
Cut-In Detection
By the use of a Neural Network

S. Geboers
11065788

The Hague University of Applied Sciences
Bachelor Thesis of Applied Physics (B.Eng)

Performed at Volvo Car Corporation
Gothenburg, Sweden
September 2016

First reader: R.H.M. Smit Department: Drive Me
Second reader: R.A. Mantel Supervisor: M. Ali

Abstract

In 2017 Volvo will deliver 100 self-driving cars as part of the Drive Me project. These
cars will be able to drive autonomously on the ring road of Gothenburg, without re-
quiring any driver supervision. To realize this vision, the cars need different algorithms
to recognize, and be able to react to, different traffic situations. One of these traffic
situations is when a car unexpectedly cuts in, in front of the self-driving car. For the
self-driving car to react to the cut-in, it first needs to detect the cut-in.

The main question of this research is: Is it possible to detect a cut-in by the use of a
neural network? A neural network is a network with the ability to learn without being
explicitly programmed. The neural network is provided with examples of a cut-in and
examples of a non-cut-in and learns to recognize these examples. The neural network
that is being used to detect a cut-in is provided with 70 samples of each cut-ins and non-
cut-ins. In this thesis, the optimal conditions to train this neural network are examined.

The input variables used to create the cut-in samples are determined. The four param-
eters chosen as input variables to the neural network are the lateral position, lateral
velocity, and trajectory angle of the car making a cut-in with respect to the road, and
the width of the lane that the host vehicle is driving upon. These parameters contain
40 measuring points per second. The Research carried out in this thesis shows that this
can be reduces to 20 measurements per second without influencing the performance of
the neural network. This benefits the memory use of the neural network.

The detection of a cut-in is most useful when the cut-in is detected before it actually
happens. This way the host vehicle has time to react to the situation. The usability of
the network increases the earlier that a cut-in can be detected. The requirement states
that a car executing a cut-in must be detected at least 4 seconds before the car crosses
the lane marker. When the previous described input variables and this time interval of 4
seconds are used to train the neural network, it can reach a performance of 90.5%. This
means that 90.5% of the cut-ins or non-cut-ins are correctly identified. This is considered
to be a well trained neural network. Because the network becomes more useful for a
shorter time interval, a time interval of 3 seconds is tested. This time interval starts 4
seconds before the car crosses the lane-marker and ends 1 second before the car crosses
the lane marker. The network reaches a performance of 57.1%. This is a useless result,

2

so this time interval is too small. The last interval tested is 3.5 seconds. The interval
starts 4 seconds before the car crosses the lane marker and stops half a second before
the car crosses the lane marker. This network reaches a performance of 81.0%. This
is an acceptable result, but it is significantly lower than the time interval of 4 seconds.
Depending on the preference, one could choose the time interval of 4 or 3.5 seconds. If a
secure detection is chosen to be more important, it is wise to choose the time interval of
4 seconds. If a fast detection is chosen, one could choose the time interval of 3.5 seconds.

There are a lot of different algorithms that can be used to train a neural network. This
specific neural network used to detect cut-ins, is trained with the Levenberg-Marquardt
backpropogation algorithm.

3

Contents

1 Drive Me 6

2 Data processing 7

3 Neural Networks 8
3.1 Perceptrons . 8
3.2 Sigmoid Neurons . 10
3.3 The structure of a Neural Network . 11
3.4 Training a Neural Network . 11
3.5 Neural Network training algorithms . 12

3.5.1 Gradient Descent . 13
3.5.2 Levenberg-Marquardt backpropogation 14

3.6 Evaluate a Neural Network . 16
3.6.1 Performance plot . 16
3.6.2 Confusion matrix . 17
3.6.3 Receiver Operating Characteristic 18

4 Cut-in detection using a Neural Network 19
4.1 Creating training data . 19

4.1.1 Create training examples of a cut-in 19
4.1.2 Create training examples of a non-cut-in 21
4.1.3 Create target data . 22
4.1.4 Impression of the training matrix 22

4.2 Train the Neural Network . 23
4.3 Evaluate the Neural Network . 25

4.3.1 Evaluation of the used parameters 25
4.3.2 Evaluation of the time interval . 26
4.3.3 Evaluation of the sampling frequency 29

5 Conclusion 31

6 Discussion and Recommendations 32

References 34

4

Appendices 36

A Levenberg-Marquardt derivation 37

B Matlab code used to create training and target data 38

C Results for the evaluation of the time interval 45
C.1 Time interval of 4 seconds . 45
C.2 Time interval of 3 seconds . 46
C.3 Time interval of 3.5 seconds . 46

D Extensive Job Description 47

5

Chapter 1

Drive Me

In 2017 Volvo will deliver 100 self-driving cars as part of the Drive Me project. These
cars will be able to drive autonomously on the ring road of Gothenburg, without requir-
ing any driver supervision. The unique aspect of Drive Me is that it will not just involve
prototypes which are used solely as technology demonstrators. Drive Me takes things a
few steps further, since the technology will actually be used by real customers. Using a
combination of cameras, lasers and radars to keep track of its surroundings, the cars will
be able to navigate on their own. The car will feature a data upload to the Volvo Cloud,
which will provide the car with a detailed map and a certification signal that specifies
whether the car is allowed to drive autonomously.

The project is a central component of Volvo Cars’ plan to achieve sustainable mobility
and ensure a crash-free future by 2020. The small scale test on the ring of Gothenburg is
a start. For the car to be able to drive on all roads and enable door-to-door autonomous
driving, it should be able to handle situations such as busy intersections, pedestrians
and cyclists. Also, the traffic laws have to be adapted in order for autonomous cars to
participate in traffic.

Drive Me consist of several teams. The autonomous car has to sense its environment
(Sensing System/Sensor Fusion), has to react to this and plan its path (Decision and
Control). This plan has to be executed by the actuators in the car (Architecture and
System Solution). Additionally there are teams that deal with the interaction between
human and machine and teams for safety, verification and integration.

The research discussed in this thesis is carried out in the Decision and Control team. The
Decision and Control team is responsible for both the high-level strategic and tactical
planning algorithms as well as the lower level longitudinal and lateral control of the
vehicle.

6

Chapter 2

Data processing

The Decision and Control team writes algorithms that control the reaction and the plan
of the host vehicle. The host vehicle is the self-driving car in question. For example,
when and how to make a lane change or when and how the car has to break. To make
this decisions the car uses multiple radars, cameras, a laser and ultrasonic sensors to
monitor the complete 360 degrees view of the surroundings and to generate data. This
data is used to write and test algorithms. To obtain this data, employees of Drive Me go
on ‘expeditions’ all around the world. The obtained data is broken down to processable
files of 70 seconds. One file of 70 seconds is called a logfile.

There are different algorithms to give meaning to this data. For example: The car can
distinguish 32 different objects in the surroundings of the car. Objects like a car, a
cyclist or a pedestrian. Of these objects, different parameters are known. For example
the lateral and longitudinal position, velocity and acceleration. There is also a lot of
information about the road. For example: The kind of lane markers (solid, dotted etc.),
the number of lanes or the degree of the curvature of the road. All these parameters
have their own algorithm.

The main focus of this report will be to find a way to detect a cut-in. The definition
of a cut-in is a car making a lane change into the lane the host-vehicle is driving on, in
front of the host vehicle. There already is an algorithm that is used to detect cut-ins.
However, this algorithm is not nearly as accurate as it is desired. Cut-ins are missed and
false cut-ins are detected. An option to obtain a well working cut-in detection could be
the use of a neural network. A neural network is a network with the ability to learn. By
providing the network with examples of a cut-in, it could be able to learn to recognize
cut-ins. The main question of this research will be: Is it possible to detect a cut-in by
the use of a neural network?

7

Chapter 3

Neural Networks

The main focus of this thesis will concern the affect of machine learning towards the de-
tection of a cut-in. Machine learning is a field of study that gives computers the ability
to learn without being explicitly programmed. A way to accomplish machine learning
is by using a neural network. Let’s begin with the definition of the term ‘Neural Network’.

A neural network is an interconnected assembly of simple processing elements, units
or nodes, whose functionality is loosely based on the animal neuron. The processing abil-
ity of the network is stored in the interunit connection strengths, or weights, obtained by
a process of adaptation to, or learning from, a set of training patterns 1.

Neural Networks are based on the brain. When someone writes down their phone num-
ber, most people effortlessly recognize the digits. The human head carries supercomput-
ers, tuned by evolution. Neural Networks work roughly the same. The idea is to take
a large number of handwritten digits, these are known as training examples. The neu-
ral network uses the examples to automatically infer rules for recognizing handwritten
digits. The more training examples are available, the more accurate the network. To
fully understand a neural network, first an artificial neuron called a perceptron will be
explained.

