HAN_UNIVERSITY
OF APPLIED SCIENCES

Missing Miles: Detecting mileage fraud
via remote diagnostics

Bachelor of Science Graduation thesis in Automotive Engineering

ROHAAN GHOSH

Vehicle Electronics and Control

Faculty of Automotive Engineering

HAN UNIVERSITY OF APPLIED SCIENCES
Arnhem, Netherlands 2020

Bachelor's Graduation Thesis Report, 2020

Missing Miles: Detecting mileage fraud
via remote diagnostics

Bachelor of Science Graduation thesis in Automotive Engineering

Final report presented for the Graduation thesis at

JIFELINE B.V.

Rohaan Ghosh
Arnhem, Netherlands, 2020.

University Supervisor:
Ellen Wesselingh
Faculty of Automotive Engineering
HAN University of Applied Sciences

Company Supervisor:
Frank Bouman
Jifeline B.V.

June 8, 2020.

Preface

This is the final report written during my graduation internship at Jifeline B.V. as my
Bachelor's thesis. Mileage fraud commonly known as 'clocking’ (in the United Kingdom), is
prevalent in the second-hand car market within European Union (EU), especially when cars are
imported and exported to and from member states. It is difficult or near impossible to detect
unless using diagnostic tools from Original Equipment Manufacturer (OEM) service centres
or dealerships. Another means of detect clocking, is to have a system to keep a vehicle's
mileage values in a database recorded over time. The above mentioned system is only in place
for a couple of member states within the EU. If no check is carried out, a vehicle that has
been clocked can be traded in the second-hand market without the buyer realising that the
mileage value in his newly bought second-hand vehicle has been falsified. This report presents
an alternative by means of an automated function via remote vehicle diagnostics to detect
clocking.

B Remote Vehicle Diagnostics

Acknowledgement

| would like to express my appreciation and gratitude to Jifeline B.V. for providing me
with the opportunity to perform my Graduation Thesis Assignment at their company in an
innovative and professional environment. A special thanks to my company supervisor Frank
Bouman for his guidance throughout this project. | would like to take this opportunity to
thank all persons concerned at Jifeline, FactorlT and Car Lock Systems who have helped and
acknowledged my work during this project. A mentioned to my supervising lecturer Ellen
Wesselingh for her supervision and help during the course of this project.

Rohaan Ghosh
Arnhem, 08-06-2020

B Remote Vehicle Diagnostics

Summary

The problem addressed in this report is the mileage manipulation of cars in the second-
hand car market. This issue occurs within the EU, typically in vehicles being imported and exported.
It is caused by lack of information on accuracy of odometer reading which leads to a negative impact
on consumer confidence in this market. It also causes losses to consumers and other third party
organisation in terms of product quality and economic value.

At Jifeline remote diagnostics, operators are required to perform diagnostic services on multiple
vehicles in a single working day. This phenomenon can be identified using an OEM diagnostic tool by
checking the different Electronic Control Unit (ECU)s within the vehicle. But this is a long process
requiring time and a dedicated operator for a single vehicle to check all the modules. Jifeline as a
company cannot dedicate such a high amount of resources on a single car considering the operators
receive over a hundred service requests a day from third party garages that partner with Jifeline.

Jifeline possessing the means and knowledge to take appropriate action
against the phenomenon of mileage fraud have created this project. The objective of which is
to deliver a script that is able to detect the mileage stored in different modules of vehicles connected
to the Jifeline Network. These vehicles referred to are Volkswagen (VW) Group, Modular Transverse
Matrix (MQB) and Modular Longitudinal Matrix (MLB) vehicles. They are chosen for their shared
functionality and their presence in the automotive market in terms of quantity. This report reflects
on the project’s proceedings.

Initially, an OEM diagnostic tool is used to scan a vehicle to recognise the ECUs
containing mileage. This Controller Area Network (CAN) communication between tool and car
is logged by the data logging system created in-house by the specialists at Jifeline. Following this,
the data is analysed and reverse engineered to emulate the functionality of the tool by means of a
script.

Initially, to simulate the tool intensive testing is required to develop and optimise this process.
Testing on vehicles requires a hefty amount of time and resources. This becomes cumbersome.
A secondary script is built to simulate the behaviour of the vehicle for the required diagnostic
procedure. This is realised by the scripting environment present at Jifeline. The two scripts are
tested against each other until successful execution. Now, the diagnostic tool simulating script can
be tested against vehicles on a production environment.

The script simulating the diagnostic tool extracts the mileage stored and compares these values
against each other to check for irregularities within the vehicle. The functionality of the script is
extended to cater to vehicles that fall within the scope of this project. Finally, the script is tested
and validated.

X Remote Vehicle Diagnostics iii

The process of performing a diagnostic procedure remotely by means
of a python script has major advantages over the conventional procedure of performing vehicle
diagnostics. The advantages gained in terms of time utilization, cost efficiency and effectiveness
outweigh the disadvantages in the realm of diagnostic services.

The script created recreates the functionality carried out by the diagnostic tool, not only carries
out it execution in a faster manner but also completely automates this process. Therefore, no
operator input is required and the script knows exactly what to do to extract the mileage. With
the information obtained from the script appropriate action can be taken therefore, helping to fight
against mileage fraud.

X Remote Vehicle Diagnostics iv

Contents

Preface
Acknowledgement
List of Figures
List of Tables
Listings

List of Acronyms

1 Introduction

1.1 Background
1.2 Problem
1.3 Project Objective.
1.4 Method
1.5 Report Structure

2 Research Questions

2.1 Premise. e
2.2 Main Question
2.3 Sub-questions

3 Mileage Extraction

3.1 nvestigation
3.1.1 Preliminary Investigation L
3.1.2 Diagnostic Tool Scan

3.2 Mileage Analysis
3.21 VW Golf Analysis
3.22 MQB and MLB platforms L

4 Script Design

4.1 Functional Specifications
4.1.1 UserlInteractions
4.1.2 Script Output e
4.1.3 Software Specifications

42 High Level
421 Data Extraction
422 Data Manipulation

B Remote Vehicle Diagnostics

vii

vii

viii

CONTENTS

43 Low Level
4.3.1 Data Extraction Methods

4.3.2 Data Manipulation Methods

44 Source Code

5 Verification

51 Testing
5.1.1 Prerequisites. L.
512 KeyTasks

5.2 Validation
521 Internal
522 External

6 Discussions and Conclusion

6.1 Discussion

6.2 Conclusion

6.3 Future Studies
Appendices

Personal tutor Approval
Final Project Management Plan
Reflection Report

Reference Tables

m O 0O W >

Scripts Log

References

B Remote Vehicle Diagnostics

xi

Xiv

XV

XVi

XXi

XXVi

vi

List of Figures

3.1 VW Golf Mk VIl used for investigation 6
3.2 VW Golf VI ECU scans example, 38
3.3 VW Golf Mk VIl mileage 10

3.4 Details of the Adaptive Cruise Control Module showing the ASAM dataset and ASAM

dataset revision L L 11
4.1 Jifeline Infrastructure L 14
4.2 \Vehicle diagnostic architecture L L 16
4.3 Script Execution procedure 24
D.1 Sl Table e Xvi

List of Tables

3.1 VW Golf Mk VII ECUs encountered and which contain vehicle mileage 7
4.1 Manufacturer specific request message sub-function parameter definition 17
5.1 Script Testing Cycle 26
52 TestResult 28
D.1 Example of Sls with their respective positive and negative response codes xvil
D.2 Example of diagnostic/programming specifications applicable to the OSI layers . . . xvii
D.3 DSCS request message sub-function parameter definition Xvii
D.4 Mileage Test Plan xviiil
D.5 ECUsencountered e XX

X Remote Vehicle Diagnostics vii

Listings

3.1 CAN communication frame L 7
3.2 ECM mileage request and response 8
3.3 IPC mileage request and responseo 9
3.4 Example AutoHVAC mileage request and response for comman MSI 9
3.5 Example DDM mileage request and response for common MSI 9
3.6 Example details of vehicle got usingthe VIN 10
3.7 example of ECUs within the Golf following different protocol 11
3.8 Mileage identifier used to distinguish position of mileage value stored within positive
FESPONSE MESSALE + « v v v v v e e e e e e e e e e e e e 12
4.1 Terminal Qutput e 15
42 CAN Busrequirements 20
4.3 Skeleton of script showing the classesused 20
4.4 Creating threads for data extraction 21
4.5 Methods for data extraction 21
4.6 Methods for data manipulation Lo 21
47 ECU attributes list 21
4.8 Information where the mileage lies in their respective ECUs 22
E.1 Example of script communication trace with an Audi A6 XXi

X Remote Vehicle Diagnostics viii

4WD
AA
ASAM
ASDU
ABS
API
AIDC
ASCII
BCM
CcP
CAN
CEM
COVID-19
DDM
DLC
DLL
DTC
DSCS
EU

EC
ECM
ECU
EOBD
FWD
HAN
HVAC
IEC
IPC
ISO
JD
JN

JL

JR

List of Acronyms

Four wheel drive

Android Application

Association for Standardisation of Automation and Measuring Systems
Application layer Service Data Unit
Anti-lock Braking Module

Application Programming Interface
Automatic Identification and Data Capture
American Standard Code for Information Interchange
Body Control Module

Car-Pass

Controller Area Network

Central Electronics Module

Corona Virus Disease, 2019

Driver Door Module

Data Link Connector

Data Link Layer

Diagnostic Trouble Codes
DiagnosticSessionContol service

European Union

European Commission

Engine Control Module

Electronic Control Unit

European On-Board Diagnostics

Front wheel drive

Hogeschool van Arnhem en Nijmegen
Heating Ventilation and Air-Conditioning Module
International Electrotechnical Commission
Instrument Panel Cluster Module
International Standards Organisation
Jifeline Dashboard

Jifeline Network

Jifeline Local

Jifeline Remote

X Remote Vehicle Diagnostics

LISTINGS

JNW
JRD
Kbps
MS
MLB
MQB
MSI
NAP
NRSI
oBD
OEM
(01
PAM
PDM
PMP
PTI
RA
RDBI
SA

SI

SR
SAE
STID
TA
TP
TRT
TAtype
uUDS
‘A
VAG
VCDS
VIN

Jifeline Networks

Jifeline Remote Diagnostics
Kilobits per second

Member States

Modular Longitudinal Matrix
Modular Transverse Matrix
Manufacturer Specific Identifier
Nationale AutoPas

Negative Response Service ldentifier
On-Board Diagnostics

Original Equipment Manufacturer
Open Systems Interconnection
Parking Assist Module
Passenger Door Module

Project Management Plan
Periodic Technical Inspection
Remote Address
ReadDataByldentifiers

Source Address

Service ldentifier

Service Request

Society of Automotive Engineers
Diagnostic Session Type Identifier
Target Address

TesterPresent

Transport e Territorio

Target Address type

Unified Diagnostic Services
Volkswagen

Volkswagen Aktiengesellschaft
VAG-COM Diagnostic System
Vehicle Identification Number

X Remote Vehicle Diagnostics

CHAPTER 1

Introduction

The process of changing/adjusting the mileage reading on a vehicle's odometer is known as mileage
recalibration. When this process is carried out without disclosing it, it is known as Odometer
manipulation or 'clocking’ (Clocking definition, 2020). The largest portion of the automotive
market by value and share is the second-hand car market. It is two to three times larger than
the market of new cars. Within the EU there is a massive import and export of second-hand
cars. Approximately 2.4 million second-hand cars were traded between the Member States (MS)
of the EU in 2014 (Borkowski, 2017). A study conducted by Transport e Territorio (TRT) reveals
that the European Commission (EC) addressed the issue of odometer tampering for the first time
within the EU in the "Roadworthiness Package”. It was adopted on 11 March, 2014 (TRT (2017),
2017). It calls for Member States to adopt measure to record odometer readings of vehicles at
every Periodic Technical Inspection (PTI). There exist such systems like Belgian Car-Pass (CP) and
Dutch Nationale AutoPas (NAP) (RDW, 2014). These systems act as a database holding mileage
information of vehicles, but on a national level. Therefore, they could be used as a basis to form
an EU wide database.

An aspect of preventing odometer manipulation is detecting it. This can be identified by
using OEM diagnostic tools. The problem here is these tools are expensive or require a continuous
subscription and available mostly at dealerships and OEM certified workshops. This makes identification]
of this phenomenon difficult. Therefore, lack of correct tools to identify this phenomenon adds to
this problem. All the factors added together make this a issue that is required to be addressed.

The two main problems that are caused due to mileage manipulation is the negative impact it has
in terms of money being lost and the dissatisfaction it causes to the consumer base of the second-
hand car market. Due to causes mentioned in section ??, 30% - 50% of second-hand cars traded
within the EU have their odometer manipulated (RPC, 2012). This has a detrimental impact on the
second-hand car market both economically and in terms of consumer satisfaction. Also, the lack of
information about accurate odometer readings leads to lower levels of trust amongst the consumers
in this market when compared to other markets.

B Remote Vehicle Diagnostics 1

CHAPTER 1. INTRODUCTION

Jifeline Remote Diagnostics is a company that focuses on the after-sales market of the automotive
industry servicing most types of passenger vehicles. Due to their network it is possible to access and
collect data from vehicles when connected to it. Section 1.3 elaborates more on Jifeline’s coverage
area and vehicle's serviced. If a vehicle is detected having fraudulent mileage, Jifeline can notify the
relevant authorities. These authorities can take the correct measures to deal with such a situation.
Due to these reasons, Jifeline feels obligated to carry out such a project within the company as they
have the means to prevent and take action against such a phenomenon.

Jifeline has the means and the knowledge to fight against this phenomenon. It's network has a
coverage area spanning across nineteen countries (Jifeline Dashboard, n.d.) in the EU. This allows
Jifeline to maintain a mileage database of vehicles serviced within this Network. Given the reasons
and the infrastructure present, it creates a possibility to investigate into where a vehicle stores the
mileage. Some questions come to minds when starting such an investigation. They are as follows.
How many ECUs hold mileage information of the vehicle? How can this information be analysed
and recorded? What are the similarities and differences between vehicles when carrying out such an
investigation? How can they be categorised? Such questions form the basis of this investigation.

This report’s objective is to reflect on the tasks carried out. It acts as a reference document to
the project's proceedings. Information and method of how a vehicle’'s mileage is investigated are
elaborated upon. Vehicles that come under the scope of this project are VW Group vehicles that fall
under the MQB and MLB platforms. These platforms created by VW where vehicles share modular
design. MQB vehicle are those which are constructed with transverse, front-engine, Front wheel
drive (FWD)(or Four wheel drive (4WD)) layout. MLB vehicle are constructed with longitudinal,
front-engined layout. They may or may not have 4WD. These vehicles are chosen because of the
common functionality that they share and cover a vast portion of vehicles serviced by Jifeline Remote
Diagnostics.

This section elaborates on the method used for reaching the goals and providing the deliverables. To
understand where the mileage is stored in a vehicle, it is required to know which ECUs in a vehicle
contain this information. To obtain this information, a diagnostic tool is used to perform a vehicle
scan. A diagnostic tool is used to obtain general information about a vehicle. It can also be used to
program new modules or to re-calibrate existing modules. The diagnostic tool used for this project
is VAG-COM Diagnostic System (VCDS). It is a software package for Windows that emulates
the functions VW OEM diagnostic tools. It is developed by Ross-Tech (VCDS, n.d.).

Once the scan is performed, the communication trace between the tool and the vehicle is logged
in a log file. Using this log file as a base, work is started to develop an automated function
(script) that can read the vehicle's mileage values from different ECUs emulating the role of a
diagnostic tool. By observing these logs and reverse engineering them the objective can be achieved.

After this process is carried out for an in-scope vehicle, the same working methodology can

B Remote Vehicle Diagnostics 2

CHAPTER 1. INTRODUCTION

be applied for the remainder of the vehicles to draw parallels and create the final product catering
to all vehicles within this scope.

This document is organised in six chapters. Firstly, chapter 2 defines the research questions. Chapter
3, shows how mileage is extracted from a vehicle and categorisation of the vehicles serviced. Chapter
4, shows the design of the final product (script). It is broken down into four major parts, i.e., the
function specifications required, high level design, low level design and lastly source code. Chapter
5, explains the approach taken to solve the problem at hand and verification of the final product.
It is broken into two major parts; Testing and Validation. Chapter 6 summarises the most relevant
aspects that have emerged and in previous chapters and makes recommendations about what more
could be done to improve the script but could not be carried out due to limitations faced during the
course of this project. The final part of this document contains the appendices and list of references.
It contains reference information for this document as well as documents required as per requirements
stated in the graduation guide provided by the Hogeschool van Arnhem en Nijmegen (HAN).

B Remote Vehicle Diagnostics 3

CHAPTER 2

Research Questions

This section elaborates on the premise that the main and sub-questions are formulated. It is common
knowledge that the answers to sub-questions gives the answer to the main research question.

