
Application of an automated sensor to segment alignment method for IMU-based kinematical joint
angle estimation during treadmill cycling | A.P. van der Zwet

A.P. van der Zwet Page | 0

A.P. van der Zwet
MENS EN TECHNIEK | HAAGSE HOGESCHOOL

Application of an automated
sensor to segment alignment
method for IMU-based
kinematical joint angle
estimation during treadmill
cycling
JUNE 2017

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 1

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 2

Application of an
automated sensor to
segment alignment
method for IMU-
based kinematical
joint angle estimation
during treadmill
cycling

Author: A.P. van der Zwet

Student number: 12104582

Study: Human Kinetic Technology

University: The Hague University of Applied
Sciences

Date: 14th June 2017

First supervisor: A. Lagerberg

Second supervisor: H. Faber

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 3

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 4

Preface

Being a professional cyclist for ten years, I know how big the impact of innovations are to the
performance and results of the athletes. These innovations are not only found in the gear that
they use, but also in the types of data about the athlete that is available to the coaches. A
personal vision and goal is to make live kinematical data, online available to coaches, athletes,
and media very soon. Hopefully the implementation of the suggested algorithm for sensor to
segment alignment can be used in future movement analyses during cycling on the open road.

This work has been created in context of graduating as Human Kinetic technologist at the
Hague University of Applied sciences, it is written for everyone who is connected to The Hague
University and anybody who is interested in motion analysis with IMU’s and in undertaking
the challenges of sensor to segment alignment. This work and provided codes may be used by
all who want to implement the algorithm in future studies.

Acknowledgments go to the teachers of Human Kinetic Technology, with special thanks to;
Herre Faber for his help in implementing the algorithm, Aad Lagerberg as my project
supervisor, and Mark Schrauwen for his support in providing the IMU hardware.

Enjoy reading!

Kind regards,

Arno van der Zwet
Graduate student Human Kinetic Technology

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 5

Word Definition

Segment In this work a segment denotes an limb of the human body or a physical
element which rotates around a certain axis, these can be hinge or
spherical

White noise Small variations in a signal, most occurring at analog sensors which can
be caused by for instance magnetic fields

Functional calibration Calibration process with specific or arbitrary motions which are used to
align the sensors to the segments.

Anatomical frame Anatomical reference, determined from anatomical landmarks

Neural Network A programming paradigm which enables a computer to learn from
observational data (machine learning/artificial intelligence)

Kinematic constrains Constraints between rigid bodies that result in the decrease of the
degrees of freedom of rigid body system.

Azimuth angle An angle, measured from the x-axis in the x-y plane in this work denoted
as phi (ⱷ)

Zenith angle An angle, measured from the z-axis (also known as inclination angle), in
this work denoted as theta (θ).

Underdetermined
system

The number of unknown variables is higher than the number of
equations

Recording angle The angle on which the camera is positioned to an object

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 6

Symbol Definition

𝐽𝑖 Unit joint axis vector 𝐽, for each sensor 𝑖 = 1,2

𝑔𝑖(𝑡) Angular velocity of sensor 𝑖 at time 𝑡

𝑅𝑥(𝛼) Calculated rotation matrix around the x-axis,

𝑅𝑦(𝛽) Calculated rotation matrix around the y-axis,

𝑅𝑧(𝛾) Calculated rotation matrix around the z-axis,

∙ Dot product of two vectors

× Cross product of two vectors

𝑅𝑁×1 Column vector with the amount of rows (N)

|… … …|𝑇 Transposed matrix

‖ ‖𝐸 Euclidean norm

∀ At all times / for all data points

𝑠𝑖𝑔𝑛(𝑥) Function that extracts the sign of a real number

𝑑𝑦

𝑑𝑥

Derivative

𝜕𝑦

𝜕𝑥

Partial derivative

Notation types used for referencing

(1) Reference to Equations

(100) Reference to a code line number in the written script, the code can be found in
the appendix or software

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 7

Kinematical joint analysis during road cycling is a new trend. Reviewing the methods for 2D
and 3D lower limb kinematical research, the sensor to segment alignment appeared to be the
most challenging part due to unknown orientation with respect to the anatomical joints. A
methodology that is suitable for future cycling kinematical research under match conditions,
needs to be easy to use and fast. A method suggested by Seel et al. (2012) was found that uses
a Newton/Gauss optimization protocol for sensor to segment alignment with arbitrary
calibration motions. In this thesis only the methodology for the 2D hinge joint is examined,
implemented and tested.

For the 2D joint kinematics, only the IMU’s gyroscope data was used. The accelerometer data
was used for synchronization. Magnetometers were excluded due to the chance magnetic
field disturbances. In total, nine measurement were performed using two IMU’s. Seven tests
were used to test the alignment method using a self-made hinge joint with two segments. This
joint-model was also used in the eighth test, which was filmed to test the accuracy of the
angular rotation of a mechanical hinge joint. In the ninth and final test, angular joint rotations
of a human knee were measured during treadmill cycling and compared to a video reference.

In all tests the Newton/Gauss optimization functioned accordingly and succeeded to find the
joint axis direction. For the first six tests, an average of 15 iterations were needed for finding
direction the joint axis. The angular rotation test of the mechanical joint showed a root mean
squared error (RMSE) of 1.69o and the human knee from the final test a RMSE of 4.3o, which
are slightly higher than the results from Seel. The only function from the method that did not
reach the hypothesis was the automatic function to determine if the z-axes of the sensors
point in the same global direction (sign of the joint axis).

The method shows promising results regarding the estimation of the joint axis direction and
the measured angles compared to the video reference. The results may be improved by adding
a Kalman filter to remove any drift and white noise and using an optitrack system to set as
golden standard instead of 2D video. The function to determine the sign of the joint axis
direction should be reviewed in future works.

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 8

Bewegingsanalyses tijdens het fietsen op de openbare weg wordt een nieuwe trend. Tijdens
de onderzoeksfase naar toepasselijke methodes, bleek het probleem van de onbekende
plaatsing van de sensoren t.o.v. de anatomische assen een grote uitdaging. Na een uitgebreide
literatuurstudie zijn er een aantal methodes gevonden die dit oplossen voor zowel 2D als 3D
analyses. Eén methode van Seel et al. (2012) differentieerde zich van de andere studies, omdat
zijn methode door een functionele kalibratie met willekeurige bewegingen de richting van een
gewrichts-as kon vinden. De combinatie van een eenvoudige en snelle kalibratie in de praktijk
zorgde voor het besluit het 2D gedeelte van de methode te analyseren, implementeren en te
testen.

Tijdens deze studie, de accelerometer data werd alleen gebruikt voor synchronisatie en de
rest van de methode maakt gebruik van alleen de gyroscoop data. In totaal zin er negen tests
gedaan met twee IMU’s. In de eerste zeven tests, werd de kalibratie en optimalisatie methode
getest met een zelfgemaakt scharniergewricht. Dit scharniergewicht werd ook gebruikt voor
het genereren van hoeken, waar na de kalibratie de berekende hoeken werden vergeleken
met hoeken uit de video van de gefilmde test. Als laatste werd de methode getest op een
menselijke knie tijdens het fietsen op een gefixeerde fiets.

Bij alle testen werden de richtingen van de gewrichtsassen succesvol gevonden door het
Newton/Gauss algoritme. Tijdens de eerste zes testen waren er gemiddeld 15 berekeningen
nodig om de richting van de gewrichts-as te bepalen. De bepaalde hoekverdraaiing van het
mechanische scharniergewricht uit test acht had een RMSE van 1.69o. De hoekverdraaiing van
het menselijke kniegewricht resulteerde in een RMSE van 4.3o vergeleken met de gouden
standaard (video). De afwijkingen bleken iets hoger te zijn dan in het artikel van Seel. Het enige
wat in het algoritme niet bleek te werken was de functie voor het automatisch bepalen of de
z-assen van de sensoren in dezelfde richting gemonteerd zijn (sign/teken van de richting van
de gewrichts-as).

De resultaten van het onderzoek laten zien dat er potentie in het algoritme zit voor het vinden
van de richting van de gewrichts-as. De resultaten zouden kunnen verbeteren met het
toevoegen van een Kalman-filter voor het verwijderen van drift en ruis, of door een andere
gouden standaard te kiezen zoals optitrack in plaats van Kinovea. De sign functie voor het
zoeken naar het verschil in richting van de bepaalde gewrichtsassen zal in een volgende studie
herzien moeten worden.

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 9

Nomenclature .. 5

Mathematical index ... 6

Summary ... 7

Samenvatting ... 8

1. Introduction ... 11

Kinematical research on sensor to segment alignment .. 12

2. Methods .. 14

2.1 Mathematical method ... 15

Seel’s algorithm ... 15

2.1.1 Algorithm implementation ... 16

2.1.2 Checking the sign of 𝐽𝑖 (1,2) .. 18

2.1.3 Angle calculation .. 18

2.1.3.1 Angular velocity .. 18

2.1.3.2 Angular rotation ... 18

2.2 Experimental setup ... 19

2.2.1 Hardware .. 19

2.2.2 Software ... 20

2.2.3 Data synchronization .. 24

2.2.4 Experiments .. 25

2.2.4.1 Calibration test (optimization) ... 25

2.2.4.2 Angular rotation test (mechanical joint IMU versus video) 27

2.2.4.3 Bike test (human knee IMU versus video) ... 28

2.5 Root mean squared error .. 28

3. Results ... 29

3.1 Calibration test results .. 29

3.2 Angular rotation results (mechanical joint IMU versus video) .. 31

3.3 Bike test results (human knee IMU versus video) ... 32

4. Discussion .. 33

5. Conclusion ... 34

Bibliography ... 35

Appendix 1, Mathematical method .. 38

1.1 Seel’s algorithm ... 38

1.2 Algorithm implementation .. 38

1.3 Checking the sign of 𝐽𝑖 (1,2) ... 41

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 10

1.4 Angle calculation ... 42

1.4.1 Total angular velocity ... 42

1.3.3 Total angular rotations ... 42

Appendix 2, Matlab (symbolic Jacobian of de/dx) .. 43

Appendix 3, Matlab program .. 44

3.1 SensorAlignmentHinge.m (main) .. 44

3.2 FindJ.m... 48

3.3 AngleG.m ... 50

Appendix 4, Python code .. 51

4.1 Introduction ... 51

Executable ... 51

4.2 Main.py .. 53

4.3 ThesisApp.py ... 60

4.4 Data.py .. 68

4.5 Calibration.py .. 71

4.6 Angle.py ... 74

Appendix 5, Hypothesis ... 75

Hypothesis calibration tests .. 75

Appendix 6, Results ... 76

6.1 Results calibration tests .. 76

6.2 Results angular rotation test ... 79

6.3 Results bike test .. 80

Appendix 7, Projectplanvoorstel ... 81

Appendix 8, Evaluation personal learning goals ... 76

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 11

Innovation in the sport of cycling are a trending topic; every year, cycling gear manufacturers
reveal their newest designs and materials. Also the market for sensory devices is innovating,
used by athletes and their coach’s sensors deliver more accurate, real-time data and in some
cases over great distances using 3G networks. In-field kinematic measurements using Internal

Measuring Units (IMU’s) are already performed in other
sports like alpine skiing1, but may also be beneficial to the
sports of cycling by for instance evaluating an athlete’s
position on the bike while turning into a corner.
Nowadays, motion analyses in cycling are mainly used for
optimizing the athlete’s position on the bike (figure 1)
with the use of optical motion capturing systems like
optitrack. These methods have one thing in common: they
are performed indoors in lab based setting2,3. The optical
motion capturing systems in lab based settings make
sense, due to the fact that most studies using IMU’s are
validated using the optical motion capturing systems as a
golden standard4, 5, 6, 7, 8. To execute kinematic motion
analyses during road cycling in the future, research is
needed to test the capabilities of IMU-based kinematic

motion measurements.

Kinematics between two IMU’s can be calculated with their
accelerations, angular velocity rates and magnetic field vectors. To
measure human body kinematic movements, IMU’s are placed onto
body-segments, to measure the movement between the global
coordinate system (CS) of these particular segments. For analyzing
kinematic movements of the shank relative to the thigh, two IMU’s
are required (figure 2).

Mounting two IMU’s onto body-segments does not fulfill all
requirements for performing accurate kinematical motion analyses.
The main problem in all analyses on kinematical joint estimation, is
the unknown orientation of the sensors with respect to the
anatomical segments. To find the exact mounting orientation with
respect to the anatomical segments, sensor to segment alignment is
required. The sensor to segment alignment is the most crucial part
of accurate kinematical joint analyses and many different methods

have been found to do so.

Figure 2, placement of the
IMU's on arbitrary positions,
the red-dotted line indicates
the knee angle and the
longitudinal axis of each
segment. Source of the
picture: 8

Figure 1, Fixed bike position for measuring
the cyclists kinematic movements with a
system from Retul.
Source: http://motionfit.net/bike-fit/

Figure 3, standard
coordinate system,
denoted in axes X,
Y, and Z.

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 12

Kinematical research on sensor to segment alignment

When using IMU’s, sensor to segment alignment is the most important challenge in
performing accurate and valid kinematical research, therefore literature was reviewed to
decide which method for sensor to segment alignment to use for this study. Only studies
considering the kinematics of the lower limb were reviewed.

There is a difference in methods used for 3D and 2D kinematical research. Most methods in
3D kinematical research use accelerometer, gyroscope, and magnetometer data. Methods in
2D kinematics only use accelerometer and gyroscope data. Depending on the method, only
accelerometer data9,10, gyroscope data11, or a combination of the two data-types12 were used.

3D sensor to segment alignment can either be done anatomical or functional. Anatomical
alignment was used in a study by Picerno et al., anatomical landmarks were used for sensor
to segment alignment, these landmarks were recorded using a magnetometer aided IMU
mounted on a pointing device. The research resulted in a RMSE of 1.9o, 2.8o, and 3.6o in the
sagittal, frontal and transverse plane13. Functional calibration has been used by O’ Donovan
et al. and Favre et al. and found a higher accuracy in the sagittal and frontal plane, but a bigger
deviation at the transverse plane compared to the anatomical approach6,14. Both anatomical
and functional approaches for sensor alignment are very time consuming or require
anatomical knowledge.

In 2D kinematical research, four different kind of methods for kinematic joint estimation have
been found15:

1. Comparing accelerations of the proximal and distal segments of the hinge joint

2. Comparing planar orientation of articulating segments

3. By prediction of neural networking16

4. By combining the first and second method12

All of the above methods have their own benefits and drawbacks. A study by Willemsen et al.
used only accelerometer data to calculate the sensor orientation manually, by using gravity
during a static stance phase and picture frames10. A similar approach was used by Dejnabadi
et al. where the shank was fixated during a calibration flexion of the thigh. This study showed
a very low RMSE of 1.3o with respect to the photogrammetry reference4.