3.1 Perceptrons

Figure 3.1: A schematic view of
a perceptron. [15]

Perceptrons were developed in the 1950s and 1960s by the
scientist Frank Rosenblatt. A perceptron takes several bi-
nary inputs, x1, x2 . . ., and produces a single binary output.
A schematic example can be seen in figure 3.1. Rosenblatt
decided on a simple rule to compute the output. The im-
portance of the inputs are expressed by weights: w1, w2
A threshold is set. The output, 0 or 1, is determined by

1Kevin Gurney. An introduction to Neural Networks. Number 0-203- 45151-1. UCL Press, 1997.

8

if the weighted sum
∑

j wjxj is less or greater than the threshold value. In algebraic
terms:

output =

{
0 if

∑
j wjxj ≤ threshold;

1 if
∑

j wjxj > threshold.
(3.1)

The threshold is a real number which is a parameter of the neuron. So, a perceptron
can weigh up different kinds of evidence in order to make decisions. A more complex
network of perceptrons can be seen in figure 3.2.

Figure 3.2: Network of perceptrons. [15]

In this network, there are different ‘layers’ of perceptrons. The perceptrons in the first
layer make three simple decisions. The perceptrons in the second layer make decisions
on a more abstract level. They still have one output. The multiple output arrows are
merely a useful way of indicating that the output from a perceptron is being used as the
input to several other perceptrons. To simplify equation 3.1 we write w and x as vectors
whose components are respectively the weights and inputs, now the dot product can be
used. We bring the threshold to the other side of the equation. The bias is introduced:
bias b = −threshold. Now equation 3.1 can be written as:

output =

{
0 if w · x + b ≤ 0;
1 if w · x + b > 0.

(3.2)

The bias can be seen as a degree of difficulty to ‘activate’ the perceptron.

It turns out that learning algorithms which can automatically tune the weights and
biases of a network of artificial neurons can be devised. Suppose a small change in some
weights or bias is made in the network. This small change of weight corresponds to a
small change in the output of the network. This fact can be used to get the network
to behave correctly. For example recognizing handwritten digits. When mistakenly the
network classifies an image as a 3 when it should be a 9, the weights and biases need
to be slightly adjusted. The network gets a little closer to classify the digit correctly.
During the process of adjusting the biases and weights the output will become better
and better. The network is learning. [9] [15] [19]

9

3.2 Sigmoid Neurons

For a network containing perceptrons, the output does not become better and better. A
small change in weights or bias could cause a change of the output from, say, 1 to 0. Now
9 can be classified correctly but the behavior of the network on all the other images could
be completely off. This problem can be overcome by introducing the sigmoid neurons.
The sigmoid neurons look like perceptrons. Instead of the input being 0 or 1 the input
can be any value between 0 and 1. This leads to a different output. The output becomes
σ(w · x + b). Herein σ is called the sigmoid function, and is defined by:

σ(z) ≡ 1

1 + e−z
, (3.3)

herein:

z ≡ σ(w · x + b). (3.4)

Just like the perceptron, the sigmoid neuron has weights for each input and an overall
bias.

Figure 3.3: Shape of a sigmoid function.

To understand the similarity to the perceptron
model, suppose z is a large positive number:
e−z ≈ 0 and σ(z) ≈ 1. Suppose z is a
very negative number: e−z → ∞ and σ(z) ≈
0. In extreme cases the behavior of a sig-
moid neuron is a close approximation of a per-
ceptron. It is only when z is a modest size
that there is much deviation from the perceptron
model.

The most important property of the sigmoid func-
tion is the shape. The shape is a smoothed version
of a step function. This can be seen in figure 3.3. If
σ would be the step function, the sigmoid neuron would act like a perceptron. Because
of the sigmoid function, a small change in biases ∆b and weights ∆wj will produce a
small change in the output (∆output).

∆output ≈
∑ ∂output

∂wj
∂wj +

∂output

∂b
∂b. (3.5)

∆output is a linear function of the changes ∆wj and ∆b in the weights and biases. This
makes it easy to achieve any desired small changes in the output.

10

3.3 The structure of a Neural Network

In figure 3.4 an example of a neural network with multiple hidden layers can be seen.
Neurons in a hidden layer are neither input neurons nor output neurons. This is the
only reason why they are called hidden layers. The network in figure 3.4 has two hidden
layers. In this network, the output of one layer is used as the input to the next layer.
There are no loops in this network. This is called a feedforward neural network. A
network with feedback loops is called a recurrent neural network. Recurrent neural
networks will not be further discussed in this thesis.

Figure 3.4: Structure of a neural network with hidden layers. [15]

3.4 Training a Neural Network

To learn how to recognize a specific pattern, a neural network needs a set of so called
training data. This training data contains samples of the pattern that has to be rec-
ognized. The training data will be split into three categories: training data, validation
data and testing data. The majority of the samples will be used as training data.
Training data is presented to the network during training. Validation data is used to
measure network generalization, and to halt training when generalization stops improv-
ing. Generalization is a measurement of how accurately an algorithm is able to predict
the outcome values of the neural network. Testing data has no effect on training, it pro-
vides an independent measure of network performance during and after training. The
network will also be presented with target data. Target data is a matrix with vectors
of zeros and ones that define the desired network output. The notation of the training
data:

- n Number of training samples.

- x Input variables, this is a vector.

- y Output, this is a vector of zeros and ones

11

For example a neural network could be used to classify if breast cancer is benign or
malignant depending on the characteristics of sample biopsies. The training data could
be a 10x700 matrix, defining ten parameters x of 700 biopsies n. The target data would
be a 2x700 matrix where each column indicates a correct category with a one in either
the benign or malignant row. These are 700 vectors y.

An other way to look at the bias is as an extra input with a fixed value of one. This way
the weight of this input becomes the bias. The vector of the combination of the weights
and biases is called θ. The dot product of θ and the input values x will look like:

θ · xi = θ0x0 + θ1x1 + ...+ θjxj (3.6)

Here i is the i’th training sample and j is the number of inputs in one training sample.
x0 will be set to 1. From now on this notation will be used.

The output of the network must approximate y(xi) for every training input xi. To
quantify how well this is happening, the quadratic cost function is introduced:

C(θ) ≡ 1

2n

n∑
i=1

(
y(xi)− a(xi, θ)

)2
. (3.7)

The aim of an training algorithm is to minimize the cost as a function of θ. In equa-
tion 3.7 a(xi, θ) is called the activation of the output of the network. This activation is
depending on the weights and biases. The sigmoid function of chapter 3.2 is applied.
xi is the i’th training sample. C(θ) goes to zero when y(xi) is approximately equal to
the output a(xi, θ) for all training inputs. Equation 3.7 is called the Mean Square Error
(MSE). [13]

3.5 Neural Network training algorithms

There are many different algorithms to achieve a minimization of the cost function. Two
of these algorithms are studied and compared in this thesis. The first is Gradient De-
scent. Gradient Descent is the most common approach for training neural networks.
The second algorithm is the Levenberg-Marquardt algorithm. This algorithm is more
robust, it finds a solution even when it starts far from the final minimum. The downside
of the Levenberg-Marquardt algorithm is that it tends to be slower than the Gradient
Descent algorithm.

12

3.5.1 Gradient Descent

Gradient Descent is an iterative optimization algorithm. In figure 3.5 an animation of
gradient descent can be seen. When using the gradient descent algorithm, a point in the
plot in figure 3.5 is chosen. From there, small steps will be taken to the local minimum.
Figure 3.5 shows two examples of the path that can be taken. The gradient descent
algorithm that is being used to choose this pad:

θj := θj − α
∂

∂θj
C(θ) (3.8)

Equation 3.8 2 will be repeated until convergence. α is called the learning rate (or tuning
parameter). The learning rate controls the size of the steps that the algorithm takes.

Figure 3.5: Animation of gradient descent. [13]

To clarify equation 3.8, a one dimensional example can be used. A schematic view of
the example can be seen in figure 3.6. The black curve indicates C(θ) while the red dot
indicates the position of θj on the x-axis. At the position of θj , the derivative of C(θ) is
taken. When θj is on the right, the derivative will be positive. When θj is on the left,
the derivative will be negative. This causes θj to move to the minimum. α controls the
size of the steps that θj will take. When α is too small, it will take θj a lot of steps
to reach the minimum. Gradient descent will be slow. When α is too large, θj will
overshoot the minimum and gradient descent can diverge instead of converge. There is
no need to decrease α over time. As the local minimum is approached, gradient descent
will automatically take smaller steps because the derivative will get smaller.

2When a := b is being used, as it is in equation 3.8, it means that b overwrites a.

