in the current graph with

out´ degree ą 0 in GilGj . This finds its motivation in the fact that in our applications,

the states that are represented by such vertices can never be reached, so are irrelevant.

The resulting graph is called the vertex-removing synchronised product (VRSP for

short) of Gi and Gj , and denoted as Gi n Gj . For k ě 3, the VRSP G1 n G2 n ¨ ¨ ¨ n Gk

is defined recursively as ppG1 n G2q n ¨ ¨ ¨ q n Gk. The VRSP is commutative, but not

associative in general, in contrast to the Cartesian product. These properties are not

relevant for the decomposition results that follow. However, for these results it is relevant

to introduce counterparts of graph isomorphism and graph contraction that apply to our

types of graphs. We define these counterparts in the next section.
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4 Graph isomorphism and graph contraction

The isomorphism we introduce in this section is an analogue of a known concept for

unlabelled graphs, but involves statements on the labels.

We assume that two different arcs with the same tail and head have different labels;

otherwise, we replace such multiple arcs by one arc with that label, because these arcs

represent exactly the same action at the same stage of a process.

Formally, an isomorphism from a graph G to a graph H consists of two bijections

φ : V pGq Ñ V pHq and ρ : ApGq Ñ ApHq such that for all a P ApGq, one has µpaq “ pu, vq

if and only if µpρpaqq “ pφpuq, φpvqq and λpaq “ λpρpaqq. Since we assume that two

different arcs with the same tail and head have different labels, however, the bijection

ρ is superfluous. The reason is that, if pφ, ρq is an isomorphism, then ρ is completely

determined by φ and the labels. In fact, if pφ, ρq is an isomorphism and µpaq “ pu, vq

for an arc a P ApGq, then ρpaq is the unique arc b P ApHq with µpbq “ pφpuq, φpvqq and

label λpbq “ λpaq. Thus, we may define an isomorphism from G to H as a bijection

φ : V pGq Ñ V pHq such that there exists an arc a P ApGq with µpaq “ pu, vq if and only if

there exists an arc b P ApHq with µpbq “ pφpuq, φpvqq and λpbq “ λpaq. An isomorphism

from G to H is denoted as G – H.

Next, we define what we mean by contraction. Let X be a nonempty proper subset

of V pGq, and let Y “ V pGqzX. By contracting X we mean replacing X by a new vertex

x̃, deleting all arcs with both ends in X, replacing each arc a P ApGq with µpaq “ pu, vq

for u P X and v P Y by an arc c with µpcq “ px̃, vq and λpcq “ λpaq, and replacing each

arc b P ApGq with µpbq “ pu, vq for u P Y and v P X by an arc d with µpdq “ pu, x̃q and

λpdq “ λpbq. We denote the resulting graph as G{X, and say that G{X is the contraction

of G with respect to X. If we have a series of contractions of G with respect to X1, . . . ,Xn,

G{X1{ . . . {Xn, we denote the resulting graph as G{ni“1
Xi. When Xi X Xj ‰ H, i ă j,

then due to the contraction with respect to Xi the vertices of Xi are replaced by x̃i and

therefore the vertices Xi X Xj of Xj are also replaced by x̃i. Hence, Xj is a subset of the

vertex set of the graph constructed by G{X1{ . . . {Xj´1.

Finally, we recall the two decomposition theorems that were introduced in [5] and

modified in [2] (Note that if we would allow X2 to be empty then in the case that X2 is

empty Theorem 2 is identical to Theorem 1.).

Theorem 1 ([2]). Let G be a graph, let X be a nonempty proper subset of V pGq, and

let Y “ V pGqzX. Suppose that each largest subset of arcs with the same label of rX,Y s
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arc-induces a complete bipartite subgraph of G and that the arcs of G{X and G{Y cor-

responding to the arcs of rX,Y s are the only synchronising arcs of G{X and G{Y . If

S1pGq Ď X and rX,Y s has no backward arcs, then G – G{Y n G{X.

Theorem 2 ([2]). Let G be a graph, and let X1, X2 and Y “ V pGqzpX1 Y X2q be three

disjoint nonempty subsets of V pGq. Suppose that each largest subset of arcs with the same

label of rX1, Y s arc-induces a complete bipartite subgraph of G, each largest subset of arcs

with the same label of rY,X2s arc-induces a complete bipartite subgraph of G, the arcs

of rX1,X2s have no labels in common with any arc in rX1, Y s Y rY,X2s, and the arcs

of G{X1{X2 and G{Y corresponding to the arcs of rX1, Y s Y rY,X2s Y rX1,X2s are the

only synchronising arcs of G{X1{X2 and G{Y . If S1pGq Ď X1, and rX1, Y s, rY,X2s and

rX1,X2s have no backward arcs, then G – G{Y n G{X1{X2.

5 The third, fourth and fifth graph-decomposition theorem.

We assume that the graphs we want to decompose are connected; if not, we can apply

our decomposition results to the components separately. We continue with presenting

and proving our third decomposition theorem, given in Theorem 3, of which an illus-

trative example is given in Figure 2. In the third decomposition theorem we are going

to decompose a graph G that contains semicomplete bipartite subgraphs. We continue

with the decomposition of a graph G where each subgraph of G arc-induced by a set of

all arcs with the same label in G is a semicomplete bipartite subgraph BpXi, Yjq of G.

The decomposition of G consists of decomposing each semicomplete bipartite subgraph

BpXi, Yiq of G “
n
Y
i“1

BpXi, Yiq in such a manner that each BpXi, Yiq is decomposed into

two semicomplete bipartite graphs. We give a simple example of this decomposition in

Figure 1, where we have nine semicomplete bipartite subgraph BpXi, Yiq of which eight

subgraphs are trivial bipartite subgraphs. Because with respect to the VRSP a trivial

bipartite subgraph BpX,Y q is idempotent, BpX,Y q – BpX,Y q n BpX,Y q, we do not

contract these subgraphs in the example depicted in Figure 1.
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1
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1
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2
1
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1
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2
2
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1
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1
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1
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1
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Figure 1: Decomposition of G – G{X 1
1
{Y 1

1
{Y 1

2
n G{Y 2

1
{Y 2

2
, X 1

1
“ tu1,1, u1,2u, Y 1

1
“

tv1,1, v2,1u, Y 1
2

“ tv1,2, v2,2u, Y 2
1

“ tv1,1, v1,2u, Y 2
2

“ tv2,1, v2,2u. The set Z from the proof

of Theorem 3 and the graph isomorphic to G induced by Z in G{X 1
1
{Y 1

1
{Y 1

2
b G{Y 2

1
{Y 2

2
is

indicated within the dotted region.