Studies by Tong et al. used planar orientation of the articulating segments using single uniaxial
gyroscopes. The gyroscope drift was cancelled using kinematical reset, but still had a high
RMSE (6.42o) compared to the above accelerometer based studies11. The drift cancellation
from Tong was improved by Cooper, using a Kalman filter and obtained an accurate
measurement during gait walking (0.7o error)17. This shows the importance of the cancellation
of drift due to amplification after numerical integration15, 18. The sensor fusion drift
cancellation using the Kalman filter appeared to be popular because this was also used by
other studies7, 8, 15.

Findlow et al. introduced a new, deviant method by predicting angular rotation, this was done
using a regression algorithm on accelerometer and gyroscope data. They predicted an angle
with a deviation of 2.3o, but in one scenario a deviation of 7.8o degrees occurred16.

The latest methodology in 2D kinematic joint estimation was presented by Seel et al. This
study presented a method using both accelerometer and gyroscope data, which were used
for numerical differentiation of the angular velocity and an estimation of the joint center’s

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 13

acceleration. For the estimation, a Kalman filter was used to calculate the mediated average
between the flexion-extension angles of the knee. This resulted in a very accurate
measurement with a RMSE of less than one degree15,12.

Seel’s method was further examined during a following study, comparing gait analyses of a
test subject with one prosthetic, and one healthy leg. Again, the method showed very high
accuracy with a RMSE of <1o on the prosthesis and a 3o RMSE on the human leg, compared to
an optical motion measuring system.

Seel’s method stands out by the fact that the IMU’s can be mounted on arbitrary positions,
but still show high accuracy in the results, where other studies show a lower accuracy19. Also
the functional alignment of the sensors using arbitrary motions is beneficial. In other methods
an exact performance of a true sagittal motion is required15. Seel’s functional calibration is
preferred because this is less time consuming then the anatomical alignment procedure. The
algorithm can find the direction of the joint axis in < 20 iterations with N<<4 data points.
Another advantage is that the method does not rely on the use of magnetometers, which is
beneficial especially in clinical settings20.

The combination of the functional calibration and the accuracy of the 2D kinematical joint
analyses make Seel’s method favorable over the other methods which either require
anatomical knowledge or are time consuming.

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 14

In this chapter, the mathematical and experimental methods are described. In the
mathematical method, Seel’s algorithm for finding the direction of the joint axis is
mathematically explained. Methods for testing the programmed algorithm are explained in
the experimental methods (chapter 2.2.4).

Determination of the coordinate system and segments

To simplify the explanation of the
method used for calibration and
calculation of the angular rotation in
the knee joint, the global CS and
segments are determined. The knee
joint is approximated as hinge joint
with a maximum angular rotation of
180o. The ZJ-axis is the rotational joint
axis between the two articulating
segments, The X1,2-axis is the segment’s
longitudinal axis, both pointing in distal
direction. The Yi-axis is perpendicular to
the Z1,2- and X1,2-plane. The segment
numbers are determined from
proximal to distal, in this case: the thigh
denoted as segment 1 (S1), and the
shank as segment 2 (S2), an overview of
the segments and their CS’s are shown
in figure 4.

ZJ

Z2

Y2 X2
S2

Z1
X1

Y1 S1

Figure 4, determined global coordinate system, the white arrows
represents the anatomical/global CS’s of each segment. Zj, is the
rotational axis between the two articulating segments.
Source of the knee picture: http://www.ambrace.eu/

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 15

2.1 Mathematical method

Seel’s algorithm for sensor to segment alignment method contains two parts:

 Finding the joint axis direction (2D / hinge joint)

 Finding the joint position coordinates (3D / spheroidal joint)

In this work, only Seel’s method for finding the joint axis direction is used to analyze 2D
kinematical movements of the knee during cycling. The joint axis direction will be estimated

by the use of gyroscope data only (𝑔𝑖(𝑖 = 1,2)). The algorithm for the joint position
coordinates is used for spheroidal joints and requires additionally accelerometer data, but this
method is excluded from this work. The algorithm for the joint axis direction is hereafter
mathematically explained.

The extended version of this mathematical method, with additional equations and references
to the Matlab script that is used for testing, can be found in appendix 1. The Matlab script can
be found in appendix 2 and 3, and it’s workflow plus detailed information is described in
chapter 2.2.2.3.

Seel’s algorithm

During the calibration, the direction of the joint axis (Zj) is
estimated. After mounting the IMU’s at arbitrary positions, the
local CS’s of the sensors (figure 5) are not aligned with the
segments CS (page 13, figure 4). To denote both local CS’s of
IMU1 and IMU2 into the global CS, the gyroscope data from
each sensor needs to be corrected with a unit vector called J.
Each sensor has its own unit joint axis vector, hereafter called

𝐽1̅ for IMU1 on segment 1, and 𝐽2̅ for UMU2 on segment 2.

The key to Seel’s method, is that it uses the geometrical fact that 𝑔1(𝑡) and 𝑔2(𝑡), only differ
by a rotation matrix (time variant) and the joint angle velocity. Therefore, their projections
into the joint plane (parallel to the Zj axis) have the same lengths for each moment in time.
This results in equation (1).

‖𝑔1(𝑡) × 𝐽1‖
𝐸

− ‖𝑔2(𝑡) × 𝐽2‖
𝐸

= 0 ∀𝑡 (1)

In (2), E represents the Euclidean norm: ‖…‖𝐸 = √𝑥1
2 + ⋯+ 𝑥𝑖

2 and gives the projection

length. In this system, 𝑔𝑖(𝑖 = 1,2) will be known and the 𝐽𝑖(1,2) are unknown.

X

Z
Y

Figure 5, IO x-IMU with case and its
representing local coordinate
system.

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 16

2.1.1 Algorithm implementation

Because 𝐽𝑖(1,2) in the system are unknown, the calibration starts with an initial guess for

𝐽𝑖(1,2) and a selection of gyroscope data. For this example, 50 data-points for 𝑔𝑖(𝑡), (𝑖 = 1,2,

𝑡 = 1, . . , 50) are used. The Newton/Gauss method optimizes 𝐽𝑖(1,2) with the following steps:

1. Initial estimate of 𝑱𝒊 (1,2) using spherical coordinates

2. Check the deviation/error of the estimates

3. Optimize the estimates using the Newton/Gauss method

3.1 Determine Jacobian matrix from the partial derivatives of (4)

3.2 Determine pseudoinverse of Jacobian Matrix

3.3 Multiply the deviation/error of the estimates by the pseudoinverse of the Jacobian

3.4 Subtract the previous step from the initial estimate spherical coordinates of 𝑱𝒊 (1,2)

4. Repeat the Newton/Gauss optimization until the deviation in (4) ≈ 0

5. Set 𝑱𝒊 (1,2) as constants for the angular rotation measurement

1. Initial estimates for J1 and J2

The vectors 𝐽𝑖(1,2) are parameterized in spheroidal coordinates (appendix 1.2.1) from

equation (2), these coordinates are used to define 𝐽𝑖(1,2) in equation (3).

 𝑥 = (𝜑1, 𝜃1, 𝜑2, 𝜃2)
𝑇 (2)

𝐽𝑖̅ = |cos(𝜑𝑖) cos(𝜃𝑖), cos(𝜑𝑖) sin(𝜃𝑖) , sin(𝜑𝑖)|
𝑇 , 𝑖 = 1,2 (3)

2. Check the deviation/error of the estimates using (1)

After the initial values for 𝐽𝑖(1,2) are determined, they are used in equation (1) to create the

error vector (4). The errors are calculated for all the 𝑔𝑖(𝑖 = 1,2) data-points and put these in
the error vector 𝑒̅ = ℝ𝑁×1. In this example 𝑒̅ = ℝ50×1.

 𝑒𝑟𝑟𝑜𝑟 = 𝑒̅(𝑘) = ‖𝑔1(𝑡) × 𝐽1̅‖
𝐸

− ‖𝑔2(𝑡) × 𝐽2̅‖
𝐸
, 𝑘 = 1, . . , 𝑁 (4)

3. Optimization by the Newton/Gauss method

The Newton/Gauss optimization is used for finding a minimum of nonlinear functions and
therefore uses the pseudoinverse of a Jacobian matrix. The Jacobian matrix is in this case a

ℝ𝑁×4 matrix filled with the partial derivatives of e with respect 𝑥̅ (
𝑑𝑒

𝑑𝑥
). The 𝑑𝑥, are calculated

using the four angles used to express 𝐽𝑖(1,2) in spheroidal coordinates: 𝜑1, 𝜃1, 𝜑2, 𝜃2. See
appendix 1.2.3.1 for extra information how the angles are written in equation (4) which is
derived in the next step.

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 17

3.1 Determine the Jacobian matrix containing partial derivatives of (4)

The partial derivatives for the Jacobian matrix were symbolically derived by the Matlab script

from appendix 2. The Jacobian matrix filled with the partial derivatives from equation (5 & 6)

and has the size of (7), in this example 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 (
𝑑𝑒

𝑑𝑥
) = ℝ50×4.

𝜕𝑒

𝜕𝑥𝜑𝑖

=

2|𝑔𝑥
𝑖 sin(𝜑𝑖)−𝑔𝑧

𝑖 cos(𝜑𝑖) cos(𝜃𝑖)| 𝑠𝑖𝑔𝑛(𝑔𝑥
𝑖 sin(𝜑𝑖)−𝑔𝑧

𝑖 cos(𝜑𝑖) cos(𝜃𝑖))(𝑔𝑥
𝑖 cos(𝜑𝑖)+𝑔𝑧

𝑖 cos 𝜃𝑖 sin(𝜑𝑖))+

2|𝑔𝑦
𝑖 sin(𝜑𝑖)−𝑔𝑧

𝑖 cos(𝜑𝑖) sin(𝜃𝑖)| 𝑠𝑖𝑔𝑛(𝑔𝑦
𝑖 sin(𝜑𝑖)−𝑔𝑧

𝑖 cos(𝜑𝑖) sin(𝜃𝑖))(𝑔𝑦
𝑖 cos(𝜑𝑖)+𝑔𝑧

𝑖 sin𝜑𝑖 sin(𝜃𝑖))−

2|𝑔𝑦
𝑖 cos(𝜑𝑖) cos(𝜃𝑖)−𝑔𝑥

𝑖 cos(𝜑𝑖) sin(𝜃𝑖)| 𝑠𝑖𝑔𝑛(𝑔𝑦
𝑖 cos(𝜑𝑖) cos(𝜃𝑖)−𝑔𝑥

𝑖 cos(𝜑𝑖) sin(𝜃𝑖))(𝑔𝑦
𝑖 cos(𝜃𝑖) sin(𝜑𝑖)−𝑔𝑥

𝑖 sin(𝜑𝑖) sin(𝜃𝑖))

√2|𝑔𝑦
𝑖 cos(𝜑𝑖) cos(𝜃𝑖)−𝑔𝑥

𝑖 cos(𝜑𝑖) sin(𝜃𝑖)|
2
+2|𝑔𝑥

𝑖 sin(𝜑𝑖)−𝑔𝑧
𝑖 cos(𝜑𝑖) cos(𝜃𝑖)|

2
+2|𝑔𝑦

𝑖 sin(𝜑𝑖)−𝑔𝑧
𝑖 cos(𝜑𝑖) sin(𝜃𝑖)|

2
, 𝑖 = 1, 2 (5)

𝜕𝑒

𝜕𝑥𝜃𝑖
=

2|𝑔𝑦
𝑖 cos(𝜑𝑖) cos(𝜃𝑖)−𝑔𝑥

𝑖 cos(𝜑𝑖) sin(𝜃𝑖)| 𝑠𝑖𝑔𝑛(𝑔𝑦
𝑖 cos(𝜑𝑖) cos(𝜃𝑖)−𝑔𝑥

𝑖 cos(𝜑𝑖) sin(𝜃𝑖))(𝑔𝑥
𝑖 cos(𝜑𝑖) cos(𝜃𝑖)+𝑔𝑦

𝑖 cos(𝜑𝑖) sin(𝜃𝑖))−

2𝑔𝑧
𝑖 |𝑔𝑥

𝑖 sin(𝜑𝑖)−𝑔𝑧
𝑖 cos(𝜑𝑖) cos(𝜃𝑖)| 𝑠𝑖𝑔𝑛(𝑔𝑥

𝑖 sin(𝜑𝑖)−𝑔𝑧
𝑖 cos(𝜑𝑖) sin(𝜃𝑖)) cos(𝜑𝑖) sin(𝜃𝑖)+

2𝑔𝑧
𝑖 |𝑔𝑦

𝑖 sin(𝜑𝑖)−𝑔𝑧
𝑖 cos(𝜑𝑖) sin(𝜃𝑖)| 𝑠𝑖𝑔𝑛(𝑔𝑦

𝑖 sin(𝜑𝑖)−𝑔𝑧
𝑖 cos(𝜑𝑖) sin(𝜃𝑖)) cos(𝜑𝑖) cos(𝜃𝑖)

√2|𝑔𝑦
𝑖 cos(𝜑𝑖) cos(𝜃𝑖)−𝑔𝑥

𝑖 cos(𝜑𝑖) sin(𝜃𝑖)|
2
+2|𝑔𝑥

𝑖 sin(𝜑𝑖)−𝑔𝑧
𝑖 cos(𝜑𝑖) cos(𝜃𝑖)|

2
+2|𝑔𝑦

𝑖 sin(𝜑𝑖)−𝑔𝑧
𝑖 cos(𝜑𝑖) sin(𝜃𝑖)|

2
, 𝑖 = 1, 2 (6)

 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 (
𝑑𝑒

𝑑𝑥
) = [

𝑑𝑒𝑖

𝑑𝑥
] =

[

𝜕𝑒1

𝜕𝑥𝜑1

𝜕𝑒1

𝜕𝑥𝜃1

𝜕𝑒1

𝜕𝑥𝜑2

𝜕𝑒2

𝜕𝑥𝜑1

⋮ ⋱

𝜕𝑒𝑁

𝜕𝑥𝜑1

… …

𝜕𝑒1

𝜕𝑥𝜃2

𝜕𝑒2

𝜕𝑥𝜃2

𝜕𝑒𝑁

𝜕𝑥𝜃2]

 , 𝑖 = 1, … , 𝑁 (7)

3.2 Determine pseudoinverse of the Jacobian matrix

The next step in the Newton/Gauss method, is calculating the generalization of the Jacobian’s
inverse. This Moore-Penrose pseudoinverse of the Jacobian is used to compute an optimal
solution to the system of linear equations, in a least square sense. In this case the
pseudoinverse is denoted in (8) and is hereafter a ℝ4×50 matrix.

 |𝑝𝑖𝑛𝑣(𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛)| = |𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛|+, ℝ4×𝑁 (8)

3.3 Multiply the pseudoinverse with the error vector

The pseudoinverse is now multiplied by the initial error vector from equation (4). Multiplying
the ℝ4×50 matrix of the Jacobian’s pseudoinverse by the ℝ50×4 matrix of the error vector
resuts in a ℝ4×1 column vector. Which can be subtracted from the initial estimates of 𝑥̅ (ℝ4×1)
and is shown in equation (9)

3.4 Update the initial values of x

Finally the initial estimates of 𝑥̅ are updated by subtracting the Jacobian’s pseudoinverse time
the error vector(9).

