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Abstract 

Sepsis is a life-threatening organ dysfunction caused by a dysregulated immune response to 

infection. It is the number one cause of death in the Intensive Care Unit (ICU), accounting for 

6 million casualties every year. Unfortunately, all clinical trials in the last decade failed due to 

the highly complex and heterogenous pathophysiology of sepsis. Therefore, a shift towards a 

more individualized treatment approach tailored to the immunological profile of the individual 

is needed requires a deeper understanding of the genetic mechanisms underlying sepsis 

heterogeneity and dysregulated immune response. In this study, we integrated genotype, 

monocyte RNA-Seq and in vivo (IV) cytokine data in order to identify transcriptome profiles 

or expression quantitative trait loci (eQTL) that can be associated with the degree of 

inflammation upon a first, and endotoxin tolerance upon a second lipopolysaccharide (LPS, 1 

ng/kg) challenge in healthy individuals. Transcriptomics analysis revealed 17,094 genes to 

significantly differentially express between timepoints T=0 and T=4 of which 566 had an 

absolute log2 fold change > 2. Additionally, inter-individual variability in gene expression was 

observed leading to the identification of 4,629; 3,739 and 922 genome-wide significant eQTLs 

at T=0, T=4 and log2 fold change T=0/T=4 (DEG), respectively. The DEG-eQTLs were 

enriched using the IV cytokine area under the curve (AUC) and 14 expression-cytokine QTLs 

were identified influencing the expression of 15 genes and in turn IV cytokine response of 

several cytokines, especially IL-6 and G-CSF. Enriching the eQTLs at T=0 and T=4 using the 

IV endotoxin tolerance identified two expression-tolerance QTLs for lnc-LINS-1 and ECE1, 

which may represent genetic predictors for endotoxin tolerance. This study is one of the first 

studies using an in vivo approach to elicit an immune response and quantifying the subsequent 

degree of endotoxin tolerance acquired. Using the results of this study, we added to the 

relevance of previous ex vivo studies by verifying their findings in human in vivo. We gained 

unique insight into the genetic and transcriptomic fingerprint of cytokine response upon first, 

and the degree endotoxin tolerance acquired upon second challenge with LPS. These results 

could be used in the future to make early predictions for a patients chance to develop sepsis-

induced immunoparalysis, based on their genetic profile. Further research is required into the 

involvement of the proposed QTLs as predictors in cytokine response and tolerance 

acquirement, in order to translate them to clinically viable genetic markers. 
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Abbreviations  

AUC  Area under the curve 

DEG  Log2 fold-change T=0/T=4 

EDTA  Ethylenediaminetetraacetic acid 

EV  Ex vivo 

eQTL  Expression quantitative trait locus 

ecQTL  Expression-cytokine quantitative trait locus 

etQTL  Expression-tolerance quantitative trait locus 

G-CSF  Granulocyte Colony Stimulating Factor 

GWAS  Genome-wide association study 

IL-1RA Interleukin-1 receptor antagonist 

IL-6  Interleukin-6 

IL-8  Interleukin-8 

IL-10  Interleukin-10 

INT  Rank-based inverse transformation 

IP-10  Interferon-γ induced protein-10  

IV   In vivo 

LAF  Least allele frequency 

LD  Linkage disequilibrium 

LPS   Lipopolysaccharride 

MAF  Minor allele frequency 

MIP-1a Macrophage inflammatory protein-1-alpha 

PBMC  Peripheral blood mononuclear cell 

QTL  Quantitative trait locus 

SNP  Single nucleotide polymorphism 

TNF  Tumor necrosis factor 

cQTL  Cytokine quantitative trait locus 

lncRNA Long-non-coding RNA 

tQTL  Tolerance quantitative trait locus 
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Introduction 

Sepsis is a clinical syndrome defined as a life-threatening organ dysfunction caused by a 

dysregulated host immune response to infection [1]. The global incidence of sepsis has been 

estimated to be higher than 30 million cases per year, resulting in approximately 6 million 

annual deaths. This makes the disease the number one cause of death in intensive care units 

worldwide [2]. Furthermore, sepsis imposes a significant economic impact on society, ranking 

among the costliest conditions in hospitals [3]. 

 

Unfortunately, all clinical trials including undifferentiated sepsis patient groups performed 

during the last decades have failed [4]. As a result, effective sepsis interventions remain an 

unmet and urgently required medical need. There is increasing consensus that the difficulty of 

developing new therapies lies in the highly complex and heterogenous pathophysiology of 

sepsis. This is hallmarked by both hyperinflammation, and (concurrent) immune suppression, 

which can lead to a phenomenon called sepsis-induced immunoparalysis [5, 6]. Therefore, a 

shift towards a more individualized treatment approach tailored to the immunological profile 

of the individual is warranted, requiring deeper insights into the genetic mechanisms 

underlying sepsis heterogeneity and dysregulated immune response. 

 

In recent years, genome-wide association studies (GWAS) have yielded a vast amount of 

insight into disease pathophysiology and progression [7]. In GWAS, the association between 

hundreds of thousands of single-nucleotide polymorphisms (SNPs) and complex traits are 

investigated [8]. This has been done, for example, in two GWAS where an attempt was made 

at identifying associations between SNPs and 28-day sepsis mortality [9, 10]. Here, 

associations with several common polymorphisms were identified, but it remained unclear 

what these the downstream effects of these SNPs were at the molecular level.  

 

Linking the SNPs with phenotypic data (e.g. an immunological biomarker) allows for the 

identification of quantitative trait loci (QTLs). A QTL is a region in the DNA that correlates 

with variation of a particular trait, and it may indicate the genetic basis of phenotypic variation 

[11, 12]. This method can also be applied to variation in genetic expression. By taking genetic 

expression as a trait, expression QTL (eQTLs) examine the correlation between genetic 

variation and gene expression levels [13-15]. Le et al. took the results of the previously 

mentioned study and, together with RNA-seq data and sepsis associated SNPs, identified 55 
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potential genes affected by 39 independent loci [9, 16]. Although these studies identified 

several sepsis associated SNPs as markers for multiple phenotypical observations, they were 

limited by the extreme heterogeneity and variety among sepsis patients. 