To decompose a graph with respect to the decomposition of a non-trivial semicomplete

bipartite subgraph of G where each arc has the same label we have to decompose each of

these non-trivial bipartite semicomplete subgraphs of G. This is obvious, because if one of

these subgraphs is not decomposed, say BpX1,X2q, the VRSP of the two decompositions

H and I of G will contain BpX1,X2q n BpX1,X2q. This subgraph has |X1|2 ` |X2|2

vertices in H n I and therefore, G fl H n I for |X1| ą 1 or |X2| ą 1. As mentioned

before, if a subgraph induced by the set of all arcs with the same label in G is a trivial

bipartite subgraphBpX1,X2q, then this subgraph does not have to be decomposed because

BpX1,X2q n BpX1,X2q – BpX1,X2q. But in the proof of Theorem 3, we decompose all

semicomplete bipartite subgraphs of G.

For reasons we will clarify in Theorems 3 and 4, we introduce the matrix graph, the

bipartite matrix graph and the Cartesian matrix graph.

We define M as a two-dimensional index set with pairs of indices that are numbered
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in the following manner: M “ tpi, jq | i P I “ t1, . . . ,mu, j P J “ t1, . . . , nuu. A graph

G of which the vertices are numbered according to the index set M has sets of rows

Ri “ tvpi,jq | j P Ju, i P I, and sets of columns Cj “ tvpi,jq | i P Iu, j P J . For brevity, in

the sequel we denote the vertices vpi,jq as vi,j.

For a subgraph GrXs of a graph G, we call X a grid of vertices when the vertices of

X are numbered in the following manner. The vertices vi,j P X are numbered such that

i P IX Ď I and j P JX Ď J , |X| “ |IX | ¨ |JX | “ m1 ¨ n1, 1 ď m1 ď m, 1 ď n1 ď n. Hence,

X “ tvi,j | i P IX Ď I, j P JX Ď Ju, |IX | “ m1, |JX | “ n1, with rows X 1
i Ď Ri,X

1
i “

tvi,j |j P JXu, i P IX , and with columns X2
j Ď Cj, X

2
j “ tvi,j |i P IXu, j P JX . In the

example given in Figure 2, each of the sets X1, . . . ,X4 is a grid.

A matrix graph G is a graph G for which the vertices are numbered according to a

subset M 1 of the index set M .

A bipartite matrix graph G is a matrix graph G consisting solely of x bipartite sub-

graphs where each bipartite subgraph has arcs with identical labels and each pair of such

bipartite subgraphs do not share a label. Therefore, we require, firstly, that the bipartite

matrix graph G is a matrix graph consisting of x bipartite subgraphs BpXi,Xjq and z not

necessarily disjunct sets Xk where Xk “ Xi or Xk “ Xj and z ď 2x. Secondly, all sub-

graphs of G arc-induced by a set of all arcs with identical labels are semicomplete bipartite

subgraphs BpXi,Xjq of G, all Xi and Xj are grids of vertices, i, j P χ “ t1, . . . , zu, i ‰ j,

and rXi,Xjs contains only forward arcs or rXi,Xjs contains only backward arcs. Thirdly,

we require that whenever a row X 1
k,x of the set Xk and a row X 1

l,y of the set Xl share a

vertex vi,j then X 1
k,x Ď Ri and X 1

l,y Ď Ri, k, l P χ. Fourthly, let R1
i Ď V pGq Ď Ri. Then

for any division of R1
i into the sets R1

i1
and R1

i2
, R1

i “ R1
i1

Y R1
i2
, there is always a row

X 1
k,x Ď Ri1 and a row X 1

l,y Ď R1
i2

with X 1
k,x XX 1

l,y ‰ H. Fifthly, we require that whenever

a column X2
k,x of the set Xk and a column X2

l,y of the set Xl share a vertex vi,j then

X2
k,x Ď Cj and X2

l,y Ď Cj , k, l P χ. Sixthly, let C 1
j Ď V pGq Ď Cj. Then for any division

of C 1
j into the sets C 1

j1
and C 1

j2
, C 1

j “ C 1
j1

Y C 1
j2
, there is always a column X2

k,x Ď C 1
j1

and a column X2
l,y Ď C 1

j2
with X2

k,x X X2
l,y ‰ H. We call a graph G that fulfils these six

requirements a bipartite matrix graph.

The purpose of the bipartite matrix graph is that after the decomposition of any sub-

graph BpXi,Xjq of the bipartite matrix graph G, into graphs BpX 1
i,X

1
jq and BpX2

i ,X
2
j q

with BpXi,Xjq – BpX 1
i,X

1
jq n BpX2

i ,X
2
j q by Theorem 3, we have that all vertices

vi,x P V pBpXi,Xjqq are replaced by the vertex x̃i P V pBpX 1
i,X

1
jqq and all vertices vx,j P

V pBpXi,Xjqq are replaced by the vertex x̃j P V pBpX2
i ,X

2
j qq. With the third and fourth

9



requirement, we assure that all vertices in the rows of Ri must have the same first index

and vertices not in the rows of Ri have a different first index. With the fifth and sixth

requirement, we assure that all vertices in the columns of Cj must have the same second

index and vertices not in the columns of Cj have a different second index.

A Cartesian matrix graph G is a matrix graph with rows Ri, i P Ii Ď I and columns

Cj , j P Jj Ď J , for which GrRxs – GrRys, x, y P Ii, GrCxs – GrCys, x, y P Jj , and the

arcs of GrRis and the arcs of GrCjs have no labels in common, if a is an arc of ApGq with

µpaq “ uv then u, v P Ri or u, v P Cj .