These question are formulated during the research phase of the project. They help to outline criticall]
tasks required to carry out this investigation and achieve the goal of this project. Preliminary
research is carried out by means of desk research and field to analysis the problem mileage
manipulation. Desk research entails of analysis of the problem of mileage manipulation through
existing literature. This can be seen in sections 1.1 and 1.2 as well as the ?? formulated during
the initial phase of this project. Field research is carried out by scanning vehicle and vehicle test-
setups (created in-house at Jifeline) with diagnostic tools and On-Board Diagnostics (OBD) fault
code readers. From this research it is found that a vehicle's mileage can be obtained via an OEM
diagnostic tool. With this method the different ECUs containing the vehicle's mileage can be
identified. Knowledge obtained from this preliminary research helps to identify these critical task
which in-turn form the research questions.

How to design and build a reliable, automated and extensible function
tailored towards investigating kilometres travelled for MQB and MLB
vehicles via remote diagnostics?

How to learn and perform mileage checks on a vehicle?

What are some basic requirements for performing diagnostic services on MQB and MLB vehicles?

What components are required to build an automated function?

How to verify extracted mileage data from the vehicle?
How to make the function extensible for future use?

X Remote Vehicle Diagnostics 4

CHAPTER 3

Mileage Extraction

This chapter elaborates on procedure and analysis of mileage extraction. This is done to obtain the
mileage of a vehicle; one of the primary objectives of this chapter. It also aims to draws parallels and
differentiates in the procedure required to reach the aforementioned goal for MQB and MLB vehicles.
The primary method used is observing the CAN communication between vehicle and diagnostic tool.

This section shows what methods were used to obtain mileage values from the vehicle. The mileage
value indicated on the odometer of the vehicle is not considered sufficient as the goal is to obtain
where the mileage value is stored in a vehicle’'s ECUs, at what address, what is the format of the
data and how to convert it into a readable format.

At lJifeline Remote Diagnostics, certain test-setups containing mission critical ECUs of vehicles
exist. They are namely, the Engine Control Module (ECM), Instrument Panel Cluster Module
(IPC), Central Electronics Module (CEM) and finally, the immobilizer. These setups were used for
preliminary investigation to find which ECUs contain the mileage

Initially, the first method carried out was to obtain the mileage of a vehicle by an after-market
OBD-Il/European On-Board Diagnostics (EOBD) fault code reader (reader). The idea
was to get the mileage reading of the vehicle through this reader. After, exploring the options
available on this reader it was found that the mileage value could not be read out. Although, what
was noticed was when a fault code was read out there was a mileage stamp indicating at what
mileage the fault code showed up in the vehicle. The disadvantage of this method is the current
mileage is not shown. This means, if a vehicle has covered more kilometres after the fault code has
showed up, the mileage reading obtained from the fault code is not the current mileage. Therefore,
this method of investigation was dropped and another method of investigation was required to be
adopted.

The second method, performing a scan on a vehicle using a EOBD scan tool (diagnostic
tool). Initially, this was tested on one of the test setups at Jifeline. The setup represented a VW
Up. The diagnostic software used was VCDS. With this method the current mileage was retrieved
from the ECM and IPC in the setup. Thus, this investigation conducted was successful and is the

B Remote Vehicle Diagnostics 5

CHAPTER 3. MILEAGE EXTRACTION

Figure 3.1: VW Golf Mk VII used for investigation
chosen methodology to further analyse the problem.

3.1.2 Diagnostic Tool Scan

This section shows the finalised methodology used to extract vehicle mileage from different ECUs.
Following the investigation carried out in section 3.1.1 and the conclusion reached from it, scanning
a vehicle using a diagnostic tool is the most suitable method. An applicable vehicle was chosen
and an applicable diagnostic tool /software is required.

The chosen vehicle is a VW Golf Mark VII. This vehicle is part of the MQB platform. The
software chosen is VCDS. Figure 3.1 shows the vehicle used to to carry out the investigation.

Using VCDS, a scan is performed to check how many ECUs are present in the vehicle. Table 3.1
shows all the ECUs present in the vehicle and their address. There are seventeen ECUs present.
The next step is to check how many ECUs contain the mileage of the vehicle.

A scan on every ECU was done to find if mileage is present. Figure 3.2 shows how mileage was
readout for every ECU using VCDS. Table 3.1 also shows the ECUs of the test vehicle and which of
them contain mileage. From seventeen ECUs readout, ten of them contain the mileage of vehicle.

1 0x01 Engine Control Module Yes
2 0x03 Brake Electronics Module No
3 0x08 Auto HVAC Module Yes
4 0x09 Central Electronics Module Yes
5 0x10 Park Steer Assist Module Yes
6 0x13 Adaptive Cruise Control Module No
7 0x15 Airbag Module No
8 0x16 Steering Wheel Module No

[FEGE M Remote Vehicle Diagnostics 6

CHAPTER 3. MILEAGE EXTRACTION

Table 3.1 continued from previous page

No | Address | ECU Name Mileage value present
9 0x17 Instruments Module Yes
10 | 0x19 Gateway Module Yes
11 | 0x42 Door Electronics Driver Module Yes
12 | Ox44 Steering Assist Module Yes
13 | Ox4B Multifunctional Module No
14 | 0x52 Door Electronics Passenger Module | Yes
15 | Ox5F Information Electronics Module Yes
16 | 0xD6 Light Control Left 2 No
17 | OxD7 Light Control Right 2 No

Table 3.1: VW Golf Mk VII ECUs encountered and which contain vehicle mileage

This section shows how results from the investigation carried out in section 3.1.2 are analysed. It
emphasizes on the CAN communication between vehicle and tool. The CAN communication is
logged by the in-house data logging system of Jifeline. This allows to analyse and reverse engineer
the data being transferred between the two entities; vehicle and diagnostic tool, respectively. It
helps to understanding, recognise and realise the behaviour of both entities when trying to re-create
the functionality of either. The CAN protocol used is Unified Diagnostic Services (UDS)

To understand how to extract the mileage, certain concepts and workings within the CAN
communication framework are required to be understood. They include but are not limited to
translating mileage to readable format, Service Identifier (Sl)s and Manufacturer Specific
Identifier (MSI)s used by diagnostic tools to obtain mileage response. Also, ECUs containing
unique and similar Sls and MSls, respectively.

Detailed description of what is a Sl is provided in section 4.1.3. It also shows all Sls found and
used. Section 4.1.3 shows the MSIs and table 4.1 gives a list of these identifiers found and used.

Listing 3.1 shows what a request and response CAN communication message looks like. This
communication trace is in the format that Jifeline creates in-house making it easier to understand.
Aspects important to current topic are discussed.

e 11:41:51.621 is the timestamp of the frame.

e CAN1 is the CAN bus being communicated too.

e — is the request message being sent to the vehicle from the tool.

e < is the response message from the vehicle to the tool.

e args[0x07E0 and 0x07E8] are the request and response addresses of the ECU, respectively.

e data[0x1902AE]| contains data that can either be a request or response to and from the vehicle,
respectively.

Listing 3.1: CAN communication frame

11:41:51.621 | CANL | —> | 93 ms | [ISOTP VAG] cmd[0x5000] args[0x07E0,0x00,0x00,0x00] data[0x1902AE]
11:41:51.690 | CAN1 | <— | 30 ms | [ISOTP VAG] cmd[0x5000] args[0x07E8,0x00,0x00,0x00] data[0x5902FF]

B Remote Vehicle Diagnostics 7

CHAPTER 3. MILEAGE EXTRACTION

TS
};[,1‘*;' |
it

e
Iﬂll'ﬂ“
il

1{‘;’ il

r
’IW! !;

Description LR
Standard - ambient data i1-0dorr|e

(b) CANGateway mileage: group, description and value

Figure 3.2: VW Golf VIl ECU scans example

3.2.1 VW Golf Analysis

This is a continuation of the investigation carried out in section 3.1.2. The vehicle and diagnostic
tool remain the same; VW Golf and VCDS, respectively. To read out the vehicle mileage, the
diagnostic tool uses the SI ReadDataByldentifiers (RDBI). Following this, the MSls varies
depending upon the ECU being communicated to, although they may be similar at times. Firstly,
breakdown and analysis of ECUs containing unique MSI to obtain mileage are discussed. Following
this, ECUs containing same MSls are discussed.

Unique MSls

From the analysis of the CAN trace, two ECUs have unique MSIs. They are the ECM and IPC.
Where the mileage value exists within response frame, how long it is and its description by the
diagnostic tool are shown in this sections.

Engine Control Module The MSI which reads out mileage in this module is named vehicle
distance driven; 0x10EO is the hex service. If the vehicle sends a positive response to this request,
the mileage is stored in this response. Listing 3.2 shows the request to read out the mileage and
the positive response containing mileage. In this listing, 0x07E0 and 0x07E8 are the request and
response addresses, respectively. The last four bytes; that is the last eight digits, of the positive
response contain the mileage; denoted by 0x0000A169.

Listing 3.2: ECM mileage request and response

T
| 13:54:32.301 | CANL | —> | 104 ms | [ISOTP VAG] cmd[0x5000] args[0x07E0,0x00,0x00,0x00] data[0x22 10EQ |

FEGHH M Remote Vehicle Diagnostics 8

CHAPTER 3. MILEAGE EXTRACTION

13:54:32.327 | CAN1 | <— | 26 ms | [ISOTP VAG] cmd[0x5000] args[0x07E8,0x00,0x00,0x00] data[0x6210EQ 0000A169 | |

The MSI which reads out mileage in this module is named distance; 0x2203]
is the hex service. Listing 3.3 shows the request to read out the mileage and its positive response. In
this listing, 0x0714 and 0x0774 are the request and response addresses respectively. The last three
bytes of the positive response contains the mileage; denoted by 0x00A169.

Listing 3.3: IPC mileage request and response

r
| 13:45:40.383 | CANL | —> | 46 ms | [ISOTP VAG] cmd[0x5000] args[0x0714,0x00,0x00,0x00] data[0x22 2203 | |
| 13:45:40.417 | CAN1 | < | 34 ms | [ISOTP VAG] cmd[0x5000] args[0x077E 0x00,0x00,0x00] data[0x622203 00A169] |

Mentioned in section 3.1.2, ten ECUs store the vehicle's mileage. From section 3.2.1, two have
unique MSls. The remaining eight share the same MSI. This is denoted by Standard - ambient
data 1-Odometer reading; 0x02BD is the hex service. Although the remaining eight share
the same MSI, the position of the mileage value within the positive response frame varies for
certain ECUs. The ECUs where mileage position varies are the Passenger Door Module (PDM)
and Driver Door Module (DDM). Those having the same mileage position are labelled Type-I and
those that differ are labelled Type-II for this report only.

Listing 3.4 shows the request to read out the mileage and the positive response containing
the mileage. In this listing, 0x0746 represents the Heating Ventilation and Air-Conditioning Module
(HVAC)'s (referred to as " AutoHVAC" in this report) request address and 0x07BO is the response
address. For this ECU bytes five to seven of the positive response message contain the mileage
of the vehicle; denoted by 0x00A169.

Listing 3.4: Example AutoHVAC mileage request and response for comman MSI

T
| 14:21:11.436 | CAN1 | —> | 18 ms | [ISOTP VAG] cmd[0x5000] args[0x0746,0x00,0x00,0x00] data[0x22 02BD] |

14:21:11.540 | CAN1 | <— | 104 ms | [ISOTP VAG] cmd[0x5000] args[0x07B0,0x00,0x00,0x00] data[0x6202BD16 00A169 000050
<> BOES54A]

Listing 3.5 shows the request to read out the mileage and the positive response containing
the mileage. In this listing, 0x074A represents the DDM's request address and 0x07B4 is the response
address. For this ECU the mileage is embedded in two and a half bytes. Starting from position
eleven to position fifteen; denoted by 0x0A169.

Listing 3.5: Example DDM mileage request and response for common MSI

| 15:05:38.657 | CAN1 | —> | 57 ms | [ISOTP VAG] cmd[0x5000] args[0x074A,0x00,0x00,0x00] data[0x2202BD] |
15:05:38.769 | CAN1 | <— | 112 ms | [ISOTP VAG] cmd[0x5000] args[0x07B4,0x00,0x00,0x00] data[0x6202BD0016 0A169 000285878
<> B280)

This section draws conclusions from the case study carried out in section 3.2.1. Findings from
investigating other vehicles sharing these platforms are shown. The Vehicle Identification Number
(VIN) is consider during investigations as it plays a crucial role in identifying the vehicle. This section

B Remote Vehicle Diagnostics 9

CHAPTER 3. MILEAGE EXTRACTION

elaborates on what basis these vehicles are categorised as well as the similarities and differences found
within them.

It is a 17-digit unique code used to identify vehicle containing the serial number. With the VIN
and the correct Application Programming Interface (API), all details of a vehicle can be accessed.
Listing 3.6 shows the type of details that can be accessed with the knowledge of the VIN. Therefore,
the VIN is considered an extremely important aspect of identifying a vehicle.

Listing 3.6: Example details of vehicle got using the VIN

Chassis number: WV GZZZ x5k ks sk k%

Model: Touareg BlueMotion
Technology: sokokok

Production date: *%.%%.2016
Model year: 2017

Sales type: TPk

Engine code: CVxx
Acceleration code: kK

Shaft drive characteristic:
Equipment: *k

Roof color: Kok

Color—coded carpet
Exterior color / Paint number: s / sxx

Note: The details of the vehicle have been redacted to keep the vehicle owner’s privacy

This section describes the similarities that are found with these platforms. The topics discussed are
how the mileage is converted, how the vehicles belonging to these platforms are categorised and
what common MSls are used to classify the ECUs.

Section 3.2.1 shows the mileage value that is retrieved. Although this value
that is retrieved is in hexadecimal. This is converted into decimal to get the mileage in units
of kilometres [km]. Vehicles belonging to this platform, all require the same conversion. From
figure 3.3, the mileage of the vehicle is 41321 [km]. The value obtained from the trace shown
section 3.2.1 is 0xA169. When this values is converted it corresponds to the value mentioned above
in kilometres [km].

20,12 - Remote Desktop Connection

I B S “‘\“‘m | R
Chassis Type: AU-VW37 (3Q0) | | R
Scan: 01 03 08 09 10 13 15 16 17 19 42 44 4B 52 5F D6 D7

VIN: Mileage: 41321km-25675miles

Figure 3.3: VW Golf Mk VII mileage

B Remote Vehicle Diagnostics 10

CHAPTER 3. MILEAGE EXTRACTION

Vehicle categorisation Here, how the vehicles are classified is discussed. During this project,
vehicles belonging to this platform may contain certain ECUs that do not follow the CAN protocol
under the scope of this project. Thus, it is easier and more sensible to classify these vehicles not by
the vehicle model, but the ECUs present within these vehicles.

Listing 3.7 shows the communication trace between the vehicle and tool from section 3.2.1. Here,
the communication to the ECM (address: 0x07E8) is in readable format. The communication to the
Multifunctional Module (address: 0x17F00010) is not in the same format therefore, it is consider
out of scope.

Listing 3.7: example of ECUs within the Golf following different protocol

T
| 13:40:26.686 | CAN1 | <— | 149 ms | [ISOTP EOBD] cmd[0x5000] args[0x07E8 ,0x00,0x00,0x00] data[0x4100BE3EA813]

13:40:26.717 | CAN1 | [17F00010]<— | 31 ms | 2010000000000000 |

13:40:26.836 | CAN1 | <— | 119 ms | [ISOTP EOBD] cmd[0x5000] args[0x07E8,0x00,0x00,0x00] data[0x4100BE3EA813]
13:40:26.986 | CAN1 | <— | 150 ms | [ISOTP EOBD] cmd[0x5000] args[0x07E8,0x00,0x00,0x00] data[0x41208007B011]
13:40:27.137 | CAN1 | <— | 151 ms | [ISOTP EOBD] cmd[0x5000] args[0x07E8,0x00,0x00,0x00] data[0x4140FED08401]
13:40:27.212 | CAN1 | [17F00010]<— | 75 ms | 2010000000000000 |

13:40:27.286 | CAN1 | <— | 74 ms | [ISOTP EOBD] cmd[0x5000] args[0x07E8,0x00,0x00,0x00] data[0x4140FED08401]

ECU identification In paragraph Vehicle categorisation categorisation is made based on vehicle
ECUs. To be able to categorise them in a unique manner, it is important to identify them. Therefore,
two MSIs are used. They are described as Association for Standardisation of Automation
and Measuring Systems (ASAM) dataset (commonly known as ODX Filename within Jifeline)
represented by 0xF19E and ASAM dataset revision represented by 0xF1A2. Figure 3.4 shows
the ECU details used to identify and categorise vehicles belonging to this platform.