Many of these limitations can be negated using the experimental human endotoxemia model 

[17]. In this model, volunteers are challenged with purified endotoxin (as lipopolysaccharide 

[LPS]) derived from the gram-negative bacterium Escherichia coli (E. coli). An intravenous 

challenge with LPS induces a short-lived and controlled systemic inflammatory response [18, 

19]. This response exhibits many of the same characteristics as the immune response associated 

with sepsis [20]. When healthy volunteers are first challenged with LPS, an initial pro-

inflammatory response is observed, characterized by the release of significant amounts of 

inflammatory and anti-inflammatory cytokines, along with an increase in blood pressure, heart 

rate and body temperature, mimicking the initial inflammatory response observed in sepsis. 

During the second challenge with LPS a week later, the participants exhibit a blunted immune 

response, known as “endotoxin tolerance”. This bears many similarities to sepsis-induced 

immunoparalysis [21, 22]. Harnessing the human experimental endotoxemia model to explore 

the genetic and transcriptomic landscape of sepsis, enables us to investigate potential 

biomarkers for diagnosis and treatment for the condition in a controlled and reproducible setup. 

In this study, the genotype, monocyte RNA-seq and in vivo (IV) cytokine response data of a 

cohort of subjects who underwent repeated human endotoxemia were integrated to investigate 

if there are transcriptome profiles or (e)QTLs that can predict response to the first 

administration of LPS (analogous to hyperinflammation in sepsis) as well as to the second LPS 

application and the associated degree of endotoxin tolerance (analogous to sepsis-induced 

immunoparalysis).  

The analysis of the monocyte RNA-Seq revealed 17,094 genes significantly differentially 

expressing between T=0 and T=4, of these genes, 566 had an absolute log2 fold change > 2. 

Additionally, inter-individual variability in gene expression was observed leading to the 

identification of 4,629; 3,739 and 922 genome-wide significant eQTLs at T=0, T=4 and log2 

fold change T=0/T=4 (DEG), respectively. Enriching the DEG eQTLs using the IV cytokine 

response identified 14 expression-cytokine QTLs influencing the expression 15 genes and in 

turn IV cytokine response of several cytokines, especially IL-6 and G-CSF. The eQTLs at T=0 

and T=4 were enriched using IV endotoxin tolerance. Here two expression-tolerance QTLs 
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were identified for lnc-LINS-1 and ECE1, acting as genetic predictors for endotoxin tolerance. 

This study is one of the first studies using an in vivo approach to elicit an immune response and 

quantifying the subsequent degree of endotoxin tolerance acquired. Using the results of this 

study we added to the relevance of previous ex vivo studies by identifying them IV. We gained 

unique insight in the genetic and transcriptomic fingerprint of cytokine response upon first, and 

endotoxin tolerance upon second challenge with LPS. Using these results, early predictions can 

be made in order to predict endotoxin tolerance, and in turn sepsis-induced immunoparalysis, 

based on the genetic profile of sepsis patients. For this to become a reality, further research, for 

instance functional studies using deletion or overexpression of identified genes, and additional 

studies into identified SNPs are warranted.  
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Materials and methods 

Study design 

The protocol for this study (100LPS study) was approved by the local ethics committee (CMO 

Arnhem-Nijmegen; reference no. NL68166.091.18 and 2018-4983). One-hundred-and-thirteen 

healthy volunteers between 18-35 years of age were recruited. All subjects provided written 

informed consent and were included after medical history, physical examination, routine 

laboratory tests and a 12-lead electrocardiogram revealed no abnormalities. Smoking, use of 

any medication (contraceptives precluded), previous participation in experimental human 

endotoxemia or signs of acute illness within two weeks prior to the start of the study were 

considered exclusion criteria. All study procedures were performed in compliance with the 

declaration of Helsinki and its latest revisions.  

 

All subjects were challenged twice with intravenous boluses of 1 ng/kg of LPS one week apart. 

See Jansen et al., for details of the endotoxemia study procedures [23]. During both challenge 

days, in vivo (IV) circulating cytokine responses were determined by frequent blood sampling. 

The first LPS challenge (day 0) served to quantify the primary cytokine response and to induce 

endotoxin tolerance. The second LPS challenge (day 7) served to measure the degree of 

endotoxin tolerance. The area under the plasma cytokine concentration-time curve (AUC) was 

used as an integral measure of the IV cytokine response over time during each LPS challenge 

day (Figure 1). The endotoxin tolerance was then quantified by calculating the log2 fold change 

between the AUC on day 7, and the AUC on day 0. Therefore, more pronounced tolerance is 

indicated by a more negative log2 fold change value. 

 

Two subjects (029 and 075) were excluded due to being related to another participant. 

Additionally, eight subjects (007, 011, 023, 032, 038, 040, 044 and 074) were excluded due to 

being of non-Dutch descent. Subjects 090, 094 and 101 had received a lower dose of LPS and 

were thus not representative for the cohort and excluded. Lastly, for analyses using endotoxin 

tolerance, subjects 003 and 012 were excluded for not having measurements on the second LPS 

challenge day. This leaves 100 participants (49 female, 51 male) for cytokine-, and 98 

participants (48 female, 50 male) for tolerance-analysis.  
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Figure 1.  Schematic overview of the AUC, area under the plasma cytokine concentration-time curve. 

 

 

Cytokine analysis 

For plasma cytokine determination, EDTA-anticoagulated blood was centrifuged (10 min, 

2000g, 4oC) directly after withdrawal and plasma was stored at -80oC until analysis. 