𝑥
𝑛𝑒𝑤

= 𝑥
𝑜𝑙𝑑

− 𝑝𝑖𝑛𝑣 (
𝑑𝑒

𝑑𝑥
) ∗ 𝑒 (9)

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 18

4. Repeat the optimization

The Newton/Gauss method repeats the steps 1 till 3.4. until the mean of the error vector from

equation (4) ≈ 0. Each time the optimization is run, the estimates of 𝐽𝑖(1,2) are closer to the
actual direction of the joint axis.

5. Set joint axis direction estimate as constant

Once the Gauss/Newton optimization has run for 30 times, the
spheroidal coordinates of x should have found the actual direction of

the joint axis. The values of 𝐽𝑖(1,2) ℝ3×1 are set as constants and are
hereafter used for calculating the joint angle.

2.1.2 Checking the sign of 𝐽𝑖 ̅(1,2)

The angular velocities per IMU are calculated using equation (11). To
check if the Z-axes of the IMU’s are pointing in the same half space

after mounting (figure 6), the signs of 𝐽𝑖̅ (𝑖 = 1,2) can be checked. This
is done by taking a data-point in where the angular velocity (g1,2(t))
around the joint can be neglected. When the signs match, the
outcome of equation (10) is positive. This means that both z-axes of
the IMU’s point into the same half space.

𝑔𝑡𝑒𝑚𝑝 = [
0.001
0.001
0.001

]

𝑆𝐼𝐺𝑁 = 𝑠𝑖𝑔𝑛(𝑔𝑡𝑒𝑚𝑝 ∙ 𝐽1̅ ∗ 𝑠𝑖𝑔𝑛(𝑔𝑡𝑒𝑚𝑝 ∙ 𝐽2)̅̅ ̅̅ (10)

2.1.3 Angle calculation

The angular rates of the gyroscope 𝑔𝑖̅(𝑡), (𝑖 = 1,2) and the unit

vectors 𝐽1̅ and 𝐽2̅ are used to calculate the angular rotations around

the hinge joint, in the global CS. The dot product of the vectors 𝐽𝑖 ̅(1,2)

with the IMU’s gyroscope rates 𝑔𝑖(1,2), will denote the rates into the
global CS (11).

 𝑔𝑖(𝑡)𝑙𝑜𝑐𝑎𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∙ 𝐽𝑖 = 𝑔𝑖(𝑡)𝑔𝑙𝑜𝑏𝑎𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑖 = 1,2 (11)

2.1.3.1 Angular velocity

To express the total angular velocity rates of the joint, the dot product between the IMU’s

angular velocity 𝑔𝑖(𝑡) (𝑖 = 1,2) and the direction of the joint axis 𝐽1̅ and 𝐽2̅ are taken and
subtracted from each other. This results in the total angular velocity (ω) of the joint, given in
the global CS.

 𝜔𝑔𝑦𝑟 = 𝑔1(𝑡) ∙ 𝐽1 − 𝑔2(𝑡) ∙ 𝐽2 (12)

2.1.3.2 Angular rotation

The angular rotations are calculated by numerical integration. The angular rotations at the
joint axis are calculated by integrating Omega from equation (12) and is shown in equation
(13).

 𝛼𝑔𝑦𝑟 = ∫ (𝜔𝑔𝑦𝑟(𝑡))𝑑𝑡
𝑡

0
 (13)

Figure 6, visual representation
of the joint direction axes in
each IMU (1&2), their local CS
(black arrows), and the joint
axis and its direction in the
global CS (3).

1

2

3

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 19

2.2 Experimental setup

The algorithm from chapter 2.1 and it’s Matlab implementation is tested using the methods
described in this chapter. The testing of the algorithm consists of three parts:

1. Calibration test

2. Angular rotation test (mechanical joint)

3. Bike test (human joint)

The ‘calibration test’ is used to test the function of the Newton-Gauss optimization, the
‘angular rotation test’ will test the accuracy of the calculated angular rotations of a mechanical
hinge joint, and the ‘Bike test’ will test the accuracy of the angular rotations measured on a
human knee during treadmill cycling. The results from both the angular rotation test and bike
test were compared to a video measurement. The first two tests use a mechanical hinge joint
which represents the knee joint.

2.2.1 Hardware

The Joint-model

For the calibration test and angular rotation test a
mechanical hinge joint was used, this ‘joint-model’ was
created to simulate 2D angular rotations (figure 7).
Due to its small size, arbitrary motions for the
calibration can easily be generated, as well as known
angles for the algorithm validation. The IMU’s are
attached onto the joint-model using double-sided
tape. Spacers are used to turn and transpose the IMU’s
mounting to place them at arbitrary and unknown
orientations on the segments (page 23, figure 9).

IMU hardware

Two IO x-IMU’s from the Hague University of Applies
Sciences were used for all measurements. Other
hardware used for testing are; sports and Velcro tape for markers and sensor mounting on the
human test subject, an iPhone 7plus and Sony Cyber-shot DSC-T99 for video registration (30
fps), and a Tacx flow trainer for fixating the Koga Kimera bike.

Figure 7, The joint-model with a hinge-joint. The
spacers can be used for arbitrary positioning the
IMU's to unknown placements on each segment.

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 20

2.2.2 Software

For the experiments, several software programs have been used. For reading/writing the x-
IMU’s registers (table 1) and logging their data the x-IMU GUI (version 13.1) from IO
technologies was used21. A self-written python
script was used for the manual data
synchronization, Kinovea is used for 2D video
marker-tracking and a Matlab script is used for
testing the method and calculate angular
rotations from the gyroscope data.

2.2.2.1 Sensor output

After logging both IMI’s, the x-UMU GUI saved
the data into several files (depending on the enabled functions of the IMU). The files
containing ‘_CalInternalAndMag.csv’ from each sensor are used for finding the direction of
the joint axis (J1 and J2), and to calculate the angular rotations between the two segments.
The two CSV-files (comma separated value) contain: the package numbers (data index),
accelerometer, gyroscope, and magnetometer data in all directions x-y-z from each sensor.
When opened in Microsoft Excel the data is shown in a sheet (N x 1).

2.2.2.2 Synchronization software

A python script was initially designed to load the csv files, find the direction of the joint axis,
and calculate the angular rotation, but during the study a Matlab script was requested by H.
Faber. Thereafter, the Matlab script was used for testing the method due to Matlab’s easy
utilization for viewing and manipulating variables. The python script was only used for finding
the synchronization point of the two CSV files (chapter 2.2.3).

Workflow
To start the Python program, open the ‘main.py’ file, it will open a GUI (appendix 4.1, figure
20) which contains buttons, graphs and forms. To open the data in the GUI, push the ‘open
file’ button. Select the ‘_CalInternalAndMag.csv’ file of IMU1 in the first dialog box, then the
‘_CalInternalAndMag.csv’ file of IMU2 in the second dialog box. The UI will automatically load
the graphs and show the gyroscope data, to show the accelerometer data, simply select
‘accelerometer’ in the drop-down list above each graph. Holding the left mouse button allows
the user to scroll through the data. Holding the right mouse button allows the user to zoom
in/out, the user can thereby easily zoom into the accelerometer-peak created to synchronize
the data. The synchronization process is explained in chapter 2.2.3, the code of the python
script with comments is added to this work in appendix 4.

Table 1, Registers that are checked/set before testing.

Register Value

Inertial and Magnetic data rate 128 Hz

Quaternion Data rate 128 Hz

Algorithm mode (if available) AHRS

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 21

2.2.2.3 Algorithm testing

To test Seel’s method a script is programmed using Matlab conform chapter 2.1. The Matlab
script contains a main program (‘SensorAlignmentHinge.m’) and two functions (‘FindJ.m’ and
‘AngleG.m’). The main program first loads the IMU data, then runs all the functions to calibrate
and find the direction of the joint axis, calculate angular rotations and plot the significant data.
A detailed explanation of how the program works can be found below this paragraph and is
simple displayed in figure 8. All references to the codes lines (…) can be found in appendix 3.

Figure 8, Schematic overview of the Matlab workflow. Blue = Matlab, Green = Kinovea/video, Red = Excel.
The data processing starts on top and finished at the bottom of this scheme.

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 22

Loading the data
After the data is synchronized (chapter 2.2.3), the edited IMU CSV files are loaded into the
workspace, using the original script provided by the HHS (1 … 111) 22. Rules (27, 28, 35, and
36) contain the file- and folder name, these can be edited by the user if another file should be
loaded. After loading the IMU data into two files the data is plotted (51 … 111). During plotting
the accelerometer and gyroscope data from the two IMU’s, the user is prompted to select two
data-points from the graph using the ginput() function (124 … 127). The selection is used for
finding the direction of the joint axis during the calibration. For repeatability, the start- and
stop points can also be manually entered (129 … 131).

Calibration
After the data is selected, it is put into the function ‘FindJ.m’. Besides the data-selection,
‘FindJ.m’ also takes the number of iterations (how many iterations the function should use for
optimization) and an initial guess of the four spherical coordinates called ‘x’ (152-160).

To simplify the explanation of the function, this example will contain 200 data points for g(t).

Inside the FindJ.m function (Appendix 3.2) a first loop (17) runs 30 times (number of iterations
given from the main program), during each cycle the initial guess of spherical coordinates are
used to calculate the estimate of the direction of the joint axis (25/26).

The estimates of J1 and J2 are used in the second loop (32), which runs N times, depending on
the amount of data point selected (in this case, N = 200 times). J1 and J2 are used to calculate
the error (how much the initial estimate differs from the actual joint axis direction) for all ..
data-points and given in a column vector called ‘e’ (34). In this example, ‘e’ has a size of 200*1.
In the same loop the Jacobian matrix is created using the gyroscope data x,y,z from both
sensors and the spherical coordinates from ‘x’ (46). The Jacobian matrix contains now 200*4
data points.

The first loop (17) now continues, creating the pseudoinverse of the Jacobian matrix using the
function pinv()(49). The function creates a matrix called ‘pinvJ’, which has a size of 4*200. The
pseudoinverse now also have the right size to be multiplied by e and that column vector of
4*1 is subtracted from the initial guess of x (51). Finally the average error of all 200 data points
are taken and added to a column vector called averageErrorE (54). This process is repeated 30
times before returning to ‘SensorAlignmentHinge.m’.

The function ‘FindJ.m’ returns the last J1 and J2 as constant variables (1) and are hereafter
used to calculate the angular velocities and rotations. The function also returns the column
vector ‘averageErrorE’ which contains 30*1 mean errors, these are later visualized.

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 23

Checking the sign of J
To check if the z-axis of both IMU’s point in the same half space after mounting, their sign is
checked. To simulate a data point where the angular rotation of the joint ≈ 0, a new variable
with low gyroscope rates is created (164) named gtemp. This vector is used together with the
J’s to check their signs using the sign() function (165/166).

Angular velocity
The angular velocity of the joint is calculated inside the function ‘AngleG.m’ (appendix 3.3).
The function takes the selected gyroscope data, J1 and J2 and the sign as input. The angular
velocity of IMU two is either subtracted or added from/to the angular velocity of IMU1,
depending on the sign (9-12 or 13-16). In the main program, the function is run two times and
its output is set as variables ‘angleV’ (all IMU data) and ‘angleV2’ (selected data)

Angular rotation
To get the angular rotation, the angular velocity is integrated using the function cumtrapz(),
which takes the angular velocity as input. The result of the ‘cumtrapz’ function is multiplied

by the time-step for each data point: 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 =
1

128
= 0.00781 and added to the start angle.

‘AngleV’ (181) has a start-angle of 0, and ‘AngleV2’ has the start-angle from in the video (208).

The angular rotation is calculated two times: the first time for the whole dataset using AnlgleV
as input (181), and a second time after selecting the specific data points (206/207) used for
the measurement, using AngleV2 (212). The angular rotation of the whole dataset is used to
check if the direction of the rotation is correct, the angle should start at 0 and move into the
positive direction. If the angular rotation is not corresponding with the expected results, the
sign could be checked.

Angular rotation data for video reference synchronization
To synchronize the IMU data to the video reference, two starting points can be used. Either
the accelerometer peak is used in the video to synchronize the IMU data, or a max/min peak
from the video’s angle is taken. In that case the starting angle will be at a point where there is
no rotation measured.

The start-angle used for the second angular rotation will be entered manually (206/207) for
the ‘angular rotation test’ and the ‘bike test’. This start-angle is obtained from the video
reference. The synchronization point for which point the start-angle should be entered is
either a point where there was no angular rotation or a maximum/minimum angle. The
variable ‘rotationJoint’ contains the final angle of all IMU data-points and corresponds to the
measured angle measured using the video.

Datapoints
The video used to compare the angles from the IMU data is shot with 30 fps, the IMU data
was collected on a 128 Hz rate. To take the same time-steps in the IMU data corresponding to
the video, each 4,27th row needs is selected to synchronize the data (229-231). The variable
angleTest contains the data-points that can be compared with the angle calculated with
Kinovea. Comparing the measured angles and the deviation is done using Excel and is
explained in chapter 2.4.2.

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 24

2.2.3 Data synchronization

The data from each test that is executed is synchronized using the
same method for all the tests. The initial starting point for each
measurement will be a point where the IMU’s are only translated to
create an accelerometer peak. Segment 1 and 2 of the joint-model,
or the IMU’s cases are hold parallel to each other (figure 9).

Creating accelerometer peak: During logging, an accelerometer peak
is created by holding the parallel segments of the joint-model or the
cases of the two IMU’s parallel, vertically in the air before dropping
them gently on a flat surface. The sudden stop of the joint-
model/IMU’s onto the surface will result in a accelerometer peak
depending on the direction of the local coordinate system.