Figure 3.4: Details of the Adaptive Cruise Control Module showing the ASAM dataset and ASAM
dataset revision

=Emd P Remote Vehicle Diagnostics 11

CHAPTER 3. MILEAGE EXTRACTION

This section describes the difference found within the platforms. The main differences identified are
differences in position of where the mileage value is embedded. The method used to distinguish
and identify is using a single byte hex value in the positive response message termed as mileage
identifier.

The mileage identifier method is applicable when the Standard - ambient data
1-Odometer reading service is requested. From the findings of the investigation and continuously
researching other vehicles during the testing phase, the mileage identifier tells in which position
of the positive response the mileage is stored. Varying positions of the mileage identifier indicate
different positions of where the mileage is stored. During this project three variants of where the
mileage value is stored have been discovered.

Listing 3.8 shows messages received and sent by an Audi A4. This vehicle is part of the VW
Group MLB platform. Using this vehicle as an example a demonstration shall be made on how the
position of the mileage identifier helps to identify mileage position. These messages are exchanged
between three separate ECUs; they are the Information Electronics module (request address: 0x0773,
response address: 0x07DD), DDM (request address: 0x074A, response address: 0x07B4) and Gateway
module (request address: 0x0710, response address: 0x077A). Here, the same mileage identifier (hex
value: 0x0D) appears in three different positions. Following the mileage identifier, the mileage value
(hex value: 0x919B) is stored in these messages. From this it is seen the starting and ending positions
where the mileage is present differs for all three variants.

Listing 3.8: Mileage identifier used to distinguish position of mileage value stored within positive
response message

| 11:05:44.407 | CAN1 | —> | 1 ms | [ISOTP] cmd[0x5000] args[0x0773,0x00,0x00,0x00] data[0x2202BD]

11:05:44.437 | CANL | <— | 1 ms | [ISOTP] cmd[0x5000] args[0x07DD,0x00,0x00,0x00] data[0x6202BD 0D00919B 000050E8B16A]
11:05:44.417 | CAN1 | —> | 10 ms | [ISOTP] cmd[0x5000] args[0x074A,0x00,0x00,0x00] data[0x2202BD]

11:05:44.450 | CAN1 | <— | 1 ms | [ISOTP] cmd[0x5000] args[0x07B4,0x00,0x00,0x00] data[0x6202BD00 0D0919B 000287458B500]
11:05:44.439 | CAN1 | —> | 2 ms | [ISOTP] cmd[0x5000] args[0x0710,0x00,0x00,0x00] data[0x2202BD)]

| 11:05:44.476 | CANL | <~ | 6 ms | [ISOTP] cmd[0x5000] args[0x077A,0x00,0x00,0x00] data[0x6202BDO0S0EBB168 0D009198 00]

This chapter explains how the initial mileage was obtained from a vehicle using a
diagnostic tools. It shows the procedure carried out in this project. The ECUs which contain the
mileage. Figure D.5 shows all the ECUs investigated during this project and which of these contain
the mileage. It also shows similarities and differences found between vehicles regarding the topic of
how to obtain the mileage. Lastly, it elaborates on the different variations of how to obtain mileage,
how they are categorised and what are the import aspects are to be kept in mind when using this
information to design a automated function.

X Remote Vehicle Diagnostics 12

CHAPTER 4

Script Design

This chapter explains the design of the final product (automated function/script). The script is
written in the Python Programming language. The version of this language used is Python 2.7. This
is the standardised scripting language used throughout the company. The vehicles implement the
International Standards Organisation (ISO) - 14229 Road vehicles - Unified Diagnostic
Services - Specification and requirements protocol as the CAN communication standard. This
protocol is commonly known as UDS. As a reference document the 2% edition of the ISO -
14229:2006 published on 15" December, 2006 is used for research and development purposes (ISO,
2006). It is broken into sub-chapters namely; functional specifications, high level design, low
level design and source code.

This section mainly focuses on workings of the script with the outside environment. It shows
the requirement for user interactions and script output. This section also, elaborates briefly on the
functionality required to carry out communications with vehicles falling within the scope; namely VW
Group MQB and MLB platforms. Configuring the script as such allows for it to be implemented on
such vehicles. Functionality which falls out of scope will not be elaborated upon.

This section emphasises on the functional specifications that are required for the script to run on
a vehicle. These specification include but are not limited to the initial state of the vehicle, the
hardware and software required for the script to run successfully and its configurations.

The vehicle state required for running the script is its battery should be connected
by an external power source. Following this the vehicle’'s key should be in the immobilizer at
the ignition 'on’ position. The rest of the vehicle's system should not be turned on and lastly, the
doors should be closed.

Before being able to run the script on the vehicle, there are a few requirements
that are must be met. These are:
e The vehicle should be connected with a pass-through device; namely the Jifeline Remote (JR)
pass-through device.

X Remote Vehicle Diagnostics 13

CHAPTER 4. SCRIPT DESIGN

e The remote should be connected to the an android device with proper internet connection and
this device should have the Jifeline Android Application (AA) installed.

e The script user's device must be connected to Jifeline Network (JN) using a Jifeline Local (JL).
e The user must have the access to either the Jifeline Dashboard (JD) or the scripting environment
to be able to start communications with the vehicle.

Figure 4.1 illustrates the the various components present in the Jifeline Remote
Diagnostics (JRD) infrastructure. It also shows the flow of data from these components. Using this
figure as a reference it can be seen the (I) JR is connected to the JN via (2) AA over the internet.
This shows the configuration on the vehicle's side. (5) and (6) show the JL and the diagnostic tool,
respectively. The latter's role is replaced by the script. They show the configuration requirements
on the side of the user/operator. The script can be run from the JD (4) by creating a ticket with
the connected vehicle or can be run by a virtual robot (7) in the scripting environment.

Android
platform Customer/
Garage technician

Vehicle requiring Diagnosis

_...l Request
OoBD @ usse serc\lfice o
- ——F
® () @ T
Jifeline Remote pass-thru l
P, WiFi
Internet
—y

Network

Passthrough server
1%,

d—r@ @ []
»,
Y C‘*
. . Operator
Diagnostic Tool al Robot

Sess

Jifeline Dashboard

Sleeuwijk
MNetworlk

Jifeline Local

OBD

Figure 4.1: Jifeline Infrastructure!

This section elaborates over the output the script produces. The output of the script can be observed
by multiple methods. Currently, as an end product the most important output is the report that is

lcons have been taken from https://www.flaticon.com/

X Remote Vehicle Diagnostics 14

CHAPTER 4. SCRIPT DESIGN

send via the Telegram Messenger application. This is done by creating Telegram bots and these
bots send the report over Telegram in the group where these exists.

Another important output is via the terminal output seen in the Jifeline scripting environment.
This helps in understanding the behaviour of the script . The output is the same as the Telegram
report, but it is easier and more accessible for research and development of the script. It is important
to understand that the terminal output is a live feed of the script's execution. Listing 4.1 shows
the reporting procedure via the terminal output.

Finally, when the script is run on a vehicle the CAN communication trace is logged and store in
a database created in-house by Jifeline. This database can be accessed any time to refer to the
trace to understand the response of the vehicle with respect to the script's execution. The format
is the same as that seen on the terminal output.

Listing 4.1: Terminal Output

2020—05—26 16:14:09.252 | PRINT : [Script] [+] Vehicle mileage check successful!

2020—05—26 16:14:09.267 | PRINT :
2020—05—26 16:14:09.268 | PRINT :
2020—05—26 16:14:09.272 | PRINT :
2020—05—26 16:14:09.272 | PRINT :
2020—05—26 16:14:09.273 | PRINT :
2020—05—26 16:14:09.273 | PRINT :
2020—05—26 16:14:09.273 | PRINT :
2020—05—26 16:14:09.274 | PRINT :
2020—05—26 16:14:09.274 | PRINT :

[Script] ======== Mileage Report =========

[Script] [i] Total number of Mileage values found: 2

[Script] [i] Connection id: " 1590479545692

[Script] [i] Script description: "MQB/MLB Read VIN and Mileage”

[Script] [i] Script uuid: " 177ebb30—5866—42a4—b96b—d6953ceb5577"

[Script] [i] Date & Time: Tue May 26 14:13:28 2020

[Script] [i] Mileage: 41321

[Script] [i] Number of ECUs found with mileage 41321[km]: 8

[Script] [i] List of ECUs ['Engine Control Module’, 'Instruments’, 'Gateway', 'Information

< Electronics’, 'Central Electronics’, 'Steering Assist’, 'Auto HVAC Module’, 'Park Steer Assist’]

2020—05—26 16:14:09.275 | PRINT :
2020—05—26 16:14:09.277 | PRINT :

2020—05—26 16:14:09.278 | PRINT

2020—05—26 16:14:09.289 | PRINT :
2020—05—26 16:14:09.290 | PRINT :

[Script] [i] Mileage: 41328
[Script] [i] Number of ECUs found with mileage 41328[km]: 2

. [Script] [i] List of ECUs ['Door electronics Passenger’, 'Door Electronics Driver’]
2020—05—26 16:14:09.278 | PRINT :
2020—05—26 16:14:09.279 | PRINT :

[Script]
[Script] —==———=—=—=— End of Report e

[DEBUG] Mileage: 41321
[DEBUG] ECU details: [['Engine Control Module’, 'EV_ECM15TFS01105E906018A", '003006'], [’

— Instruments’, 'EV_DashBoardVDDMQBAB’, '009058'], [Gateway', 'EV_GatewNF’, '013023'], ['Information Electronics’, '
— EV_MUStd4CDELP’, '001001'], ['Central Electronics’, 'EV_BCMMQB'’, '018001'], ['Steering Assist’, 'EV_SteerAssisMQB’, '
< 013144’], ['Auto HVAC Module’, 'EV_ACClimaBHBVW37X’, '006145'], ['Park Steer Assist’, '"EV_EPHVA18AU3700000’, '

<> 009035']]

2020—05—26 16:14:09.290 | PRINT :
2020—05—26 16:14:09.291 | PRINT :

[DEBUG] Mileage: 41328
[DEBUG] ECU details: [['Door electronics Passenger’, 'EV_DCUPasseSideEWMAXKLO’, '006003

< '], ['Door Electronics Driver’, 'EV_DCUDriveSideEWMAXKLO’, '006003']]

2020—-05—26 16:14:09.291 | PRINT :

2020—05—26 16:14:09.292 | PRINT :

[Script] [+] Main task finished!

[Script] ======== Script finished! ===========

The CAN protocol being used is UDS. This standard has been formulated for the globalisation of
requirements for diagnostic systems irrespective of the serial data bus. It is based on the Open
Systems Interconnection (OSI) Basic Reference Model. It is layer 7 or the application layer of this
model. This model is applied on the MQB and MLB vehicles investigated in this project. Table D.2
in Appendix D shows the 7 layers of the OSI model. The vehicle diagnostic architecture helps to
understand the structural implementation of this protocol on the investigated vehicles. The SI help
to learn how to request for services from the ECUs within the vehicles for OBD purposes. The MSI
show the manufacturer specific functionality implemented on these vehicles. Lastly, CAN Bus helps
to understand from a software point of view what are the configuration requirements for this script
to be able to run on these vehicles.

B Remote Vehicle Diagnostics 15

CHAPTER 4. SCRIPT DESIGN

The vehicle diagnostic architecture come across during this
project is shown in figure 4.2; for this project the diagnostic tester can be understood as either the
diagnostic tool or the script/automated function. The ECUs are connected over an internal data link
and indirectly connected to the diagnostic data link through a gateway. ISO 14229 applies to the
the diagnostic communications over the diagnostic data link (ISO, 2006); most vehicles encountered
during this course of this project implement UDS for diagnostic communications over the internal
data link.

(" Vehicle 1)

ECU

Diagnostic Gateway
[Tester }{ ECU ECU
. J

ECU

- —

Figure 4.2: vehicle diagnostic architecture (1SO, 2006)

This section gives a concise understanding of SI. It also shows and describes the Sl used during
the course of this project. A Sl is a single byte unsigned integer value ranging from 00-FF hex.
It is used to encode specific values called in a request from the tool to the ECU. Table D.1 in
Appendix D shows the Sl values with respect to the service type and where it is defined. Table D.1
in Appendix D illustrates the request, positive and negative response codes for the S| used during
the course of this project.

To identify a DiagnosticSessionContol service (DSCS),
the Sl is 0x10. The diagnostic session allows for a specific set of services or functionality to be
performed. A ECU starts up in the default diagnostic session of session type 0x01. Figure D.3
in Appendix D gives a description of the DSCS request message sub-function parameter definition
depending on the hex bit.

To identify a RDBI service, the Sl is 0x22. This allows for data
records to be requested from the ECU. The request message may contain a single-byte or multi-byte
dataldentifier values to identify data records within the ECU. The number of dataldentifers that
can be requested at a single instance is limited by the vehicle manufacturer and ECU supplier.

To identify a TesterPresent (TP) service, the Sl is 0x3E. This service
is used for keeping the diagnostic session alive which the vehicle is currently in and prevents the
vehicle from reverting back to the default session. It applies for diagnostic sessions other than the
default session. It can also be used to do the same but over multiple ECUs at the same time.

X Remote Vehicle Diagnostics 16

CHAPTER 4. SCRIPT DESIGN

Manufacturer specific functionality identifier (hex) Description
0xF19E ODX Filename (ASAM dataset)
0xF190 VIN identifier
0xF1A2 ASAM dataset revision
0x03 Default Volkswagen Diagnostic Session
0x2203 distance
0x10EO Vehicle distance driven
0x02BD Standard - ambient data 1-Odometer reading

Table 4.1: Manufacturer specific request message sub-function parameter definition

UDS reserves certain bits within the CAN S| for the manufacturer. This section elaborates the
manufacturer specific identifiers used or worked with during this project. Table 4.1 gives an overview
of the identifiers used and their description.

It is very important when trying to establish communication with a vehicle's ECUs that correct CAN
Bus pins are connected on the vehicle’'s OBD sockets. Other technical details that are required are
the bit-rate and the transceiver type. The MQB and MLB vehicles serviced have a single CAN
Bus network. Listing 4.2 shows how these requirements are translated and applied in code. They
are shown below:

e the CAN Bus pin connections used are pins 6 and 14 respectively.

e the CAN Bus bit-rate speed for this bus is 500 Kilobits per second (Kbps).

¢ A high-speed transceiver is used to maintain smooth communication between the vehicle’s ECUs
and client tester.

The created automated function (script) is divide into two parts. One to extract the data
from the vehicle. The second to manipulate the extracted data. This section elaborates on the
concepts used to extract and manipulate the data from the vehicle. It is divided into two parts. The
first explains the concept used for extracting the data. The second, explains the concept behind
manipulating the extracted data.

This section elaborates on concepts applied for extracting the data from the vehicle. It represents
the first part of the automated function. To extract the data from the vehicle the concept of
multi-threading is used. Threads are lightweight processes or tasks (Thread, 2020). It allows for
communication with multiple ECUs simultaneously. This greatly reduces the total run-time of the
function in this implementation. Architecting the function to use threading also provides gain in
design clarity (Threading, n.d.). It allows for a cleaner design which is easier to reason about. In

B Remote Vehicle Diagnostics 17

CHAPTER 4. SCRIPT DESIGN

listing 4.3, class ECUScan(Task): behaves as an individual thread extracting the data. Listing 4.4
shows creation of threads used for data extraction.

This section elaborates on concepts applied for manipulating data to obtain and compare the mileage
values extracted. The methodology implemented takes effect after the data extraction process is
completed; when all the running threads have stopped. The first step is to find where the mileage
is embedded within the CAN frame. This knowledge is taken from section 3.2.2. When the mileage
is found it is parsed into readable format Following this, the values are now compared against each
other to check for equality. The values are then add to a data structure known as a dictionary in
Python. A python dictionary works on the basis of a key:value pair. Here, the mileage value is
assigned as the key. The list of ECUs which corresponding to the correct key are assigned as the
value. In listing 4.3, class MainTask(Task): is where the data manipulation is carried out.

From the script breakdown in section 4.2, this section will discuss over the method of how the two
parts are executed. Firstly, methods used for data extraction are described. Secondly, methods used
for data manipulation are explained. Figure 4.3 shows the execution procedure for the script. It is
important to notice that irrespective of the results, this script gives an output. This means that
even if no mileage is found within any of the scanned ECUs the script will execute completely and
exit successfully. The only time this scripts stops pre-maturely is when an error occurs which causes
to break the execution procedure.

This section shows methods used for data extraction in the class ECUScan(Task). All methods used
during this process are seen in listing 4.5. These methods are executed in the method task(self): in
chronological order. A description of critical methods are given:

It is used to initialise variable used throughout the execution of the parent
class. This method passes the parameter ecu. This parameter contains the attributes of individuals
ECUs to which the script communicates too. These attributes are defined in listing 4.7.

It is used to keep the vehicle in the current diagnostic session using the TP
service. The purpose of this service is shown in section 4.1.3.