In Figure 2, we have depicted the vertex sets Xi of the bipartite matrix graph G

comprising the bipartite semicomplete subgraphs BpXi,X4q for i “ 1, . . . , 3, where the

labels of the arcs of BpXi,X4q are the same and the labels of the arcs of BpXi,X4q and

BpXj ,X4q, i ‰ j, are different. All vertex sets Xi are grids. The arcs connected to the

dotted box, dashdotted box and straight boxes are connected to the vertices these boxes

contain. For example, the straight arcs with label d connected to the boxes of vertex set X1

represent the arc set tu2,2u7,7, u2,4u7,7, u2,5u7,7, u5,2u7,7, u5,4u7,7, u5,5u7,7, u6,2u7,7, u6,4u7,7,

u6,5u7,7u of arcs with label c. Furthermore, due to the contraction of the second row

of X2 the vertices u2,1, . . . , u2,4 are replaced by x̃2, which gives a new first row of X1

consisting of the vertices x̃2 and u2,5. Later on, by contraction of the first row of

X1, the vertices x̃2 and u2,5 are replaced by x̃2. In Figure 3, we have depicted the

graph G{3i“1
X 1

1,i{
4

i“1
X 1

2,i{
4

i“1
X 1

3,i {X 1
4,1 b G{3i“1

X2
1,i{

5

i“1
X2

2,i{
3

i“1
X2

3,i{X
2
4,1 which is isomor-

phic to the graph G of Figure 2 after deletion of the vertices with in-degree zero in

G{3i“1
X 1

1,i{
4

i“1
X 1

2,i{
4

i“1
X 1

3,i {X 1
4,1 b G{3i“1

X2
1,i{

5

i“1
X2

2,i{
3

i“1
X2

3,i{X
2
4,1 and in-degree greater

than zero in G{3i“1
X 1

1,i{
4

i“1
X 1

2,i{
4

i“1
X 1

3,i {X 1
4,1lG{3i“1

X2
1,i{

5

i“1
X2

2,i{
3

i“1
X2

3,i{X
2
4,1. Further-

more, because the pairwise intersection of the gridsX1,X2 andX3 are grids, the graph G is

isomorphic to the graph G{3i“1
X 1

1,i{
4

i“1
X 1

2,i {4i“1
X 1

3,i{X
1
4,1nG{3i“1

X2
1,i{

5

i“1
X2

2,i{
3

i“1
X2

3,i{X
2
4,1,

which we will prove in Theorem 3. Due to the numbering scheme of the vertices in

V pGq we have that G{3i“1
X 1

1,i{
4

i“1
X 1

2,i{
4

i“1
X 1

3,i{X
1
4,1 n G{3i“1

X2
1,i{

5

i“1
X2

2,i{
3

i“1
X2

3,i{X
2
4,1 –

G{7i“1
Ri n G{7i“1

Ci – G. In Theorem 3, we use the notation with the sets Xi and in

Theorem 4, we use the notation with the rows Ri and the columns Ci.