13

Figure 3.6: Schematic view of a one dimensional example of gradient descent. [5]

The key part of equation 3.8 turns out to be ∂
∂θj
C(θ). To complete the gradient de-

scent algorithm, this derivative has to be solved. When equation 3.7 is inserted in the
derivative this gives:

∂

∂θj
C(θ) =

∂

∂θj

1

2n

n∑
i=1

(
y(xi)− a(xi, θ)

)2
(3.9)

Executing this derivative yields:

∂

∂θj
C(θ) =

1

n

n∑
i=1

(
y(xi)− a(xi, θ)

)
xi (3.10)

This gives the Gradient Descent algorithm that will yield the local minimum of the cost
function. [13] [14] :

θj := θj − α
1

n

n∑
i=1

(
y(xi)− a(xi, θ)

)
xi (3.11)

3.5.2 Levenberg-Marquardt backpropogation

The Levenberg-Marquardt (LM) algorithm is considered to be one of the most effective
minimization algorithms and can also be used to solve non-linear problems. The LM
algorithm is an iterative procedure. Again, θj will be optimized so that the cost function
becomes minimal. This time the Sum of Squared Errors will be used as a cost function
(equation 3.12) because of the derivation later this chapter.

C(θ) ≡
n∑
i=1

(
y(xi)− a(xi, θ)

)2
. (3.12)

To start minimization, an initial guess for θj has to be made. In each iteration step, θj

14

will be updated by an increment step λ (i.e. θj := θj +λj). To find a suitable λ, a(xi, θ)
is approximated by its Taylor expansion:

a(xi, θ + λ) = a(xi, θ) + Ji,jλ. (3.13)

Where Ji,j is the derivative of a(xi, θ) with respect to θj :

Ji,j =
∂a(xi, θ)

∂θj
. (3.14)

Combining equation 3.12 and 3.13 gives:

C(θ + λ) ≈
n∑
i=1

(
y(xi)− a(xi, θ)− Ji,jλ

)2
. (3.15)

The right hand sight of equation 3.15 is an approximation, based on the Taylor expan-
sion for a(xi, θ) plugged into equation 3.12.

Now, the λ that minimizes this expression can be found by rewriting equation 3.15 to the
vector notation and set the derivative to zero. This derivation can be seen in appendix
A and leads to: (

JTJ
)
λ = JT

[
y − a(θ,xi)

]
. (3.16)

J is the Jacobian matrix. The Jacobian matrix is the matrix of all first-order partial
derivatives of a vector-valued function. The ith row equals Ji (equation 3.14). a and y
are vectors of the ith training sample respectively a(xi,θ) and yi. λ can be solved for
the set of equations in 3.16.

Lavenberg (1944) suggested to use a ’damped version’ of equation 3.16:(
JTJ + µI

)
λ = JT

[
y − a(θ,xi)

]
. (3.17)

Herein I is the identity matrix and µ is the non-negative damping parameter (or tuning
parameter). The damping factor adjusts every iteration. The step λ is now defined as in
equation 3.17. If the update parameter λ leads to a reduction of the cost function, the
update is accepted and the process repeats with a decreased damping parameter µ. If
reduction of the cost function is rapid, a smaller value for µ can be used. Equation 3.17
becomes closer to equation 3.16. If an iteration gives insufficient reduction of the cost
function, µ can be increased. This can lead to a higher reduction. The reason for this
is that an increase of the damping parameter typically leads to a shorter step towards
the minimum. If either the length of the calculated step λ, or the reduction of the cost

15

function falls below predefined limits, iteration stops and the last parameter vector θ is
considered to be the solution.

The LM algorithm actually solves a slight variation of equation 3.17. Marquardt replaced
the identity matrix with the diagonal matrix consisting of the diagonal elements of JTJ.
This matrix is called N. This results in the Levenberg-Marquardt algorithm: [18] [8] [10]
[12] [6] (

JTJ + µN
)
λ = JT

[
(y)− a(θ,xi)

]
. (3.18)

3.6 Evaluate a Neural Network

When the neural network is trained, the performance has to be evaluated. Does the
network have enough neurons, inputdata or training samples? There are different ways
to draw these conclusions. Several plots or tables can be used to outline the performance
of the neural network. A few of these evaluation methods are discussed in this chapter.

3.6.1 Performance plot

A performance plot shows the MSE or SSE dynamics for all datasets on a logarithmic
scale. An example of a performance plot can be seen in figure 3.7. The lower the MSE or
SSE at the end of the training phase, the better the network is trained. This means that
the desired outputs and the neural network’s output for the training set have become
very close to each other.

An ideal sketch of the plot can be seen in figure 3.8. The MSE or SSE reduces after more
epochs (iterations) of training, but might start to increase on the validation data set as
the network starts over fitting the training data. This should be avoid so the training
should stop when the validation error starts increasing instead of decreasing. However,
for a real neural network training, the validation set error does not evolve as smoothly
as seen in figure 3.8. Real validation error curves almost always have more than one
local minimum. So, the training doesn’t stop after the first increase of the validation
error but after six consecutive increases. This number is set to 6 with the aid of trial
and error. The minimum error is found at the minimum of the validation set. The best
performance is taken from the epoch with the lowest validation error. [17]

16

Figure 3.7: Performance plot example. [2] Figure 3.8: Ideal sketch of a performance plot.

3.6.2 Confusion matrix

Figure 3.9: Example of a confusion ma-
trix. [1]

A confusion matrix is a specific table layout that
allows visualization of the performance of an algo-
rithm, such as a neural network. Each column of
the matrix represents the instances in a predicted
class while each row represents the instances in an
actual class. It is easy to see if the system confuses
two classes. An example of an confusion matrix can
be seen in figure 3.9. In this example there where
446 + 236 + 5 + 12 = 699 training samples. 446
of these samples (63,8% of all the samples) where
correctly detected as 1, 5 of these samples (0.7% of
all the samples) where detected as 1 but where in
fact a 2. 98.9% of the training samples that belong
to 1 where correctly detected. Naturally, 1.1% was
falsely detected. This information can be found in
the first row of the table. In the same way, con-
clusions can be drawn from the second row of the
table. In total, 97.6% of the training samples where correctly detected and 2.4% of the
training samples where falsely detected. This can be seen in the blue box. [16]

17

3.6.3 Receiver Operating Characteristic

Receiver Operating Characteristics, or ROC, is used to evaluate the accuracy of a sta-
tistical model that classifies subjects into 1 of 2 categories. Like a neural network with
1 output leading to 0 or 1.

Figure 3.10: Example of a ROC curve.
[11]

The curve is created by plotting the True Positive
Rate (TPR) against the False Positive Rate (FPR).
The TPR is the proportion of positives that are cor-
rectly identified as such, also known as the sensi-
tivity. For example the percentage of cars making
a cut-in that are correctly identified as making a
cut-in. The FPR is 1 - specificity. Specificity is the
proportion of negatives that are correctly identified
as such. For example, the FPR is the percentage of
cars that are not making a cut-in falsely identified
as a cut-in. The FPR is also known as the fall-out.
In figure 3.10, an example of the ROC-curve can be
seen. The sensitivity as a function of the fall-out.
For the curve to make sense, 1 - specificity is plot-
ted on the x-axis instead of the specificity. As the
sensitivity gets higher, the specificity goes down.
Curve ‘A’ in figure 3.10 represents a perfect test,
100% sensitive and 100% specific. The surface area under the curve is 1. The diagonal
line ‘C’ in figure 3.10 traces the curve of a useless test. The surface area under the
curve is 0.5. It would be the same as a coin-toss. Curve ‘B ’ represents a more realistic
outcome for a test. Thus, by looking at this curve an approximation of the performance
of the neural network can be made. [11]

18

Chapter 4

Cut-in detection using a Neural
Network

Now that the theory of a neural network is explained, it can be taken into practice. In
this chapter, a neural network will be used to detect a cut-in. A cut-in is defined by a
car changing lanes to end up into the lane of the host vehicle. An option to detect this
movement is by pattern recognition. As seen in chapter 3, pattern recognition can be
achieved by the use of neural networks. This chapter will be divided into three subjects:
creating the training data, training the neural network and evaluation of the neural
network.

4.1 Creating training data

To train a neural network, it must be provided with training samples x and target data
y, as is explained in chapter 3.4. To create this training data, logfiles are needed. The
logfiles from the expedition from Kiel to Kassel (Germany) in January 2015 are used.
These will be referred to as: Kiel Kassel logfiles. The neural network requires that it
is provided with training samples of a cut-in and training samples of a non-cut-in. A
non-cut-in is a car riding in the lane on the left or right of the host vehicle, that does not
end up making a cut-in. In this section the creation of the training samples for both of
these situations will be explained respectively. In this chapter, ‘the car’ always refers to
the car making the cut-in. The final code that is being used to train the neural network
can be found in appedix B. An impression of the product of the code can be seen at the
end of this section in table 4.1.

4.1.1 Create training examples of a cut-in

To create training examples of a cut-in, it is necessary that there are examples of cars
making a cut-in. These cut-ins need to be found manually. For the Kiel Kassel data,
there is an excel sheet available with information about which logfiles contain a cut-ins
and at what time this car crosses the lane marker. However, it is important to know

19

which of the 32 optional objects is making the cut-in. This information is obtained by
manually looking through the videos corresponding to the logfiles. Now all the data that
is needed to create training examples is available. After all the cut-ins are identified in the
available log data, they are processed into training data using the following algorithm:

• Loading logfiles that contain a cut in.
The Kiel Kassel logdata contains 156 logfiles. 50 of these logfiles contain at least one
cut-in. There are 70 cut-ins in total. The algorithm starts by only loading the logfiles
that contain at least one cut-in.