It is used to start the vehicle in the default VW diagnostic
session. This enables the script to read out vehicle data using a RDBI service after this service is
invoked. The method uses the DSCS service in combination with MSI 0x03.

It is used to obtain the VIN of a vehicle. The S| used is RDBI in conjunction
with VIN identifier from table 4.1. The reason for obtaining a VIN of a vehicle is mentioned in
section 3.2.2.

B Remote Vehicle Diagnostics 18

CHAPTER 4. SCRIPT DESIGN

It is used to obtain a time stamp during script execution as a reference. This
helps to understand the mileage of a vehicle with respect to time and date.

It is used to obtain the mileage of a vehicle. The Sl used is RDBI.
There are three MSls available to be used. They are described in table 4.1. This depends upon the
ECU being communicated too as described in section 3.2.1.

It is used to obtain the ODX filename and ASAM dataset revision
details of the ECU. The Sl used is RDBI in conjunction with the MSIs mentioned in section 3.2.2.
The reason for calling this method has also been discussed in the above mentioned section.

It is the execution method calling all methods listed in its parent class. This method
is purely for running this script and is the programming method structure followed at Jifeline.

This section shows methods used for data manipulation in the class MainTask(task). All methods
used in this class are listed in listing 4.6. All methods in this section are invoked using method
task(self). A description of what these method do is given:

It checks for the most commonly occuring VIN. This is
check is carried on data collected from ECUs containing a VIN. Ideally there should be only one VIN
value.

It adds the valid VINs found to a
dictionary containing the ECU name and VIN value. The dictionary is passed as the parameter
retrieved_vins. Every VIN value/variation is saved a separate entry in this dictionary with the
respective ECU.

It is used to find if a mileage identifier is present within the applicable]
collected mileage data. Details about mileage identifier are mentioned in section 3.2.2. If no mileage
identifier is found it returns a message stating so.

It is used to convert the mileage value from hexadecimal to decimal.
The hexadecimal value is passed through the parameter data_hex. This method is invoked in the
method parse_mileage(self):

It is used to extracted the mileage value from the mileage positive response
frame. This depending upon the ECU and where this value lies within the frame. The information
of where the mileage lies is taken from the dictionary ecu_mileage_position shown in listing 4.8. This
method is one of the critical methods to find the mileage embedded in the response of respective
ECUs.

B Remote Vehicle Diagnostics 19

CHAPTER 4. SCRIPT DESIGN

It is invoked when an unknown
mileage identifier is present in the response frame. By passing the parameters engine_task and
current_task, it uses the former as a reference to identify the hexadecimal mileage value against
the later. The later is the ECU where the unknown identifier is being checked for. This method is
invoked in parse_mileage(self) when mileage is found in a ECU and it does not match the current
mileage identifier.

It is used for validation of the mileage value found in the ECUs. It is
used to compare mileage in the thousands keeping that as a margin for error. This is done because
at times the mileage found in ECUs may not be exactly equal. It is invoked in update_mileage().

It is uses the same principle as update_ -]
vin(). It also contains the functionality to compare values with a margin for error as in invokes
compare_mileage() as well as using the data obtain from get_module_details() as a reference for
ECU identification.

It is used to
print the findings after execution of this script. It gives an idea of the number of mileage values
found with their respective ECUs and a time stamp as a reference for when this value was found.
The mileage values and ECUs are passed through the parameter retrieved_information. The number
of values found are passed through parameter key_count and the time stamp through parameter
timestamp.

It is used to invoke the methods used to manipulate the value and printing the output
of this script. It is similar to the methods with the same name mention in section 4.3.1 but with
the functionality of methods mentioned here. It is this method which executes entire functionality
of the script.

This section contains listing of code used as a reference in sections 4.1, 4.2 and 4.3. It helps in
describing the how and what the script does.

Listing 4.2: CAN Bus requirements

def communication(self):
self.context.registerBus(
CanBus("busl”, 6, 14, Protocol. CAN.ISOTP, Bitrate. CAN.BITRATE_500, Transceiver.HIGH_.SPEED))

Listing 4.3: Skeleton of script showing the classes used

jifeline libraries
import ...

class to configure, start and communicate the script and bus requirements
class Main(Main):...

class which performs the data extraction
class ECUScan(Task):...

class to collect extracted data and perform the required manipulation
class MainTask(Task):...

B Remote Vehicle Diagnostics 20

CHAPTER 4. SCRIPT DESIGN

Listing 4.4: Creating threads for data extraction

For loop to iterate through every ECU object in a list: ecus.

These objects are passed through the class: ECUScan().

Finally, the class object is append to a list: task.

Now, data extraction process is carried out via threads using objects in task.

for ecu in ecus:
task = ECUScan(ecu)
self.tasks.append(task)
self.start_sub_task(task)

wait for tasks to finish
self.wait_for_sub_tasks()

Listing 4.5: Methods for data extraction

class ECUScan(Task):
def __init__(self, ecu):...
def tester_present(self):...
def set_diagnostic_session(self):...
def get_vin(self):...

@staticmethod
def get_timestamp():...

def get_mileage_reading(self):...
def get_module_details(self):...

def task(self):...

Listing 4.6: Methods for data manipulation

class MainTask(Task):

def count_most_common_vin(self, tasks):...
def update_vin(self, vin_task, vin_reading, retrieved_vins):...
def get_mileage_identifier(self):...
@staticmethod

this method is called in parse_mileage()

def hex_to_decimal(data_hex):...

def parse_mileage(self):...

def unknown_mileage_identifier(self, engine_task, current_task):...

@©staticmethod
def compare_mileage(mileage_reading, task_mileage):...

def update_mileage(self, mileage_task, mileage_reading):...
def print_report(self, retrieved_information, report_key, key_count, timestamp):...

def task(self):...

Listing 4.7: ECU attributes list

Ecus is a list of lists, each list contains a VAGEcu object. Every object starts it's own thread to communicate with the ECU,
but currently it is limited to twenty threads. VAGEcu object stores all the DiagnosticSocket objects for every known
VAG ECU along with request and response IDs. It is to be looked up in its parent class for more details.

[M Remote Vehicle Diagnostics 21

CHAPTER 4. SCRIPT DESIGN

ecus = |

[VagEcu(DiagnosticSocket(self.con.busl, DSProtocol.UDS, 0x7EO, 0x7E8, padding=True),
label="Engine")],

[VagEcu(DiagnosticSocket(self.con.busl, DSProtocol.UDS, 0x714, 0x77E, padding=True),
label="InstrumentCluster")],

[VagEcu(DiagnosticSocket(self.con.busl, DSProtocol.UDS, 0x710, 0x77A, padding=True),
label="CANGateway")],

[VagEcu(DiagnosticSocket(self.con.busl, DSProtocol.UDS, 0x773, 0x7DD, padding=True),
label="InformationElectronics”)],

[VagEcu(DiagnosticSocket(self.con.busl, DSProtocol.UDS, 0x713, 0x77D, padding=True),
label="BrakeElectronics")], # A.K.A: ABS Brakes/ESP

[VagEcu(DiagnosticSocket(self.con.busl, DSProtocol.UDS, 0x74B, 0x7B5, padding=True),
label=""PassengerDoorElectronics”)],

[VagEcu(DiagnosticSocket(self.con.busl, DSProtocol.UDS, 0x74A, 0x7B4, padding=True),
label="DriverDoorElectronics”)],

[VagEcu(DiagnosticSocket(self.con.busl, DSProtocol.UDS, 0x723, 0x78D, padding=True),
label=""TrunkElectronics")],

[VagEcu(DiagnosticSocket(self.con.busl, DSProtocol.UDS, 0x74F, 0x7B9, padding=True),
label="FrontSensorDriveAssist”)],

[VagEcu(DiagnosticSocket(self.con.busl, DSProtocol.UDS, 0x70E, 0x778, padding=True),
label="CentralElectronics”)], # A.K.A: BCM

[VagEcu(DiagnosticSocket(self.con.busl, DSProtocol.UDS, 0x757, 0x7C1, padding=True),
label="AdaptiveCruiseControl")],

[VagEcu(DiagnosticSocket(self.con.busl, DSProtocol.UDS, 0x712, 0x77C, padding=True),
label="SteeringAssist")],

[VagEcu(DiagnosticSocket(self.con.busl, DSProtocol.UDS, 0x746, 0x7B0, padding=True),
label="AutoHVAC")],

[VagEcu(DiagnosticSocket(self.con.busl, DSProtocol.UDS, 0x70A, 0x774, padding=True),
label=""ParkSteerAssist")],

[VagEcu(DiagnosticSocket(self.con.busl, DSProtocol.UDS, 0x70C, 0x776, padding=True),
label="SteeringWheel")],

[VagEcu(DiagnosticSocket(self.con.busl, DSProtocol.UDS, 0x715, 0x77F, padding=True),
label="Airbags")]

Listing 4.8: Information where the mileage lies in their respective ECUs

these are dictionaries in a dictionary "ecu_mileage_position" containing different variants for getting mileage bytes
self.ecu_mileage_position = {
"Engine": { # ecu: 0x01

"10EQ": {
"Variant_I": {" mileage_start_offset”: 0, " mileage_end_offset”: 8},
"Variant_ll": {" mileage_start_offset”: 0, " mileage_end_offset”: 4, " conversion_factor”: 10},
}
2
" AutoHVAC": { # ecu: 0x08
"02BD": {
"Variant_I": {" mileage_start_offset”: 2, " mileage_end_offset”: 8},
"Variant_Il": {" mileage_start_offset’: 12, "mileage_end_offset”: 18},
}
b
" CentralElectronics”: { # ecu: 0x09
"02BD": {
"Variant_I": {" mileage_start_offset”: 2, " mileage_end_offset”: 8},
}
" ParkSteerAssist”: { # ecu: 0x10
"02BD": {
"Variant_I": {" mileage_start_offset”: 2, " mileage_end_offset”: 8},
b
"InstrumentCluster”: { / ecu: 0x17
"2203": {
"Variant_I": {"mileage_start_offset”: 0, " mileage_end_offset”: 6},
"Variant_ll": {" mileage_start_offset”: 0, " mileage_end_offset”: 4, " conversion_factor”: 10},
}
"CANGateway”: { # ecu: 0x19
"02BD": {

"Variant_I": {" mileage_start_offset”: 2, " mileage_end_offset”: 8},

EEEE M Remote Vehicle Diagnostics 22

CHAPTER 4. SCRIPT DESIGN

"Variant_llI": {" mileage_start_offset”: 12, "mileage_end_offset”: 18}

}
h
" DriverDoorElectronics”: { # ecu: 0x42
"02BD": {
"Variant_I": {" mileage_start_offset”: 4, " mileage_end_offset”: 9},
}
)
" SteeringAssist”: { # ecu: 0x44
"02BD": {
"Variant_I": {" mileage_start_offset”: 2, " mileage_end_offset”: 8},
"Variant_Il": {" mileage_start_offset”: 4, " mileage_end_offset”: 10}
}
H
" PassengerDoorElectronics”: { # ecu: 0x52
"02BD": {
"Variant_I": {" mileage_start_offset”: 4, " mileage_end_offset”: 9},
}
3
"InformationElectronics”: { # ecu: 0x5F
"02BD": {
"Variant_I": {" mileage_start_offset”: 2, " mileage_end_offset”: 8},
}
h
" FrontSensorDriveAssist”: { # ecu: 0xA5
"02BD": {
"Variant_I": {" mileage_start_offset”: 2, " mileage_end_offset”: 8},
}
}

}

This chapter describes the design of the script created. It puts into perspective how
the knowledge gained from chapter 3 is applied in the script to replicate the functionality of a
diagnostic tool. It shows what steps are taken to achieve the goal of the project using this script.

[FHEE M Remote Vehicle Diagnostics 23

CHAPTER 4. SCRIPT DESIGN

Figure 4.3: Script Execution procedure
B3 Remote Vehicle Diagnostics 24

CHAPTER 5

Verification

This chapters describes the testing and validation methods. Elaborations are made over the testing
process carried out and how the script was validated. The project problem and the testing procedure
were carried out simultaneously. It is because of the project methodology followed is the Agile.
This methodology suits the project as it is required to continuously develop and test the software
throughout the project life-cycle. More details about this methodology is mentioned in the Project
Management Plan (PMP). This helps to include specific vehicle characteristics to the script noticed
during this phase.

This section explains the testing methodology carried out during the project and also justifies it.
Table 5.1 shows a conceptual understandings of the testing methodology followed mentioning the
requirements and goal for every task carried out. The requirements (requirements column) indicate
the knowledge or research required for performing mileage checks. The goal (goal column) elaborates
on what is achieved when the task is performed successfully. Additionally, research and analysis is
carried out if a vehicle is encountered requiring a different mileage extraction procedure. This
includes small variations in already existing methods. Table D.4 in appendix D shows an in-depth
mileage test plan followed as defined in the PMP. This is observed for a detailed overview of the
testing procedure.

Before testing can be carried out certain aspects of the mileage extraction process should be
known. They are labelled as Pre-requisites. These aspects are discussed over in this section. The
Pre-requisites are formulated to carry out research as well as to obtain mileage details of vehicle.
This helps to identify the ECUs containing mileage namely, the request and response frames.

This sections elaborates on knowledge required before the testing process. Asking certain questions
give the answer to what is required for the pre-requisites. Some of these questions are as follows:

e What is the maximum value that can be held in the memory of an ECUs as mileage data?
e What is the request identifier required to get a positive response contain the mileage data?
e What is the size of the mileage frame within the positive response?

B Remote Vehicle Diagnostics 25

CHAPTER 5. VERIFICATION

o What variations exists between ECUs of the same as well as different vehicles?

The maximum mileage value theoretically possible depends on the
number of bytes present in the mileage frame. For example if the mileage frame is 3 bytes; the
maximum value that it can store is OxFFFFFF. When this is converted to decimal it comes to
16,777,215 [km]. Such a value is deemed very large and can be considered as infinite. This is
because it is almost impossible to reach such a mileage value practically.

The initial byte of the request identifier is called a service identifier or S| The SI
used is RDBI. The remainder of the request identifier depends on the ECU being communicated
too. This information is elaborated in detail in Unique and Similar MSls of section 3.2.1.

The mileage frame size is the number of bytes allocated to store the mileage
within the positive response frame. Part of chapter 3.2 sheds light on the different mileage frame
sizes encountered during this project. They are also described in Unique and Similar MSls of
sections 3.2.1.

There exists similarities and differences in the position of the mileage value
within the response. These variations depend on the ECU being communicated too. This information
is provided for in detail in section 3.2.2 in which elaborations are made on the similarities and
differences found.

This section elaborates on the key tasks required for execution for every testing cycle. These aspects
are looked at when a new vehicle is tested by the script or by a diagnostic tool. During the initial
phase of this project, testing of the vehicles were carried out using the diagnostic tool to gather
information about vehicle mileage information. Detail explanation about analysing a vehicle using a
diagnostic tool has been elaborated upon in section 3.1.2.

Step | Task Requirements Goal
when new findings or development has been T
. - . L . T f |
1 Planning the test noticed when executing existing script on a © add new functionality

different vehicle

to the existing script

In depth analysis of the new finding is

Knowledge gained on what

2 Developing the test case carried out and how to implement .
. new features are required
by script
. T . Script contains new
. . Implementing new functionality on script S -
3 Setting up the test environment . functionality required for
by knowledge gained from test case .
testing
. To check if the added
4 Execution of the test Script contains new section required for test .
section behaves as expected
. e .| To check if test is successful
_— testing of script is performed and a result is :
5 Validation g PLisp or not, if not repeat steps

obtained

2-4

Table 5.1: Script Testing Cycle

X Remote Vehicle Diagnostics

26

CHAPTER 5. VERIFICATION

In the later phases of the project majority of testing was carried out using the script. Preparations
for this testing procedure was done by observing the log file containing the CAN communication
between the script and vehicle. By observing these logs, the knowledge gained was analysed and
the functionality required to execute the new procedure was implemented on the script.

Another key task is debugging. This task is carried out before the script is tested on a vehicle. This
includes getting rid of syntax errors, formatting error and logical errors in any present. Preparation
carried out for this process is done by creating a vehicle simulator script which simulates the
behaviour of a vehicle. This is made possible due to the scripting environment created in-house
at Jifeline. It is a virtual environment that allows to re-create the behaviour of vehicles when a
new cases are observed. An advantage of this technique is that these vehicle simulator scripts are
made to fit the testing requirements and are able to test what is required. This allows for testing
of specific aspects of the script. They can also be altered to fit the requirements of most test.

Finally, this paragraph closely describes the steps described in table 5.1. Analysing the log file
and understanding the new findings are carried out in step 2. Step 3 is equivalent to updating script
tasks to test the new cases observed and testing it is step 4. Step 5 of the of this testing cycle takes
place when the script is tested on the production environment

This section provides a general understanding of how the scripts are validated. This is an important
aspect as it gives an idea if the created script works as expected. It also helps to recognise errors
and realise if more functionality is required to be added when new findings are discovered. There
are two main aspects of validating a script. They are internal and external, respectively.