10



G

u1,1 u1,2 u1,3 u1,4

u2,1 u2,2 u2,3 u2,4 u2,5

u3,1 u3,2 u3,3 u3,4

u4,1 u4,2 u4,3 u4,4 u4,6

u5,1 u5,2 u5,3 u5,4 u5,5 u5,6

u6,2 u6,3 u6,4 u6,5 u6,6

x̃
2
1

x̃
2
2

x̃
2
3

x̃
2
4

x̃
2
5

x̃
2
6

x̃
1
6

x̃
1
5

x̃
1
4

x̃
1
3

x̃
1
2

x̃
1
1

u7,7 x̃7

x̃7

a

a

b

c

c

c

c

{b} {a,b,c} {a,b} {a,b,c} {c} {a}

{b}

{b,c}

{b}

{a,b}

{a,b,c}

{a,c}

X2

X1

X3

X4

G{3i“1
X1,i{

4

i“1
X2,i{

4

i“1
X3,i{X4,1

G{3i“1
X1,i{

5

i“1
X2,i{

3

i“1
X3,i{X4,1

Figure 2: The decomposition of the graph G into the graphs G{3i“1
X 1

1,i{
4

i“1
X 1

2,i

{4i“1
X 1

3,i{X
1
4,1 and G{3i“1

X2
1,i{

5

i“1
X2

2,i{
3

i“1
X2

3,i{X
2
4,1, with G – G{3i“1

X 1
1,i{

4

i“1
X 1

2,i{
4

i“1
X 1

3,i

{X 1
4,1 n G{3i“1

X2
1,i{

5

i“1
X2

2,i{
3

i“1
X2

3,i{X
2
4,1.
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G{3i“1
X1,i{

4

i“1
X2,i{

4

i“1
X3,i{X4,1 b G{3i“1

X1,i{
5

i“1
X2,i{

3

i“1
X3,i{X4,1

px̃2
1
, x̃

1
1
q px̃2

2
, x̃

1
1
q px̃2

3
, x̃

1
1
q px̃2

4
, x̃

1
1
q px̃2

5
, x̃

1
1
q px̃2

6
, x̃

1
1
q

px̃2
1
, x̃

1
2
q px̃2

2
, x̃

1
2
q px̃2

3
, x̃

1
2
q px̃2

4
, x̃

1
2
q px̃2

5
, x̃

1
2
q px̃2

6
, x̃

1
2
q

px̃2
1
, x̃

1
3
q px̃2

2
, x̃

1
3
q px̃2

3
, x̃

1
3
q px̃2

4
, x̃

1
3
q px̃2

5
, x̃

1
3
q px̃2

6
, x̃

1
3
q

px̃2
1
, x̃

1
4
q px̃2

2
, x̃

1
4
q px̃2

3
, x̃

1
4
q px̃2

4
, x̃

1
4
q px̃2

5
, x̃

1
4
q px̃2

6
, x̃

1
4
q

px̃2
1
, x̃

1
5
q px̃2

2
, x̃

1
5
q px̃2

3
, x̃

1
5
q px̃2

4
, x̃

1
5
q px̃2

5
, x̃

1
5
q px̃2

6
, x̃

1
5
q

px̃2
1
, x̃

1
6
q px̃2

2
, x̃

1
6
q px̃2

3
, x̃

1
6
q px̃2

4
, x̃

1
6
q px̃2

5
, x̃

1
6
q px̃2

6
, x̃

1
6
q

px̃2
1
, x̃

1
7
q px̃2

2
, x̃

1
7
q px̃2

3
, x̃

1
7
q px̃2

4
, x̃

1
7
q px̃2

5
, x̃

1
7
q px̃2

6
, x̃

1
7
q px̃2

7
, x̃

1
7
q

a

a

b

c

c

c

c

Figure 3: The intermediate stage of G{3i“1
X 1

1,i{
4

i“1
X 1

2,i{
4

i“1
X 1

3,i{X
1
4,1 and G{3i“1

X2
1,i

{5i“1
X2

2,i{
3

i“1
X2

3,i{X
2
4,1, G{3i“1

X 1
1,i{

4

i“1
X 1

2,i{
4

i“1
X 1

3,i{X
1
4,1 b G{3i“1

X2
1,i{

5

i“1
X2

2,i{
3

i“1
X2

3,i{X
2
4,1.

Theorem 3. Let G be a bipartite matrix graph consisting of semicomplete bipartite sub-

graphs BpXa,Xbq only, where each BpXa,Xbq is arc-induced by a set of all arcs of G

with identical labels, V pGq “ X1 Y . . . Y Xx , a, b P t1, . . . , xu, a ‰ b. Let rXa,Xbs have

only forward arcs or let rXa,Xbs have only backward arcs. Let there be no arc a “ uivj

in G with ui, vj P Xa or ui, vj P Xb. Let Xa “ tvi,j | i P IXa Ď I “ t1, . . . ,mu, j P

JXa Ď J “ t1, . . . , nuu, |Xa| “ ka ¨ la, ka, la P N
`, |IXa | “ ka, |JXa | “ la, with rows

X 1
a,i “ tvi,j | j P JXau, i P IXa and columns X2

a,j “ tvi,j | i P IXau, j P JXa and let

Xb “ tvi,j | i P IXb
Ď I “ t1, . . . ,mu, j P JXb

Ď J “ t1, . . . , nuu, |Xb| “ kb ¨ lb,

kb, lb P N
`, |IXb

| “ kb, |JXb
| “ lb, with rows X 1

b,i “ tvi,j | j P JXb
u, i P IXb

and columns

X2
b,j “ tvi,j | i P IXb

u, j P JXb
. If the intersection of Xi and Xj is empty or the inter-

section of Xi and Xj is a grid, for any Xi and any Xj of G for i, j P t1, . . . , xu then

G – G{xy“1
{
ky
z“1

X 1
y,z n G{xy“1

{
ly
z“1

X2
y,z.

12



Proof. It suffices to define a mapping φ : V pGq Ñ V pG{xy“1
{
ky
z“1

X 1
y,znG{xy“1

{
ly
z“1

X2
y,zq and

to prove that φ is an isomorphism from G to G{xy“1
{
ky
z“1

X 1
y,z {xy“1

nG{xy“1
{
ly
z“1

X2
y,z. Let x̃

1
i

be the new vertex replacing the set X 1
y,z with vi,j P X 1

y,z, x̃
2
j be the new vertex replacing

the set X2
y,z with vi,j P X2

y,z, when defining G{xy“1
{
ky
z“1

X 1
y,z and G{xy“1

{
ly
z“1

X2
y,z, respec-

tively. Let x̃1
i be the new vertex replacing the vertices vi,j P X 1

y,z, x̃
2
j be the new vertex

replacing the vertices vi,j P X2
y,z, when definingG{xy“1

{
ky
z“1

X 1
y,z and G{xy“1

{
ly
z“1

X2
y,z, respec-

tively. Consider the mapping φ : V pGq Ñ V pG{xy“1
{
ky
z“1

X 1
y,z nG{xy“1

{
ly
z“1

X2
y,zq defined by

φpvi,jq “ px̃1
i, x̃

2
j q. Then φ is obviously a bijection if V pG{xy“1

{
ky
z“1

X 1
y,z nG{xy“1

{
ly
z“1

X2
y,zq “

Z, where Z is defined as Z “ tpx̃1
i, x̃

2
j q | vi,j P V pGq, φpvi,jq “ px̃1

i, x̃
2
j qu. We are go-

ing to show this later by arguing that all vertices x̃1
i and x̃1

j , i ‰ j, are different, and

that all vertices x̃2
i and x̃2

j , i ‰ j, are different and that all the other vertices px̃1
k, x̃

2
l q

of G{xy“1
{
ky
z“1

X 1
y,z lG{xy“1

{
ly
z“1

X2
y,z for which there is no vk,l P V pGq will disappear from

G{xy“1
{
ky
z“1

X 1
y,z nG{xy“1

{
ly
z“1

X2
y,z. But first we are going to prove the following claim.

Claim 1. The subgraph of G{xy“1
{
ky
z“1

X 1
y,z bG{xy“1

{
ly
z“1

X2
y,z induced by Z is isomorphic

to G.

Proof. We start with proving that x̃1
i and x̃1

j , i ‰ j, implies x̃1
i ‰ x̃1

j and that x̃2
i and

x̃2
j , i ‰ j, implies x̃2

i ‰ x̃1
j . Let Ri be the set of rows with all vertices vi,j of V pGq.