Search the peak using Python: After the peak is created, the
measurements are executed (chapter 2.4). After each test the
logged data is saved at the computer’s hard drive and the file
‘_CalInertialAndMag.csv’ are opened using the python script
(appendix 4) as described in chapter 2.2.2.2. The accelerometer data is selected in de drop-
down-list above each graph and the accelerometer peak is manually searched using the zoom
function of the graph (figure 10). The corresponding row-numbers are noted and used for

cutting the data-file in excel.

Cutting the original data-file: Once the row
number of each file containing the
accelerometer peak is known, the
‘_CalInertialAndMag.csv’ files of each sensor are
opened in Excel and the rows before the
accelerometer peak are deleted. The CSV files
are thereafter saved and are ready to be used in
the Matlab script.

Figure 10, Graphs of original IMU data files (1,2), these
graphs show two accelerometer peaks because a drop
was executed two times.

Figure 9, Parallel segments of the
hinge joint-model before hitting
the model to a flat surface, used
to create an accelerometer peak.

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 25

2.2.4 Experiments

As described at the beginning of this chapter, three different kind of tests are performed. The
‘calibration test’ and ‘angular rotation’ test are executed using a mechanical hinge joint to test
various mounting positions of the IMU’s and several estimate values for the spherical
coordinates for 𝑥.

2.2.4.1 Calibration test (optimization)

The ‘calibration test’ tests the amount of necessary iterations for optimizing the joint axis
direction, using different situations like: sensor placement, amount of selected data, initial
guesses of the spherical coordinates (𝑥), and the use of different data-points. The angular
rotations in these tests are only used for indicating the direction of the rotations and are not
compared with video-tracking data.

For the Newton/gauss optimization to be tested, two IMU’s, the hinge joint-model with
spacers, double sided tape and the iPhone 7 are used to test the optimization progress of the
algorithm.

Sensor placement

In total five measurements are executed, using five different sensor placements. The
placement of the IMU’s are shown in table 2.

Five measurements, seven tests

The five measurements from table 2 are used for seven calibration tests in total. The data from
the first four tests are used one time by the Matlab program using the same initial values for
𝑥, but random data selections for optimization. The fifth measurement is run three times; the
first time using the same initial values for x and random data selections, the second time with
different initial values for 𝑥, and a third time using a small selection of data to be used for the
optimization. The manual small data selection is entered at rule (129-131) of the Matlab
program.

Table 2, Overview of the different sensor placement at the five measurements. The mounting deviation of the IMU’s with
respect to the global CS increases with each following test. Positive can also be notified as lateral and negative as medial.

Measurement
number

IMU placement IMU 1 x-axis IMU 2 x-axis IMU 1 z-axis IMU 2 z-axis

1 Parallel to segments Distal Distal Positive Positive

2 Parallel to segments Distal Distal Positive Negative

3 Random, slight
rotation

Distal Mainly distal Positive Positive

4 Random, big rotation Mainly distal Mainly distal Positive Positive

5 Random, big rotation
and translation

Mainly distal Mainly distal Positive Positive

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 26

Motions

To generate gyroscope data for finding the joint axis direction during calibration, ten arbitrary
motions are generated by holding the joint-model in the air and generate angular rotations
around the global the z-axis of the system/joint-model, thereby the system is tilted and turned
in free space. After the arbitrary motions, angular rotations are generated.

In the first four measurements, one segment of the
joint-model rests parallel to a flat table surface, the
second segment is alternately rotated between
approximately 180o to 90 degrees (figure 11). In the
fifth measurement the generated angular rotations are
generated with rotating and tilting both segments of
the joint-model in free space.

Hypothesis

In all cases, the direction joint axis for each IMU (J1 &
J2) should be found with less than 20 iterations. The
amount of iterations used to approach the error ≈ 0, will increase with the higher deviation of
the IMU’s local CS to the global CS. As in pre-experimental measurements was found, the
expected J’s are flipped when the z-axes are pointing in the same half space ([0,0,1] and [0,0,-
1]). An overview of the hypothesis is found in appendix 5, table 7.

Figure 11, Generation of angular rotations
around the hinge joint by turning one of the two
segments.

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 27

2.2.4.2 Angular rotation test (mechanical joint IMU versus video)

To test the accuracy of the angular rotation on a mechanical hinge joint, the IMU angles are
compared with angles that are calculated from video-tracking-data that is obtained by the use
of Kinovea and Excel. The hinge joint-model is used to generate angular rotations and the
rotations of the measurement are recorded using a iPhone 7plus at 30 fps23.

Sensor placement

The IMU’s are mounted randomly at the joint-model, with both z-axes pointing in the same
half space. Markers are placed near the IMU’s at the distal end of each segment using sport
tape and an Edding marker. The screw of the joint functions as the joint’s marker.

Motions

After ten arbitrary motions are generated for calibration,
angular rotations are generated by rotating both segments
of the joint-model. While rotating, both segments of the
joint-model are held up in air, but will not be tilted or
skewed to ensure that the recording angle does not alter
too much (figure 12). In total five rotations are generated
for the angle measurement.

Kinovea angles

Kinovea trajectory is used to track the two makers and the
joint screw of the joint-model. The output of Kinovea is a
txt-file with pixel coordinates of all three markers at each
frame. The txt-file is imported in Excel and there the

coordinates are converted to lengths. The lengths of each section is used to calculate the angle
using the arctan2 function from equation (14), where the x and y coordinates from each
segment marker are calculated with the joint-coordinates as starting point.

𝑎𝑛𝑔𝑙𝑒 = 𝑎𝑟𝑐𝑡𝑎𝑛2(x1, y2) + 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑥2, 𝑦2) (14)

The angles from the video are set as golden standard and compared to every 4,27th IMU
sample by calculating the root mean squared error (RMSE). The RMSE is explained in chapter
2.5.

Hypothesis

Finding the joint axis direction should take less than 20 iterations. The joint’s flexion/extension
angle from the IMU’s gyroscope data is expected to have a RMSE of < 1 degree compared to
the predicted video angles.

Figure 12, Joint board with markers for
Kinovea tracking, the joint’s screw is used
as the third marker.

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 28

2.2.4.3 Bike test (human knee IMU versus video)

Sensor placement

The accuracy of the algorithm was higher at mechanical hinge joints. To evaluate if the
algorithm is sufficient enough to measure the angular rotation of a knee joint during treadmill
cycling, the ‘bike test’ is performed. A healthy male cyclist (30+ years) rides a Koga Kimera
racing bike that is fixated into a Tacx flow trainer. Makers are placed on the Trochanter Major,
lateral knee-joint groove, and Malleolus Lateralis of the
right leg. The test is recorded using a Sony Cyber-shot
DSC-T99 (30 fps).

Sensor placement

To minimize the influence of soft tissue movement (skin
and muscles), IMU1 is mounted on the lateral distal side
of the thigh, using sports tape. IMU2 is mounted on the
proximal frontal side of the shank, on top of the tibia
using Velcro tape (figure 13). IMU1 was fixated using
sports tape because the conical shape of the thigh which
caused the Velcro tape to slide.

Motions

The cyclist rides the bike with a maximum cadence of 60
rpm, while the feet are fixated with cycling shoes
Shimano SPD-SL pedals. By fixating the feet, lateral and
medial rotation of the shank is reduced and thereby the
knee will act more likely as a hinge joint. The cyclist pedals
the bike for at least five rotations, the pedal strokes of the
cyclist are used as arbitrary motions for calibration, and
for angular rotation measurement.

Kinovea

The angle measurement in Kinovea uses same method as
the angle test using the hinge joint-model. For the data synchronization, the second maximum
angle peak of the angles is taken as synchronization point.

Hypothesis

Finding the joint axis direction should take less than 20 iterations. For the flexion/extension
angle of the knee, a RMSE of 3o is expected.

2.5 Root mean squared error

The angle from kinovea video tracking is set as golden standard for this work, thereby the
angles measured by Kinovea are set as the prediction values. The angles calculated from the
IMU’s gyroscope data are set as the estimate values. The RMSE is calculated from the
predicted kinovea angles and the measured IMU angles with the use of equation (15).

 𝑅𝑀𝑆𝐸 = √
∑ (𝑓𝑖−𝑜𝑖)

2𝑁
𝑖=1

𝑁
, 𝑓 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒, 𝑜 = 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 (15)

Figure 13, IMU placement at the bike test.
IMU1 is placed lateral/distal on the thigh and
IMU2 is placed frontal/proximal on the tibia.

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 29

3.1 Calibration test results

During the seven calibration tests, all joint axis directions have been found by the
Newton/Gauss optimization within 30 iterations. For all the tests, an average of 196 data-
points were used for optimization. The best results with the lowest amount of 11 iterations
was found in test 1 where the IMU’s were mounted flat on the segments (figure 14). A
maximum of 25 iterations was needed in test 7, where only six data-points were used for
calibration (figure 15). The iterations from test 7 is seen as outlier and is excluded from the
iteration results. Over six tests, an average of 15 iterations for optimization with the use of
228 data-points is within the expectation of < 20 iterations.

As explained in the previous paragraph, all values for Ji were found. In test 2, arbitrary motions
for calibration were generated by rotating both segments. During this test, the calculated
orientation of the z-axis (sign) was as expected, but the angular rotation during rotation of
both segments was shown incorrectly (data-point 0 .. 2100 in figure 16). Only when one
segment rotated with respect to the other segment, the angular rotation was correct. In other
the other six tests the angle was showed correctly (figure 17).

Figure 14, Plot of the mean error in each iteration in Test 6.
Only 6 data-point resulted in an unstable optimization.

Figure 14, Plot of the mean error in each iteration in Test 1. The
optimization runs smooth towards an error of 0.

Figure 15, Plot of the angular rotation of the entire dataset
of test 3. The angular rotation is shown correctly, also when
both segments rotate during the arbitrary motions (data
400..1900)

Figure 16, Plot of the angular rotation of the entire dataset
of test 4. The angular rotation is only shown correctly when
one of the two segments rotates.

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 30

In test six, choosing different initial values for x than in test five did not resulted a different
direction of the joint axis (J1, J2), only three more iterations were needed for optimization. An
overview of the results is shown in table 3. All plots, results overview and comprehensive data
can be found in appendix 6.1

Table 3, Overview of the Calibration test results. The used data-points for calibration were selected randomly using the
ginput() function. The amount of data is the total amount of gyroscope data that is run through the optimization loop 30
times.

Testnr

Data used

calibration

(start, step, stop)

Amount of

data

Iterations

for J Sign Determined J1 Determined J2

425 -0,040 -0,043 -0,040 -0,043

5 0,060 -0,047 0,060 -0,047

1449 0,997 -0,998 -0,003 0,002

433 0,012 0,000 0,012 0,000

5 0,006 0,017 0,006 0,017

1609 1,000 1,000 0,000 0,000

445 0,123 0,123

5 -0,099 0,078

1719 -0,987 0,989

1478 -0,136 -0,283

5 0,102 0,219

2622 0,985 -0,934

423 0,255 0,309

5 0,167 0,283

1530 -0,952 0,908

423 0,255 0,309 0,000 0,000

5 0,167 0,283 0,000 0,000

1530 -0,952 0,908 0,000 0,000

859 0,235 0,227 -0,020 -0,081

5 0,359 0,294 0,192 0,011

886 -0,903 0,928 0,049 0,020

6

236

229

222

18

25

18

15

6

7

222

16255

1

2

3

4

5

11

Result Calibration

-

13

205

Deviation of predicted J from

hypothesis

-

-

+

-

-

-

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 31

3.2 Angular rotation results (mechanical joint IMU versus video)

In the angular rotation test, the joint axis
direction was optimized successfully within 14
iterations. Synchronization between the video
and gyroscope data was performed by using the
accelerometer peak in the IMU signal and the
visual impact of the model in the video. From
the IMU angles, every 4,3th sample was taken
for angle-comparing. The 392 angles from the
video and IMU varied only by an average of 0.18
degrees. The maximum angles differed only by
0.2 degrees, as well as the minimum angle.
Visualizing the two flexion/extension angles of
the hinge joint also proofs that the process of
the angles are similar (figure 18). This is proven by the deviation of the predicted and
estimated values. 392 flexion/extension angles were used for the deviation and resulted in a
RMSE of 1,69 degrees (table 4), which is a bit higher than the expected <1o. An overview of
the used data and comprehensive figures can be found in appendix 6.2.

Table 4, Result overview of the angular rotation test.

Angular rotation test (mechanical)

 Video IMU

Maximum angle 183,3 183,5

Minimum angle 33,3 33,1

Mean angle 108,6 108,8

Average angle deviation (deg) 0,18

Angles used for RMSE 392

Sum squared deviation 1117

RMSE 1,69

30,0
40,0
50,0
60,0
70,0
80,0
90,0

100,0
110,0
120,0
130,0
140,0
150,0
160,0
170,0
180,0

1

1
3

2
5

3
7

4
9

6
1

7
3

8
5

9
7

1
0

9

1
2

1

1
3

3

1
4

5

1
5

7

1
6

9

1
8

1

1
9

3

2
0

5

2
1

7

2
2

9

2
4

1

2
5

3

2
6

5

2
7

7

2
8

9

3
0

1

3
1

3

3
2

5

3
3

7

3
4

9

3
6

1

3
7

3

3
8

5

H
in

ge
 jo

in
t

an
gl

e
(d

eg
re

es
)

Data number

Anglular rotation test (mechanical)

AngleVideo AngleIMU

Figure 16, Plot of both the angle from the video as the angle from the IMU’s gyroscope data.

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 32

3.3 Bike test results (human knee IMU versus video)

In the bike test, 511 angles were determined from the video. From these
angles, the first maximum angle peak at video-frame 91 was taken as
synchronization point. From the IMU data, the joint axis direction was

determined successfully within 17
iterations (table 5). The peak at data-
point 9865 was set as
synchronization point for the start-
angle (155.15o) and after inverting
the sign, 1164 angles have been calculated from which
every 4,3th sample was taken for comparing to the video
angles. In total 272 angles showed an average angle
deviation of -3.38 degrees. The maximum angles
deviated -0.4 degrees and the minimum -5.3 degrees,
which indicates that the total angular rotation of the IMU
was higher than rotation from the video, this is clearly
shown in figure 19. For the deviation of the predicted and
estimated values, 272 flexion/extension angles of the

human knee with a total 5033 squared error sum resulted in a RMSE of 4.3 degrees, which is
higher than the 4o hypothesis (table 6). An overview of the used data, results and
comprehensive figures can be found in appendix 6.3.