Concentrations of tumor necrosis factor (TNF), interleukin (IL)-1 receptor antagonist (Ra), IL-

6, IL-8, IL-10, macrophage inflammatory protein (MIP)-1α, monocyte chemoattractant protein 

(MCP)-1, granulocyte-colony stimulating factor (G-CSF) and interferon-γ induced protein 

(IP)-10 were determined batchwise using a simultaneous Luminex assay (Milliplex, Millipore, 

Billerica, USA) as per the manufacturer’s instructions.   

 

Genotyping the cohort, quality control and imputation 

Genomic DNA was isolated from EDTA-anticoagulated blood using a Gentra Puregene Blood 

Kit. Subsequently, the cohort was genotyped using Illumina Infinium Global Screening v3.0 

Arrays. These chips presented the genetic variation in .IDAT format which was first 

transformed to an intermediary .GTC format using the Illumina Array Analysis Platform 

Genotyping Command Line Interface (IAAP-CLI) [24]. This format was then converted into 

.VCF format using gtc2vcf [25]. 

 

Using Plink 2.0, SNPs with missingness rates of lower than 10%, minor allele frequency 

(MAF) less than 10% and Hardy-Weinberg equilibrium P < 1e-05 were excluded [26]. This left 



10 

 

435,245 variants for phasing and imputation. The variants were prepared for imputation by 

removing the sex chromosomes and splitting each chromosome into separate sorted vcf.gz files 

using BcfTools [27]. Finally, using the Michigan imputation server, the variants were phased 

by Eagle v2,4 and imputed using the HRC1.1 EUR population as a reference and Rsq > 0,3 

[28, 29]. The imputed genotype was again filtered using Plink and the aforementioned 

parameters. Additionally, a ‘least allele frequency’ of > 3% was applied in order to remove 

variants with low coverage for the alternate homogenous allele. This resulted in 3,333,537 and 

3,311,421 remaining SNPs for the cytokine and tolerance populations.  

 

Isolation, mapping and pre-processing of classical monocyte RNA  

Monocytes were isolated one hour before (T=0) and 4 h after (T=4) both times LPS was 

administered. To this end, peripheral blood mononuclear cells (PBMCs) were first isolated 

from ethylenediaminetetraacetic acid (EDTA)-anticoagulated blood using Ficoll-Paque (GE 

Healthcare, Chicago, USA) isolation as described in detail elsewhere [30]. Subsequently, 

CD14+CD16- monocytes were isolated by immunomagnetic negative selection using a 

monocyte isolation kit (EasySepTM Human Monocyte Isolation Kit, STEMCELL 

Technologies, Cologne, Germany) as per the manufacturer’s instructions. RNA was isolated 

using RNeasy kits (Qiagen). The isolated samples were sent to BGI 

(https://www.bgi.com/us/landing/rna-sequencing/) for sequencing using their proprietary 

DNBSEQTM platform. Using the RNA-DxP pipeline developed in house by the Center for 

Molecular and Biomolecular Informatics (CMBI), the resulting paired-end reads (.fastQ) were 

trimmed using Trim Galore! v0.4.5 to remove low-quality bases and adapters, quality checked 

using MultiQC and subsequently mapped against the GRCh38 reference transcriptome using 

STAR v2.6.0a [31-34]. The gene counts were quantified using HTSeq v0.11.0, resulting in 

gene counts for 58,735 genes [35]. Counts were filtered on a sum of counts of > 200 over the 

cohort, leaving 20,843 genes for down-stream analysis. The remaining read counts were then 

normalized using the trimmed means of M (TMM) values, log2 transformed and rank-based 

inverse transformed (INT).  

 

Cytokine and tolerance QTL mapping 

3,333,357 and 3,311,421 genetic variants were mapped with IV cytokine production and 

endotoxin tolerance for 100 and 98 participants, respectively. The IV cytokine AUC and 

tolerance data were rank-based inverse normal transformed and associated with the variants 

using Matrix eQTL v2.1.0 [36]. Gender information was coded either 0 for females or 1 for 
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males. The gender and use of oral contraception were used as covariables in the association 

analysis. An explorative approach was applied to the identified cytokine-QTLs (cQTLs) and 

tolerance-QTLs (tQTLs) and a p-value of < 5e-07 was considered to be the threshold for 

significance.  

 

Genes association with the QTL SNPs were identified using the HaploReg SNP annotation tool 

v4.2 [37]. Here all SNPs in linkage disequilibrium (LD) (R2 > 0.8; using the CEU population 

as a reference) with the identified c- and tQTLs were extracted. Genes closest to the QTL SNP 

and genes overlapping with either the QTL SNP or SNPs in LD with the QTL SNP were 

associated with the QTL. Additionally, associated genes were identified by performing cis-

eQTL mapping in a 500-kb window using the RNA-Seq data extracted at T=0, T=4 and the 

log2 fold change T=0/T=4 (FDR ≤ 0.05). 

 

Exploring the inter-individual differences in the transcriptome 

The RNA-Seq data was analyzed and integrated with the genotype in order to gain insight in 

the transcriptome pre- and post-inflammation and the genetic underpinnings of the inter-

individual variability in the transcriptome. Differential expression analysis was done between 

T=0 and T=4. Using DESeq2 the gene-level expression values were analyzed, and 

differentially expressed genes identified [38]. Absolute log2 fold change > 2 and q-value 

(Benjamini-Hochberg adjusted p-value) < 0.05 were used as the statistical cutoffs.  

 

GWAS analyses were performed for expression levels at T=0 and T=4. Using Matrix eQTL 

with gender and use of oral contraception as covariates, expression-QTLs (eQTLs) were 

identified by associating the gene expression for 20,843 genes with the 3,333,537 variants. To 

identify inter-individual differential up- or down-regulation of genes between T=0 and T=4 

during LPS challenge, the log2 fold change T=4/T=0 (DEG) was also calculated and associated 

with the variants in a similar manner. For both analyses a genome-wide significance was based 

on a p-value of 5e-08.  