• View every object making a cut-in.
The object number of the car making the cut-in is selected. Only the data of this
object number is viewed. If there is more than one cut-in in one logfile, the object
numbers will be viewed one after another. When the car making a cut-in is selected,
its data will be further processed.

• For this selected car, different parameters are viewed.

- Select the lateral position of the selected car.
The first parameter used to create training data is the lateral position of the car
that is making a cut-in in the logged data. This is the lateral position of the car
with regard to the road. This is preferred over the lateral position with regard
to the host vehicle because otherwise a car in front of the host vehicle that is
already in a curve could give the same values for lateral position as a car making
a cut-in.

- Select the lateral velocity of the selected car.
The second parameter is the lateral velocity of the car. This is simply said
the derivative of the lateral position. Information about the lateral velocity can
be derived from the information about the lateral position. To help the neural
network it is used as an input.

- Select the angle of the selected car with regard to the road.
The third parameter is the angle of the car with regard to the road. This data
is not available without making some calculations first. The data that is directly
available is the angle of the car with regard to the host vehicle. Because of the
same reason the lateral position with regard to the host vehicle can’t be used,
this angle can’t be used either. Therefore, the angle of the car with regard to
the road is needed. This data can be obtained by subtracting the angle of the
road with regard to the host vehicle from the angle of the car with regard to
the host vehicle. The angle of the road with regard to the host vehicle has to
be calculated. The road in front of the host vehicle is divided in 3 segments.
The first segment is the segment that is closest to the car. For every segment
estimates of the curvature of the road (1/m) and the curvature rate of the road
(1/m2) are known. The estimate of the angle of the road at the position of the
host vehicle is also known. With this information, the angle of the road with
regard to the host vehicle can be calculated at any point.

20

- Select the width of the lane the car is driving on. The last parameter that is
being used to create training data is the width of the lane the car is driving
on. This data is important to give the lateral position of the car more meaning.
If the lane width is small then a small difference in the lateral position could
mean a cut-in. The same lateral position characteristics in a wide lane may be
due to less-disciplined driving behavior which is tolerable from a risk perspective
because of increased margins for path following error.

• Determine the time interval of the cut-in.
Detection of a cut-in is most useful when it is detected before it actually happened.
The further that the timing of a detection is advanced, the more useful the detection
is. The neural network will be trained to be able to predict cut-ins, by presenting it
with data from before the car crosses the lane marker. The training data presented to
the neural network can be adjusted to this requirement. Different time intervals are
presented to the network. The time interval used in appendix B ends at the moment
the car crosses the lane marker and starts 4 seconds before this point. This time
interval is assigned to the lateral position, lateral velocity and the angle of the car
with regard to the road. It is crucial that the neural network is not presented with
an interval that is too short. If this happens the network will not be able to detect a
cut-in at all. Every training sample has to have the same amount of measuring points
because the neural network has to be provided with a symmetric matrix.

• Provide a solution for samples that are too short.
Not every logfile has 4 seconds before the cut-in. It can be the case that the cut-in
starts before the logfile reaches 4 seconds. These situations are selected. Every cut-in
with too little measuring points at the beginning of the logfile will fill the missing
measuring points with the first measuring point the logfile has for that object. This
will simulate the car driving straight in its own lane until the real measuring points
can be used.

• The obtained training examples will be stored in a 482× 70 trainingmatrix.

4.1.2 Create training examples of a non-cut-in

The training data of a neural network needs to contain samples of non-cut-in scenarios
as well. In order to recognize the pattern of a cut-in the neural network needs a frame of
reference. The training matrix will be extended with 70 samples of a non-cut-in. Again,
the steps the most extensive algorithm takes to create a matrix of training examples are
explained:

• The first 70 logfiles are loaded one after another.

• An object is selected.
The first object number on the drivers side of the host vehicle with 160 measuring
points is selected. If this situation does not occur, the first object number on the
passengers side of the host vehicle with 160 measuring points is selected.

21

• For this selected car, different parameters are viewed.
The same input values are selected for these selected objects. Those input variables
are: the lateral position with regard to the road, the lateral velocity with regard to
the road, the angle of the car with regard to the road and the lane width of the lane
the car is driving on. These parameters are collected for a time interval of 4 seconds
for the previous selected car.

• The obtained training examples will be stored in a 482× 140 trainingmatrix.
The obtained training samples will be stored in the same matrix as the training sam-
ples of the cut-in. This matrix will be extended to a 482×140 trainingmatrix. If there
is no car on the left and the right for 160 samples, the training vector will fill with
zeros. This is not a problem because a column of zeros also represents a non-cut-in.

4.1.3 Create target data

The target data will define the desired network output. For the training samples that
represent a cut-in the target data will contain a 1. For the training samples that repre-
sent a non-cut-in the target data will contain a 0. This is 1× 140 matrix where the first
70 columns contain a 1. The 71th till the 140th column will contain a 0 to represent a
non-cut-in. When a neural network has more then 1 output, this matrix will have more
rows, one for every output.

4.1.4 Impression of the training matrix

In table 4.1 an impression of the product of the code can be seen. This is what the
set-up of the input matrix and the targetdata matrix looks like. The dark cells represent
a cut-in and the light cells represent a non-cut-in. The blue cells contain information
about the lateral position. The green cells contain information about the lateral velocity.
The grey cells contain information about the angle of the car. The orange cells contain
information about the width of the row. The yellow cells contain the desired network
output.

22

Table 4.1: An impression of the structure of the matrix with training data and targetdata.

4.2 Train the Neural Network

When the training data and target data are complete, the network has to be designed.
This leads to some decision making. How many hidden layers will the network get? How
many hidden neurons will every layer have? How will the training data be distributed?
And of course which minimization algorithm will be used? These questions will be
answered in this section. Every different set of training samples has it’s own answers to
these questions. The decision making will be explained for the training set described in
chapter 4.1

Minimization algorithm: For every set of training samples, the Levenberg-Marquardt
backpropagation algorithm is going to be used to minimize the cost function. Minimiza-
tion using the LM algorithm is slower then using the GD algorithm but it leads to better
results. Also, the network does not need as much hidden layers when the LM algorithm
is being used.

23

Number of hidden layers: There is no theory yet to tell how many hidden layers
are needed. It is wise to start with one hidden layer. More complex problems have been
solved using one hidden layer. Every extra hidden layer makes the network potentiallty
unnecessarily complicated. For every set of training samples, one hidden layer is going
to be used. [3]

Number of hidden neurons: The number of hidden neurons is based on a complex
relationship between the number of input and output neurons, the amount of training
data available, the complexity of the function that is trying to be learned and the training
algorithm that is being used. Too few hidden neurons will lead to a high error for your
system as the predictive factors might be too complex for a small number of hidden
neurons to capture, this is called underfitting. Too many hidden neurons will lead
to the problem of overfitting. Unfortunately, there is no hard rule for the number of
hidden neurons. On the internet, many rules of thumb can be found. All these rules are
invalidated as well. Trial and error will be used to estimate the right number of hidden
neurons. The best way to estimate if the network is over or underfitting is by looking at
the performance plot. In figure 4.1, 4.2 and 4.3, examples of respectivily a underfitting,
overfitting and well working network can be seen. [4]

Figure 4.1: A underfitting network . Figure 4.2: A overfitting network.

Figure 4.3: A network with a good fit.

24

In figure 4.1, underfitting is the problem. It can be seen that the training set has a
high error. This performance was achieved when 5 hidden neurons where used. In figure
4.2, overfitting is the problem. Overfitting is not only the case when the validation
error increases with the iterations as explained in chapter 3.6.1. There is also overfitting
when the performance on the validation set is much lower than the performance on the
training set. This is the case in figure 4.2. This performance was achieved when 25
hidden neurons where used. Figure 4.3 represents a good fit. This performance was
achieved when 12 hidden neurons where used.

Distribution of the training data: The set of training samples must be divided into
the three categories discussed in chapter 3.4. Training data, validation data and test
data. This will be divided in respectively 70%, 15% and 15%. This is the most common
way to do so.

4.3 Evaluate the Neural Network

When the network is trained, the performance of the network can be evaluated. In this
section, different ways of training the neural network will be compared. First, it will
be examined which parameters can be used best. Thereafter, it is examined how many
seconds the neural network needs to recognize a cut-in before it actually occurs. As last,
it will be examined how big the sample frequency of the training samples has to be.

4.3.1 Evaluation of the used parameters

Figure 4.4: Performance plot for a network trained
with the parameters: lateral position, lateral veloc-
ity, lanewidth.

To compare the importance of every dif-
ferent available parameter (lateral posi-
tion, lateral velocity, width of the lane
and angle of the car making a cut-
in) it would be useful to train the
neural network for different composi-
tions of the parameters. However,
training the network for the combina-
tion of lateral position, lateral veloc-
ity and lane width, does not lead to
useful results. The performance plot
of this network can be seen in figure
4.4.