Table 6, Result overview of the bike test.

Bike test (human joint)

 Video IMU

Maximum angle 157,7 157,3

Minimum angle 81,4 76,1

Mean angle 116,1 112,7

Average angle deviation -3,38

Angles used for RMSE 272

Sum squared deviation 5033

RMSE 4,30

Table 5, determined
J1 & J2 of the bike
test after calibration.

 J1 J2

x -0,38 -0,02

y 0,29 -1,00

Z 0,88 -0,06

70,0

80,0

90,0

100,0

110,0

120,0

130,0

140,0

150,0

160,0

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

1
9

3

2
0

1

2
0

9

2
1

7

2
2

5

2
3

3

2
4

1

2
4

9

2
5

7

2
6

5

K
n

ee
 a

n
gl

e
(d

eg
re

es
)

Data number

Bike test (human knee)

Video Angle IMU Angle

Figure 17, Plot of both the video angle and the IMU’s gyroscope angle. A deviation is noticeable at the minimum angles.

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 33

A functional, automated sensor to segment alignment method was taken from the literature
and has been further examined in this work. The goal was to implement and test the
optimization process of the functional sensor to segment alignment method proposed by Seel
et al12. The 2D angular joint kinematics estimation method was examined with the use of three
different test methods and shows promising results. The partial derivatives for the Jacobian
matrix were successfully determined with Matlab. The direction of the joint axis was found at
all tests within 20 iterations, from gyroscope data collected using arbitrary motions. Finally
angular rotations have been measured accordingly to the expectations and the deviation
between the predicted values (video) and the estimated values (IMU) have been found using
the root mean squared error (RMSE).

Sign function

During the last two test methods, all flexion/extension angles were calculated correctly
compared to the video reference data, measured with Kinovea. However, some problems
occurred while processing the IMU data in the second (calibration test) and last (bike test)
measurement. During the first run of the IMU’s gyroscope data from the bike test, the positive
sign of the joint axis direction resulted in a false angle calculation (appendix 6.3, figure 32).
After manually invert the sign, the right formula in angleG.m (appendix 3.3) was used. So
eventually the angles of the bike test were calculated correctly, but after inverting the sign.

RMSE

The deviation between the video and IMU data was successfully determined. Both the RMSE
of the mechanical joint and human joint were a bit higher than expected. The RMSE of the
mechanical joint was ±0.7o higher and the RMSE of the human joint was ±1.3o higher than
predicted. The first explanation for this difference may be the use of Kinovea as golden
standard for the predicted joint angle value, which is not as accurate as an optical motion
capturing system like optitrack. Other explanations for the higher RMSE, could be the missing
Kalman filter used for cancelling sensor drift cancellation, or the presence of white noise. Both
the drift and white noise are amplified by numerical integration15, 18.

Finally a difference between the two joint-types (mechanical vs. human) of 2.61 RMSE was
found. This is probably due to the shifting of soft tissue and the fact that the knee is not a true
hinge joint and does not function the same as a mechanical hinge joint.

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 34

The results of this work show that the basic implementation of the optimization algorithm was
successful. The Newton/Gauss optimization, number of iterations, axis orientation and
calculated angles are in agreement with the results found in the original method. The
algorithm shows promising opportunities for in field IMU kinematical research for cycling.
Because of the functional approach for the sensor to segment alignment practically no
anatomical knowledge is needed to place the sensors. Additionally, the fact that only six data-
points were sufficient to find the direction of the joint axis shows that, compared to other
methods, the method can be time-saving as well.

However, the method is only suitable for 2D angular kinematical joint estimations of a hinge
joint. It is recommended to extend the 2D, to 3D kinematics due to the fact that the body has
more spheroidal joints than hinge joints. For future 3D kinematical joint estimations of
spheroidal joints, it is recommended to implement the 3D methodology from the same studies
of Seel et al.8,12. With the mathematical explanation of the Newton/Gauss optimization in this
work, the 3D methodology should be implemented easily into a next work. The method also
showed better results on a mechanical hinge joint than the human knee, therefore there are
some recommendations for future studies concerning this method.

It is recommended to add a Kalman filter or drift cancellation by sensor fusion, and to review
the function to automatically search for the mounting orientation of the IMU’s z-axis (for 2D
kinematics). Reviewing the sign function is in no way obligatory since the sensor’s mounting
position can always be obtained by the eye.

Summarizing, this work and it’s methodology are promising. In particular the functional
calibration, but it needs some reviewing before successful implementation in the field of
kinematical cycling measurements is possible.

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 35

1. Brodie, M., Walmsley, A. & Page, W. Fusion motion capture: a prototype system using inertial
measurement units and GPS for the biomechanical analysis of ski racing. Sport. Technol. 1,
17–28 (2008).

2. BioRacer. BioRacer Motion. (2016). Available at:
https://bioracermotion.com/?page_id=7#bioracer-motion-3d-system. (Accessed: 20th
September 2016)

3. Retul. Retul Vantage 3D Motion Capture System. (2016). Available at:
https://www.retul.com/retul-products/vantage-motion-capture-system/. (Accessed: 5th
February 2016)

4. Dejnabadi, H., Jolles, B. M. & Aminian, K. A new approach to accurate measurement of
uniaxial joint angles based on a combination of accelerometers and gyroscopes. IEEE Trans.
Biomed. Eng. 52, 1478–1484 (2005).

5. Mohammadzadeh, F. F., Liu, S., Bond, K. A. & Nam, C. S. Feasibility of a Wearable, Sensor-
based Motion Tracking System. Procedia Manuf. 3, 192–199 (2015).

6. O’Donovan, K. J., Kamnik, R., O’Keeffe, D. T. & Lyons, G. M. An inertial and magnetic sensor
based technique for joint angle measurement. J. Biomech. 40, 2604–2611 (2007).

7. Yuan, Q. & Chen, I. Sensors and Actuators A : Physical Localization and velocity tracking of
human via 3 IMU sensors. Sensors Actuators A. Phys. 212, 25–33 (2014).

8. Seel, T., Raisch, J. & Schauer, T. IMU-based joint angle measurement for gait analysis. Sensors
(Basel). 14, 6891–6909 (2014).

9. Djurić-Jovičić, M. D., Jovičić, N. S. & Popović, D. B. Kinematics of gait: New method for angle
estimation based on accelerometers. Sensors 11, 10571–10585 (2011).

10. Willemsen, A. T. M., van Alsté, J. A. & Boom, H. B. K. Real-time gait assessment utilizing a new
way of accelerometry. J. Biomech. 23, 859–863 (1990).

11. Tong, K. & Granat, M. H. A practical gait analysis system using gyroscopes. Med. Eng. Phys. 21,
87–94 (1999).

12. Seel, T. & Schauer, T. Joint Axis and Position Estimation from Inertial Measurement Data by
Exploiting Kinematic Constraints. 0–4 (2012).

13. Picerno, P., Cereatti, A. & Cappozzo, A. Joint kinematics estimate using wearable inertial and
magnetic sensing modules. Gait Posture 28, 588–595 (2008).

14. Favre, J., Aissaoui, R., Jolles, B. M., de Guise, J. A. & Aminian, K. Functional calibration
procedure for 3D knee joint angle description using inertial sensors. J. Biomech. 42, 2330–
2335 (2009).

15. Picerno, P. 25 years of lower limb joint kinematics by using inertial and magnetic sensors: A
review of methodological approaches. Gait Posture 51, 239–246 (2017).

16. Findlow, A., Goulermas, J. Y., Nester, C., Howard, D. & Kenney, L. P. J. Predicting lower limb
joint kinematics using wearable motion sensors. Gait Posture 28, 120–126 (2008).

17. Cooper, G. et al. Inertial sensor-based knee flexion/extension angle estimation. J. Biomech.
42, 2678–2685 (2009).

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 36

18. Woodman, O. J. An Introduction to Inertial Navigation. Univ. Cambridge 1–37 (2007).
doi:10.1017/S0373463300036341

19. Takeda, R. et al. Gait analysis using gravitational acceleration measured by wearable sensors.
J. Biomech. 42, 223–233 (2009).

20. de Vries, W. H. K., Veeger, H. E. J., Baten, C. T. M. & van der Helm, F. C. T. Magnetic distortion
in motion labs, implications for validating inertial magnetic sensors. Gait Posture 29, 535–41
(2009).

21. x-IO technologies. x-IMU GUI V13.1. (2017).

22. Schrauwen, M. ReadXIMU.m. (2013).

23. Apple. Apple iPhone specs website. (2017). Available at: https://www.apple.com/lae/iphone-
7/specs/.

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 37

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 38

In this appendix, the mathematical steps of the used algorithm are explained with the
necessary equations, just as in chapter 2.1. Only in this appendix contains additional
equations, plus references to the code lines where equations are applied in the script from
appendix 2 and 3.

1.1 Seel’s algorithm

During the calibration, the direction of the joint axis (Zj) is estimated. After mounting the
IMU’s at arbitrary positions, the local CS’s of the sensors (page 11, figure 5) are not aligned
with the segments CS (page 10, figure 4). To denote both local CS’s of IMU1 and IMU2 into the
global CS, the gyroscope data from each sensor needs to be corrected with a unit vector called

J. Each sensor has its own unit joint axis vector, hereafter called 𝐽1̅ for IMU1 on segment 1,

and 𝐽2̅ for UMU2 on segment 2.

The key to Seel’s method, is that it uses the geometrical fact that 𝑔1(𝑡) and 𝑔2(𝑡), only differ
by a rotation matrix (time variant) and the joint angle velocity. Therefore their projections
into the joint plane (parallel to the Zj axis) have the same lengths for each moment in time.
This results in equation (1).

‖𝑔1(𝑡) × 𝐽1‖
𝐸

− ‖𝑔2(𝑡) × 𝐽2‖
𝐸

= 0 ∀𝑡 (1)

In (2), E represents the Euclidean norm: ‖…‖𝐸 = √𝑥1
2 + ⋯+ 𝑥𝑖

2 and gives the projection

length. In this system, 𝑔𝑖(𝑖 = 1,2) will be known and the 𝐽𝑖(1,2) are unknown.

1.2 Algorithm implementation

Because 𝐽𝑖(1,2) for the system are unknown, the calibration starts with an initial guess for

𝐽𝑖(1,2) and a selection of gyroscope data. For this example, 50 data-points for 𝑔𝑖(𝑡), (𝑖 = 1,2,

𝑡 = 1, . . , 50) are used. Then 𝐽𝑖(1,2) are optimized by a Newton/Gauss method that uses the
following steps:

1. Initial estimate of 𝑱𝒊 (1,2) using spherical coordinates

2. Check the deviation/error of the estimates

3. Optimize the estimates using the Newton/Gauss method

3.1 Determine Jacobian matrix from the partial derivatives of (4)

3.2 Determine pseudoinverse of Jacobian Matrix

3.3 Multiply the deviation/error of the estimates by the pseudoinverse of the Jacobian

3.4 Subtract the previous step from the initial estimate spherical coordinates of 𝑱𝒊 (1,2)

4. Repeat the Newton/Gauss optimization until the deviation in (4) ≈ 0

5. Set 𝑱𝒊 (1,2) as constants for the angular rotation measurement

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 39

1.2.1 Initial estimates of J1 and J2

The vectors 𝐽𝑖(1,2) are parameterized in spheroidal coordinates in 𝑥 from equation (2), these

coordinates are used to define 𝐽𝑖(1,2) in equation (3).

Spheroidal coordinates

To estimate 𝐽1̅ and 𝐽2̅, spherical coordinates are used. Spherical coordinates use two angles
(azimuth/phi and zenith/theta), which can define a unit vector in any direction within a three
dimensional space (page 11, figure 6). The phi angle represents the inclination angle with
respect to the x-y plane. The theta angle represents the rotation around the z-axis. By only
using these two angles for the unit vector, its length and rotation around its own axis is
irrelevant. In equation (2), a column-vector 𝑥 is filled with a total of four angles, of which the

values are used to determine the estimate vectors 𝐽1̅ and 𝐽2̅ in equation (3).

 𝑥 = (𝜑1, 𝜃1, 𝜑2, 𝜃2)
𝑇 (2)

 𝐽𝑖̅ = |cos(𝜑𝑖) cos(𝜃𝑖), cos(𝜑𝑖) sin(𝜃𝑖) , sin(𝜑𝑖)|
𝑇, 𝑖 = 1,2 (3)

Equation (3) can be written in equation (1), this is shown in equation (16).

 ‖𝑔1(𝑡) × 𝐽1‖
𝐸

− ‖𝑔2(𝑡) × 𝐽2‖
𝐸

= ‖

𝑔𝑥

𝑔𝑦

𝑔𝑧
(𝑡) ×

cos(𝜑𝑖) cos(𝜃𝑖)
cos(𝜑𝑖) sin(𝜃𝑖)

sin(𝜑𝑖)
‖

𝐸

− ‖

𝑔𝑥

𝑔𝑦

𝑔𝑧
(𝑡) ×

cos(𝜑𝑖) cos(𝜃𝑖)
cos(𝜑𝑖) sin(𝜃𝑖)

sin(𝜑𝑖)
‖

𝐸

 (16)

1.2.2 Check the deviation/error of the estimates using (1)

After the first values for 𝐽𝑖(1,2) are determined, they are used in equation (1) to create the

error vector (4). The error is calculated for all the 𝑔𝑖(𝑖 = 1,2) data and put in the error vector
𝑒̅ = ℝ𝑁×1. In this example 𝑒̅ = ℝ50×1. The greater the outcome of equation (4), the greater

the deviation of what 𝐽𝑖̅ (𝑖 = 1,2) in equation (1) should be. If the estimates of 𝐽𝑖̅ (𝑖 = 1,2)
are correct, equation (1 and 4) equal 0.

 𝑒𝑟𝑟𝑜𝑟 = 𝑒̅(𝑘) = ‖𝑔1(𝑡) × 𝐽1̅‖
𝐸

− ‖𝑔2(𝑡) × 𝐽2̅‖
𝐸
, 𝑘 = 1, . . , 𝑁 (4)

After the initial estimate of both unit vectors, 𝐽1̅ and 𝐽2̅ will be optimized before addressing
them as joint axis direction. In equation (4), the gyroscope data is known, but the four initial
angles in 𝑥 are guessed. To create an overdetermined system of equations and thereby
increasing the accuracy of the estimation, multiple datasets are selected for (𝑔1(𝑡), 𝑔1(𝑡))𝑁 ,
𝑁 ≫ 4 and for each dataset, the error(e) is put in the vector 𝑒 (5). The length of the vector 𝑒
depends on the amount of data points used for the optimization.