This section does the validation carried out in two fold. One is the validation of the information
extracted by the script. The second is the validation of the script itself. The later is carried out
to ensure correct behaviour of the script and so that a exact understanding is achieved of what the
script is doing when is it run.

Table 5.2 shows how the obtained results were logged acting as a database.]

This shows the structure used to log key information required to identify vehicle ECUs and categorise
them. It helps to differentiate the variations and categorise similarities found within the same type
of ECUs. Whenever the script is tested on a vehicle and a new development is found, it is added
to this table. This helps to act as a reference document to validate which ECUs have already been
tested and their characteristics. This knowledge then is implemented on the script to include new
variations found from testing. Listing 4.8 shows how the knowledge gained is implemented on the
script.

The columns labelled as ODX and revision stand for the ODX filename and ASAM dataset
revision, respectively. This helps to identify the ECUs encountered and acts a means to categorise
and distinguish them from other ECUs of the same type. The position column shows which position
the mileage lies within the response frame. This helps to categorise them in terms of similarity and
differences. These are some of the key aspects used to validate the results of the script.

B Remote Vehicle Diagnostics 27

CHAPTER 5. VERIFICATION

This is another method used for validation. It tries to validate the mileage
found from the script. It serves two purposes.

Firstly, to validate the mileage found in the vehicle. This is done within the script during runtime.
This function is carried out in methods update_mileage() and compare__mileage(). Explanation of
this functionality implemented on the script is elaborated in section 4.3.2.

Secondly, it also helps to realise if the script is working as expected. When a script is run and the
result is not as expected, this method helps to realise that. This suggests that the script requires
to be updated accordingly.

ECU Address | mileage Sl MSI | position | ODX revision | Conversion extra | comments
Gateway | 0x19 Yes RDBI | 02BD | [8:14] EV_GatewNF 01302* | hex to decimal | None | None
EV_GatewAO0 01302*
EV_GatewLear xRk
02BD | [18:24] | EV_CGateCONTIAU491 | 00%***

Table 5.2: Test Result

This section shows the validation carried out from outside the perspective of the company. No
field research is carried out for the external validation. This was due to the pandemic Corona
Virus Disease, 2019 (COVID-19). Therefore, the method of external validation carried out is desk
research. This is done by obtaining information about the yearly mileage that vehicles covers. Within
the Netherlands vehicles drive an average of approximately 13000 [km] in 2017 and an average of
12,000 km/year for the EU as a whole (Sectoral Profile-Transport, 2020). Keeping in mind the
scope, the MQB and MLB platforms were launched in 2012 and 2007, respectively (MQB - MLB,
2011).

Using the average values mentioned in conjunction with the manufacturing date of the investigated]
vehicle, a general consensus can be made of what is the total mileage. This can be used as a means
of external validation. Although it is only a secondary measure if no conclusive answer can be made
after carrying out the means of validation mentioned in section 5.2.1.

This chapter explains how testing and validating the mileage found. It underlines
important aspects required before testing as well as the method of testing implemented. The key
tasks for testing are analysing log files, updating script and testing the later.

Validation is carried out internally and externally. Internally, the main tasks of validation are
information and script validation. It helps to keep a record of what is already tested which can be
used as reference for future cases. This is possible once the script works as expected. Externally, a
benchmark mileage value of vehicles is considered. Although this value varies with the age of the
vehicle. Therefore, covering both criterion.

X Remote Vehicle Diagnostics 28

CHAPTER 6

Discussions and Conclusion

The set of main and sub-questions are required to be answered for designing and building a reliable,
automated and extensible function investigating the mileage of MQB and MLB vehicles via remote
diagnostics. From the chapters in this report, the basic ideology, method and knowledge required
for building such a function applicable over the current remote diagnostics platform are elaborated
upon. Not only, have these requirements been elaborated over but also how to test and validate the
built function. This is done to verify the work carried out during this project.

Initially, a research study is carried out to investigate possibilities and come to conclusions on
which path to take for such a project thereby defining a fixed scope. They help in defining the
research questions mention in chapter 2. The research questions form the basis of this investigation.
They provided structure on topics such as how and what is required to be done to reach the goal of
this project.

The contents of chapter 3 answers the research question about learning and performing mileage
checks on a vehicle. This chapter not only does so but also shows how to categorise and differentiate
similarities and difference amongst vehicles. It also sheds light on knowledge required for building
different components of an automated function. Lastly, it highlights the investigation phase of this
project and also shows the results of the investigation.

Chapter 4 discusses over topics such as basic requirements required to carry out diagnostic
services over in-scope vehicles, the components required to build such a function and finally,
how this function is made extensible for future use. These requirements are discussed in detail in
section 4.1.

The chapter also describes the breakdown of the script conceptually to understand it's working
and the ideology implemented when designing it. Figure 4.3 shows the concepts followed in the
script chronologically. It helps to bridge the gap between the concepts and the execution method.

Lastly, the script performs a verification of the information extracted using the knowledge gained
by the investigation carried out and conclusions reached in sections 3.2.1 and 3.2.2, respectively.
This helps to verify mileage extracted without requiring an external source.

Finally, chapter 5 gives the answers on how to verify mileage extracted from a vehicle. This is

done in conjunction with testing of the script. Testing is considered a part of this because it helps
to clear out errors from the script and optimise the process. Following this, validation is carried out.

B Remote Vehicle Diagnostics 29

CHAPTER 6. DISCUSSIONS AND CONCLUSION

This helping to verify the information obtained from the script. It is done internally; with resources
present within the company, as well as externally, by method of desk research. These measures help
to add credibility for the investigation carried out.

In conclusion, section 6.1 elaborates on how chapters provide the answers to sub-questions mentioned
in section 2.3. This leads to answering of the main question to design and build a reliable, automated
function for performing mileage checks on vehicles belonging to VW Group’'s MQB and MLB
platform.

The advantage of having such a product is that it can deliver the same result as a diagnostic tool
but within a smaller time span and allows for customisation tailored to customer demands. The
total run-time of this script is approximately 60 — 90 seconds. When performing the same procedure
using the diagnostic tool it may take upto 10 — 15 minutes provided the operator knows exactly
which ECUs contain the mileage. Also, the scan must be performed manually using the tool and
know exactly which request is required to obtain the vehicle's mileage from their respective ECUs.
In the case of the script, the operator need not know this information as it is embedded within the
script, but only required to run it on the vehicle. Therefore, the script makes the entire process of
obtaining a vehicles mileage from different ECUs completed automated.

From the investigations carried out in this project certain conclusion are reach between the
similarities and differences in characteristics of ECUs present within these vehicles. Firstly, from the
vehicles serviced during this project it is found that approximately eleven types of ECUs contain the
mileage of the vehicle. From them, two of them possess individual methods to request the mileage.
The remaining follow the same method to request the mileage. Secondly, it is found that ECUs
following the same method generally have the mileage embedded in 3 bytes of the response. The
exceptions to this rule are the DDM and PDM with have the mileage response in two and half bytes
of the entire frame. The IPC, which possesses its own individual method to request the mileage also
has the mileage embedded in 3 bytes of the response. Only, the ECM has its mileage embedded in
4 bytes of the response. This knowledge is substantiated during testing and validation of the script
to affirm its reliability.

With this script in place Jifeline can now use it to check mileage of vehicles giving a warning
label if an unexpected situation occurs. This can be followed up a more detailed investigation of the
vehicle tested, by Jifeline or the relevant authorities depending upon the severity of the situation.
Therefore, this script helps to screen out irregularities in mileage between different ECUs thereby
acting as a first line of defence against mileage manipulation.

For future study topics more detailed research is required on the CAN response frame containing the
mileage as it contains data other than just the mileage of the vehicle. This is known by observing
the logs of certain vehicles.

B Remote Vehicle Diagnostics 30

CHAPTER 6. DISCUSSIONS AND CONCLUSION

A lot of the data required to run this script is embedded within it. This can be exported to
external databases or libraries. This helps to make the script concise and behave as a general
function which can service a larger range of vehicle. This can be done by exporting manufacturer
specific data to libraries. Al though to do this investigations must be made into the manufacturer
specific functionality of vehicles and it is easier to do this when categorising similar vehicles. This
can even helps reduce the run time of a script.

A drawback of the script is that it can only communicate to a certain number of ECUs at a
time. This is considered so because newer vehicles have increasing number of modules installed
within them. To overcome this, communication to ECUs can be carried out sequentially. This has
a drawback of its own, that is it would take longer thereby increasing the run-time of the script.
Therefore, it is a compromise between speed and volume.

B Remote Vehicle Diagnostics 31

APPENDIX A

Personal tutor Approval

The form including the Personal Tutor's approval is attached in the following page

B Remote Vehicle Diagnostics

xi

’ \N University of Applied Sciences

HAN_UNNERSITY stitute of Automotive Engineering Date received :
Application Form Graduation Phase

Details student:
Student number: . 583353,
Last name 2 OIOBN.. ; sis s masiwismenisis s 5 o 5 tn e 5 60 5 S0 0 wa e 8 sy @ o o8 wt whme a1 ot oe USRI
Initials: ..RG...................... Firstname: ..Rohaan.......................
E-mailaddress : .rohaan10@gmail.com.......... Telephone number: . +31 682724192.
Study program : Development Engineer (CB) / Business-Management-Engineer{(FG)"

Specialism 1 AB-(A ive-Develop } | AM-(Autemetive-Management) / AS-(Autometive-Services)
AT (Automotive Testing) *

* Delete what is not applicable.

Minor :Erasmus EXchange at CTU. ... s e osansonsons sonsusnsnssossssenssess sy

Scheduled start of graduation: . 05.02.2020 vuuuiit ittt i i e

Company detalls: < wiisims o5 saes s iin S5 e iets i v s s ss sy e et ias, v £5F 5% 1ess

* Delete what is not applicable.
Do you have contact with this company? : Yes/No*

No company yet, but | am interested in the following companies : .JifelineBV

To check which Expert Team applies to me (depends on current CB or TC and followed minor) is:
(Note, mention a maximum of one Experts team!)

[0 Business & Management [OManufacturing @Electronics& Control Systems

O Structural Design ClPower train OVehicle Technologies

Date Meeting StudyCoach :
Name Study Coach : . .Arhur Appelman. Signature Study Coach:

Opinion Study Coach on Start Graduation: Positive/=Megative *

Remarks and / or explanations:

Hand in the complete form at the Practical Office.

APPENDIX B

Final Project Management Plan

The Final Project Management Plan is in the attachments provided with this report.

X Remote Vehicle Diagnostics Xiv

APPENDIX C

Reflection Report

The reflection report is in the attachments provided with this report.

B Remote Vehicle Diagnostics

XV

APPENDIX D

Reference Tables

Sanice S Sk e Where defined
00-0F OBD service requests ISO 15031-5
10-3E IS0 14229 service requests IS0 14229
3F Mot applicable Reserved by document
40 — 4F OBD service responses ISO 15031-5
50-7FE ISO 14229 positive Service responses 1SO 14229
TF Negative response service identifier IS0 14229
80 Not applicable Reserved by ISO 14229
81-82 Not applicable Reserved by ISO 14230
83-88 ISO 14225 service requests 150 14229
89 -9F Service requesis Reserved for future expansion as needed
A0 -BY Service requests Defined by vehicle manufacturer
BA-BE Service requests Defined by system supplier
BF Not applicable Reserved by document
co Mot applicable Reserved by ISO 14229
c1-Cc2 Not applicable Reserved by ISO 14230
c3-Cs ISO 14229 positive service responses 150 14229
CS-DF Positive service responses Reserved for future expansion as needed
E0-Fa Positive service responses Defined by vehicle manufaciurer
FA-FE Positive Service responses Defined by system supplier
Fr Not applicable Reserved by document

Figure D.1: Sl Table!

IThis table has been taken from ISO 14229-1
2The information has been taken from 1SO-14229-1
3This information has been taken from 1SO 14229-1

X Remote Vehicle Diagnostics

APPENDIX D. REFERENCE TABLES

Description Service ldentifier
- Request | Positive response | Negative response
DiagnosticSessionControl | 0x10 0x50 0x7F
TesterPresent 0x3E 0x7E 0x7F
ReadDataByldentifier 0x22 0x62 0x7F

Table D.1: Example of Sls with their respective positive and negative response codes

OSI layer Enhanced diagnostic services (non-emissions-related)
Application (layer 7) ISO 14229 ISO 14229
Presentation (layer 6) - -

Session (layer 5) ISO 14229-3:2012 further standards
Transport (layer 4) | ISO 14229-3:2012 further standards
Network (layer 3) | ISO 14229-3:2012 further standards
Data link (layer 2) ISO 11898-1 further standards
Physical (layer 1) ISO 11898-1 further standards

Table D.2: Example of diagnostic/programming specifications applicable to the OSI layers?

Hex (bit 6-0) Description
0x00 ISOSAEReserved*
0x01 defaultSession
0x02 programmingSession
0x03 extendedDiagnosticSession
0x04 safetySystemDiagnosticSession
0x05-0x3F ISOSAEReserved
0x40-0x5F vehicleManufacturerSpecific
0x60-0x7E systemSupplierSpecific
Ox7F ISOSAEReserved

Table D.3: DSCS request message sub-function parameter definition3
*Society of Automotive Engineers (SAE)

[FHEE M Remote Vehicle Diagnostics Xvii

APPENDIX D. REFERENCE TABLES

ue|d 3so sed|iN °Q el

"juasaud 41 syney Aue 12939p 01

| sseyd Suns: jo

203 Y1 paASIYDE SARY ISNW pue SYIOM 2inpad0.id aseyd Bunss
3|qe st 1duds 1|inq aY1 JI 91epljeA pue AjusA o ! i pansiy 43 Pue = P I 95€d SHisal 6
T : ; ; : 3yl moy mouy pinoys 1duds uoidesIxs ages|iw sy |
1d11os sy1 Suipping
: e uolle|nwis SIYSA
usym sioss 2130| pue xejuhs Aue jo wayy | oseyd Sunss| 8
pue uoldesixs d3es|iw 4oy siduds Suiyiom e aaeH
8ngep 01 J4ay10 yoes 1sutede s1duds Syl 1591 0]
10U Jo Zuoim "JUNOD2E 01Ul USYE] JOU S| 1BY] SUOIIeN]IS
Bulyswos si 319yl I Moys 01 3|qe 3q p|noys 1| 1o} uoi1edIpul ue SAIZ JO SISBD UDISUN JOJ SINSesw dube piin
"ydlew 1ou op sanjea ay3 jo Aue yi Suluiem e ssied SWos dAeYy pue Jssn syl Aq padusiadxe si 1eyl Aupiqissod 1AHSS PN L
pue so8es|iw Je[iwlis SuiuleIUOd SINPOW MOYS AJ3AS 1s0ow|e 1SN0 01 93P3|MOUy| TUSIDIINS SARY 1SN\
|[oo1 Jnsoudelp
3[2IYaA |B3. B 1| SeARYaq : : Jore|nwis
jsuiee Su13sel Jspuly 3,Ussop 1 1By} OS Slolis [ed130| 9
1 J1 1duIds Jolenwis S2IYsA Syl d1epljea o] : ’ : : : a[oIyaA 3unsa|
pue xe1uAs ||e Jo 931} 9q p|noys 1d1Ids Jo1e|nNwWIS S|DIYaA 3y |
uoljewojul s|npow pue a3es|iw
1d113s Jole|nwis S21YsA a3 1sule8e unJ si 11 usym : : ; Jore|nwis
pesJ pue uo uoiludi Ylm ||IISpUelIs e 1e SuoIlIpuod G
1d1ds uondelIxe 98es|iw ay3 1epljea dpy o] 3J2IYaA pjing
: ; : : SPIySA 1enwiIs 03 |001 9yl Aq passyiesd s3psmouy y3nou] : '
aseq a8pajmouy e jo
sueaw Aq jueAs[a4 |enioe e jeyl ssjnpow 1duds e Jo suesw £q
3y1 SuisuoFa1ed pue Juikjnuspl ‘os|y 1ewIo) 3|21YsA B S1e|NwS 01 3|qe 3q 01 uollewdojul ysnous | 3|y 30| askjeuy ¥
S|qepeaJ 01 11 1SA0D 01 MOY pue elep d3es|iw Bulule1uod pue J9sN SY3 J0j 1BWLIO) S|qepeas Ul 3q 1SN\
Sunoenxs jo aunpadoid syl uo 3Zpsmouy uielqQ
10 K
uoljewJoyul (9VA 404 SADA) [001
) | sonpow 1uasaud ||e Jo malnIA0 ue apiaoad pue sqissod s
siy3 Suiuieluod 9|1y 30| e uleIqO puB UOIIBeWLIOJUI J13s0ugelp e yim €
: SS|NpOW [0J1UOD ||B WOl SaNnjeA 93es|iw 1IN0 peas 01
98es|iw Juissassod ssnpow [|e uo a3psjmouy uier . ueds wuopsy
3|qe 3q ‘S21yaA 3y3 yim 3|qrredwod aq pnoys 1
ws|qoad ay1 Jo CTRIIVEY
T %Se] o [eoB 3y |y|ny Isnw . 4
uoiediiseaul uels o1 ajdwes e se J|2IYsA SIy3 3S() e 8soo0y)
» neiy s3es|iw 01 9|q11dasns si pue 19)Jew puey puodss
(9¥A woly gdOW ‘55 ‘wiopeld pnedj I! 19! 'P b puey p
3yl ul papesy Ajppim si pue (ulppyir) waishs Jainjoejnuew
S|2IYsA Jejnpow e sesn 1 JI 49119q) Jainioejnuew) 1
ay1 Aq parioddns si 11 ‘ss|a1yaA s uo [020104d | SDIYSA BuIld9)Pg
SIY3 Wodj S9poIyaA a|diynw JaA0d 01 9|qe 8q O] . : : : :
SAMN swuswa|dwi Jainioenuew SRIYaA sy |
[eoD) sjuswalinbay yse] | deig