This performance plot gives the impres-
sion of a underfitting neural network.
However increasing the number of hidden
neurons does not lead to a better result.

25

There are two possible answers to this problem. It can be possible that the network does
not have enough input values xj . It can also be possible that there are not enough train-
ing samples available. The network does give a useful output when the angle of the car
making a cut-in with regard to the host vehicle is added to the input values. When the
sample frequency of this input vector is reduced, the network still has a useful output.
From this information, it can be assumed that the the network has not enough training
samples when presented with only lateral position, lateral velocity and lane width. For
the rest of this section, the input vector will contain the lateral position, lateral velocity,
lane width and angle of the car.

4.3.2 Evaluation of the time interval

As mentioned before, the detection of the cut-in is most useful when it is detected before
it actually happens. The usability of the neural network increases the earlier that a cut-
in can be detected. When the neural network is provided with a time interval that is
too small, the neural network will not be able to recognize a cut-in at all. A compromise
has to be found. The minimal requirement [7]: the network must be able to recognize a
cut-in when it is provided with a time interval of 4 seconds, ending at the moment the
car is crossing the lane marker. First, the network is trained for this requirement.

Time interval of 4 seconds: The training input starts 4 seconds before the car
crosses the lane marker and stops at the moment the car crosses the lane marker. 12
hidden neurons are used. The test confusion matrix can be seen in figure 4.5a.The test
confusion matrix is only based on the training samples used for the test data. The rest of
the confusion matrices can be seen in appendix C.1. These are the confusion matrices for
the training data, validation data and for all the data combined. In the confusion matrix
in figure 4.5a it can be seen that for the 15 input samples, 9 were correctly classified as a
cut-in. 10 samples were correctly classified as a non-cut-in. 1 sample was detected as a
cut-in but was a non-cut-in and the same happened the other way around. This lead to
90.5% of the test samples being correctly identified. This can be considered as a really
good performance. In figure 4.5b the performance plot can be seen. From this plot it
can be concluded that 12 hidden neurons lead to a good fit. All the confusion matrices
and ROC-curves for this training input can be found in appendix C.1.

26

(a) Test confusion matrix. (b) Performance plot.

Figure 4.5: Evaluation plots for the time interval of 4 seconds. 12 hidden neurons. 40 measurements per
second.

Time interval of 3 seconds: This training input starts 4 seconds before the car
crosses the lane marker and stops one second before the car crosses the lane marker. 40
hidden neurons are used. The test confusion matrix can be seen in figure 4.6a. Of the
11 test samples that where non-cut-ins, 5 where detected as a cut-in. Of the 10 test
samples that where cut-ins, 4 where detected as a non-cut-in. This leads to 57.1% of
the test samples being correctly identified. For a neural network, this is a really poor
outcome. In figure 4.6b, the performance plot can be seen. Underfitting can be detected
in this plot. However, when the number of hidden neurons is increased, this does not
change. This can be explained by the fact that a 3 second time interval is too short for
the neural network to recognize a cut-in. This leads to the conclusion that this time
interval is too short to recognize a cut-in. All the confusion matrices and ROC-curves
for this training input can be found in appendix C.2.

27

(a) Test confusion matrix. (b) Performance plot.

Figure 4.6: Evaluation plots for the time interval of 3 seconds. 40 hidden neurons. 40 measurements per
second.

Time interval of 3.5 seconds: So, it is concluded that a time interval of 3 seconds
is too short and a time interval of 4 seconds works really well. Therefore, the last time
interval will be chosen in between these two intervals. The third time interval will start
4 seconds before the car crosses the lane marker and will stop 0.5 seconds before the
car crosses the lane marker. In figure 4.7a, the test confusion matrix can be seen. For
the 10 cars making a non-cut-in, 1 was classified as a cut-in. For the 11 cars making
a cut-in, 3 where classified as a non-cut-in. This leads to 81.0% of the test samples
being correctly identified. For a neural network this is still a reasonable performance,
however it is a significantly lower result then the time interval of 4 seconds, which was
correct for 90,5% of the test samples. In figure 4.7b the performance plot can be seen.
From this plot it can be concluded that 30 hidden neurons lead to a good fit. All the
confusion matrices and ROC-curves for this training input can be found in appendix C.3.

28

(a) Test confusion matrix. (b) Performance plot.

Figure 4.7: Evaluation plots for the time interval of 3.5 seconds. 30 hidden neurons. 40 measurements
per second.

Depending on the preference, one could choose the time interval of 4 or 3.5 seconds. If a
secure detection is chosen to be more important, it is wise to choose the time interval of
4 seconds. If a fast detection is chosen, one could choose the time interval of 3.5 seconds.

4.3.3 Evaluation of the sampling frequency

The optimal usage of the parameters and the time interval are known. One last variable
that has to be optimized is the sampling frequency of the training data. The higher the
sampling frequency, the more memory the network needs. When the sampling frequency
becomes too low, the network could have too few input values to recognize the cut-in.
Again, a compromise has to be found. The measurement frequency of the logfiles is 40
measurements per second. This is the maximum sampling frequency. This is also the
frequency used up until now.

Sampling frequency of 20 measurements per second: When the sampling fre-
quency is reduced by half, the performance of the neural network is not reduced. In
figure 4.8a, the test confusion matrix can be seen. 11 of the 12 non-cut-in’s where cor-
rectly detected as such. 1 was falsely detected as a cut-in. 8 of the 9 cut-ins where
correctly detected as a cut-in. 1 was falsely detected as a non-cut-in. This leads to a
performance of 90.5%. This is the same as the performance of the neural network trained
with 40 measurements per second. This can be seen in figure 4.5a. The performance of
a neural network varies every time it its trained. This is because of the starting values
of θ. Thus, the performance of a network trained with 20 measurements per second is

29

not necessarily always exactly the same as the network trained with 40 measurements
per second. However, it can be concluded that the sampling frequency can be halved,
without reducing the performance of the neural network.

(a) Test confusion matrix. (b) Performance plot.

Figure 4.8: Evaluation plots for the time interval of 4 seconds. 20 hidden neurons. 20 measurements per
second.

Sampling frequency 16 measurements per second or less: When the network is
provided with a sampling frequency of 16 measurements or less, a curious result surfaces.
Every time the network is trained, the performance is remarkably different. The network
underfits, overfits, or delivers a high performance of 90% or more. Three performance
plots of the same neural network can be found in figure 4.9. This could be a result of
too few input variables. So, to be certain of a reliable neural network, it is wise not to
use less then 20 measurements per second.

(a) Underfitting. (b) Good fit. (c) Overfitting.

Figure 4.9: Performance plots of a underfitting, good fitting and overfitting network. Time interval of 4
seconds. 25 hidden neurons and 16 measurements per second.

30

Chapter 5

Conclusion

The main question of this thesis was: Is it possible to detect a cut-in by the use of a
neural network? That question is easily answered. Yes it is possible to detect a cut-in
by the use of a neural network. But what are the optimal conditions to gain the best
performance?

To train this neural network, the input variables are to be determined. Four parameters
are chosen to be used as input variables. First, the lateral position of the car making a
cut-in with regard to the road. Second, the lateral velocity of the car making a cut-in
with regard to the road. Third, the lane width of the lane the car making a cut-in was
driving on. As last, the angle of the car making a cut-in with regard to the road. The
sample frequency of these parameters is 40 samples per second. This can be reduced to
20 samples per seconds without influencing the performance of the neural network.

The detection of the cut-in is most useful when it is detected before it actually happened.
The minimal requirement is an time interval of 4 seconds, ending when the car making
the cut-in crosses the lane marker. When this requirement is used to train a neural
network, it can reach a performance of 90.5%. This means that 90.5% of test samples
are correctly identified as a cut-in or a non-cut-in. The second time interval tested is 3
seconds, ending one second before the car making the cut-in crosses the lane marker. A
network trained with this time interval performs really poorly. The network reaches a
performance of 57.1%. This is a useless result. The last interval tested is 3.5 seconds,
ending half a second before the car making the cut-in crosses the lane marker. A neural
network provided with this time interval can reach a performance of 81.0%. This is an
acceptable result. Depending on the preference, one could choose the time interval of 4
or 3.5 seconds. If a secure detection is chosen to be more important, it is wise to choose
the time interval of 4 seconds. If a fast detection is chosen, one could choose the time
interval of 3.5 seconds.

There are a lot of ways to minimize the cost function of a neural network. The best ways
to train this specific neural network, is using the Levenberg-Marquardt backpropagation
algorithm to minimize the Sum of Squared Errors used as a cost function.