Therefore, all rows in Ri have the number i as their first index. Because G is a bipartite

matrix graph, we have that for any division of Ri into the sets Ri1 and Ri2 , Ri “ Ri1 YRi2 ,

there is always a row X 1
k,x P Ri1 and a row X 1

l,y P Ri2 with X 1
k,x X X 1

l,y ‰ H. Therefore,

all rows of Ri are contracted to x̃1
i. Because all rows with vertices vi,j are in Ri, a row

with a vertex vk,l with vk,l not in in any row of Ri must have i ‰ k. Likewise, let Rj be

the set of columns with all vertices vi,j of V pGq. Therefore, all columns in Rj have the

number j as their second index. Because G is a bipartite matrix graph, we have that for

any division of Rj into the sets Rj1 and Rj2 , Rj “ Rj1 Y Rj2 , there is always a column

X2
k,x P Rj1 and a column X2

l,y P Rj2 with X2
k,x X X2

l,y ‰ H. Therefore, all columns of Rj

are contracted to x̃2
i . Because all columns with vertices vi,j are in Rj, a column with a

vertex vk,l with vk,l not in in any column of Rj must have j ‰ l. Hence, we have that x̃1
i

and x̃1
j , i ‰ j, implies x̃1

i ‰ x̃1
j and that x̃2

i and x̃2
j , i ‰ j, implies x̃2

i ‰ x̃1
j . Therefore, φ

maps each vertex vi,j P V pGq to px̃1
i, x̃

2
j q P Z and if vi1,j1 ‰ vi2,j2 then px̃1

i1
, x̃1

i2
q ‰ px̃2

j1
x̃2
j2

q,

vi1,j1 , vi2,j2 P V pGq and we have that φ a bijection from V pGq to Z. It remains to show

that this bijection preserves the arcs and their labels.

Because there is no arc a “ vi,jvk.l in ApGq with vi,j, vk,l P Xa or vi,j, vk,l P Xb,
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we have that by the contractions each arc a P ApGq with µpaq “ pvi,j , vk,lq, λpaq “ a1

is replaced by an arc x1 P G{xy“1
{
ky
z“1

X 1
y,z with µpx1q “ px̃1

i, x̃
1
kq, λpx1q “ a1 and an arc

x2 P G{xy“1
{
ly
z“1

X2
y,z with µpx2q “ px̃2

j , x̃
2
l q, λpx2q “ a1. Therefore, all arcs x1 are synchro-

nising arcs of G{xy“1
{
ky
z“1

X 1
y,z with respect to G{xy“1

{
ly
z“1

X2
y,z (by hypothesis) and all arcs x2

are synchronising arcs of G{xy“1
{
ly
z“1

X2
y,z with respect to G{xy“1

{
ky
z“1

X 1
y,z (by hypothesis). It

follows that the arcs x1 and x2 correspond to an arc y “ px̃1
i, x̃

2
j qpx̃1

k, x̃
2
l q of G{xy“1

{
ky
z“1

X 1
y,z

bG{xy“1
{
ly
z“1

X2
y,z with λpyq “ λpx1q. Furthermore, φ maps vertices vi,j and vk,l on ver-

tices px̃1
i, x̃

2
j q and px̃1

k, x̃
2
l q, respectively, and therefore we have that an arc z “ vi,jvk,l of

G corresponds with an arc y “ px̃1
i, x̃

2
j qpx̃1

k, x̃
2
l q of G{xy“1

{
ky
z“1

X 1
y,z bG{xy“1

{
ly
z“1

X2
y,z, with

λpyq “ λpzq. Because px̃1
i, x̃

2
j q and px̃1

k, x̃
2
l q are in Z, the arc y is an arc of the graph in-

duced by Z and we have the one-to-one relationship between the arcs y of G{xy“1
{
ky
z“1

X 1
y,z

bG{xy“1
{
ly
z“1

X2
y,z and z in G. Together with, there are no other vertices in Z than px̃1

i, x̃
2
j q

and px̃1
k, x̃

2
l qq and there are no other vertices in G than vi,j and vk,l, the subgraph of

G{xy“1
{
ky
z“1

X 1
y,z bG{xy“1

{
ly
z“1

X2
y,z induced by Z is isomorphic to G.

By the definition of the Cartesian product, for each pair of vertices x̃1
i P V pG{xy“1

{
ky
z“1

X 1
y,zq and x̃2

j P V pG{xy“1
{
ly
z“1

X2
y,zq, there exists a vertex px̃1

i, x̃
2
j q P V pG{xy“1

{
ky
z“1

X 1
y,z b

G{xy“1
{
ly
z“1

X2
y,zq. It remains to show that φ is a bijection from V pGq to Z 1 “ V pG{xy“1

{
ky
z“1

X 1
y,znG{xy“1

{
ly
z“1

X2
y,zq preserving the arcs and their labels. Therefore, we have to show that

all vertices of V pG{xy“1
{
ky
z“1

X 1
y,z bG{xy“1

{
ly
z“1

X2
y,zq not in Z are removed from V pG{xy“1

{
ky
z“1

X 1
y,z b G{xy“1

{
ly
z“1

X2
y,zq. Let |G{xy“1

{
ky
z“1

{X 1
y,z| “ m1 ď m and |G{xy“1

{
ly
z“1

X2
y,z| “ n1 ď n.

Let vs,t R G with s P t1, . . . ,m1u and t P t1, . . . , n1u. Then there cannot exist an arc

vi,jvs,t P ApGq otherwise vs,t must be in V pGq. But there exist a vertex x̃1
s P G{xy“1

{
ky
z“1

X 1
y,z and a vertex x̃2

t P G{xy“1
{
ly
z“1

X2
y,z, and, therefore, there exists a vertex px̃1

s, x̃
2
t q P

V pG{xy“1
{
ky
z“1

{X 1
y,z bG{xy“1

{
ly
z“1

X2
y,zq. The intersection of the set of labels L1 of arcs with

head x̃1
s and the set of labels L2 of arcs with head x̃2

t is empty, because otherwise there exists

an arc a in ApGq with head vs,t. Hence, all arcs with head x̃1
s are asynchronous with respect

to all arcs with head x̃2
t . Therefore, there cannot exist a vertex x̃1

s, x̃
2
t P V pG{xy“1

{
ky
z“1

X 1
y,zn

G{xy“1
{
ly
z“1

X2
y,z and Z must be equal to V pG{xy“1

{
ky
z“1

X 1
y,z n G{xy“1

{
ly
z“1

X2
y,zq. Because the

subgraph of V pG{xy“1
{
ky
z“1

X 1
y,z bG{xy“1

{
ly
z“1

X2
y,zq induced by Z is isomorphic to G and Z “

V pG{xy“1
{
ky
z“1

X 1
y,z nG{xy“1

{
ly
z“1

X2
y,zq, it follows that G – G{xy“1

{
ky
z“1

X 1
y,z nG{xy“1

{
ly
z“1

X2
y,z.