xvilli

NGE M Remote Vehicle Diagnostics

APPENDIX D. REFERENCE TABLES

Address	ECU Name	Mileage value present
0x01	Engine Control Module	Yes
0x02	AutoTrans Module	No
0x03	Brake Electronics Module	No
0x05	Acc Start Auth Module	No
0x08	Auto HVAC Module	Yes
0x09	Central Electronics Module	Yes
0x10	Park Steer Assist Module	Yes
0x13	Adaptive Cruise Control Module	No
0x15	Airbag Module	No
0x16	Steering Wheel Module	No
0x17	Instruments Module	Yes
0x19	Gateway Module	Yes
0x22	All Wheel Drive Module	No
0x2B	Steering Column Lock Module	No
0x36	Seat Memory Driver Module	No
0x3C	Lane Change Module	No
0x42	Door Electronics Driver Module	Yes
0x44	Steering Assist Module	Yes
0x46	Comfort Convenience Module	No
0x4B	Multifunctional Module	No
0x51	Electric Drive Module	No
0x52	Door Electronics Passenger Module	Yes
0x5F	Information Electronics Module	Yes
0x61	Battery Regulation Module	No
0x69	Trailer Module	No
0x6C	Backup Camera Module	No
0x6D	Trunk Electronics Module	No
0x74	Chassis Control Module	No
0x75	Telematics Module	No
0x81	Gear Shift Module	No
0xA5	Front Sensor Drive Assist Module	Yes
0XAC	Reductant Control Module	No

X Remote Vehicle Diagnostics Xix

APPENDIX D. REFERENCE TABLES

Table D.5 continued from previous page

Address	ECU Name	Mileage value present
0xC4	DC/DC Converter	No
0xC5	Thermal Management Module	No
0xC6	Battery Charger Module	No
0xCA	Sunroof Module	No
0xCF	Lane Change Assist (Additional) Module	No
0xD6	Light Control Left 2	No
0xD7	Light Control Right 2	No

Table D.5: ECUs encountered

X Remote Vehicle Diagnostics XX

APPENDIX E

Scripts Log

Listing E.1: Example of script communication trace with an Audi A6

14:47:13.060 | ALL | <— | 2 ms | [Debug]: ======== Starting Script!

14:47:13.061 | AL
14:47:13.062 | AL
14:47:13.063 | AL
14:47:13.066 | AL
14:47:13.178 | AL
14:47:13.178 | AL
14:47:13.178 | AL
14:47:13.180 | AL
14:47:13.184 | AL
14:47:13.184 | AL
14:47:13.184 | AL

14:47:13.188 | AL
14:47:13.193 | AL
14:47:13.194 | AL
14:47:13.195 | AL
14:47:13.196 | AL

— | 1 ms | [Debug]:

— | 1 ms | [Debug]:
| 1 ms | [Debug]:
| 3 ms | [Debug]:
| 1 ms | [Debug]:
| 0 ms | [Debug]:
| 0 ms | [Debug]:
| 2 ms | [Debug]:
| 4 ms | [Debug]:
| 0 ms | [Debug]:
| 0 ms | [Debug]:
| 2 ms | [Debug]:
| 2 ms | [Debug]:
| 5 ms | [Debug]:
| 1 ms | [Debug]:
| 1 ms | [Debug]:
| 1 ms | [Debug]:

|\/| | | =1/ N =/ e =L EN TN PEN TN N e] -
P T B O B e Y2 B I VI I I v I I By sy)

[DEBUG] [+] Starting Engine

[DEBUG] [+] Starting InstrumentCluster
[DEBUG] [+] Starting CANGateway

[DEBUG] [+] Starting InformationElectronics
[DEBUG] [+] Starting scan on InstrumentCluster
[DEBUG] [+] Starting BrakeElectronics
[DEBUG] [+] Starting scan on Engine

[DEBUG] [+] Starting PassengerDoorElectronics
[DEBUG] [+] Starting DriverDoorElectronics
[DEBUG] [+] Starting scan on CANGateway
[DEBUG] [+] Starting TrunkElectronics
[DEBUG] [+] Starting scan on InformationElectronics
[DEBUG] [+] Starting scan on BrakeElectronics

14:47:13.196 | CA | 0 ms | [ISOTP] cmd[0x5000] args[0x0714,0x00,0x00,0x00] data[0x1003]
1 ms | [ISOTP] cmd[0x5000] args[0x0710,0x00,0x00,0x00] data[0x1003]
2 ms | [ISOTP] cmd[0x5000] args[0x0713,0x00,0x00,0x00] data[0x1003]
ms | [Debug]: [DEBUG] [+] Starting scan on PassengerDoorElectronics
ms | [Debug]: [DEBUG] [+] Starting FrontSensorDriveAssist
1 ms | [ISOTP] cmd[0x5000] args[0x07E0,0x00,0x00,0x00] data[0x1003]
0 ms | [ISOTP] cmd[0x5000] args[0x0773,0x00,0x00,0x00] data[0x1003]
0 ms | [ISOTP] cmd[0x5000] args[0x074B,0x00,0x00,0x00] data[0x1003]
m
1
m

L
L
L
L
L
L
L
L|
L
L
L
L
14:47:13.186 | ALL |
L
L
L
L
L|
N1
14:47:13.197 | CAN1
14:47:13.199 | CAN1
14:47:13.200 | ALL |
14:47:13.208 | ALL |
14:47:13.209 | CAN1
14:47:13.209 | CAN1
14:47:13.209 | CAN1
14:47:13.210 | ALL | s | [Debug]: [DEBUG] [+] Starting scan on DriverDoorElectronics
14:47:13.211 | CAN1

14:47:13.212 | ALL |

14:47:13.214 | ALL |

14:47:13.215 | CAN1

14:47:13.217 | ALL |

14:47:13.221 | ALL |

14:47:13.221 | CAN1

14:47:13.223 | ALL |

14:47:13.227 | ALL |

14:47:13.231 | ALL |

14:47:13.238 | ALL |

14:47:13.243 | ALL |
14:47:13.250 | ALL |
14:47:13.250 | ALL |
14:47:13.250 | ALL |
14:47:13.250 | ALL |
14:47:13.251 | ALL |
14:47:13.252 | CAN1
14:47:13.253 | CAN1
14:47:13.253 | CAN1
14:47:13.253 | ALL |
14:47:13.253 | CAN1
14:47:13.254 | CAN1
14:47:13.254 | CAN1 |

|

|

1

8

|

|

|

1

| 1 ms | [ISOTP] cmd[0x5000] args[0x074A,0x00,0x00,0x00] data[0x1003]
1 ms | [Debug]: [DEBUG] [+] Starting scan on TrunkElectronics

2 ms | [Debug]: [DEBUG] [+] Starting CentralElectronics

| 1 ms | [ISOTP] cmd[0x5000] args[0x0723,0x00,0x00,0x00] data[0x1003]
2 ms | [Debug]: [DEBUG] [+] Starting AdaptiveCruiseControl

4 ms | [Debug]: [DEBUG] [+] Starting scan on FrontSensorDriveAssist

| 0 ms | [ISOTP] cmd[0x5000] args[0x074F,0x00,0x00,0x00] data[0x1003]
2 ms | [Debug]: [DEBUG] [+] Starting SteeringAssist

4 ms | [Debug]: [DEBUG] [+] Starting AutoHVAC

| 4 ms | [Debug]: [DEBUG] [+] Starting ParkSteerAssist

| 7 ms | [Debug]: [DEBUG] [+] Starting SteeringWheel

| 5 ms | [Debug]: [DEBUG] [+] Starting Airbags

| 7 ms | [Debug]: [DEBUG] [+] Starting scan on AdaptiveCruiseControl

| 0 ms | [Debug]: [DEBUG] [+] Starting scan on AutoHVAC

| 0 ms | [Debug]: [DEBUG] [+] Starting scan on SteeringAssist

| 0 ms | [Debug]: [DEBUG] [+] Starting scan on ParkSteerAssist

| 1 ms | [Debug]: [DEBUG] [+] Starting scan on SteeringWheel

—> | 1 ms | [ISOTP] cmd[0x5000] args[0x0757,0x00,0x00,0x00] data[0x1003]
—> | 1 ms | [ISOTP] cmd[0x5000] args[0x0746,0x00,0x00,0x00] data[0x1003]
—> | 0 ms | [ISOTP] cmd[0x5000] args[0x0712,0x00,0x00,0x00] data[0x1003]
| 0 ms | [Debug]: [DEBUG] [+] Starting scan on CentralElectronics
—> |
—> |
—> |

—>
—>
->
|
|
—>
—>
—->
|
—->
|
|
—->
|
|
—>
|
|

0 ms | [ISOTP] cmd[0x5000] args[0x070A,0x00,0x00,0x00] data[0x1003]
1 ms | [ISOTP] cmd[0x5000] args[0x070C,0x00,0x00,0x00] data[0x1003]
0 ms | [ISOTP] cmd[0x5000] args[0x070E,0x00,0x00,0x00] data[0x1003]

<
<
<—
<—
<—
<—
<—
<—
<—
<—
<—
<—
<—
<—
<—
<—
<—
|

|

|

<—
<—
|

|

|

<—
|

<—
<—
|

<—
<—
|

<—
<—
<=
<—
<—
<—
<—
<—
<—
<—
|

|

|

<—
|

|

EENE M Remote Vehicle Diagnostics

XXi

APPENDIX E. SCRIPTS LOG

14:47:13.254 | ALL |

ms | [Debug]: [DEBUG] [+] Starting scan on Airbags

<—1]0
14:47:13.256 | CAN1 | —> | 2 ms | [ISOTP] cmd[0x5000] args[0x0715,0x00,0x00,0x00] data[0x1003]
14:47:13.361 | CAN1 | <— | 105 ms | [ISOTP] cmd[0x5000] args[0x077E,0x00,0x00,0x00] data[0x5003003201F4]
14:47:13.366 | CAN1 | <— | 5 ms | [ISOTP] cmd[0x5000] args[0x077A,0x00,0x00,0x00] data[0x5003003201F4]
14:47:13.370 | CAN1 | —> | 4 ms | [ISOTP] cmd[0x5000] args[0x0714,0x00,0x00,0x00] data[0x22F19E]
14:47:13.375 | CANL | —> | 5 ms | [ISOTP] cmd[0x5000] args[0x0710,0x00,0x00,0x00] data[0x22F 19E]
14:47:13.376 | CAN1 | <— | 1 ms | [ISOTP] cmd[0x5000] args[0x07E8,0x00,0x00,0x00] data[0x5003003201F4]
14:47:13.380 | CAN1 | <— | 4 ms | [ISOTP] cmd[0x5000] args[0x077D,0x00,0x00,0x00] data[0x5003003201F4]

14:47:13.384 | CAN1 | —> | 4 ms | [ISOTP] cmd[0x5000] args[0x07E0,0x00,0x00,0x00] data[0x22F19E]
14:47:13.386 | CAN1 | <— | 2 ms | [ISOTP] cmd[0x5000] args[0x07DD,0x00,0x00,0x00] data[0x5003003201F4]
14:47:13.389 | CAN1 | —> | 3 ms | [ISOTP] cmd[0x5000] args[0x0713,0x00,0x00,0x00] data[0x22F19E]
14:47:13.392 | CAN1 | <— | 3 ms | [ISOTP] cmd[0x5000] args[0x078D,0x00,0x00,0x00] data[0x5003003201F4]
14:47:13.394 | CAN1 | —> | 2 ms | [ISOTP] cmd[0x5000] args[0x0773,0x00,0x00,0x00] data[0x22F19E]
14:47:13.401 | CAN1 | —> | 7 ms | [ISOTP] cmd[0x5000] args[0x0723,0x00,0x00,0x00] data[0x22F19E]
14:47:13.409 | CAN1 | <— | 8 ms | [ISOTP] cmd[0x5000] args[0x07B0,0x00,0x00,0x00] data[0x5003003201F4]
14:47:13.418 | CAN1 | —> | 9 ms | [ISOTP] cmd[0x5000] args[0x0746,0x00,0x00,0x00] data[0x22F19E]
14:47:13.433 | CAN1 | <— | 15 ms | [ISOTP] cmd[0x5000] args[0x077C,0x00,0x00,0x00] data[0x5003003201F4]
14:47:13.442 | CAN1 | —> | 9 ms | [ISOTP] cmd[0x5000] args[0x0712,0x00,0x00,0x00] data[0x22F19E]
14:47:13.455 | CAN1 | <— | 13 ms | [ISOTP] cmd[0x5000] args[0x077A,0x00,0x00,0x00] data[0
— x62F19E45565F4761746577506B6F55445300]
14:47:13.459 | CAN1 | <— | 4 ms | [ISOTP] cmd[0x7F78] args[0x077E,0x00,0x00,0x00] data[0x]
14:47:13.464 | CAN1 | —> | 5 ms | [ISOTP] cmd[0x5000] args[0x0710,0x00,0x00,0x00] data[0x22F1A2]
14:47:13.466 | CAN1 | <— | 2 ms | [ISOTP] cmd[0x5000] args[0x07E8,0x00,0x00,0x00] data[0
— x62F19E45565F45434D323054444930313130344C393036303231484100]
14:47:13.466 | CAN1 | <— | 0 ms | [ISOTP] cmd[0x7F78] args[0x07DD,0x00,0x00,0x00] data[0x]
14:47:13.474 | CAN1 | <— | 8 ms | [ISOTP] cmd[0x5000] args[0x077F ,0x00,0x00,0x00] data[0x5003004B012C]
14:47:13.475 | CANL | —> | 1 ms | [ISOTP] cmd[0x5000] args[0x07E0,0x00,0x00,0x00] data[0x22F1A2]
14:47:13.475 | CAN1 | —> | 0 ms | [ISOTP] cmd[0x5000] args[0x0715,0x00,0x00,0x00] data[0x22F19E]
14:47:13.483 | CAN1 | <— | 8 ms | [ISOTP] cmd[0x5000] args[0x078D,0x00,0x00,0x00] data[0
— x62F19E45565F484453474175353732000000000000000000000000]
14:47:13.489 | CAN1 | <— | 6 ms | [ISOTP] cmd[0x5000] args[0x07B0,0x00,0x00,0x00] data[0
— x62F19E45565F416972436F6E6469436F6D666F55445300]
14:47:13.492 | CAN1 | —> | 3 ms | [ISOTP] cmd[0x5000] args[0x0723,0x00,0x00,0x00] data[0x22F1A2]
14:47:13.494 | CAN1 | <— | 2 ms | [ISOTP] cmd[0x5000] args[0x077D,0x00,0x00,0x00] data[0
— x62F19E45565F45535039424F534348415535375800]
14:47:13.408 | CAN1 | —> | 4 ms | [ISOTP] cmd[0x5000] args[0x0746,0x00,0x00,0x00] data[0x22F1A2]
14:47:13.502 | CAN1 | —> | 4 ms | [ISOTP] cmd[0x5000] args[0x0713,0x00,0x00,0x00] data[0x22F1A2]
14:47:13.508 | CAN1 | <— | 6 ms | [ISOTP] cmd[0x5000] args[0x077A,0x00,0x00,0x00] data[0x62F1A2303032303131]
14:47:13.513 | CAN1 | <— | 5 ms | [ISOTP] cmd[0x5000] args[0x077C,0x00,0x00,0x00] data[0x62F19E45565F524345505300]
14:47:13.516 | CAN1 | —> | 3 ms | [ISOTP] cmd[0x5000] args[0x0710,0x00,0x00,0x00] data[0x22F190]
14:47:13.521 | CAN1 | <— | 5 ms | [ISOTP] cmd[0x5000] args[0x07E8,0x00,0x00,0x00] data[0x62F1A2303034303030]
14:47:13.522 | CAN1 | —> | 1 ms | [ISOTP] cmd[0x5000] args[0x0712,0x00,0x00,0x00] data[0x22F1A2]
14:47:13.529 | CAN1 | —> | 7 ms | [ISOTP] cmd[0x5000] args[0x07E0,0x00,0x00,0x00] data[0x22F190]
14:47:13.531 | CAN1 | <— | 2 ms | [ISOTP] cmd[0x5000] args[0x078D,0x00,0x00,0x00] data[0x62F1A2303031303232]
14:47:13.539 | CAN1 | —> | 8 ms | [ISOTP] cmd[0x5000] args[0x0723,0x00,0x00,0x00] data[0x22F190]
14:47:13.543 | CAN1 | <— | 4 ms | [ISOTP] cmd[0x5000] args[0x07B0,0x00,0x00,0x00] data[0x62F1A2303033303038]
14:47:13.553 | CAN1 | <— | 10 ms | [ISOTP] cmd[0x5000] args[0x07DD,0x00,0x00,0x00] data[0
— x62F19E45565F4D5548696736433347656E324842415300]
14:47:13.554 | CAN1 | <— | 1 ms | [ISOTP] cmd[0x5000] args[0x077A,0x00,0x00,0x00] data[0x7F2231]
14:47:13.554 | CAN1 | <— | 0 ms | [ISOTP] cmd[0x5000] args[0x077E,0x00,0x00,0x00] data[0
— x62F19E45565F524244344B00000000000000000000000000]
14:47:13.554 | CAN1 | —> | 0 ms | [ISOTP] cmd[0x5000] args[0x0746,0x00,0x00,0x00] data[0x22F190]
14:47:13.558 | CAN1 | —> | 4 ms | [ISOTP] cmd[0x5000] args[0x0773,0x00,0x00,0x00] data[0x22F1A2]
14:47:13.559 | ALL | <— | 1 ms | [Debug]: [DEBUG] [—] Failed getting VIN details from CANGateway Module. Received:
— RequestOutOfRangeException (710 —> 77A) request: 22F190 response: 7F2231 error code: 31
14:47:13.561 | CAN1 | <— | 2 ms | [ISOTP] cmd[0x5000] args[0x07E8,0x00,0x00,0x00] data[0x62F190xredacteds]
14:47:13.563 | CAN1 | —> | 2 ms | [ISOTP] cmd[0x5000] args[0x0714,0x00,0x00,0x00] data[0x22F1A2]
14:47:13.563 | CAN1 | —> | 0 ms | [ISOTP] cmd[0x5000] args[0x0710,0x00,0x00,0x00] data[0x2202BD)]
14:47:13.571 | ALL | <— | 8 ms | [Debug]: [DEBUG] [+] VIN: xredactedx of vehicle Engine module
14:47:13.572 | CAN1 | —> | 1 ms | [ISOTP] cmd[0x5000] args[0x07E0,0x00,0x00,0x00] data[0x2210E0]
14:47:13.573 | CAN1 | <— | 1 ms | [ISOTP] cmd[0x5000] args[0x077D,0x00,0x00,0x00] data[0x62F1A2303034303138]
14:47:13.579 | CAN1 | <— | 6 ms | [ISOTP] cmd[0x5000] args[0x07B0,0x00,0x00,0x00] data[0x7F2231]
14:47:13.581 | CAN1 | —> | 2 ms | [ISOTP] cmd[0x5000] args[0x0713,0x00,0x00,0x00] data[0x22F190]
14:47:13.584 | CAN1 | <— | 3 ms | [ISOTP] cmd[0x5000] args[0x078D,0x00,0x00,0x00] data[0
— x62F1902D2D2D2D2D2D2D2D2D2D2D2D2D2D2D2D2D)]
14:47:13.589 | ALL | <— | 5 ms | [Debug]: [DEBUG] [—] Failed getting VIN details from AutoHVAC Module. Received:
<> RequestOutOfRangeException (746 —> 7B0) request: 22F190 response: 7F2231 error code: 31
14:47:13.589 | CAN1 | <— | 0 ms | [ISOTP] cmd[0x5000] args[0x077F,0x00,0x00,0x00] data[0
— x62F19E45565F416972626141553130425041415536345800]
14:47:13.589 | CAN1 | —> | 0 ms | [ISOTP] cmd[0x5000] args[0x0746,0x00,0x00,0x00] data[0x2202BD]
14:47:13.593 | ALL | <— | 4 ms | [Debug]: [DEBUG] [+] VIN: - ———————————————— of vehicle TrunkElectronics module