 

Using Pearson’s correlation test, a correlation analysis was performed between the gene 

expression of 20,843 genes at T=0 and T=4, and the IV tolerance. In order to identify genes 

which differential expression influence the degree of tolerance, the DEG was also correlated 

to the IV tolerance. Significance threshold was set at p-value < 5e-07.  
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Enriching the eQTL loci using IV cytokine response and tolerance data 

In order to integrate the genetic variation associated with inter-individual gene expression, the 

eQTL loci were intersected with the cytokine data. The eQTL SNPs from the genome-wide 

significant eQTLs identified were extracted and associated with the IV cytokine response and 

tolerance. For the resulting ecQTLs and etQTLs a combined significance threshold was applied 

of a p-value < 5e-08 for the eQTLs and an FDR < 0,05 for the cytokine- or tolerance QTLs. To 

identify the functionality of the QTL associated genes, EnrichR v3.2 was used to reveal the 

biological processes and pathways in which the genes were involved [39]. 
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Results 

In this study the genotype, RNA-seq and clinical data from the 100LPS study was analyzed to 

identify transcriptome profiles or (e)QTLS that can be associated with the degree of 

inflammation upon first, and endotoxin tolerance upon second LPS challenge in healthy 

individuals.  

Cytokine responses upon the first and second LPS challenge 

Intravenous administration of LPS resulted in a profound increase in concentrations of pro-

inflammatory cytokines TNF, IL-6, IL-8, IP-10, MIP-1a, MCP-1 and G-CSF as well as anti-

inflammatory cytokines IL-1RA and IL-10 in all 100 subjects on both LPS challenge days 

(Figure 2A). The response upon second LPS challenge was severely blunted for all cytokines 

compared to the first challenge (median log2 fold change in AUC ranging from -2.8 for G-

CSF to -0.3 for MCP-1, all p < 0.0001), indicative of endotoxin tolerance (Figure 2B).   

Identifying genome-wide variants affecting cytokine production and endotoxin tolerance 

in response to LPS-challenge 

3,333,357 and 3,311,421 genetic variants were mapped with IV cytokine production and 

endotoxin tolerance, respectively, with correction for gender and use of oral contraception 

(both factors were shown to influence cytokine responses in previous analyses, data not 

shown). This resulted in the identification of 3 significant cQTLs and 6 tQTLs. Annotating the 

QTLs revealed 7 associated genes with the cQTLs and 7 associated genes with the tQTLs 

(Table 1). 

 

Interestingly, 7 out of the 14 associated genes are long noncoding RNA (lncRNA) genes which, 

in recent years, are increasingly being identified as key regulators of immunity and gene 

transcription during the inflammatory response. Functional annotation of these genes using 

EnrichR revealed their involvement in various biological pathways, including ATR activation 

(HUS1); MAPK cascade pathway (MAP3K2-DT); IL-4 regulation of apoptosis and IL-2 

signaling (TIMP2); cytochrome p450 pathway (CYP27C1); and a member of the RAS 

Oncogene family (RAB28). Each of these pathways is linked to the regulation of immune 

functions. This indicates an association of the cQTLs and tQTLs with immune-regulatory 

functionality.  

 

Among the list of QTLs, we discovered one tQTL to be genome-wide significant, namely 

rs7576783 in relation to G-CSF tolerance (Figure 3A). This SNP was found to be in high LD 
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with rs11889461 (R2 = 0.96 and D’ = 1) which was the second most significant tQTL identified 

in the analysis, associated with IL-8 tolerance (Figure 3B). Interestingly, in addition to being 

in high LD, the SNPs were found to associate significantly with the tolerance of each other’s 

respective cytokine. Rs7576783 had a p-value of 1,19e-07 when associated with IL-8 tolerance, 

and rs11889461 a p-value of 9,54e-08 when associated with G-CSF tolerance. This, in 

combination with the SNPs being in high LD with each other, suggested the presence of a 

singular locus associated with decreased endotoxin tolerance for G-CSF and IL-8.  Said locus 

was found to associate with AC104623.2 which is a novel transcript antisense to FAM49a 

which has previously been connected to T-cell lymphopoiesis in the zebrafish. 

 

 



15 

 

Figure 2. Cytokine response and tolerance development in the different compartments. A. Time-

concentration curves of IV cytokine responses on both LPS challenge days. Data are displayed as geometric 

mean and IV cytokine concentration was log transformed. B. The extent of IV tolerance developed upon second 

LPS challenge. Tolerance values are expressed as log2 fold change, with lower values indicating more 

pronounced tolerance. Tolerance values were log-transformed and tested for significant using a one-sample t-

test against a hypothetical mean of 0 (****p < 0.0001). 

 

Table 1. Summary table of SNPs associating significantly (P < 5e-07) with the IV cytokine response and 

endotoxin tolerance.  

QTL SNP Chr Base Pair Cytokine Associated genes P-value 

Cytokine rs73235328 4 13823366 IL-1RA RP11-341G5.1a,  BOD1Lb, 

and RAB28f 

2.13e-07 

Cytokine rs2404668 5 79134949 MIP-1a CTC-431G16.2b 2.67e-07 

Cytokine rs10261383 7 47799423 TNF HUS1a , PKD1L1a, 

and LINC00525d 

3.00e-07 

Tolerance rs7576783 2 16703441 G-CSF AC104623.2b, e 3.17e-08 

Tolerance rs11889461 2 16700727 IL-8 AC104623.2b, e 7.21e-08 

Tolerance rs7327173 13 22619013 IL-8 LINC00540a 2.81e-07 

Tolerance rs34689155 2 127935156 MCP-1 CYP27C1b, c,  

MAP3K2-DTf 

2.29e-07 

Tolerance rs4789932 17 76924275 MIP-1a TIMP2b 1.04e-07 

Tolerance rs1772980 6 2499839 MIP-1a RP1-80B9.2b 2.26e-07 

a
Gene shown in which the QTL is located. 