31

Chapter 6

Discussion and Recommendations

There still are a lot of features undiscussed. For example, are these the only parameters
playing a role in the detection of a cut-in? Or, what is the importance of the number
of training samples? There are two important reasons why these questions are not an-
swered. The first and most important reasons is shortage of time. Because of a delay
at the beginning of this graduation project, there are subjects left uninvestigated. The
second reasons is a shortage of cut-in examples. There where only 70 examples of a
cut-in available that where already manually obtained and ready to be used as cut-in
examples. To increase this number, would be very time consuming and the decision is
made to focus on the already existing examples.

So, a few recommendations to take into account when further research in this field is
performed.

Figure 6.1: Def-
inition of longitu-
dinal distances be-
tween cars.

- Examining the influence of the number of training exam-
ples could be valuable. To obtain these extra training ex-
amples, cut-ins have to be detected manually. A algorithm
to detect these cut-ins can be used, but the video’s cor-
responding to the logfiles where these cut-ins are detected
have to watched to be 100% sure that this cut-ins actu-
ally are cut-ins. Providing the network with False Posi-
tives could decrease the performance of the network drasti-
cally.

- Other parameters than the parameters already used could be the
longitudinal distance between cars. In figure 6.1 different longitudi-
nal differences are defined. The red vehicle is the host vehicle. When
the longitudinal difference x1 becomes too small, changes are that
vehicle A is going to make a cut-in. When distance x2 becomes too
small, changes are that vehicle B is going to make a cut-in. When
distance x3 is too small, the probability that a car is going to make
a cut-in right in front of the vehicle becomes very small. However,
this information can only be used as input parameters when this sit-
uations occur often enough in the set of cut-ins. When this is not

32

the case, as it was in the Kiel Kassel logfiles, the neural network would be provided
with random information and this could decrease the performance of the neural network.

- An important part of the detection of the cut-in is the time interval. In this thesis
the results are discussed based on a manually adapted time interval. An other way to
get information about the time interval the network needs to recognize a cut-in could
be to increase the input. Instead of one output, stating if the training sample was a
cut-in or a non-cut-in, there could be different outputs for different time periods. The
neural network will give an output depending on the moment the cut-in was recognized.
This is an way to get more insight about the time interval the neural network needs to
recognize a cut-in.

33

Bibliography

[1] Mathworks Documentation: plotconfusion. http://nl.mathworks.com/help/

nnet/ref/plotconfusion.html. Accessed: August 2016.

[2] Mathworks Documentation: plotperform. http://nl.mathworks.com/help/nnet/
ref/plotperform.html#zmw57dd0e24399. Accessed: August 2016.

[3] How many hidden layers should I use? http://www.faqs.org/faqs/ai-faq/

neural-nets/part3/section-9.html, March 2014. Accessed: August 2016.

[4] How many hidden units should I use? http://www.faqs.org/faqs/ai-faq/

neural-nets/part3/section-10.html, March 2014. Accessed: August 2016.

[5] A Neural Network in 13 lines of Python (Part 2- Gradient Descent). http://

iamtrask.github.io/2015/07/27/python-network-part2/, January 2016. Ac-
cessed: August 2016.

[6] E-mail conversation with Magnus F. Nilsson, August 2016.

[7] Personal conversation with M. Ali and D. Jaller, August 2016.

[8] Henri P. Gavin. The Levenberg-Marquardt method for nonlinear leas squares curve-
fitting problems. may 2016.

[9] Kevin Gurney. An introduction to Neural Networks. Number 0-203-45151-1. UCL
Press, 1997.

[10] O.Tingleff K. Madsen, H.B. Nielsen. Methods for non-linear least squares problems.
(2nd edition), april 2004.

[11] Laura Mauri Kelly H. Zou, A. James O’Malley. Receiver-Operating Characteristic
Analysis for Evaluating Diagnostic Tests and Predictive Models. 2007.

[12] Manolis I. A. Lourakis. A Brief Description of the Levenberg-Marquardt Algorithm
Implemented. Fabruary 2005.

[13] Andrew Ng. Machine learning, Gradient Descent. Stanford University Course.

[14] Andrew Ng. Machine learning, Gradient Descent for Linear Regression. Stanford
University Course.

34

[15] Michael Nielsen. Neural Networks and Deep Learning. http://

neuralnetworksanddeeplearning.com/chap1.html, January 2016. Accessed:
August 2016.

[16] David M.W. Powers. Evaluation: From Precision, Recall and F-Factor to ROC,
informedness, Markedness & Correlation. 2007.

[17] Lutz Prechelt. Early Stopping, but when?

[18] Ananth Ranganathan. The Levenberg-Marquardt Algorithm. June 2004.

[19] Ben Krose & Patrick van der Smagt.

35

Appendices

36

Appendix A

Levenberg-Marquardt derivation

To use the Levenberg-Marquardt backpropogation algorithm, a value for λ has to be
found. An derivation for the step between equation 3.15 and equation 3.16 in chapter
3.5.2 can be found in this appendix. Equation 3.15 is:

C(θ − λ) ≈
n∑
i=1

(
y(xi)− a(xi, θ)− Ji,jλ

)2
. (A.1)

The λ that minimizes this equation can be found by rewriting equation A.1 to the vector
notation and set the derivative to zero. Write to the vector notation:

C(θ − λ) ≈ ‖y − a(θ,xi)− Jλ‖2 (A.2)

Which can be rewritten to:

(yT − a(θ,xi)− Jλ)T(y − a(θ,xi)− Jλ) (A.3)

With the use of the mathematical rules of the transposed matrix this leads to:(
y − a(θ,xi)

)T(
y − a(θ,xi)

)
−
(
y − a(θ,xi)

)T
Jλ−

(
Jλ
)T(

y − a(θ,xi)
)

+ λTJTJλ (A.4)

Which can be rewritten to:(
y − a(θ,xi)

)T(
y − a(θ,xi)

)
− 2
(
y − a(θ,xi)

)T
Jλ− λTJTJλ (A.5)

Set the derivative of C(θ + λ) with regard to λ to zero:

−2
(
y − a(θ,xi)

)T
JλT

(
JTJ + JJT

)
= 0 (A.6)

Which can be rewritten to become equation 3.16 in chapter 3.5.2.

=
(
JTJ

)
λ = JT

[
y − a(θ,xi)

]
. (A.7)

37

Appendix B

Matlab code used to create training
and target data

1 c l e a r ; c l c ;
2

3 %Informat ion about the cut in (time , ob j e c t number , number o f the data ,
. .)

4 cutInDataInformation=x l s r e ad (’C:\work\ cut in d e t e c t i o n \ c u t i n l o g s \
data Kie l Kas s e l mat l ab . x l sx ’ , 1) ;

5

6 %path o f the logdata
7 Path = ’C:\work\ cut in d e t e c t i o n \ c u t i n l o g s \K i e l K a s s e l \ roades t imat ion ’ ;
8 f i l e P a t t e r n = f u l l f i l e (Path , ’ CADS4 OTB882 20150112 104254 ∗ Replay . mat ’)

;
9 matFi les = d i r (f i l e P a t t e r n) ;

10

11

12 %s e l e c t data f i l e s where a cut in occure s and s e l e c t cut in t a r g e t .
13 nbrOfSamples = s i z e (cutInDataInformation , 1) ;
14 %number o f t r a i n i n g samples
15 timeSpan = 4 ;
16 %seconds be f o r e the car c r o s s e s the lane marker
17 timeSpanBeforeCutIn = 0 . 5 ;
18 %seconds subs t rac t ed be f o r e the car c r o s s e s the lane marker
19 samplingFreq = 40 ;
20 %samples per second
21 rowsForLaneWidth = 1 ;
22 %number o f inputs f o r rowwidth
23 endLatPos = (timeSpan−timeSpanBeforeCutIn) ∗ samplingFreq +1;
24 %point in matrix l a t pos ends
25 beginLatVel = (timeSpan−timeSpanBeforeCutIn) ∗ samplingFreq +1;
26 %point in matrix l a t v e l beg ins
27 endLatVel = 2∗ ((timeSpan−timeSpanBeforeCutIn) ∗ samplingFreq) +1;
28 %point in matrix l a t v e l ends
29 beginCarAng = 2∗ ((timeSpan−timeSpanBeforeCutIn) ∗ samplingFreq) +1;
30 %point in matrix the ang le o f the car beg ins
31 endCarAng = 3∗ ((timeSpan−timeSpanBeforeCutIn) ∗ samplingFreq) +1;
32 %point in matrix the ang le o f the car ends
33 beginrowWidth = 3∗ ((timeSpan−timeSpanBeforeCutIn) ∗ samplingFreq)+1+

rowsForLaneWidth ;
34 %point in matrix f o r rowwidth
35

36

37 InputMatrix = ze ro s ((3∗ ((timeSpan−timeSpanBeforeCutIn) ∗ samplingFreq)+1+
rowsForLaneWidth) , nbrOfSamples ∗2) ;

38

38

39 f o r k = 1 : l ength (matFi les)
40

41 i f any (abs (k−cutInDataInformation (: , 1))<1e−10) ;
42

43 %empty
44

45 e l s e
46

47 cont inue
48

49 end
50 matFilename = f u l l f i l e (Path , matFi les (k) . name) ;
51 cutInData = load (matFilename) ;
52 %load data that conta in s a cut in
53