𝑒 = 𝑅𝑁×1 = |𝑒1 ⋯ 𝑒𝑁|𝑇 (17)

Equation (2 & 3) are used in line(s): 152..156 (appendix 3.1) and 18..26

(appendix 3.2)

Equation (4) is used in line(s): 34 (appendix 3.2)

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 40

Once the direction of 𝐽𝑖̅ (𝑖 = 1,2), and thereby the direction of the joint axis is found, equation
(1) is fulfilled for all time frames.

1.2.3 Optimization by the Newton/Gauss method

The Newton/Gauss optimization is used for finding a minimum of nonlinear functions and
therefore uses the pseudoinverse of a Jacobian matrix. This Jacobian matrix is in this case a

ℝ𝑁×4 matrix filled with the partial derivatives of
𝑑𝑒

𝑑𝑥
. 𝑑𝑥 are the four angles used to express

𝐽𝑖(1,2) in spheroidal coordinates: 𝜑1, 𝜃1, 𝜑2, 𝜃2. The optimization will minimize the error of
equation (4) and thereby find the direction of the joint axis.

1.2.3.1 Determine the Jacobian matrix containing partial derivatives of (4)

The partial derivatives for the Jacobian matrix were symbolically derived by the script from

appendix 2. The Jacobian matrix filled with the partial derivatives from equation (5 & 6) and

has the size of (7), in this example 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 (
𝑑𝑒

𝑑𝑥
) = ℝ50×4.

 𝑒 = ‖
𝑔𝑥

𝑔𝑦

𝑔𝑧

(𝑡) ×

cos(𝜑
𝑖
) cos(𝜃𝑖)

cos(𝜑
𝑖
) sin(𝜃𝑖)

sin(𝜑
𝑖
)

‖

𝐸

− ‖
𝑔𝑥

𝑔𝑦

𝑔𝑧

(𝑡) ×

cos(𝜑
𝑖
) cos(𝜃𝑖)

cos(𝜑
𝑖
) sin(𝜃𝑖)

sin(𝜑
𝑖
)

‖

𝐸

 (18)

In equation (18), the error equation (4) is written with spheroidal coordinates from 𝑥̅ (2).
Equation (5) shows the partial derivative of (18) with respect to phi, and equation (6) the
partial derivative of (18) with respect to theta.

𝜕𝑒

𝜕𝑥𝜑𝑖

=

2|𝑔𝑥
𝑖 sin(𝜑𝑖)−𝑔𝑧

𝑖 cos(𝜑𝑖) cos(𝜃𝑖)| 𝑠𝑖𝑔𝑛(𝑔𝑥
𝑖 sin(𝜑𝑖)−𝑔𝑧

𝑖 cos(𝜑𝑖) cos(𝜃𝑖))(𝑔𝑥
𝑖 cos(𝜑𝑖)+𝑔𝑧

𝑖 cos 𝜃𝑖 sin(𝜑𝑖))+

2|𝑔𝑦
𝑖 sin(𝜑𝑖)−𝑔𝑧

𝑖 cos(𝜑𝑖) sin(𝜃𝑖)| 𝑠𝑖𝑔𝑛(𝑔𝑦
𝑖 sin(𝜑𝑖)−𝑔𝑧

𝑖 cos(𝜑𝑖) sin(𝜃𝑖))(𝑔𝑦
𝑖 cos(𝜑𝑖)+𝑔𝑧

𝑖 sin𝜑𝑖 sin(𝜃𝑖))−

2|𝑔𝑦
𝑖 cos(𝜑𝑖) cos(𝜃𝑖)−𝑔𝑥

𝑖 cos(𝜑𝑖) sin(𝜃𝑖)| 𝑠𝑖𝑔𝑛(𝑔𝑦
𝑖 cos(𝜑𝑖) cos(𝜃𝑖)−𝑔𝑥

𝑖 cos(𝜑𝑖) sin(𝜃𝑖))(𝑔𝑦
𝑖 cos(𝜃𝑖) sin(𝜑𝑖)−𝑔𝑥

𝑖 sin(𝜑𝑖) sin(𝜃𝑖))

√2|𝑔𝑦
𝑖 cos(𝜑𝑖) cos(𝜃𝑖)−𝑔𝑥

𝑖 cos(𝜑𝑖) sin(𝜃𝑖)|
2
+2|𝑔𝑥

𝑖 sin(𝜑𝑖)−𝑔𝑧
𝑖 cos(𝜑𝑖) cos(𝜃𝑖)|

2
+2|𝑔𝑦

𝑖 sin(𝜑𝑖)−𝑔𝑧
𝑖 cos(𝜑𝑖) sin(𝜃𝑖)|

2
, 𝑖 = 1, 2 (5)

𝜕𝑒

𝜕𝑥𝜃𝑖
=

2|𝑔𝑦
𝑖 cos(𝜑𝑖) cos(𝜃𝑖)−𝑔𝑥

𝑖 cos(𝜑𝑖) sin(𝜃𝑖)| 𝑠𝑖𝑔𝑛(𝑔𝑦
𝑖 cos(𝜑𝑖) cos(𝜃𝑖)−𝑔𝑥

𝑖 cos(𝜑𝑖) sin(𝜃𝑖))(𝑔𝑥
𝑖 cos(𝜑𝑖) cos(𝜃𝑖)+𝑔𝑦

𝑖 cos(𝜑𝑖) sin(𝜃𝑖))−

2𝑔𝑧
𝑖 |𝑔𝑥

𝑖 sin(𝜑𝑖)−𝑔𝑧
𝑖 cos(𝜑𝑖) cos(𝜃𝑖)| 𝑠𝑖𝑔𝑛(𝑔𝑥

𝑖 sin(𝜑𝑖)−𝑔𝑧
𝑖 cos(𝜑𝑖) sin(𝜃𝑖)) cos(𝜑𝑖) sin(𝜃𝑖)+

2𝑔𝑧
𝑖 |𝑔𝑦

𝑖 sin(𝜑𝑖)−𝑔𝑧
𝑖 cos(𝜑𝑖) sin(𝜃𝑖)| 𝑠𝑖𝑔𝑛(𝑔𝑦

𝑖 sin(𝜑𝑖)−𝑔𝑧
𝑖 cos(𝜑𝑖) sin(𝜃𝑖)) cos(𝜑𝑖) cos(𝜃𝑖)

√2|𝑔𝑦
𝑖 cos(𝜑𝑖) cos(𝜃𝑖)−𝑔𝑥

𝑖 cos(𝜑𝑖) sin(𝜃𝑖)|
2
+2|𝑔𝑥

𝑖 sin(𝜑𝑖)−𝑔𝑧
𝑖 cos(𝜑𝑖) cos(𝜃𝑖)|

2
+2|𝑔𝑦

𝑖 sin(𝜑𝑖)−𝑔𝑧
𝑖 cos(𝜑𝑖) sin(𝜃𝑖)|

2
, 𝑖 = 1, 2 (6)

 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 (
𝑑𝑒

𝑑𝑥
) = [

𝑑𝑒𝑖

𝑑𝑥
] =

[

𝜕𝑒1

𝜕𝑥𝜑1

𝜕𝑒1

𝜕𝑥𝜃1

𝜕𝑒1

𝜕𝑥𝜑2

𝜕𝑒2

𝜕𝑥𝜑1

⋮ ⋱

𝜕𝑒𝑁

𝜕𝑥𝜑1

… …

𝜕𝑒1

𝜕𝑥𝜃2

𝜕𝑒2

𝜕𝑥𝜃2

𝜕𝑒𝑁

𝜕𝑥𝜃2]

 , 𝑖 = 1, … , 𝑁 (7)

Equation (5) is used in line(s): 32 (loop) & 34 (appendix 3.2)

Equation (5, 6 & 7) are used in line(s): 46 (appendix 3.2)

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 41

1.2.3.2 Determine pseudoinverse of the Jacobian matrix

Next in the Newton/Gauss method is calculating the generalization of the Jacobian’s inverse.
This Moore-Penrose pseudoinverse of the Jacobian is used to compute an optimal solution to
the system of linear equations, in a least square sense. In this case the pseudoinverse is
denoted in (8) and is hereafter a ℝ4×50 matrix.

 |𝑝𝑖𝑛𝑣(𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛)| = |𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛|+, ℝ4×𝑁 (8)

1.2.3.3 Multiply the pseudoinverse with the error vector

The pseudoinverse is now multiplied by the initial error vector from equation (4). Multiplying
the ℝ4×50 matrix of the Jacobian’s pseudoinverse by the ℝ50×4 matrix of the error vector
resuts in a ℝ4×1 column vector. Which can be subtracted from the initial estimates of 𝑥̅ (ℝ4×1)
and is shown in equation (9)

1.2.3.4 Update the initial values of x

The last step of the optimization is to update the Thetai and Phii (i = 1,2) angles in 𝑥 (2), by
subtracting the multiplication of the pseudoinverse of the Jacobian (8) and error vector (4)
from 𝑥 (2), this is shown in equation (9).

 𝑥
𝑛𝑒𝑤

= 𝑥
𝑜𝑙𝑑

− 𝑝𝑖𝑛𝑣 (
𝑑𝑒

𝑑𝑥
) ∙ 𝑒 (9)

Where: 𝑥 = ℝ4×1, 𝑝𝑖𝑛𝑣 (
𝑑𝑒

𝑑𝑥
) = ℝ4×𝑁 , 𝑒 = ℝ𝑁×1

1.2.4 Repeat the optimization

The Newton/Gauss method repeats the steps of 1.2.3 till 1.2.3.4.4 until the mean of the error

vector of equation (4) ≈ 0. Each time the optimization is run, the estimates of 𝐽𝑖(1,2) are closer
to the actual direction of the joint axis.

1.2.5 Set joint axis direction estimate as constant

Once the Gauss/Newton optimization has run for 30 times, the spheroidal coordinates of x

should have found the actual direction of the joint axis. The values of 𝐽𝑖(1,2) ℝ3×1 are set as
constants and are hereafter used for calculating the joint angle.

1.3 Checking the sign of 𝐽𝑖 ̅(1,2)

The angular velocities per IMU are calculated using equation (11). To check if the Z-axes of the
IMU’s are pointing in the same half space after mounting (page 11, figure 6), the signs of

𝐽𝑖̅ (𝑖 = 1,2) can be checked. This is done by taking a data-point in where the angular velocity
(g1,2(t)) around the joint can be neglected(19). When the signs match, the outcome of equation
(10) is positive. This means that both z-axes of the IMU’s point into the same half space.

 𝑔1(𝑡) ∙ 𝐽1̅ ≈ 0, 𝑔2(𝑡) ∙ 𝐽2 ≈ 0 (19)

Equation (9) is used in line(s): 49 (appendix 3.2)

Equation (10) is used in line(s): 51 (appendix 3.2)

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 42

𝑔𝑡𝑒𝑚𝑝 = [
0.001
0.001
0.001

]

𝑆𝐼𝐺𝑁 = 𝑠𝑖𝑔𝑛(𝑔𝑡𝑒𝑚𝑝 ∙ 𝐽1̅ ∗ 𝑠𝑖𝑔𝑛(𝑔𝑡𝑒𝑚𝑝 ∙ 𝐽2)̅̅ ̅̅ (10)

 𝑠𝑖𝑔𝑛(𝑥) = {
−1
0
1

if 𝑥 < 0,
if 𝑥 = 0,
if 𝑥 > 0.

1.4 Angle calculation

For 2D kinematic joint estimation and the rotation around a hinge joint, gyroscope data only
will be sufficient to calculate the angular rotations at the joint center. The angular rates of the

gyroscope 𝑔𝑖̅(𝑡), (𝑖 = 1,2) and the unit vectors 𝐽1̅ and 𝐽2̅ are used to calculate the angular

rotations around the hinge joint, in the global CS. The dot product of the vectors 𝐽𝑖 ̅(1,2) with

the IMU’s gyroscope rates 𝑔𝑖(1,2), will denote the rates into the global CS (11).

 𝑔𝑖(𝑡)𝑙𝑜𝑐𝑎𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∙ 𝐽𝑖 = 𝑔𝑖(𝑡)𝑔𝑙𝑜𝑏𝑎𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑖 = 1,2 (11)

1.4.1 Total angular velocity

To express the total angular velocity rates of the joint, the dot product between the IMU’s

angular velocity 𝑔𝑖(𝑡) (𝑖 = 1,2) and the direction of the joint axis 𝐽1̅ and 𝐽2̅ are taken and
subtracted from each other. This results in the total angular velocity (ω) of the joint, given in
the global CS (12).

 𝜔𝑔𝑦𝑟 = 𝑔1(𝑡) ∙ 𝐽1 − 𝑔2(𝑡) ∙ 𝐽2 (12)

𝜔𝑔𝑦𝑟 = (𝑔𝑥
1 ∗ 𝐽𝑥

1 + 𝑔𝑦
1 ∗ 𝐽𝑦

1 + 𝑔𝑧
1 ∗ 𝐽𝑧

1) − (𝑔𝑥
2 ∗ 𝐽𝑥

2 + 𝑔𝑦
2 ∗ 𝐽𝑦

2 + 𝑔𝑧
2 ∗ 𝐽𝑧

2) (20)

1.3.3 Total angular rotations

Now that the angular velocities of the hinge joint are known, the angular rotations are
calculated by numerical integration. The angular rotations at the joint axis are calculated by
integrating Omega from equation (12) and is shown in equation (13). The equation for
applying

 𝛼𝑔𝑦𝑟 = ∫ (𝜔𝑔𝑦𝑟(𝑡))𝑑𝑡
𝑡

0
 (13)

 𝛼𝑔𝑦𝑟 = 𝑐𝑢𝑚𝑡𝑟𝑎𝑝𝑧(𝜔(𝑡)) ∗ (
1

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
) (21)

Equation (12) is used in line(s): 15 (appendix 3.3)

Equation (13) is used in line(s): 165 (appendix 3.1)

Equation (21) is used in line(s): 181, 212 & 216 (appendix 3.1)

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 43

This Matlab script was used to symbolically partial derive equation (1), towards the four
angles used to initiate the unit vectors J1 and J2.

1. %% compute symbolic jacobian

2. clc, clear all, close all

3.

4. %% create symbols for x1, x2, x3, and x4, representing Phi1, Phi2, Theta1, Theta2

5. x = cell(1,4); %create empty variable with 4 cells

6. for i = 1:4

7. x{i,1} = sprintf('x%d%d',i); %put x1 .. x4 into cells as string

8. end

9. x = x(1:4)' ; %select first column containing strings

10. x = sym(x, 'real'); %set strings to symbols

11.