b
The closest gene to the QTL is shown  

cQTL SNP is in linkage disequilibrium with a 3`-UTR variant within that gene. 
dQTL SNP is in linkage disequilibrium with an intronic variant within that gene. 
eQTL SNP is in linkage disequilibrium with a variant located within that gene. 
fExpression QTL results show a correlation between QTL SNP and the expression of that gene. 
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Figure 3. Region association plots and boxplots for tolerance QTLs. A-B. Regional association plots at the 

respective tQTL loci. Regional plots are indexed around the tQTL SNP and the corresponding P-values (as -log10 

values) of all SNPs in the region were plotted against their chromosomal position. The boxplots display the 

genotype-stratified endotoxin tolerance (expressed as log2 fold change between the cytokine response on day 7 

and the cytokine response on day 0) for the tQTL respective cytokine.   

 

Correlating gene expression with cytokine response revealed genes directly associating 

with IV endotoxin tolerance. 

The differential expression analysis of monocyte RNA-Seq identified 17,094 genes that 

significantly differed between T=0 and T=4 based on adjusted p-value < 0.05. Applying an 

absolute log2 fold change cut-off of 2 resulted in 566 genes that were significantly 

differentially expressed between T=0 and T=4. (Figure 4A). Enrichment revealed the majority 

of the genes to be involved in immune-regulatory pathways. The most significant pathways 

were the signaling pathways for IL-4, IL-10, and IL-13; classical antibody-mediated 

complement activation; chemokine receptors binding chemokines; and neutrophil 

degranulation. In addition to the many immune-related pathways, the genes were also found to 

be involved in many cell-metabolism, endothelial and cell-cycle/apoptosis pathways.  
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Correlating the IV cytokine AUCs with gene expression revealed no significant correlation at 

T=0, T=4 and DEG. Correlating IV tolerance with the gene expression at T=0 revealed no 

significant correlation. However, a total of 11 genes showed significant correlation at T=4 with 

tolerance (Table 2). Of these genes, increased expression of the known immune gene IRAK3 

was correlated with lower tolerance levels for IL-10 (Figure 5A). Additionally, REEP5 was 

found to inversely correlate with the degree of tolerance for IL-10 (Figure 5B). ENTPD1 was 

the only gene correlating with the tolerance of more than one cytokine, namely MIP-1a and 

TNF. Intriguingly, these correlations were the most significant ones identified in the analysis 

with p-values of 1,10e-09 and 1,40e-09 for MIP-1a and TNF respectively (Figure 5C). 

Interestingly, 7 of the 10 genes identified at T=4 were genes that correlated with tolerance for 

IL-10.  

A significant correlation for 8 genes was observed between the DEG and IV tolerance. Two 

genes from the Kinesin Family, KIF2a and KIF3c were especially of interest. Their 

upregulation significantly correlated with increasing TNF tolerance levels. Moreover, we also 

found KIF3c expression at timepoint T=4 to significantly correlate with TNF tolerance. 

Associating the expression of KIF3c with the genetic variation identified a genome-wide DEG 

eQTL (P = 1e-08) with SNP rs8051174 (Figure 5D). These findings suggest that expression of 

KIF3c is influenced by inter-individual differences in genotype for rs8051174, which in turn 

affects TNF tolerance. 
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Figure 4. Volcano plot of differentially expressed genes between T=0 and T=4. A. Volcano plot of DGE: 

Timepoint T=0 versus T=4. X-axis displays the P-values as -Log10 and the y-axis displays the Log2 fold change 

of gene expression. Genes that were identified to have an absolute log2 fold change exceeding 3 were labelled.   

 

Table 2. Summary table of genes correlating significantly (P < 5e-07) with IV endotoxin tolerance development. 

Timepoint Gene Cytokine P-value R correlation 

coefficient 

T=4 KIF3c TNF 1,60e-07 -0,50 

 IRAK3 IL-10 3,20e-07 0,52 

 GALE IL-10 9,20e-09 -0,54 

 REEP5 IL-10 8,20e-08 -0,51 

 ENTPD1 MIP-1a 1,10e-09 0,57 

 ENTPD1 TNF 1,40e-09 0,56 

 HMG20a IL-10 7,70e-08 0,51 

 CTBP1 IL-10 1,70e-07 -0,50 

 PNMA1 TNF 1,20e-07 -0,50 

 RASA3 IL-10 2,30e-07 -0,49 

 AL357060.1 IL-10 2,20e-07 0,49 
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DEG KIF2a TNF 1,90e-08 -0,53 

 KIF3c TNF 1,20e-07 -0,50 

 LDLRAP1 TNF 2,10e-07 -0,50 

 RHOBTB1 TNF 4,00e-08 -0,52 

 TNS1 MIP-1a 1,80e-07 -0,50 

 AL359644.1 MIP-1a 2,40e-07 -0,49 

 AC139713.2 TNFa 4,90e-07 -0,48 

 AC008669.1 IL-1RA 1,20e-07 -0,50 
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Figure 5. Correlations between IV endotoxin tolerance and expression at T=4. A. Correlation between IRAK3 

expression and IL-10 endotoxin tolerance (R = 0,52; P-value = 3,2e-8). B. Correlation between REEP5 expression 

and IL-10 endotoxin tolerance (R = -0,51; P-value = 8,2e-8). C. Correlation between ENTPD1 expression, and 

MIP-1a and TNF tolerance (R = 0,57; P-value = 1,1e-9 and R = 0,56; P-value = 1,4e-9, respectively). D. 

Correlations between IV endotoxin tolerance and KIF3C expression at DEG and T=4 (R = -0,50; P-value = 1,6e-

7 and R = -0,50; P-value = 1,2e-7, respectively). Association boxplot for rs8051174 genotype-stratified expression 

of KIF3C (eQTL p-value: 1e-08). 
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Integrating genotype, expression and cytokine data to identify genetic components 

driving differential gene expression and cytokine response. 