54

55 indexOfObjectNumbers =f i n d (˜ (cutInDataInformation (: , 1) − k)) ;
56 %s e l e c t car making the cut in
57 f o r objIndex = indexOfObjectNumbers (1) : indexOfObjectNumbers (end)
58 %takes care o f one ob j e c t that makes more than one cut in
59

60

61 objNumber = cutInDataInformation (objIndex , 6) ;
62

63

64 LatPosObject = cutInData . ReplayOutputLog . Obj . In f o .
DstLatFromMidOfLaneSelf (: , objNumber) ;

65 %l a t e r a l p o s i t i o n o f the car making a cut in
66 LatVelObject = cutInData . ReplayOutputLog . Obj . Estimn . VLat (: ,

objNumber) ;
67 %l a t e r a l v e l o c i t y o f the car making a cut in
68 time = cutInData . LogTime . hostlogTime ;
69 LaneWidth = cutInData . ReplayOutputLog . RoadPpty . LaneWidth ;
70 %lanewidth o f ego lane
71 l o n g P o s i t i o n s = cutInData . ReplayOutputLog . Obj . Estimn . PosnLgt (: ,

objNumber) ;
72 %l o n g i t u d i n a l p o s i t i o n o f car making a cut in
73 roadAngle = calculateRoadAngle (cutInData . ReplayOutputLog . RoadPpty

, l o n g P o s i t i o n s) ;
74 %angle o f the road (to h o s t v e h i c l e) at the p o s i t i o n o f the car

making a cut in
75 carAngle = cutInData . ReplayOutputLog . Obj . Estimn . AgDir (: ,

objNumber) ;
76 %angle o f the car (to host v e h i c l e) making a cut in
77 carAngleadapted = carAngle − roadAngle ;
78 %angle o f the car (to the road) making a cut in
79

80 objTime = cutInDataInformation (objIndex , 4) ;
81 %time at the middle o f the cut in
82 [roundedTimeDiff , roundTimeIndex] = min (abs (time−objTime)) ;
83 %time where the car i s c r o s s i n g the lanemarker
84

85

86 durationOfCutIn = (roundTimeIndex−(timeSpan∗ samplingFreq)) : (
roundTimeIndex−(timeSpanBeforeCutIn∗ samplingFreq)) ;

%durat ion o f the cut in , seconds be f o r e andthe
car c r o s s e s the l i n e

87

88 %enough sampels at beg inning
89 i f roundTimeIndex > timeSpan∗ samplingFreq
90

91 InputMatrix (1 : endLatPos , objIndex) = LatPosObject (
durationOfCutIn) ;

92 %l a t e r a l p o s i t i o n in matrix
93 InputMatrix (beginLatVel : endLatVel , objIndex) = LatVelObject (

durationOfCutIn) ;
94 %l a t e r a l v e l o c i t y in matrix
95 InputMatrix (beginCarAng : endCarAng , objIndex) =

carAngleadapted (durationOfCutIn) ;
96 %Car ang le in matrix
97

98

99 % too c l o s e to the beginning , f i l l with f i r s t data po int
100 e l s e
101 numberOfPointsBefore = roundTimeIndex ;
102 %Number o f datapo int s be f o r e the car i s c r o s s i n g the

lanemarker
103 numberOfFirstElement = f i n d (durationOfCutIn >=0,1) ;
104 %f i r s t datapoint
105 tempLatPos = ones (numberOfFirstElement , 1) ∗LatPosObject

(10) ;
106 %vector f i l l e d f o r l a t p o s
107 tempLatVel = ones (numberOfFirstElement , 1) ∗LatVelObject

(10) ;
108 %vector f i l l e d f o r l a t v e l
109 tempCarAng = ones (numberOfFirstElement , 1) ∗ carAngleadapted

(10) ;
110 %vector f i l l e d f o r ca rang l e
111 mergedTempLatPos = [tempLatPos ; LatPosObject (1 :

numberOfPointsBefore−(samplingFreq∗ timeSpanBeforeCutIn
))] ;

112 %ve c to r s put toge the r l a t p o s
113 mergedTempLatVel = [tempLatVel ; LatVelObject (1 :

numberOfPointsBefore−(samplingFreq∗ timeSpanBeforeCutIn
))] ;

114 %ve c to r s put toge the r l a t v e l
115 mergedTempCarAngle = [tempCarAng ; carAngleadapted (1 :

numberOfPointsBefore−(samplingFreq∗ timeSpanBeforeCutIn
))] ;

116 %ve c to r s put toge the r ca rang l e
117 InputMatrix (1 : endLatPos , objIndex) = mergedTempLatPos ;
118 %l a t e r a l p o s i t i o n in matrix
119 InputMatrix (beginLatVel : endLatVel , objIndex) =

mergedTempLatVel ;
120 %l a t e r a l v e l o c i t y in matrix
121 InputMatrix (beginCarAng : endCarAng , objIndex) =

mergedTempCarAngle ;
122 %Car ang le in matrix
123

124 end
125 InputMatrix (beginrowWidth , objIndex) = LaneWidth (roundTimeIndex) ;
126 %lanewidth in matrix
127

128 end
129 end

130

131

132 %c r e a t e data that i s not a cut in
133 f o r k = 1 : nbrOfSamples
134

135 i f k ˜= 34 %something i s wrong with f i l e 34
136 %empty
137 e l s e
138 cont inue
139 end
140

141

142 matFilename = f u l l f i l e (Path , matFi les (k) . name) ;
143 cutInData = load (matFilename) ;

%load data
144

145 %s e l e c t car on the l e f t that s tay s the re f o r at l e a s t 4 seconds
146 c a r s L e f t = cutInData . ReplayOutputLog . AccTgtAdjLLeft . Idn ;
147 [f r eq , objNumberCarLeft]=max(h i s t c (ca r sLe f t , 1 : 3 2)) ;
148 carLe f t Index = f i n d (c a r s L e f t == objNumberCarLeft , (timeSpan−

timeSpanBeforeCutIn) ∗ samplingFreq +1, ’ f i r s t ’) ;
149

150

151 %no car that s tays f o r 4 seconds l e f t , look on the r i g h t
152 i f f r e q < timeSpan∗ samplingFreq +1;
153 carsRight = cutInData . ReplayOutputLog . AccTgtAdjLRight . Idn ;
154 [f r eq , objNumberCarRight]=max(h i s t c (carsRight , 1 : 3 2)) ;
155 carRightIndex = f i n d (carsRight == objNumberCarRight , (timeSpan

−timeSpanBeforeCutIn) ∗ samplingFreq +1, ’ f i r s t ’) ;
156

157

158 %when there i s no car on the l e f t and r ight , f i l l with zero ’ s
159 i f f r e q < (timeSpan−timeSpanBeforeCutIn) ∗ samplingFreq +1;
160 f i l l e d w i t h z e r o = ze ro s ((timeSpan−timeSpanBeforeCutIn) ∗

samplingFreq +1, 1) ;
161 InputMatrix (1 : endLatPos , k+nbrOfSamples) = f i l l e d w i t h z e r o ;
162

163 e l s e
164

165 latPosCarRight = cutInData . ReplayOutputLog . Obj . In f o .
DstLatFromMidOfLaneSelf (carRightIndex , objNumberCarRight) ;

166 %Late ra l p o s i t i o n o f the car on the r i g h t
167 latVelCarRight = cutInData . ReplayOutputLog . Obj . Estimn . VLat (

carRightIndex , objNumberCarRight) ;
168 %Late ra l v e l o c i t y on the car on the r i g h t
169 LaneWidthCarRight = cutInData . ReplayOutputLog . RoadPpty .

LaneWidth ;
170 %lanewidth o f ego lane
171 l ongPos i t i on sR ight = cutInData . ReplayOutputLog . Obj . Estimn .

PosnLgt (: , objNumberCarRight) ;
172 %l o n g i t u d i n a l p o s i t i o n o f car making a cut in
173 roadAngleCarRight = calculateRoadAngle (cutInData .

ReplayOutputLog . RoadPpty , l ongPos i t i on sR ight) ;
174 %angle o f the road (to h o s t v e h i c l e) at the p o s i t i o n o f the

car making a cut in
175 carAngleCarRight = cutInData . ReplayOutputLog . Obj . Estimn . AgDir

(: , objNumberCarRight) ;

176 %angle o f the car (to host v e h i c l e) making a cut in
177 carAngleadaptedCarRight = carAngleCarRight −

roadAngleCarRight ;
178 %angle o f the car (to the road) making a cut in
179

180

181 InputMatrix (1 : endLatPos , k+nbrOfSamples) = latPosCarRight ;
182 InputMatrix (beginLatVel : endLatVel , k+nbrOfSamples) =

latVelCarRight ;
183 InputMatrix (beginCarAng : endCarAng , k+nbrOfSamples) =

carAngleadaptedCarRight (carRightIndex) ;
184 InputMatrix (beginrowWidth , k+nbrOfSamples) =

LaneWidthCarRight (1000) ;
185

186

187

188 end
189

190 e l s e
191 l a tPosCarLef t = cutInData . ReplayOutputLog . Obj . In f o .