12. %% create G1 with 3 values, representing the angular velocity in axis x, y, and z of IMU1

13. G1 = cell(3,1); %create empty vector with 3 rows

14. for i = 1:3

15. G1{i,1} = sprintf('G1_%d%d',i); %put 1,2,3 representing x,y,z into cells as string

16. end

17. G1 = G1(:); %select all columns and rows containing strings

18. G1 = sym(G1, 'real'); %set strings to symbols

19.

20. %% create G2 with 3 values, representing the angular velocity in axis x, y, and z of IMU 2

21. G2 = cell(3,1); %create empty vector with 3 rows

22. for i = 1:3

23. G2{i,1} = sprintf('G2_%d%d',i); %put 1,2,3 representing x,y,z into cells as string

24. end

25. G2 = G2(:); %select all columns and rows containing strings

26. G2 = sym(G2, 'real'); %set strings to symbols

27.

28. %% create the function which dertermines J1 and J2

29. J1 = [cos(x(1))*cos(x(2)); cos(x(1))*sin(x(2)); sin(x(1))];

30. J2 = [cos(x(3))*cos(x(4)); cos(x(3))*sin(x(4)); sin(x(3))];

31.

32. %% create the function which takes the G values of the IMU and J1 & J2 to calculte the error

33. e = norm(cross([G1(1) G1(2) G1(3)],J1))-... % velocity of segment 1 (thigh) at joint axis

34. norm(cross([G2(1) G2(2) G2(3)],J2)); % velocity of segment 2 (shank) at joint axis

35.

36. %% let Matlab calculate the symbolic Jacobian matrix for de/dx by giving e and x into the function.

37. JACO = jacobian(e,x); %use built-in function of matlab to calculate sybolic Jacobian

38.

39. %% After running the avove script, the symbolic jacobian is determined in JACO

40. JACO %This will show the symbolic Jacobian in the command window

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 44

The Matlab script used for testing the method and perform data analyses, consist out of the
following programs:

Main program:

 3.1 SensorAlignmentHinge.m

Functions:

3.2 FindJ.m
3.3 AngleG.m

3.1 SensorAlignmentHinge.m (main)

1. % ReadXIMU (rules 1 – 111)

2. %

3. %

4. %

5.

6. % Copyright (C) 2013 M. Schrauwen (mjschrau@hhs.nl)

7. %

8. % This program is free software: you can redistribute it and/or modify

9. % it under the terms of the GNU General Public License as published by

10. % the Free Software Foundation, either version 3 of the License, or

11. % (at your option) any later version.

12. %

13. % This program is distributed in the hope that it will be useful,

14. % but WITHOUT ANY WARRANTY; without even the implied warranty of

15. % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

16. % GNU General Public License for more details.

17. %

18. % You should have received a copy of the GNU General Public License

19. % along with this program. If not, see <http://www.gnu.org/licenses/>.

20.

21. %%

22. close all;

23. clear;

24. clc;

25.

26. %% File data sensor 1

27. fileName1= 'LoggedDataBikeSb_CalInertialAndMag.csv' ; %type here the name of the CSV file to use

28. pathName1 = 'C:\Users\Arno\Documents\Metingen\'; %type here the folder

29. PosUnderscore1 = max(find(fileName1=='_')); %get the prefix

30. prefix1 = fileName1(1:PosUnderscore1-1); %get the letters in front of the underscore

31. dataLocation1 = [pathName1 prefix1]; %put location + prefix together

32. data1 = BTDataXIMU(dataLocation1); %load data

33.

34. %% File data sensor 2

35. fileName2 = 'LoggedDataBikeSo_CalInertialAndMag.csv'; %filename(.csv)

36. pathName2 = 'C:\Users\Arno\Documents\Metingen\'; %folder

37. PosUnderscore2 = max(find(fileName2=='_')); %get the prefix

38. prefix2 = fileName2(1:PosUnderscore2-1); %get the letters in front of the underscore

39. dataLocation2 = [pathName2 prefix2]; %samenstellen locatie + prefix

40. data2 = BTDataXIMU(dataLocation2); %data ophalen

41.

42. %% Set data for plotting

43. L1 = length(data1{2});

44. xas1 = 0:L1-1;

45. labelXas1 = 'amount of samples';

46. L2 = length(data2{2});

47. xas2 = 0:L2-1;

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 45

48. labelXas2 = 'amount of samples';

49.

50. %% PLOTS

51. aantalSubPlots = 4;

52.

53. %% Plot Accelleration Data sensor 1

54. figure('units','normalized','outerposition',[0 0 1 1],'Name', 'X-IMU data1 and data2');

55. hold on;

56. subplot(aantalSubPlots,1,1);

57. plot(xas1, data1{:,2}, 'r');

58. hold on;

59. plot(xas1, data1{:,3}, 'g');

60. hold on;

61. plot(xas1, data1{:,4}, 'b');

62. hold on;

63. ylabel('Acceleration (g)');

64. title('Accelerometer 1');

65. legend('X', 'Y', 'Z');

66. xlabel(labelXas1);

67. grid on

68. grid minor

69.

70. %% Plot Gyroscope data sensor 1

71. subplot(aantalSubPlots,1,2);

72. plot(xas1, data1{:,5}, 'r');

73. hold on;

74. plot(xas1, data1{:,6}, 'g');

75. hold on;

76. plot(xas1, data1{:,7}, 'b');

77. ylabel('Angular Velocity');

78. title('Gyroscope 1');

79. legend('X', 'Y', 'Z');

80. xlabel(labelXas1);

81. grid on

82. grid minor

83.

84. %% Plot Accellerometer data sensor 2

85. subplot(aantalSubPlots,1,3);

86. plot(xas2, data2{:,2}, 'r');

87. hold on;

88. plot(xas2, data2{:,3}, 'g');

89. hold on;

90. plot(xas2, data2{:,4}, 'b');

91. hold on;

92. ylabel('Acceleration (g)');

93. title('Accelerometer 2');

94. legend('X', 'Y', 'Z');

95. xlabel(labelXas2);

96. grid on

97. grid minor

98.

99. %% Plot Gyroscope data sensor 2

100. subplot(aantalSubPlots,1,4);

101. plot(xas2, data2{:,5}, 'r');

102. hold on;

103. plot(xas2, data2{:,6}, 'g');

104. hold on;

105. plot(xas2, data2{:,7}, 'b');

106. ylabel('Angular Velocity');

107. title('Gyroscope 2');

108. legend('X', 'Y', 'Z');

109. xlabel(labelXas2);

110. grid on

111. grid minor

112.

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 46

113. %%

114. % From this point on, the code is written by Arno van der Zwet,

115. % graduate student of Human Kinetic Technology. The code is used to

116. % select data and calculate angular velocity and rotations between

117. % two IMU's that are mounted onto two segments, connected by a hinge

118. % joint. This code will optimize the direction of the joint axis

119. % between the two segemtns, given in each seperate sensor.

120.

121.

122. %% get ginput values for calibration, use 1 for selecting in plot and 2 for manual point

123. %% 1 data-points from plot

124. selection = ginput(2);

125. start = round(selection(1,1))

126. step = 5;

127. stop = round(selection(2,1))

128. %% 2 manual data-points

129. %start = 9952; % start calibration at this point

130. %step = 5; % take every 5th datapoint

131. %stop = 11091; % end calibration at this point

132.

133. %% get the gyroscope data and put these into new arrays

134. dataG1x = data1{:, 5};

135. dataG1y = data1{:, 6};

136. dataG1z = data1{:, 7};

137. dataG2x = data2{:, 5};

138. dataG2y = data2{:, 6};

139. dataG2z = data2{:, 7};

140.

141. minimum = min(length(dataG1x), length(dataG2x)); %search for sensor with lowest amount of data and set it as minimum

142. G1 = []; %create new vector for gyroscope data of sensor 1

143. G2 = []; %create new vector for gyroscope data of sensor 2

144.

145. for i=1:minimum-1 %use minumum to get G1 and G2 even amount of data

146. G1 = [G1; dataG1x(i), dataG1y(i), dataG1z(i)];

147. G2 = [G2; dataG2x(i), dataG2y(i), dataG2z(i)];

148. end

149.

150. % create initial X to start the calibration with, x contans four angles

151. % that are used to create spherical coordinates

152. x1 = 0.4; % Phi 1, initial guess

153. x2 = 0.2; % Theta 1, initial guess

154. x3 = 0.1; % Phi 2, initial guess

155. x4 = 0.7; % Theta 2, initial guess

156. x = transpose([x1,x2,x3,x4]); %create column vector for x

157.

158. iterations = 30; %set number of iterations (loops to optimize de/dx)

159.

160. % run the function to find J1 and J2 and return: mean errors(30), J1 and J2:

161. [J1, J2, averageErrorE] = FindJ(x, G1, G2, start, step, stop, iterations);

162.

163. %% check sign to see if Z axis of IMU are pointing in same halfspace

164. tempG = [0.001;0.001;0.001]; %take/make gyroscope data where rotation is near to 0

165. sgn = dot(tempG,J1) * dot(tempG,J2) %Check if J’s are in the same halfspace

166. SIGN = sign(sgn); %check sign of sgn

167.

168. %% plot mean error values over 30 iterations

169. xAsJ = 1:1:length(averageErrorE);

170. figure('name', 'Average optimisation error to number of iterations')

171. plot(xAsJ, averageErrorE, 'r');

172. hold on

173. ylabel('Mean error');

174. xlabel('Iteration number');

175.

176. %% calculate angle velocity with g1, g2, j1, and j2

177. stopper = length(G1)-1; %use length of G1 data to make sure the angle function stops in time

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 47

178. [angleV] = AngleG(J1, J2, G1, G2, SIGN, 1, stopper); %run AngleG function, return velocity

179.

180. %% Calculate angular rotation from angular velocity

181. angleTotal = (cumtrapz(angleV)*0.0078125); %Take the derivative of the angular velocity with cumtrapz, 0.0078 is the timestep

182.

183. %% Check the direction of the calculated rotation

184. directioncheck = mean(angleTotal) %the mean angle should be posive

185. if directioncheck < 0 %if mean angle is negative

186. angleTotal = angleTotal*-1; %invert the rotations by multiplication by -1

187. end

188.

189. %% plot angles in rad and degrees

190. xAsAngle = 1:length(angleV); %set x-axis values

191. figure('name', 'Angular rotation of the whole dataset')

192. plot(xAsAngle, angleTotal, 'g')

193. hold on

194. ylabel('Rotation around joint axis (Degrees)');

195. xlabel('Datanumber');

196.

197. %% This part can be used for manual selecting the start and stoppoint of the data

198. %movement = ginput(2); %select two point in the plot for rotation calculation

199. %startpoint = round(movement(1,1)) %select start from plot

200. %stoppoint = round(movement(2,1)) %select end from plot

201. %promt = 'fill in the starting angle: '; %promt will show in command window

202. %startAngle = input(promt); %user defines startangle (moslty 180 degrees)

203.

204. %% The folowing lines are used for manually give the start and end points of the tests

205. %here, the startpoint can precicely be given for aligning the data to the video timeframe

206. startpoint = 9865 % manually give startpoint for angle calculation

207. stoppoint = 11028 %manually give stoppoint for angle calculation

208. startAngle = 155.1515596; %give in starting angle (0, 180, or angle from videoanalisys)

209.

210. %% calcuate angle velocity and anglular rotation for the new selection

211. [angleV2] = AngleG(J1, J2, G1, G2, SIGN, startpoint, stoppoint);

212. rotationJoint = (cumtrapz(angleV2)*0.0078125+startAngle); %use cumtrapz to transist from velocity to angular rotation (0,00718.. is the time inter

val)

213.

214. directioncheck2 = mean(rotationJoint) %check the average angle

215. if directioncheck2 > 160 %if average is above 160 rotation should be inverted

216. rotationJoint = (cumtrapz(angleV2*-1)*0.0078125+startAngle);

217. end

218.

219. %% plot angles in degrees

220. xAsAngle = 1:length(rotationJoint); %set x-axis length for plot

221. figure('name', 'angle selected data')

222. plot(xAsAngle, rotationJoint, 'g')

223. hold on

224. ylabel('Rotation around joint axis (Degrees)');

225. xlabel('Datanumber');

226.

227. %% Select datapoint for video comparing

228. angleTest = []; %create a new variable for datapoints to be used for RMSE

229. for i=1:4.266667:(length(rotationJoint)) %take every 4.267th sample from angleG4 (128hz / 30 fps)

230. angleTest = [angleTest ; rotationJoint(round(i),:)]; %copy all datapoints with rounded i

231. end

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 48

3.2 FindJ.m

function [J1, J2, averageErrorE] = FindJ(x,G1,G2, start, step, stop, iterations)

1. %FindJ Summary of this function goes here

2. % This function is used to find the direction of the joint axis in each

3. % seperate sensor, given by J1 and J2. In the first loop the inital

4. % angles from the main program are used, these coornates are optimized in

5. % this function.

6. % The input of the function are:

7. % - initial guess for x

8. % - Gyroscope data from sensor 1 and sensor 2

9. % - Selected datanumbers to use for calibration (start/step/stop)

10. % - Number of iterations

11.

12. iter = 0; %set number of iterations to 0

13. averageErrorE = []; %make a new variable to fill with average error

14.

15. %% start if the optimization

16. for i=1:iterations %run loop untill number of iterations is reached (30)

17. phi1 = x(1,1); %get angle Phi(1) from x

18. theta1 = x(2,1); %get angle Theta(1) from x

19. phi2 = x(3,1); %get angle Phi(2) from x

20. theta2 = x(4,1); %get angle Theta(2) from x

21.

22. %Use Phi(1,2) and Theta (1,2) to calculate the direction

23. %of the joint axes (J1, J2) in spherical coordinates

24. J1 = transpose([cos(phi1).*cos(theta1),cos(phi1).*sin(theta1),sin(phi1)]);

25. J2 = transpose([cos(phi2).*cos(theta2),cos(phi2).*sin(theta2),sin(phi2)]);

26.

27. e = []; %create empty variable e to fill with error values

28. Jacobian = []; %create variable to fill with jacobian matrix

29.

30. %%calculate error in this loop:

31. for t=start:step:stop %start and stop are selected data for calibration

32. %calculate the error of J1 and J2 in each timestep

33. e = [e; (norm(cross(G1(t, :),J1))-norm(cross(G2(t, :),J2)))];

34.