The genome-wide association study at T=0 and T=4 identified 4,629 and 3,739 genome-wide 

significant eQTLs, respectively. The genome-wide association study using the DEG identified 

922 genome-wide significant DEG eQTLs. We enriched the eQTLs identified by re-associating 

the significant eQTL SNPs with the AUC of the different cytokines, identifying SNPs which 

are both an eQTL and a cQTL, leading to so-called ecQTLs. Enriching the eQTLs at T=0 

identified no SNPs associating significantly with IV cytokine AUC, while enriching the eQTLs 

at T=4 identified 7 ecQTLs influencing the expression of 7 genes and in turn 10 IV cytokine 

responses, mainly MIP-1a (Table 3). Enriching the DEG eQTLs lead to the identification of 14 

ecQTLs that influence the expression of 15 genes and in turn 19 IV cytokine responses, 

especially for IL-6 and G-CSF.  

The resulting genes were found to be involved in multiple biological processes such as 

regulation and mediation induction of (innate) immune response (DDX41); neutrophil 

degranulation (DESG1); hedgehog-signaling (IFT52); IL-4 and IL-13 signaling (BLC2);  

pathogenic E. coli infection (TMEDI0 and ABCF2); innate immune system (RNASET2); and  

infectious disease (GATAD2B) (Figure 6).  

AT T=4, two ecQTLs were identified associating with more than one cytokine. The ecQTL for 

GATAD2B was found to significantly associate with upregulated expression and in turn with 

decreasing cytokine responses for G-CSF and IL-10 (Figure 7A). Furthermore, the ecQTL for 

RNASET2 was identified to associate with downregulation in expression and subsequent 

increased cytokine responses of IL-6, MIP-1a, and TNF (Figure 7B). 

Of the ecQTLs identified at DEG, BCL2 and DDX41 were found to be most readily annotated 

genes for immune-related pathways. Interestingly, both were significantly associated with the 

response of two cytokines each. The ecQTL associated with increased BCL2 expression also 

associated with increased G-CSF and IL-8 responses (Figure 8A). Additionally, the ecQTL 

associated with decreased DDX41 expression, increased IL-1RA and IL-8 responses (Figure 

8B). Additionally, we found the ecQTLs for TMED10 and ABCF2 to also associate 

significantly with two cytokines but inversely when compared to BLC2 and DDX41. Here, 

decreased expression resulted in decreased G-CSF levels (Figures 8C and 8D).  

The ecQTL for genes MKI67 and MELK was the only ecQTL identified for two genes. These 

genes have previously been reported to be involved in the RANKL regulation of the immune 
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response. When the expression of these genes was compared across the cohort, they were found 

to have similar up- or down-regulation for each participant which resulted in increased IL-8 

and G-CSF cytokine response (Figure 8E). 

Genetic variation in ECE1 and Lnc-LINS1-1 as predictors for endotoxin tolerance  

The 4,629 and 3,739 genome-wide significant eQTLs at T=0 and T=4 were subsequently 

enriched with the IV endotoxin tolerance data in order to identify SNPs which are both an 

eQTL and a tQTL (etQTL).  

At each timepoint T=0 and T=4, one significant etQTL was identified. Both etQTL SNPs were 

located within the gene of which the expression significantly correlated (Table 4). Rs12441485, 

an intronic variant identified at T=0, was located within the LINS1 gene, regulating the 

expression of a sense intronic long-non-coding RNA gene of LINS1, namely Lnc-LINS1-1. The 

inter-individual differential expression of this gene at T=0 significantly influenced the 

endotoxin tolerance of IL-10 and G-CSF observed on day 7 (Figure 9A). At T=4, rs2072654 

was identified as a significant etQTL, functioning as a 5`-UTR variant within the ECE1 gene. 

Increased expression of ECE1 at T=4 was found to result in increased tolerance levels for IL-

6 and TNF (Figure 9B). In addition to timepoints T=0 and T=4, the DEG eQTLs were also 

enriched using the IV endotoxin tolerance data, but here, no significant etQTLs were identified.  
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Table 3. Summary table of eQTLs (P < 5e-08) associating significantly with IV cytokine response (FDR < 

0.05). 

Timepoint SNP Cytokine Gene eQTL P cQTL P cQTL FDR 

T=4 

 

 

 

 

 

rs36043003 

 

rs75783507 

rs5766289 

 

 

rs4820329 

rs265009 

rs9435839 

rs11794029 

G-CSF 

IL-8 

IL-6 

IL-6 

MIP-1a 

TNF 

IL-8 

MIP-1a 

MIP-1a 

MIP-1a 

GATAD2B 

 

IQGAP3  

RNASET2  

 

 

SEC14L5 

RYR1 

CCSAP 

UAP1L1 

2,47e-08 

 

1,34e-08 

2,81e-08 

 

 

1,51e-08 

1,13e-08 

3,99e-08 

1,84e-27 

1,79e-05 

1,92e-05 

1,73e-05 

3,98e-06 

2,05e-05 

1,67e-05 

1,92e-05 

5,20e-06 

2,29e-05 

5,63e-05 

0,05 

0,03 

0,03 

0,01 

0,02 

0,04 

0,04 

0,02 

0,02 

0,04 

DEG rs9787347 IL-6 WDR5B 2,53e-09 7,47e-05 0,022 

 rs6431621 

rs13026372 

rs999790 

rs9982079 

 

rs7620720 

 

rs11241891 

rs4467664 

 

rs4467664 

 

rs4897368 

rs228436 

G-CSF 

IP-10 

IL-6 

G-CSF 

IL-8 

IL-1RA 

IL-8 

IL-10 

G-CSF 

IL-8 

G-CSF 

IL-8 

IL-6 

G-CSF 

IFT52 

CAMLG 

MYOSLID 

ABCF2 

ABCF2 

DDX41 

DDX41 

CTNND1 

MKI67 

MKI67 

MELK 

MELK 

DEGS1 

TNPO3 

9,52e-09 

2,74e-08 

3,95e-08 

8,43e-09 

 