EE M Remote Vehicle Diagnostics XXii

APPENDIX E. SCRIPTS LOG

14:47:13.593 | CAN1 | —> | 0 ms | [ISOTP] cmd[0x5000] args[0x0723,0x00,0x00,0x00] data[0x2202BD]

14:47:13.594 | CAN1 | <— | 1 ms | [ISOTP] cmd[0x5000] args[0x077C,0x00,0x00,0x00] data[0x62F1A2313036303037]

14:47:13.594 | CAN1 | <— | 0 ms | [ISOTP] cmd[0x5000] args[0x077A,0x00,0x00,0x00] data[0x7F2231]

14:47:13.597 | CAN1 | —> | 3 ms | [ISOTP] cmd[0x5000] args[0x0715,0x00,0x00,0x00] data[0x22F1A2]

14:47:13.603 | CAN1 | —> | 6 ms | [ISOTP] cmd[0x5000] args[0x0712,0x00,0x00,0x00] data[0x22F190]

14:47:13.606 | ALL | <— | 3 ms | [Debug]: [DEBUG] [—] Failed getting vehicle mileage from CANGateway Module. Received
— RequestOutOfRangeException (710 —> 77A) request: 2202BD response: 7F2231 error code: 31

14:47:13.606 | CAN1 | <— | 0 ms | [ISOTP] cmd[0x7F78] args[0x07DD,0x00,0x00,0x00] data[0x]

14:47:13.623 | CAN1 | <— | 17 ms | [ISOTP] cmd[0x5000] args[0x07B0,0x00,0x00,0x00] data[0x7F2231]

14:47:13.624 | CAN1 | <— | 1 ms | [ISOTP] cmd[0x7F78] args[0x077E,0x00,0x00,0x00] data[0x]

14:47:13.624 | CAN1 | <— | 0 ms | [ISOTP] cmd[0x5000] args[0x077D,0x00,0x00,0x00] data[0x7F2231]

14:47:13.624 | CAN1 | <— | 0 ms | [ISOTP] cmd[0x5000] args[0x078D,0x00,0x00,0x00] data[0x7F2231]

14:47:13.625 | CAN1 | <— | 1 ms | [ISOTP] cmd[0x5000] args[0x07E8,0x00,0x00,0x00] data[0x7F2231]

14:47:13.635 | ALL | <— | 10 ms | [Debug]: [DEBUG] [—] Failed getting vehicle mileage from AutoHVAC Module. Received
— RequestOutOfRangeException (746 —> 7B0) request: 2202BD response: 7F2231 error code: 31

14:47:13.635 | ALL | <— | 0 ms | [Debug]: [DEBUG] [—] Failed getting VIN details from BrakeElectronics Module. Received:
— RequestOutOfRangeException (713 —> 77D) request: 22F190 response: 7F2231 error code: 31

14:47:13.635 | ALL | <— | 0 ms | [Debug]: [DEBUG] [—] Failed getting vehicle mileage from TrunkElectronics Module. Received
— RequestOutOfRangeException (723 —> 78D) request: 2202BD response: 7F2231 error code: 31

14:47:13.639 | ALL | <— | 4 ms | [Debug]: [DEBUG] [—] Failed getting vehicle mileage from Engine Module. Received
— RequestOutOfRangeException (7EO —> 7E8) request: 2210E0 response: 7F2231 error code: 31

14:47:13.639 | CAN1 | —> | 0 ms | [ISOTP] cmd[0x5000] args[0x0713,0x00,0x00,0x00] data[0x2202BD]

14:47:13.641 | CAN1 | <— | 2 ms | [ISOTP] cmd[0x5000] args[0x077E,0x00,0x00,0x00] data[0x62F1A2303034303630]

14:47:13.651 | CAN1 | <— | 10 ms | [ISOTP] cmd[0x5000] args[0x077C,0x00,0x00,0x00] data[0x7F2231]

14:47:13.651 | CAN1 | —> | 0 ms | [ISOTP] cmd[0x5000] args[0x0714,0x00,0x00,0x00] data[0x22F190]

14:47:13.660 | ALL | <— | 9 ms | [Debug]: [DEBUG] [—] Failed getting VIN details from SteeringAssist Module. Received:
— RequestOutOfRangeException (712 —> 77C) request: 22F190 response: 7F2231 error code: 31

14:47:13.661 | CAN1 | —> | 1 ms | [ISOTP] cmd[0x5000] args[0x0712,0x00,0x00,0x00] data[0x2202BD]

14:47:13.666 | CAN1 | <— | 5 ms | [ISOTP] cmd[0x5000] args[0x077F,0x00,0x00,0x00] data[0x62F1A2303031303134]

14:47:13.675 | CAN1 | —> | 9 ms | [ISOTP] cmd[0x5000] args[0x0715,0x00,0x00,0x00] data[0x22F190]

14:47:13.682 | CAN1 | <— | 7 ms | [ISOTP] cmd[0x5000] args[0x077E,0x00,0x00,0x00] data[0x7F2231]

14:47:13.683 | CAN1 | <— | 1 ms | [ISOTP] cmd[0x5000] args[0x077D,0x00,0x00,0x00] data[0x7F2231]

14:47:13.692 | ALL | <— | 9 ms | [Debug]: [DEBUG] [—] Failed getting VIN details from InstrumentCluster Module. Received:
— RequestOutOfRangeException (714 —> 77E) request: 22F190 response: 7F2231 error code: 31

14:47:13.693 | CAN1 | —> | 1 ms | [ISOTP] cmd[0x5000] args[0x0714,0x00,0x00,0x00] data[0x222203]

14:47:13.693 | ALL | <— | 0 ms | [Debug]: [DEBUG] [—] Failed getting vehicle mileage from BrakeElectronics Module. Received
— RequestOutOfRangeException (713 —> 77D) request: 2202BD response: 7F2231 error code: 31

14:47:13.718 | CAN1 | <— | 25 ms | [ISOTP] cmd[0x5000] args[0x077C,0x00,0x00,0x00] data[0x7F2231]

14:47:13.723 | CAN1 | <— | 5 ms | [ISOTP] cmd[0x5000] args[0x077E,0x00,0x00,0x00] data[0x62220300BBBF]

14:47:13.727 | ALL | <— | 4 ms | [Debug]: [DEBUG] [—] Failed getting vehicle mileage from SteeringAssist Module. Received
— RequestOutOfRangeException (712 —> 77C) request: 2202BD response: 7F2231 error code: 31

14:47:13.730 | ALL | —> | 3 ms | [FRAMEWORK] cmd[0xF004] args[0x03,0x64,0x01,0x01] data[0x]

14:47:13.732 | ALL | <— | 2 ms | [Debug]: [DEBUG] [+] Request sent 2203 —> Received response 00BBBF. In InstrumentCluster
— Module

14:47:13.755 | CAN1 | <— | 23 ms | [ISOTP] cmd[0x5000] args[0x077F,0x00,0x00,0x00] data[0x62F190xredacteds]

14:47:13.765 | ALL | <— | 10 ms | [Debug]: [DEBUG] [+] VIN: xredactedx of vehicle Airbags module

14:47:13.765 | CANL | —> | 0 ms | [ISOTP] cmd[0x5000] args[0x0715,0x00,0x00,0x00] data[0x2202BD]

14:47:13.768 | ALL | <— | 3 ms | [FRAMEWORK] cmd[0xF004] args[0x03,0x64,0x01,0x01] data[0x]

14:47:13.800 | CAN1 | <— | 32 ms | [ISOTP] cmd[0x5000] args[0x07DD,0x00,0x00,0x00] data[0x62F1A2303031313135]

14:47:13.809 | CAN1 | —> | 9 ms | [ISOTP] cmd[0x5000] args[0x0773,0x00,0x00,0x00] data[0x22F190]

14:47:13.826 | CAN1 | <— | 17 ms | [ISOTP] cmd[0x5000] args[0x077F ,0x00,0x00,0x00] data[0x7F2231]

14:47:13.837 | ALL | <— | 11 ms | [Debug]: [DEBUG] [—] Failed getting vehicle mileage from Airbags Module. Received
< RequestOutOfRangeException (715 —> 77F) request: 2202BD response: 7F2231 error code: 31

14:47:13.857 | CAN1 | <— | 20 ms | [ISOTP] cmd[0x7F78] args[0x07DD,0x00,0x00,0x00] data[0x]

14:47:13.910 | CAN1 | <— | 53 ms | [ISOTP] cmd[0x5000] args[0x07DD,0x00,0x00,0x00] data[0x62F190xredacteds]

14:47:13.920 | ALL | <— | 10 ms | [Debug]: [DEBUG] [+] VIN: xredactedx of vehicle InformationElectronics module

14:47:13.920 | CANL | —> | 0 ms | [ISOTP] cmd[0x5000] args[0x0773,0x00,0x00,0x00] data[0x2202BD]

14:47:13.967 | CAN1 | <— | 47 ms | [ISOTP] cmd[0x7F78] args[0x07DD,0x00,0x00,0x00] data[0x]

14:47:13.985 | CAN1 | <— | 18 ms | [ISOTP] cmd[0x5000] args[0x07DD,0x00,0x00,0x00] data[0x6202BDE900BBBF0000514CEBDS]

14:47:13.995 | ALL | <— | 10 ms | [Debug]: [DEBUG] [+] Request sent 02BD —> Received response E9Q00BBBF0000514CEBD5. In
— InformationElectronics Module

14:47:14.881 | CAN1 | <— | 886 ms | [ISOTP] cmd[0x4100] args[0x074B,0xE28B,0x00,0x00] data[0x0210035555555555]

14:47:14.884 | CAN1 | <— | 3 ms | [ISOTP] cmd[0x4100] args[0x074A,0xE28B,0x00,0x00] data[0x0210035555555555]

14:47:14.889 | CAN1 | <— | 5 ms | [ISOTP] cmd[0x4100] args[0x074F,0xE28B,0x00,0x00] data[0x0210035555555555]

14:47:14.894 | CAN1 | <— | 5 ms | [ISOTP] cmd[0x4100] args[0x0757,0xE28B,0x00,0x00] data[0x0210035555555555]

14:47:14.912 | CAN1 | <— | 18 ms | [ISOTP] cmd[0x4100] args[0x070A,0xE28B,0x00,0x00] data[0x0210035555555555]

14:47:14.912 | CAN1 | <— | 0 ms | [ISOTP] cmd[0x4100] args[0x070C,0xE28B,0x00,0x00] data[0x0210035555555555]

14:47:14.917 | CAN1 | <— | 5 ms | [ISOTP] cmd[0x4100] args[0x070E,0xE28B,0x00,0x00] data[0x0210035555555555]

14:47:23.211 | ALL | <— | 8294 ms | [Debug]: [DEBUG] [—] No response received on PassengerDoorElectronics Module, could not set
— diagnostic session. Is the ignition on?

14:47:23.211 | CAN1 | —> | 0 ms | [ISOTP] cmd[0x5000] args[0x074B,0x00,0x00,0x00] data[0x22F19E]

0 (A Remote Vehicle Diagnostics xxiii

APPENDIX E. SCRIPTS LOG

14:47:23.212 | ALL | <— | 1 ms | [Debug]: [DEBUG] [—] No response received on DriverDoorElectronics Module, could not set
— diagnostic session. Is the ignition on?

14:47:23.212 | CAN1 | —> | 0 ms | [ISOTP] cmd[0x5000] args[0x074A,0x00,0x00,0x00] data[0x22F19E]

14:47:23.223 | ALL | <— | 11 ms | [Debug]: [DEBUG] [—] No response received on FrontSensorDriveAssist Module, could not set
< diagnostic session. Is the ignition on?

14:47:23.223 | CAN1 | —> | 0 ms | [ISOTP] cmd[0x5000] args[0x074F ,0x00,0x00,0x00] data[0x22F19E]

14:47:23.255 | ALL | <— | 32 ms | [Debug]: [DEBUG] [—] No response received on AdaptiveCruiseControl Module, could not set
— diagnostic session. Is the ignition on?

14:47:23.255 | ALL | <— | 0 ms | [Debug]: [DEBUG] [—] No response received on ParkSteerAssist Module, could not set diagnostic
— session. Is the ignition on?

14:47:23.255 | ALL | <— | 0 ms | [Debug]: [DEBUG] [—] No response received on CentralElectronics Module, could not set diagnostic
— session. Is the ignition on?

14:47:23.255 | ALL | <— | 0 ms | [Debug]: [DEBUG] [—] No response received on SteeringWheel Module, could not set diagnostic
< session. Is the ignition on?