This completes the proof of Theorem 3.

We call a bipartite matrix graph consisting of semicomplete bipartite subgraphs that

is decomposable by Theorem 3 a VRSP-decomposable bipartite matrix graph.
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In the fourth decomposition theorem we are going to prove that G{iPIRRinG{jPJCCj –

G, where V pGq consists of nonempty pairwise disjoint subsets Ri “ tvi,j | j P JC Ď Ju, i P

IR Ď I, and nonempty pairwise disjoint subsets Cj “ tvi,j | i P IR Ď Iu, j P JC Ď J, |IR| “

m1, |JC | “ n1,, with V pGq “
Ť

iPIR

Ri “
Ť

jPJC

Cj , for which GrRxs – GrRys, x, y P IR,

GrCxs – GrCys, x, y P JC , the arcs of AR “
Ť

xPIR

ArRxs and the arcs of AC “
Ť

yPIC

ArCys

have no labels in common and there are no other arcs in ApGq than the arcs of AR and

the arcs of AC . We give an illustrative example of the decomposition by Theorem 4 in

Figure 4.

G

Y1

X1

Y2

X2

Y3

X3 X4

G{X4

1

G{Y 3

1
Z “ V pG{Y 3

1
b G{X4

1
q

G{Y 3

1
b G{X4

1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12

u13

b

c

b

c

b

c

b

c

d e f

d e f

d e f

x̃1 x̃2 x̃3 x̃4

d e f

ỹ1

ỹ2

ỹ3

b

c

pỹ1, x̃1q pỹ1, x̃2q pỹ1, x̃3q pỹ1, x̃4q

pỹ2, x̃1q pỹ2, x̃2q pỹ2, x̃3q pỹ2, x̃4q

pỹ3, x̃1q pỹ3, x̃2q pỹ3, x̃3q pỹ3, x̃4q

d e f

d e f

d e f

b b b b

c c c c

Figure 4: Decomposition ofG – G{3i“1
YinG{4i“1

Xi. The set Z from the proof of Theorem 4

and the graph isomorphic to G induced by Z in G{3i“1
Yi b G{4i“1

Xi are indicated within

the dotted region.
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Theorem 4. Let G be a Cartesian matrix graph where V pGq consists of nonempty pairwise

disjoint subsets Ri “ tvi,j | j P JC Ď Ju, i P IR Ď I, and nonempty pairwise disjoint

subsets Cj “ tvi,j | i P IR Ď Iu, j P JC Ď J, |IR| “ m1, |JC | “ n1,, with V pGq “
Ť

iPIR

Ri “
Ť

jPJC

Cj, for which GrRxs – GrRys, x, y P IR, GrCxs – GrCys, x, y P JC , the

arcs of AR “
Ť

xPIR

ArRxs and the arcs of AC “
Ť

yPIC

ArCys have no labels in common

and there are no other arcs in ApGq than the arcs of AR and the arcs of AC . Then

G{iPIRRi n G{jPJCCj – G.

Proof. It clearly suffices to define a mapping φ : V pGq Ñ V pG{iPIRRi nG{jPJCCjq and to

prove that φ is an isomorphism from G to G{iPIRRi n G{jPJCCj .

Let x̃1
i be the new vertex replacing the set Ri and let x̃2

j be the new vertex replacing

the set Cj , when defining G{iPIRRi and G{jPJCCj, respectively. Consider the mapping

φ : V pGq Ñ V pG{iPIRRi n G{jPJCCjq defined by φpvi,jq “ px̃1
i, x̃

2
j q for all vi,j P V pGq.

Then φ is obviously a bijection if V pG{iPIRRi n G{jPJCCjq “ Z, where Z is defined as

Z “ tpx̃1
i, x̃

2
j q | φpvi,jq “ px̃i, x̃jq, vi,j P V pGqu. Furthermore, the set of vertices of Z is

identical to the set of vertices of G{iPIRRi b G{jPJCCj .

We start with proving that the contraction of Ri to x̃1
i and the contraction of Rj to x̃1

j

for i ‰ j, implies x̃1
i ‰ x̃1

j and that the contraction of Cj to x̃2
j and the contraction of Ck

to x̃2
k for j ‰ k, implies x̃2

j ‰ x̃2
k. Because Ri is the row with all vertices vi,k of V pGq (by

hypothesis) the vertices of Ri are replaced by x̃1
i and Rj is the row with all vertices vj,k of

V pGq (by hypothesis) the vertices of Rj are replaced by x̃1
j , and Ri X Rj “ H for i ‰ j,

we have that the contraction of Ri to x̃1
i and the contraction of Rj to x̃1

j for i ‰ j implies

x̃1
i ‰ x̃1

j. Likewise, Because Cj is the column with all vertices vi,j of V pGq (by hypothesis)

the vertices of Cj are replaced by x̃2
j and Ck is the column with all vertices vi,k of V pGq

(by hypothesis) the vertices of Ck are replaced by x̃2
k, and Cj XCk “ H for j ‰ k, we have

that the contraction of Ck to x̃2
k for j ‰ k, implies x̃2

j ‰ x̃2
k.

Because Z consists of vertices px̃1
i, x̃

2
j q only and φ maps vi,j onto px̃1

i, x̃
2
j q, and if vi1,j1 ‰

vi2,j2 then px̃1
i1
, x̃2

i2
q ‰ px̃1

j1
x̃2
j2

q, vi1,j1 , vi2,j2 P V pGq we have that φ is a bijection from

V pGq to Z. It remains to show that this bijection preserves the arcs and their labels. By

hypothesis, the arcs of the rows Ri of G are asynchronous with respect to the arcs of the

columns Cj of G and by hypothesis we have only arcs a P ApGq with µpaq “ pui,j , ui,kq

for ui,j P Ri, ui,k P Ri and arcs a P ApGq with µpaq “ pui,k, uj,kq for ui,k P Ck, uj,k P Ck.