2,62e-08 

 

3,60e-08 

1,15e-08 

 

4,92e-08 

 

4,22e-08 

1,77e-08 

1,54e-04 

8,37e-05 

2,13e-06 

9,37e-05 

1,98e-05 

5,23e-05 

1,06e-04 

3,09e-06 

1,42e-04 

1,40e-04 

1,42e-04 

1,40e-04 

2,04e-04 

2,45e-05 

0,027 

0,007 

0,002 

0,027 

0,008 

0,046 

0,031 

0,003 

0,026 

0,031 

0,026 

0,031 

0,042 

0,014 
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rs645468 

rs7778583 

 

rs12716535 

 

rs2980754 

IL-6 

G-CSF 

IL-8 

G-CSF 

IL-6 

IL-6 

RASSF3 

BCL2 

BCL2 

TMED10 

TMED10 

AKAP11 

1,52e-08 

3,38e-08 

 

1,44e-08 

 

1,82e-08 

7,11e-05 

2,54e-04 

2,92e-06 

3,15e-05 

2,53e-04 

2,88e-04 

0,022 

0,037 

0,003 

0,014 

0,042 

0,042 

 

 

Table 4. Summary table of genes associating significantly (P < 5e-08) with gene expression, and endotoxin 

tolerance (FDR < 0.05). 

Timepoint SNP Cytokine Gene eQTL P cQTL P 

T=0 rs12441485 IL-10 Lnc-LINS1-1 2,95e-08 6,11e-05 

  G-CSF   6,16e-05 

T=4 rs2072654 TNF ECE1 1,10e-09 2,75e-05 

  IL-6   4,36e-06 
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asd 

Figure 6.  Cluster and bar chart of top enriched terms from the Reactome 2022 gene set library. A. Gene 

sets clustered based on Leiden algorithm. Terms with more similar gene sets are positioned closer together. The 

darker and larger the point, the more significantly enriched the term. B. The top 10 enriched terms for the input 

gene set are displayed based on the -log10(p-value), with the actual p-value shown next to each term. 
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Figure 7. Association boxplots for the expression-cytokine QTLs identified at T=4. A-B.  Regional 

association plots showing the genotype-stratified gene expression at T=4 and associated log10 IV cytokine 

AUC.  
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Figure 8. Association boxplots for the expression-cytokine QTLs identified at DEG. A-E.  Regional 

association plots showing the genotype-stratified DEG gene expression and associated log10 IV cytokine AUC. 
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Figure 9. Boxplots for the identified expression-tolerance QTLs. A. Boxplots showing the genotype-stratified 

Lnc-LINS1-1 expression at T=0 and associated G-CSF and IL-10 tolerance. B. Boxplots showing the genotype-

stratified ECE1 expression at T=4 and associated IL-6 and TNF tolerance.  
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Discussion 

In recent years, the extreme heterogeneity and variety among sepsis patients has hampered 

therapeutic research into novel and effective sepsis treatments. These difficulties lie in the 

highly complex and heterogenous pathophysiology of sepsis. Therefore, a shift towards a more 

individualized treatment approach tailored to the immunological profile of the individual is 

warranted. In this study we employed the experimental human endotoxemia model and applied 

it to a homogenous cohort of healthy individuals. Subsequentially, we applied a complementary 

approach of integrating genotype, gene expression as well as in vivo cytokine and tolerance 

data to identify the genetic variation underpinning the inter-individual variation in immune 

responses and endotoxin tolerance. 

In this study, many of the differentially expressed genes in monocytes upon LPS administration 

that displayed any type of correlation with tolerance were previously found to be associated 

with immune-related and endothelial pathways. In recent years, research has found that genetic 

loci associated with sepsis tend to prioritize immune-related and endothelial pathways [16]. 

ENTPD1, whose differential expression directly correlated with the tolerance for two cytokines 

in the present work, was shown to be the rate-limited enzyme of a cascade leading to the 

generation of suppressive adenosine that alters CD4 and CD8 T cell activities [40]. Similarly, 

IRAK3 modulates downstream signaling in the innate immune system [41]. This resonates with 

findings made by Srinivasan et al, who identified an important paralog of IRAK3, IRAK2 to 

associate with sepsis onset in infants [42]. The study also identified CYP27A1 - a paralog of 

CYP27C1, which we identified as a tQTL. Additionally, 7 genes of the cytochrome p450 family 

were found to significantly differentially express between T=0 and T=4.  This further 

implicates a role of signaling by IRAK and cytochrome p450 in sepsis.  

The identified ecQTLs at T=4 were associated with RNASET2 and GATAD2B expression and 

in turn IL-6, MIP-1a, TNF, G-CSF and IL-8 cytokine responses. SiRNA knockdown of 

GATAD2B has been shown to significantly reduce trans repression of COX-2 and IL-8, 

suggesting that GATAD2B serves as an important mediator of P4-PR suppression of 

proinflammatory genes [43]. RNASET2 is directly involved in the immune response against 

Gram-positive bacteria [44]. Additionally, RNASET2, and ribonucleases in general, have been 

shown to be key players of the host immune response [45]. The DEG ecQTLs were associated 

with BCL2 and ABCF2 expression, and in turn G-CSF and IL-8 cytokine responses upon the 

first LPS challenge. Modulation of the BCL2 family has previously been shown to block sepsis-
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induced depletion of dendritic cells and macrophages, and blood BCL2 levels in the first week 

of sepsis have been used to predict the mortality of sepsis patients [46, 47]. ABCF1 – a paralog 

of ABCF2 has been identified as a potential regulator of immunity and inflammation, and 

modulates sepsis mortality by promoting transition to the ER-phase [48, 49]. Using the results 

in this study we can further confirm the sepsis-related functionality of these genes and their 

involvement in (sepsis) cytokine responses. Additionally, considering that these previous 

findings were mostly identified in murine models of sepsis, our findings translate the functional 

implications of these genes to a human model.  