14:47:23.255 | CAN1 | —> | 0 ms | [ISOTP] cmd[0x5000] args[0x0757,0x00,0x00,0x00] data[0x22F19E]

14:47:23.255 | CAN1 | —> | 0 ms | [ISOTP] cmd[0x5000] args[0x070A,0x00,0x00,0x00] data[0x22F19E]

14:47:23.256 | CAN1 | —> | 1 ms | [ISOTP] cmd[0x5000] args[0x070E,0x00,0x00,0x00] data[0x22F19E]

14:47:23.256 | CAN1 | —> | 0 ms | [ISOTP] cmd[0x5000] args[0x070C,0x00,0x00,0x00] data[0x22F 19E]

14:47:33.212 | ALL | <— | 9956 ms | [Debug]: [DEBUG] [—] No response received in PassengerDoorElectronics Module, unable to
> retrieve module details.

14:47:33.212 | CAN1 | —> | 0 ms | [ISOTP] cmd[0x5000] args[0x074B,0x00,0x00,0x00] data[0x22F190]

14:47:33.214 | ALL | <— | 2 ms | [Debug]: [DEBUG] [—] No response received in DriverDoorElectronics Module, unable to retrieve
— module details.

14:47:33.214 | CAN1 | —> | 0 ms | [ISOTP] cmd[0x5000] args[0x074A,0x00,0x00,0x00] data[0x22F190]

14:47:33.223 | ALL | <— | 9 ms | [Debug]: [DEBUG] [—] No response received in FrontSensorDriveAssist Module, unable to retrieve
— module details.

14:47:33.224 | CAN1 | —> | 1 ms | [ISOTP] cmd[0x5000] args[0x074F ,0x00,0x00,0x00] data[0x22F190]

14:47:33.256 | ALL | <— | 32 ms | [Debug]: [DEBUG] [—] No response received in ParkSteerAssist Module, unable to retrieve module
— details.

14:47:33.256 | ALL | <— | 0 ms | [Debug]: [DEBUG] [—] No response received in AdaptiveCruiseControl Module, unable to retrieve
— module details.

14:47:33.256 | ALL | <— | 0 ms | [Debug]: [DEBUG] [—] No response received in CentralElectronics Module, unable to retrieve module
— details.

14:47:33.256 | ALL | <— | 0 ms | [Debug]: [DEBUG] [—] No response received in SteeringWheel Module, unable to retrieve module
— details.

14:47:33.256 | CAN1 | —> |

14:47:33.256 | CAN1 | —> |

14:47:33.257 | CAN1 | —> |

14:47:33.257 | CAN1 | —> | 0 ms | [ISOTP] cmd[0x5000] args[0x070C,0x00,0x00,0x00] data[0x22F190]

14:47:43.217 | ALL | <— | 9960 ms | [Debug]: [DEBUG] [—] No response received on DriverDoorElectronics Module, unable to retrieve
— VIN.

14:47:43.217 | CAN1 | —> | 0 ms | [ISOTP] cmd[0x5000] args[0x074A,0x00,0x00,0x00] data[0x2202BD]

14:47:43.218 | ALL | <— | 1 ms | [Debug]: [DEBUG] [—] No response received on PassengerDoorElectronics Module, unable to retrieve
— VIN.

14:47:43.218 | CAN1 | —> | 0 ms | [ISOTP] cmd[0x5000] args[0x074B,0x00,0x00,0x00] data[0x2202BD]

14:47:43.224 | ALL | <— | 6 ms | [Debug]: [DEBUG] [—] No response received on FrontSensorDriveAssist Module, unable to retrieve
< VIN.

14:47:43.224 | CAN1 | —> | 0 ms | [ISOTP] cmd[0x5000] args[0x074F ,0x00,0x00,0x00] data[0x2202BD]

14:47:43.256 | ALL | <— | 32 ms | [Debug]: [DEBUG] [—] No response received on ParkSteerAssist Module, unable to retrieve VIN.

14:47:43.256 | ALL | <— | 0 ms | [Debug]: [DEBUG] [—] No response received on AdaptiveCruiseControl Module, unable to retrieve
— VIN.

14:47:43.256 | ALL | <— | 0 ms | [Debug]: [DEBUG] [—] No response received on CentralElectronics Module, unable to retrieve VIN.

14:47:43.256 | ALL | <— | 0 ms | [Debug]: [DEBUG] [—] No response received on SteeringWheel Module, unable to retrieve VIN.

14:47:43.256 | CAN1 | —> | 0 ms | [ISOTP] cmd[0x5000] args[0x070A,0x00,0x00,0x00] data[0x2202BD]

14:47:43.257 | CAN1 | —> | 1 ms | [ISOTP] cmd[0x5000] args[0x0757,0x00,0x00,0x00] data[0x2202BD]

14:47:43.257 | CAN1 | —> | 0 ms | [ISOTP] cmd[0x5000] args[0x070E 0x00,0x00,0x00] data[0x2202BD]

14:47:43.258 | CAN1 | —> | 1 ms | [ISOTP] cmd[0x5000] args[0x070C,0x00,0x00,0x00] data[0x2202BD]

14:47:44.740 | CAN1 | <— | 1482 ms | [ISOTP] cmd[0x4100] args[0x074A, 0xE28B,0x00,0x00] data[0x032202BD55555555]

14:47:44.745 | CAN1 | <— | 5 ms | [ISOTP] cmd[0x4100] args[0x074B,0xE28B,0x00,0x00] data[0x032202BD55555555]

14:47:44.746 | CAN1 | <— | 1 ms | [ISOTP] cmd[0x4100] args[0x074F 0xE28B,0x00,0x00] data[0x032202BD55555555]

14:47:44.777 | CAN1 | <— | 31 ms | [ISOTP] cmd[0x4100] args[0x070A, 0xE28B,0x00,0x00] data[0x032202BD55555555]

14:47:44.783 | CAN1 | <— | 6 ms | [ISOTP] cmd[0x4100] args[0x0757,0xE28B,0x00,0x00] data[0x032202BD55555555]

14:47:44.787 | CAN1 | <— | 4 ms | [ISOTP] cmd[0x4100] args[0x070E,0xE28B,0x00,0x00] data[0x032202BD55555555]

14:47:44.788 | CAN1 | <— | 1 ms | [ISOTP] cmd[0x4100] args[0x070C,0xE28B,0x00,0x00] data[0x032202BD55555555]

14:47:53.219 | ALL | <— | 8431 ms | [Debug]: [DEBUG] [—] No response received on DriverDoorElectronics Module, unable to retrieve
< mileage information.

14:47:53.219 | ALL | <— | 0 ms | [Debug]: [DEBUG] [—] No response received on PassengerDoorElectronics Module, unable to retrieve
— mileage information.

14:47:53.225 | ALL | <— | 6 ms | [Debug]: [DEBUG] [—] No response received on FrontSensorDriveAssist Module, unable to retrieve
— mileage information.

0 ms | [ISOTP] cmd[0x5000] args[0x070A,0x00,0x00,0x00] data[0x22F190]
0 ms | [ISOTP] cmd[0x5000] args[0x0757,0x00,0x00,0x00] data[0x22F190]
1
0

—>
—>
—> | 1 ms | ISOTP] cmd[0x5000] args[0x070E,0x00,0x00,0x00] data[0x22F190]
—->

EE M Remote Vehicle Diagnostics XXiV

APPENDIX E. SCRIPTS LOG

14:47:53.258 | ALL | <— | 33 ms | [Debug]: [DEBUG] [—] No response received on ParkSteerAssist Module, unable to retrieve mileage
— information.
14:47:53.258 | ALL | <— | 0 ms | [Debug]: [DEBUG] [—] No response received on AdaptiveCruiseControl Module, unable to retrieve
< mileage information.
14:47:53.258 | ALL | <— | 0 ms | [Debug]: [DEBUG] [—] No response received on CentralElectronics Module, unable to retrieve
<> mileage information.
14:47:53.258 | ALL | <— | 0 ms | [Debug]: [DEBUG] [—] No response received on SteeringWheel Module, unable to retrieve mileage
— information.
14:47:54.256 | ALL | <— | 998 ms | [Debug]: [DEBUG] [+] Found common mileage identifier
14:47:54.257 | ALL | <— | 1 ms | [Debug]:
14:47:54.260 | ALL | <— | 3 ms | [Debug]:
14:47:54.260 | ALL | <— | 0 ms | [Debug]:
14:47:54.268 | ALL | <— | 8 ms | [Debug]:
14:47:54.272 | ALL | <— | 4 ms | [Debug]:
14:47:54.272 | ALL | <— | 0 ms | [Debug]:
14:47:54.272 | ALL | <— | 0 ms | [Debug]:

—> E9

[DEBUG] [—] No mileage response found for ecu: Engine

[DEBUG] [+] Mileage in InstrumentCluster Module: 48063

[DEBUG] [—] No mileage response found for ecu: CANGateway

[DEBUG] [+] Mileage Identifier Position: 0

[DEBUG] [+] Mileage in InformationElectronics Module: 48063

[DEBUG] [—] No mileage response found for ecu: BrakeElectronics
[DEBUG] [—] No mileage response found for ecu: PassengerDoorElectronics

14:47:54.272 | ALL | <— | 0 ms | [Debug]: [DEBUG] [—] No mileage response found for ecu: DriverDoorElectronics
14:47:54.272 | ALL | <— | 0 ms | [Debug]: [DEBUG] [—] No mileage response found for ecu: TrunkElectronics
14:47:54.272 | ALL | <— | 0 ms | [Debug]: [DEBUG] [—] No mileage response found for ecu: FrontSensorDriveAssist
14:47:54.272 | ALL | <— | 0 ms | [Debug]: [DEBUG] [—] No mileage response found for ecu: CentralElectronics
14:47:54.272 | ALL | <— | 0 ms | [Debug]: [DEBUG] [—] No mileage response found for ecu: AdaptiveCruiseControl
14:47:54.272 | ALL | <— | 0 ms | [Debug]: [DEBUG] [—] No mileage response found for ecu: SteeringAssist
14:47:54.272 | ALL | <— | 0 ms | [Debug]: [DEBUG] [—] No mileage response found for ecu: AutoHVAC
14:47:54.273 | ALL | <— | 1 ms | [Debug]: [DEBUG] [—] No mileage response found for ecu: ParkSteerAssist
14:47:54.273 | ALL | <— | 0 ms | [Debug]: [DEBUG] [—] No mileage response found for ecu: SteeringWheel

14:47:54.273 | ALL | <—
14:47:54.277 | ALL | <—
14:47:54.277 | ALL | <—
14:47:54.278 | ALL | <—
14:47:54.278 | ALL | <—
14:47:54.279 | ALL | <—
14:47:54.279 | ALL | <—
14:47:54.279 | ALL | <—
14:47:54.279 | ALL | <—
14:47:54.280 | ALL | <—
14:47:54.281 | ALL | <—
14:47:54.281 | ALL | <—
14:47:54.281 | ALL | <—
14:47:54.282 | ALL | <—
14:47:54.285 | ALL | <—
14:47:54.285 | ALL | <—
14:47:54.285 | ALL | <—
14:47:54.285 | ALL | <—
14:47:54.285 | ALL | <—
14:47:54.285 | ALL | <—
14:47:54.285 | ALL | <—
14:47:54.285 | ALL | <—
14:47:54.285 | ALL | <—
14:47:54.285 | ALL | <—
14:47:54.304 | ALL | <—

| 0 ms | [Debug]:
| 4 ms | [Debug]:
| 0 ms | [Debug]:
| 1 ms | [Debug]:
| 0 ms | [Debug]:
| 1 ms | [Debug]: ======== VIN Report =—=========
| 0 ms | [Debug]: [i] Total number of VIN values found: 2
| 0 ms | [Debug]: [i] Connection id: " 1588769015010"
| 0 ms | [Debug]: [i] Script descrlptlon "MQB/MLB Read VIN and Mileage”
S
D

[DEBUG] [—] No mileage response found for ecu: Airbags
[+] Vehicle mileage check successful!
['] Empty vin [————————————————— '] found in ['TrunkElectronics’] Module(s)!

(1]
(1]
(1]
| 1 ms | [Debug]: [i] Script uuid: " 177ebb30—5866—42a4—b96b—d6953ceb5577"
| 1 ms | [Debug]: [i] Date & Time: Wed May 06 12:47:13 2020
| 0 ms | [Debug]: [i] VIN: - ————————————————

[i] List of ECUs ['TrunkElectronics']

[i] VIN: seorsoskorskosksrskoos o

[i] List of ECUs ['Engine’, 'InformationElectronics’, 'Airbags’]

| 0 ms | [Debug]:
| 1 ms | [Debug]:
| 3 ms | [Debug]:
| 0 ms | [Debug]:
| 0 ms | [Debug]: ======== End of Report ========

| 0 ms | [Debug]:

| 0 ms | [Debug]:

| 0 ms | [Debug]:

| 0 ms | [Debug]: ======== Mileage Report =======

| 0 ms | [Debug]: [i] Total number of Mileage values found: 1

| 0 ms | [Debug]: [i] Connection id: " 1588769015010"

| 0 ms | [Debug]: [i] Script description: "MQB/MLB Read VIN and Mileage”

ﬁ—l

14:47:54.304 | ALL | <—
14:47:54.304 | ALL | <—
14:47:54.304 | ALL | <—

| 0 ms | [Debug]:
| 0 ms | [Debug]:
| 0 ms | [Debug]:

Date & Time: Wed May 06 12:47:13 2020
Mileage: 48063
umber of ECUs found with mileage 48063[km]: 2

cz

|
}
| 19 ms | [Debug]: [i] Script uuid: " 177ebb30—5866—42a4—b96b—d6953ceb5577"
i]
i]
]
]

14:47:54.304 | ALL | <—

14:47:54.304 | ALL | <— | 0 ms | [Debug]:

14:47:54.305 | ALL | <— | 1 ms | [Debug]: ======== End of Report =—=======

14:47:54.305 | ALL | <— | 0 ms | [Debug]:

14:47:54.305 | ALL | <— | 0 ms | [Debug]: [DEBUG] Mileage: 48063

14:47:54.305 | ALL | <— | 0 ms | [Debug]: [DEBUG] ECU details: [['InstrumentCluster’, 'EV_RBD4K', '004060'], ['
— InformationElectronics’, 'EV_MUHig6C3Gen2HBAS', '001115']]

14:47:55.207 | ALL | <— | 902 ms | [Debug]: [4+] Main task finished!

14:47:55.207 | ALL | <— | 0 ms | [Debug]:

14:47:55.208 | ALL | <— | 1 ms | [Debug]: ======== Script finished! ========

| 0 ms | [Debug]: st of ECUs ['InstrumentCluster’, 'InformationElectronics’]

EEEE M Remote Vehicle Diagnostics XXV

References

Borkowski, P. (2017, November). Study on the added value of further eu level measures addressing
odometer manipulation in motor vehicles traded across the eu: economic analysis (Tech.
Rep.). EU Commission. (Accessed 09-02-2020)

Commission, E. (2012, July). Roadworthiness package commission staff working paper impact

assessment. https://ec.europa.eu/transport/road_safety/sites/roadsafety/
files/pdf/road_worthiness_package/impact_assessment_en.pdf. (Accessed 6-02-
2020)

Enerdata. (2020, February). Change in distance travelled by car. https://www.odyssee-mure.eu/
publications/efficiency-by-sector/transport/distance-travelled-by-car
.html.

Iso 14229 road vehicles — unified diagnostic services (uds) — specification and requirements. (2006).
(International Organization for Standardization (ISO))

Jifeline. (n.d.). https://admin.jifeline.com/statistics/google/maps. (Accessed on 03-
05-2020)

Jim, A. (n.d.). An intro to threading in python: What is a thread? https://realpython.com/
intro-to-python-threading/. (accessed on 27-05-2020)

LLC, R-T. (n.d.). Veds: Product information. https://www.ross-tech.com/vag-com/product
.html. (Accessed on 07-04-2020)

Potsch, H. P. (2011, May). Volkswagen - driving forward. https://www.webcitation.org/
6CMzXwG1lU?url=http://www.volkswagenag.com/content/vwcorp/info_center/de/
talks_and_presentations/2011/05/PPT_FFM.-bin.acq/qual-BinaryStorageItem
.Single.File/Deutsche’,20Bank’%20Presentation’20Handout . pdf.

Python Software, F. (2020, April). thread-multiple threads of control. https://docs.python.org/
2/library/thread.html.

RDW. (2014). Tellerstanden en de rdw. https://www.rdw.nl/particulier/voertuigen/auto/
tellerstanden/tellerstanden-en-rdw.

Register, N. M. (2020). What is clocking? https://nmr.ie/car-clocking/. (Accessed on
08-02-2020)

Research for tran committee - odometer tampering: measures to prevent it, european parliament,
policy department for structural and cohesion policies, brussel [Computer software manual].
(2017).

X Remote Vehicle Diagnostics XXVi