Hence, together with the definition of the Cartesian product, for each arc a P ApGq with

µpaq “ pui,j , ui,kq for ui,j P Ri, ui,k P Ri, there exists an arc b in G{iPIRRi b G{jPJCCj

with µpbq “ ppx̃1
i, x̃

2
j q, px̃1

i, x̃
1
kqq “ pφpui,jq, φpui,kqq and λpbq “ λpaq. Likewise, for each
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arc a P ApGq with µpaq “ pui,k, uj,kq for ui,k P Ck, uj,k P Ck, there exists an arc b in

G{iPIRRi b G{jPJCCj with µpbq “ ppx̃1
i, x̃

2
kq, px̃1

j , x̃
2
kqq “ pφpui,kq, φpuj,kqq and λpbq “ λpaq.

Because G is acyclic, the above arcs are the only arcs in G{iPIRRi bG{jPJCCj induced

by the vertices of Z. Furthermore, there are no other vertices in G{iPIRRi b G{jPJCCj

than the vertices of Z, because all vertices of Z are of the type px̃1
i, x̃

2
j q (for the head and

the tail of asynchronous arcs). This completes the proof of Theorem 4.

Note that the decomposition by Theorem 4 iteratively decomposes any graph G that is

the product of graphs G1, . . . , Gn, G –
n
n
i“1

Gi, that do not share a label. We call a matrix

graph that is decomposable by Theorem 4 a VRSP-decomposable Cartesian matrix graph

and we call a subgraph G1 of a matrix graph G a maximal VRSP-decomposable Cartesian

matrix subgraph if G1 is a VRSP-decomposable Cartesian matrix graph and there is no

subgraph G2 of G where G2 is a VRSP-decomposable Cartesian matrix graph and G1 is a

proper subgraph of G2.

We continue with a decomposition theorem where we use implicitly both Theorem 3

and Theorem 4. The graphs containing maximal VRSP-decomposable Cartesian matrix

subgraphs and VRSP-decomposable semicomplete bipartite matrix subgraphs cannot be

decomposed by either Theorem 3 or Theorem 4. In Figure 5, we give an example where the

vertices are numbered according to the matrix scheme for maximal VRSP-decomposable

Cartesian matrix subgraphs and VRSP-decomposable semicomplete bipartite matrix sub-

graphs. This scheme leads to five rows and six columns for which the contraction of the

rows produces the graph G{5i“1
Ri and the contraction of the columns produces the graph

G{6i“1
Ci. The VRSP of these two graphs gives the graph G{5i“1

Ri n G{6i“1
Ci which is

isomorphic to G. In Theorem 5, we state and proof the scheme described in Figure 5.

Theorem 5. Let G be a matrix graph consisting solely of a set of maximal VRSP-

decomposable Cartesian matrix subgraphs GM of G and a set of VRSP-decomposable semi-

complete bipartite matrix subgraphs GB of G where each semicomplete bipartite subgraph

is arc-induced by a set of all arcs of G with identical labels. Let any subgraph GM1
of GM

and any subgraph GM2
of GM with V pGM1

q XV pGM2
q “ H and the subgraphs of GB have

no labels in common. Let there be no arc a of GB with µpaq “ vi,jvi,k and vi,j, vi,k in any

V pGMxq of GM and let there be no arc a of GB with µpaq “ vi,jvk,j and vi,j, vk,j in any

V pGMyq of GM . If each row Rx of G that contains the vertex vi,j has the index i and if each

column Cy of G that contains the vertex vi,j has the index j then G – G{mi“1
Ri nG{nj“1

Cj .
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Figure 5: Decomposition of G – G{5i“1
Ri n G{6j“1

Ci. The set Z from the proof of Theo-

rem 4 and the graph isomorphic to G induced by Z in G{5i“1
Ri b G{6j“1

Ci are indicated

within the dotted region (except for the arc with label i).
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Proof. It clearly suffices to define a mapping φ : V pGq Ñ V pG{mi“1
Ri n G{nj“1

Cjq and to

prove that φ is an isomorphism from G to G{mi“1
Ri n G{nj“1

Cj .

Let x̃1
i be the new vertex replacing the sets Ri with vi,j P Ri, x̃

2
j be the new vertex

replacing the set Cj with vi,j P Cj, when defining G{mi“1
Ri and G{nj“1

Cj , respectively.

Consider the mapping φ : V pGq Ñ V pG{mi“1
Ri n G{nj“1

Cjq defined by φpvi,jq “ px̃i, x̃jq

for all vi,j P V pGq. Then φ is obviously a bijection if V pG{mi“1
Ri n G{nj“1

Cjq “ Z, where

Z is defined as Z “ tpx̃i, x̃jq | φpvi,jq “ px̃i, x̃jq, vi,j P V pGqu. We are going to show

this later by arguing that all the other vertices of G{mi“1
RilG{nj“1

Cj will disappear from

G{mi“1
Ri b G{nj“1

Cj . But first we are going to prove the following claim.

Claim 2. The subgraph of G{mi“1
Ri b G{nj“1

Cj induced by Z is isomorphic to G.

Proof. We start with proving that x̃1
i and x̃1

j , i ‰ j, implies x̃1
i ‰ x̃1

j and that x̃2
i and

x̃2
j , i ‰ j, implies x̃2

i ‰ x̃1
j. Because Ri is the row with all vertices vi,k of V pGq (by

hypothesis) the vertices of Ri are replaced by x̃1
i and Rj is the row with all vertices vj,k of

V pGq (by hypothesis) the vertices of Rj are replaced by x̃1
j , and RiXRj “ H, i ‰ j, x̃1

i and

x̃1
j , i ‰ j, implies x̃1

i ‰ x̃1
j. Likewise, Because Ci is the column with all vertices vi,k of V pGq

(by hypothesis) the vertices of Ci are replaced by x̃1
i and Cj is the column with all vertices

vj,k of V pGq (by hypothesis) the vertices of Cj are replaced by x̃2
j , and CiXCj “ H, x̃2

i and

x̃2
j , i ‰ j, implies x̃2

i ‰ x̃2
j . Next, because all vertices vi,j are replaced by x̃1

i by G{mi“1
Ri

and all vertices vi,j are replaced by x̃2
j by G{nj“1

Cj , it follows that G{mi“1
Ri b G{nj“1

Cj

contains px̃1
i, x̃

2
j q with as a result that er is a one-to-one correspondence between vi,j and

px̃1
i, x̃

2
j q. It follows that φ : V pGq Ñ Z is a bijection. It remains to show that this bijection

preserves the arcs and their labels. By hypothesis, the arcs of the rows of the subgraphs of