Identification of tQTLs revealed the presence of a single locus associated with G-CSF and IL-

8 tolerance. This locus was shown to associate with AC104623.2 which is a novel transcript 

antisense to FAM49a. In the zebrafish this gene has been shown to modulate the PTEN pathway 

inhibiting T-cell differentiation [50]. Further research has found that the Fam49 protein family 

represents a new class of Rac1 interactors and observed significant reductions in CD4 and CD8 

thymocytes as well as peripheral T cells in Fam49b-KO mice [51, 52]. Some implications of 

Fam49 have been found in in vitro HEK293T cell lines, but no further functional translation 

has been made to humans [53]. Here we show for the first time that FAM49a plays a role in the 

human immune system and development of endotoxin tolerance, in turn making it a potential 

biomarker and/or therapeutic target for sepsis-induced immunoparalysis.   

Many of the results in this study implicate long-non-coding RNAs (lncRNA) in both cytokine 

responses upon the first LPS challenge and endotoxin tolerance. In recent years, lncRNAs have 

been shown to regulate both (post)-transcriptional and (post)-translational levels in a variety of 

ways [54]. Especially in the immune system, lncRNAs represent key regulators of the innate, 

adaptive, and humoral immune system and have been shown to play a role in sepsis [55-57]. 

Expression of the lncRNA lnc-LINS1-1 at T=0 was shown to be regulated by variation in 

rs12441485 and identified as an etQTL that is a significant predictor for IL-10 and G-CSF 

tolerance. The LINS-1 protein is a known modulating factor for the Wnt-β-Catenin signaling 

pathway, which is crucial in immune cell modulation, immune evasion and even playing a 

distinct role in sepsis [58-60]. While much is known about LINS-1, it has not yet been 

implicated in sepsis and sepsis-induced immunoparalysis. The results in this study show that 

the inter-individual genetic variation and expression in this gene may significantly impact 

endotoxin tolerance observed in healthy individuals. However, expression levels at T=0 (i.e. at 

baseline, before induction of inflammation) may not provide much clinical value in acutely ill 

patients, such as those with sepsis, where baseline samples are hardly ever available.   
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In this respect, a second potential predictor for endotoxin tolerance namely ECE1 expression 

at T=4 (so in the acute inflammatory phase) regulated by rs2072654, is of more interest. The 

etQTL was found to be associated with a varying degree of tolerance for TNF and IL-6. ECE1 

is abundantly involved in endothelial pathways which, as mentioned above, have been shown 

to be prioritized in sepsis genetic loci [61]. Furthermore, ECE1 has been shown to affect the 

MAPK signaling pathway and up-regulation of ECE1 is closely linked to the presence of 

chronic inflammation in humans [62, 63]. While not much is known about the involvement of 

ECE1 in the immune system yet, we demonstrate that it is associated with the development of 

endotoxin tolerance and therefore possibly immunoparalysis.  

This is the first experimental human endotoxemia study using a large cohort of more than 110 

subjects employing combined genotyping and gene expression analyses. Additionally, in 

contrast to studies in sepsis patients, our study population is highly homogeneous and is also 

not affected by confounding factors due to the highly standardized nature of the experimental 

endotoxemia protocol. This way much of the highly complex and heterogenous 

pathophysiology of sepsis could be negated which hampered earlies studies attempting to 

develop novel therapy targets for sepsis. Several of the pathways and genes that were identified 

in previous research to associate with endotoxemia and sepsis in mice- and ex vivo studies were 

also found to play a role in humans in vivo in this study. This underlines their relevance and 

functionally implicates their role in the human immune system and sepsis. These results 

furthermore substantiate the novel results put forward by this study.  

A limitation of this study is the relatively limited sample size to identify genetic associations. 

Therefore, for many SNPs, the heterogenous alternate allele (minor allele) and especially for 

the homogenous alternate allele (least allele) could not significantly be associated with 

expression or cytokine responses. To increase statistical power, we filtered on strict minor- and 

least allele frequencies which led to the exclusion of 6 million SNPs.  

It is recognized that the immune response in early stage sepsis is characterized by 

hyperinflammation and in later stages by sepsis-induced immunoparalysis leading to high 

mortality and morbidity, emphasizing the need for personal medicine and tailored treatment to 

the profile of the individual. Therefore, based on the results of this study, two genetic markers 

stand out that may have value for the prediction of degree of inflammation for G-CSF and IL-

8 in the early immune response. The ecQTL rs9982079 for increased DEG of ABCF2 and 
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decreased cytokine responses-, and ecQTL rs778583 for decreased DEG of BCL2 and 

increased cytokines responses for G-CSF and IL-8 

For the prediction of endotoxin tolerance and in turn sepsis-induced immunoparalysis, two 

genetic markers stand out. Firstly, a tQTL (rs7576783/rs11889461) within the FAM49a gene 

associated with tolerance for G-CSF and IL-8. Secondly, the etQTL rs2072654 that influenced 

ECE1 expression during acute inflammation, which in turn influenced TNF and IL-6 tolerance. 

These results may provide the first step towards early prediction of sepsis-induced 

immunoparalysis based on the genetic profile of sepsis patients. Furthermore, they may lead to 

the identification of new therapeutic targets. This opens up new avenues to develop new 

personalized immunostimulatory treatment strategies and increases prospects for future sepsis 

patients. For this to become a reality, further research, for instance functional studies using 

deletion or overexpression of FAM49a, ECE1, and additional studies into the three proposed 

SNPs are warranted. 
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