DstLatFromMidOfLaneSelf (carLef t Index , objNumberCarLeft) ;
192 %Late ra l p o s i t i o n o f the car on the l e f t
193 l a tVe lCarLe f t = cutInData . ReplayOutputLog . Obj . Estimn . VLat (

carLef t Index , objNumberCarLeft) ;
194 %Late ra l v e l o c i t y on the car on the l e f t
195 LaneWidthCarLeft = cutInData . ReplayOutputLog . RoadPpty .

LaneWidth ;
196 %lanewidth o f ego lane
197 l o n g P o s i t i o n s L e f t = cutInData . ReplayOutputLog . Obj . Estimn .

PosnLgt (: , objNumberCarLeft) ;
198 %l o n g i t u d i n a l p o s i t i o n o f car making a cut in
199 roadAngleCarLeft = calculateRoadAngle (cutInData .

ReplayOutputLog . RoadPpty , l o n g P o s i t i o n s L e f t) ;
200 %angle o f the road (to h o s t v e h i c l e) at the p o s i t i o n o f the

car making a cut in
201 carAngleCarLeft= cutInData . ReplayOutputLog . Obj . Estimn . AgDir

(: , objNumberCarLeft) ;
202 %angle o f the car (to host v e h i c l e) making a cut in
203 carAngleadaptedCarLeft = carAngleCarLeft − roadAngleCarLeft ;
204 %angle o f the car (to the road) making a cut in
205

206

207 InputMatrix (1 : endLatPos , k+nbrOfSamples) = latPosCarLef t ;
208 InputMatrix (beginLatVel : endLatVel , k+nbrOfSamples) =

latVe lCarLe f t ;
209 InputMatrix (beginCarAng : endCarAng , k+nbrOfSamples) =

carAngleadaptedCarLeft (ca rLe f t Index) ;
210 InputMatrix (beginrowWidth , k+nbrOfSamples) = LaneWidthCarLeft

(1000) ;
211

212 end
213

214 end
215

216

217

218

219

220 %take only every 4 th sample o f the l a t e r a l v e l o c i t y , the l a t e r a l
p o s i t i o n and the ang le o f the car .

221 InputMatrixSmall = InputMatrix (1 : 4 : endLatVel , :) ;
222

223

224

225

226 %c r e a t e t a r g e t data
227 t a r g e td a ta c u t i n = ones (1 , nbrOfSamples) ;
228 ta rge tdatanocut in = ze ro s (1 , nbrOfSamples) ;
229 t a r g e t d a t a t o t a l = [t a rg e td a t a c u t i n , t a rge tdatanocut in] ;

The function used to calculate the road angle.

1 f unc t i on [roadAngle] = . . .
2 ca lculateRoadAngle (RoadPpty , l o n g P o s i t i o n s) %#codegen
3 % RGF5 calculateRoadCoordinates c a l c u l a t e s the coo rd ina t e s f o r the road
4 % at a s p e c i f i c po int . Expressed in the ego v e h i c l e coo rd inate system .
5 %
6 % Inputs :
7 % − StateVector s : The s t a t e ve c t o r s
8 %
9 % − l ongPos i t i on : Long i tud ina l p o s i t i o n to eva luate at

10 %
11 % Outputs :
12 % − StateVector s : Only used as output to c r e a t e po in t e r in c−code
13 %
14 % − roadCoordinates : Coordinates o f the road at the l o n g i t u d i n a l

p o s i t i o n
15 %
16 % − roadAngle : Heading ang le o f the road at the l o n g i t u d i n a l p o s i t i o n
17 %
18 % − roadCurvature : Curvature o f the road at the l o n g i t u d i n a l p o s i t i o n
19 %
20

21 % Update in fo rmat ion :
22 % −−−−−−−−−−−−−−−−−−−
23 % Created by : Alexander Larsson [CDSID a l a r s 1 1] , dept . 96440
24 % Created : 2015−02−13
25 % Last changed by : Sanne Geboers
26 % Last update : 2016−08−30
27

28 % Copyright Volvo Car Corporat ion .
29 roadAngle = ze ro s (l ength (RoadPpty . Of fsLat) , 1) ;
30 f o r iSample = 1 : l ength (RoadPpty . Of fsLat)
31

32

33 l ongPos i t i on = l o n g P o s i t i o n s (iSample) ;
34

35 segmentLengths = RoadPpty . SegLen (iSample , :) ;
36

37 i f l ongPos i t i on >= segmentLengths (1)+segmentLengths (2)
38 iSegment = 3 ;

39 e l s e i f l ongPos i t i on >= segmentLengths (1)
40 iSegment = 2 ;
41 e l s e
42 iSegment = 1 ;
43 end
44

45 % Decide in wich segment the po int i s in .
46

47 e ta x1 = segmentLengths (1) ;
48 e ta x2 = segmentLengths (2) ;
49

50 p s i r e l = RoadPpty . AgDir (iSample) ;
51 c0 = RoadPpty . Crvt (iSample) ;
52 c1 1 = RoadPpty . CrvtRate (iSample , 1) ;
53 c1 2 = RoadPpty . CrvtRate (iSample , 2) ;
54 c1 3 = RoadPpty . CrvtRate (iSample , 3) ;
55

56 i f iSegment == 1
57 %Adjust the l ength o f the segment which the ob j e c t belong too
58 eta xObj = longPos i t i on ;
59

60 roadAngle (iSample) = atan(− p s i r e l + 2∗(c0 /2) ∗ eta xObj + 3∗(c1 1 /6) ∗
eta xObj ∗ eta xObj) ;

61

62

63 e l s e i f iSegment == 2
64 %Adjust the l ength o f the segment which the ob j e c t belong too
65 eta xObj = longPos i t i on − segmentLengths (1) ;
66

67 roadAngle (iSample) = atan(− p s i r e l + c0 ∗(e ta x1+eta xObj) + c1 1
∗ ((1/2) ∗ e ta x1 ∗ e ta x1+eta x1 ∗ eta xObj) + c1 2 ∗ ((1/2) ∗ eta xObj ∗
eta xObj)) ;

68

69

70 e l s e i f iSegment == 3
71 %Adjust the l ength o f the segment which the ob j e c t belong too
72 eta xObj = longPos i t i on − sum(segmentLengths (1 : 2)) ;
73

74 roadAngle (iSample) = atan(− p s i r e l + c0∗ e ta x1 + c1 1 ∗ e ta x1 ∗ e ta x1 /2
+ (c0+c1 1 ∗ e ta x1) ∗ e ta x2 + c1 2 ∗ e ta x2 ∗ e ta x2 /2 + . . .

75 (c0+c1 1 ∗ e ta x1+c1 2 ∗ e ta x2) ∗ eta xObj + c1 3 ∗
eta xObj ∗ eta xObj /2) ;

76

77

78 end
79

80

81 end
82 end

Appendix C

Results for the evaluation of the
time interval

C.1 Time interval of 4 seconds

The training input starts 4 seconds before the car crosses the lane marker and stops at
the moment the car crosses the lane marker. 12 hidden neurons are used.

Figure C.1: All confusion matrix.
Figure C.2: Performance plot.

45

C.2 Time interval of 3 seconds

The training input starts 4 seconds before the car crosses the lane marker and stops one
second before the car crosses the lane marker. 40 hidden neurons are used.

Figure C.3: All confusion matrix. Figure C.4: Performance plot.

C.3 Time interval of 3.5 seconds

The training input starts 4 seconds before the car crosses the lane marker and stops half
a second before the car crosses the lane marker. 30 hidden neurons are used.

Figure C.5: All confusion matrix. Figure C.6: Performance plot.

Appendix D

Extensive Job Description

In 2017 Volvo will deliver 100 self-driving cars as part of the Drive Me project. These
cars will be able to drive autonomously on the ring road of Gothenburg, without requir-
ing any driver supervision. To realize this project, the cars need different algorithms to
recognize, and be able to react to, different traffic situations. One of these traffic situa-
tions is a car making a cut-in. A cut-in is a car making a lane change into the lane the
host-vehicle is driving on, in front of the host vehicle. The host vehicle is the self-driving
car in question. For the host-vehicle to react on a cut-in, it first needs to detect the cut-in.

To accomplish this, a neural network will be used. A neural network is a network with
the ability to learn without being explicitly programmed. The assignment requires a lot
of background information about neural networks. Prior to the assignment there will
be an elaborate literature research. The rest of the knowledge will be acquired whilst
working on the assignment.

The neural network has to be provided with input data, this data has to be generated.
When the input data is generated the neural network can be trained an evaluated. The
optimal conditions to train the neural network will be examined. This research will be
presented in a thesis.

47