GM are asynchronous with respect to the arcs of the columns of the subgraphs of GM and

the arcs of the subgraphs of GM are asynchronous with respect to the arcs of the subgraphs

of GB . For each arc a of G with µpaq “ pvi,j, vk,lq, i ‰ k, there is an arc b of G{mi“1
Ri

with µpbq “ px̃1
i, x̃

1
kq and λpaq “ λpbq and for each arc c of G with µpcq “ pvi,j , vk,lq, j ‰ l,

there is an arc d of G{nj“1
Cj with µpdq “ px̃2

j , x̃
2
l q and λpcq “ λpdq. Because the arcs of

each subgraph GBx of GB are synchronous arcs, we have that if a is a synchronous arc

of GBx then G{mi“1
Ri b G{nj“1

Cj contains an arc d with µpdq “ ppx̃1
i, x̃

2
j q, px̃1

k, x̃
2
l qq and

λpaq “ λpdq. Because the arcs of the rows of each subgraph GMx of GM are asynchronous

arcs with respect to the arcs of the columns of GMx (and vice versa), we have that if a

is such an asynchronous arc of a subgraph of GM then G{mi“1
Ri b G{nj“1

Cj contains arcs

d with µpdq “ ppx̃1
i, x̃

2
kq, px̃1

j , x̃
2
kqq and λpaq “ λpdq or arcs d with µpdq “ ppx̃1

i, x̃
2
kq, px̃1

i, x̃
2
l qq
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and λpaq “ λpdq Because G consists of subgraphs of GM and GB only, there are no other

arcs a of G. Therefore, the subgraph of G{mi“1
Ri b G{nj“1

Cj induced by Z is isomorphic

to G.

We continue with the proof of Theorem 5. It remains to show that all other vertices of

G{mi“1
RibG{nj“1

Cj , except for the vertices of Z, disappear from G{mi“1
RibG{nj“1

Cj . First,

we observe that all vertices of Z are of the type px̃1
i, x̃

2
j q. Therefore, it suffices to show

that vertices of the types px̃1
i, vjq, pvi, x̃

2
i q and pvi, vjq do not exist in G{mi“1

Ri b G{nj“1
Cj

and the vertices px̃1
i, x̃

2
j q of G{mi“1

Ri b G{nj“1
Cj that are not in Z will disappear from

G{mi“1
Ri b G{nj“1

Cj. Because all vertices vi,j of G are in Ri, the set of vertices tvi,ju is

replaced by the vertex x̃1
i and therefore vi,j does not exist in G{mi“1

Ri and all vertices vi,j

of G are in Cj, the set of vertices of vi,j is replaced by the vertex x̃2
j and therefore vi,j

does not exist in G{ni“1
Ci. Hence, by definition of the Cartesian product, vertices of the

types px̃1
i, vjq, pvi, x̃

2
i q and pvi, vjq do not exist in G{mi“1

Ri b G{nj“1
Cj . By definition of

the VRSP, if a vertex px̃1
i, x̃

2
j q R Z has level 0 in G{mi“1

Ri b G{nj“1
Cj, px̃1

i, x̃
2
j q is removed

from G{mi“1
Ri b G{nj“1

Cj . This followes directly from φ mapping the source of G into

the source of the graph induced by Z. Therefore, assume px̃1
k, x̃

2
l q R Z has level ą 0 in

G{mi“1
Ri b G{nj“1

Cj. For a vertex px̃1
k, x̃

2
l q R Z to have levelą 0 in G{mi“1

Ri b G{nj“1
Cj

there must be an arc a in G{mi“1
Ri b G{nj“1

Cj with µpaq “ ppx̃1
i, x̃

2
j q, px̃1

k, x̃
2
l qq with either

px̃1
i, x̃

2
j q P Z or px̃1

i, x̃
2
j q R Z. In the case that px̃1

i, x̃
2
j q R Z we can recursively backtrack

the paths until we reach a vertex px̃1
i, x̃

2
j q P Z or we reach a vertex px̃1

i, x̃
2
j q R Z with

level 0. In the former case, the arc a cannot exist, because otherwise a corresponds to

an arc b in ApGMxq or a corresponds to an arc b in ApGBxq with µpbq “ pvi,j , vk,lq and

λpaq “ λpbq. But such an arc b cannot exist because for such an arc b we have that

there exists an arc c in G{mi“1
Ri with µpcq “ px̃1

i, x̃
1
kq and λpbq “ λpcq and there exists

an arc d in G{nj“1
Cj with µpdq “ px̃2

j , x̃l
2q and λpbq “ λpcq “ λpdq. Therefore, there

exists an arc e with µpeq “ ppx̃1
i, x̃

2
j q, px̃1

k, x̃
2
l qq and λpeq “ λpaq in the graph induced by

Z. This contradicts the assumption px̃1
i, x̃

2
j q R Z. In the latter case, the vertex px̃1

i, x̃
2
j q is

removed from G{mi“1
Ri bG{nj“1

Cj together with the arc a with µpaq “ ppx̃1
i, x̃

2
j q, px̃1

i1
, x̃2

j1
qq,

recursively, until the arc a1 with µpa1q “ ppx̃1
in
, x̃2

jn
q, px̃1

k, x̃
2
l qq is removed. This completes

the proof of Theorem 5.
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6 Future work

In this paper, we believe that we have supplied all ingredients with which we can decom-

pose a labelled acyclic directed multigraph with respect to the VRSP. Based on Theo-

rems 1, 2, 3, 4 and 5 we believe that graphs that cannot be decomposed by any of these

theorems must be a prime-graph with respect to the VRSP. But, this still has to be proved

in future work.
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