35. %from sensor 1:

36. g1x = G1(t,1); %get gyroscope x data at time t

37. g1y = G1(t,2); %get gyroscope y data at time t

38. g1z = G1(t,3); %get gyroscope z data at time t

39. %from sensor 2:

40. g2x = G2(t,1); %get gyroscope x data at time t

41. g2y = G2(t,2); %get gyroscope y data at time t

42. g2z = G2(t,3); %get gyroscope z data at time t

43.

44. %fill the jacobian matrix with the 4 values calculated with the jacobian equation:

45. Jacobian = [Jacobian; (2*abs(g1x*sin(phi1) - g1z*cos(phi1)*cos(theta1))*sign(g1x*sin(phi1) - g1z*cos(phi1)*cos(theta1))*(g

1x*cos(phi1) + g1z*cos(theta1)*sin(phi1)) + 2*abs(g1y*sin(phi1) - g1z*cos(phi1)*sin(theta1))*sign(g1y*sin(phi1) - g1z*cos(phi1)

sin(theta1))(g1y*cos(phi1) + g1z*sin(phi1)*sin(theta1)) - 2*abs(g1y*cos(phi1)*cos(theta1) - g1x*cos(phi1)*sin(theta1))*sign(g

1y*cos(phi1)*cos(theta1) - g1x*cos(phi1)*sin(theta1))*(g1y*cos(theta1)*sin(phi1) - g1x*sin(phi1)*sin(theta1)))/(2*(abs(g1y*cos

(phi1)*cos(theta1) - g1x*cos(phi1)*sin(theta1))^2 + abs(g1x*sin(phi1) - g1z*cos(phi1)*cos(theta1))^2 + abs(g1y*sin(phi1) - g1z*

cos(phi1)*sin(theta1))^2)^(1/2)), -

(2*abs(g1y*cos(phi1)*cos(theta1) - g1x*cos(phi1)*sin(theta1))*sign(g1y*cos(phi1)*cos(theta1) - g1x*cos(phi1)*sin(theta1))*(g1

x*cos(phi1)*cos(theta1) + g1y*cos(phi1)*sin(theta1)) - 2*g1z*abs(g1x*sin(phi1) - g1z*cos(phi1)*cos(theta1))*sign(g1x*sin(phi1)

 - g1z*cos(phi1)*cos(theta1))*cos(phi1)*sin(theta1) + 2*g1z*abs(g1y*sin(phi1) - g1z*cos(phi1)*sin(theta1))*sign(g1y*sin(phi1) -

g1z*cos(phi1)*sin(theta1))*cos(phi1)*cos(theta1))/(2*(abs(g1y*cos(phi1)*cos(theta1) - g1x*cos(phi1)*sin(theta1))^2 + abs(g1x*

sin(phi1) - g1z*cos(phi1)*cos(theta1))^2 + abs(g1y*sin(phi1) - g1z*cos(phi1)*sin(theta1))^2)^(1/2)), -

(2*abs(g2x*sin(phi2) - g2z*cos(phi2)*cos(theta2))*sign(g2x*sin(phi2) - g2z*cos(phi2)*cos(theta2))*(g2x*cos(phi2) + g2z*cos(the

ta2)*sin(phi2)) + 2*abs(g2y*sin(phi2) - g2z*cos(phi2)*sin(theta2))*sign(g2y*sin(phi2) - g2z*cos(phi2)*sin(theta2))*(g2y*cos(phi

2) + g2z*sin(phi2)*sin(theta2)) - 2*abs(g2y*cos(phi2)*cos(theta2) - g2x*cos(phi2)*sin(theta2))*sign(g2y*cos(phi2)*cos(theta2) -

 g2x*cos(phi2)*sin(theta2))*(g2y*cos(theta2)*sin(phi2) - g2x*sin(phi2)*sin(theta2)))/(2*(abs(g2y*cos(phi2)*cos(theta2) - g2x*c

os(phi2)*sin(theta2))^2 + abs(g2x*sin(phi2) - g2z*cos(phi2)*cos(theta2))^2 + abs(g2y*sin(phi2) - g2z*cos(phi2)*sin(theta2))^2)^

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 49

(1/2)), (2*abs(g2y*cos(phi2)*cos(theta2) - g2x*cos(phi2)*sin(theta2))*sign(g2y*cos(phi2)*cos(theta2) - g2x*cos(phi2)*sin(theta

2))*(g2x*cos(phi2)*cos(theta2) + g2y*cos(phi2)*sin(theta2)) - 2*g2z*abs(g2x*sin(phi2) - g2z*cos(phi2)*cos(theta2))*sign(g2x*si

n(phi2) - g2z*cos(phi2)*cos(theta2))*cos(phi2)*sin(theta2) + 2*g2z*abs(g2y*sin(phi2) - g2z*cos(phi2)*sin(theta2))*sign(g2y*sin

(phi2) - g2z*cos(phi2)*sin(theta2))*cos(phi2)*cos(theta2))/(2*(abs(g2y*cos(phi2)*cos(theta2) - g2x*cos(phi2)*sin(theta2))^2 +

abs(g2x*sin(phi2) - g2z*cos(phi2)*cos(theta2))^2 + abs(g2y*sin(phi2) - g2z*cos(phi2)*sin(theta2))^2)^(1/2))];

46. end

47. %% get the pseudoinverse of the jacobian matrix

48. pinvJ = pinv(Jacobian);

49. % update x with the pseudoinverse of the Jacobian Matrix * errors

50. x = x - pinvJ*e;

51.

52. %% the following code is additional to the optimisation

53. averageErrorE = [averageErrorE; mean(e)]; %fill the error-vector with 30* the mean average of the selected data

54. iter = iter+1; %add 1 to the amount of iterations

55. end

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 50

3.3 AngleG.m

1. function [AngleG] = AngleG(J1, J2, G1, G2, SIGN, start, eind)
2. %AngleG is used to calculate the angular velocity around the joint axis.
3. % The velocity is calculated by, adding up/subtracting (depending on the
4. % sign) the dot product between the gyroscope data (xyz) and the corresponding
5. % J (xyz) to each sensor.
6.
7. AngleG = []; % first create empty variable to put the data in
8.
9. if SIGN <0 %if sign is negative, add up the angular velocities
10. for i=start:1:eind
11. AngleG = [AngleG; (dot(J1,G1(i,:)'))+(dot(J2,G2(i,:)'))];
12. end
13. else %if sign is positive, subtract the angular velocities
14. for i=start:1:eind
15. AngleG = [AngleG; (dot(J1,G1(i,:)'))-(dot(J2,G2(i,:)'))];
16. end
17. end

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 51

4.1 Introduction

Python is an open-source programming language with many mathematical functionalities and
comes with several modules pre-installed for mathematical functions. For the thesis (main.py)
program, the modules “PyQt5”, “numpy”, “pyqtgraph”, “scipy” and “math” are installed to
create a user interface (UI) with graphics and handling the data, arrays, and vectors. Adding
modules, open source development of the python language, and the fact that it runs on all
platforms (Linux, Microsoft Windows and Apple OS) make it more versatile than Matlab.

The program runs from the main.py and it will open a user interface, created with PyQt5. It
runs with five files in total:

4.2 Main.py (main program, runs all the functions and starts the user UI)

4.3 ThesisApp.py (contains the code for the UI and runs some basic tasks of the UI)
4.4 Data.py (opens the csv files and runs several tasks to prepare them for processing)
4.5 Calibrate.py (optimizes the initial estimate of the joint axis direction)
4.6 Angle.py (calculates the angle)

The other python files with their functions are loaded into the main.py file, importing them
the same way as the modules using the following command: import modulename

The algorithm for optimizing the joint axis direction works the same as the Matlab script,
therefore this is not further explained. The total code and comments are given further in this
appendix.

Executable

The python program from this appendix is converted into an executable (main.exe) file using
cx_freeze. Users of the program do not need to install python on their computers.

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 52

Legend:

1. Menubar 7. Frequency selector
2. Open file button 8. Pushbutton to start angle calculation
3. Use manual data-point for calibration 9. Data selector for sensor graph
4. Start/stop number for calibration 10. Graph sensor data
5. Select 2D/3D kinematics 11. Graph angular rotation/velocity
6. Run calibration 12. File/data information

Figure 18, Python user interface, created with the PyQt5 module. The numbers can be found in with the legend below this picture

1

2 3

4

5
6

7

8

9

10

12

11

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 53

4.2 Main.py

1. __author__ = "Arno van der Zwet"

2. __copyright__ = "Copyright 2017, Thesis Human Kinetic Technology"

3. __credits__ = ["Arno van der Zwet"]

4. __license__ = "GPL"

5. __version__ = "1.0"

6. __maintainer__ = "Arno van der Zwet"

7. __email__ = "arnovanderzwet@gmail.com"

8. __status__ = "First experimental version"

9. __title__ = 'Thesis Human Kinetic Technology'

10.

11. from PyQt5 import QtWidgets, QtCore

12. import sys

13. import time

14. import numpy as np

15. import ThesisApp

16. import Data as data

17. import Calibration as calb

18. import Angle as angle

19.

20.

21. class MainWindow(QtWidgets.QMainWindow, ThesisApp.Ui_MainWindow):

22.

23. def __init__(self, parent=None):

24. super(MainWindow, self).__init__(parent)

25. self.setupUi(self)

26. # set shortcuts for fast actions in the program

27. self.actionQuit.setShortcut("Ctrl+Q") # Ctrl+q = Close Window

28. self.actionOpen_File.setShortcut("Ctrl+O") # Ctrl+O = Open Files

29. self.actionSave.setShortcut("Ctrl+S") # Ctrl+S = Save File

30.

31. # set here which function or class should run when the action in the window is performed.

32. self.openFileButton.clicked.connect(self.selectFiles) # selectFiles when PushButtons = clic

ked

33. self.actionOpen_File.triggered.connect(self.selectFiles) # run openFiles when open file is sel

ected in menubar

34. self.actionSave.triggered.connect(self.saveFiles)

35. self.calibrateButton.clicked.connect(self.calibrate) # run 'calibrate' whem calibrateButto

n = clicked

36. self.angleButton.clicked.connect(self.angleCalculation) # run angleCalculate when angleButto

n = clicked

37. self.openPortButton.clicked.connect(self.port)

38. self.pushButton.clicked.connect(self.angleCalculation)

39.

40. # set initial value to the amount of file selected (0)

41. self.amount_sensor1Files = 0

42. self.amount_sensor2Files = 0

43. self.setGraph1Show = 1

44. self.setGraph2Show = 1

45. self.setGraph3Show = 1

46. self.frequencyComboBox.setCurrentIndex(7) # at inintialze, set the standard frequency to 128 Hz (v

alue 7)

47.

48. '''''every tenth of a second a dataset must be taken:'''

49. self.setDataJump = self.setFrequency/10

50. self.dt = 3 # set here the timestep for calibration, every 10th sec is bes

t

51.

52. ''''' Here the files are opened, but first is checked to make sure there are no files used already'''

53. def selectFiles(self):

54. self.reload1 = False

55. self.reload2 = False

56. ''''' files from sensor 1 are selected here'''

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 54

57. if self.amount_sensor1Files > 0:

58. rest = QtWidgets.QMessageBox.question(self, 'Overwriting Files', "You're about to load new files

 for IMU 1, are you sure?",

59. QtWidgets.QMessageBox.Yes | QtWidgets.QMessageBox.No)

60. if rest == QtWidgets.QMessageBox.Yes:

61. self.reload1 = True

62. self.amount_sensor1Files = 0

63. self.sensor1FilesSelect = QtWidgets.QFileDialog.getOpenFileNames(self, 'Open files sensor 1'

,

64. "C://",

65. 'CSV Files (*.csv)')

66. self.sensor1Files = []

67. self.sensor1Files = dict()

68. for i in range(0, len(list(self.sensor1FilesSelect)[0])):

69. self.sensor1Files[i] = list(self.sensor1FilesSelect)[0][i]

70. self.amount_sensor1Files = len(self.sensor1Files)

71. if self.amount_sensor1Files < 1:

72. print('no files for sensor 1 loaded')

73. else:

74. self.reloadCancel1 = False

75. '''''If there are no files selected yet, this part is run for sensor 1'''

76. if self.amount_sensor1Files == 0:

77. self.reloadCancel1 = False

78. self.sensor1FilesSelect = QtWidgets.QFileDialog.getOpenFileNames(self, 'Open files sensor 1',

79. "C://",

80. 'CSV Files (*.csv)')

81. self.sensor1Files = dict()

82. ''''' Check if there is a file selected, if non, pass'''

83. self.emptycheck1 = not all(self.sensor1FilesSelect)

84. if self.emptycheck1 == True:

85. pass

86. for i in range(0, len(list(self.sensor1FilesSelect)[0])):

87. self.sensor1Files[i] = list(self.sensor1FilesSelect)[0][i]

88. self.amount_sensor1Files = len(self.sensor1Files)

89. if self.amount_sensor1Files < 1:

90. print('no files for sensor 1 loaded')

91.

92. ''''' files from sensor 2 are selected here'''

93. if self.amount_sensor2Files > 0:

94. rest = QtWidgets.QMessageBox.question(self, 'Overwriting Files',

95. "You're about to load new files for IMU 2, are you sure?",

96. QtWidgets.QMessageBox.Yes | QtWidgets.QMessageBox.No)

97. if rest == QtWidgets.QMessageBox.Yes:

98. self.reload2 = True

99. self.amount_sensor2Files = 0

100. self.sensor2FilesSelect = QtWidgets.QFileDialog.getOpenFileNames(self, 'Open files sensor 2'

,

101. "C://",

102. 'CSV Files (*.csv)')

103. self.sensor2Files = 0

104. self.sensor2Files = dict()

105. for i in range(0, len(list(self.sensor2FilesSelect)[0])):

106. self.sensor2Files[i] = list(self.sensor2FilesSelect)[0][i]

107. self.amount_sensor2Files = len(self.sensor2Files)

108. if self.amount_sensor1Files < 1:

109. print('no files for sensor 2 loaded')

110. else:

111. self.reloadCancel2 = True

112.

113. '''''If there are no files selected yet, this part is run for sensor 2'''

114. if self.amount_sensor2Files == 0:

115. self.reloadCancel2 = False

116. self.sensor2FilesSelect = QtWidgets.QFileDialog.getOpenFileNames(self, 'Open files sensor 2',

117. "C://",

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 55

118. 'CSV Files (*.csv)')

119. self.sensor2Files = dict()

120. ''''' Check if there is a file selected, if non, pass'''

121. self.emptycheck2 = not all(self.sensor2FilesSelect)

122. if self.emptycheck2 == True:

123. pass

124. for i in range(0, len(list(self.sensor2FilesSelect)[0])):

125. self.sensor2Files[i] = list(self.sensor2FilesSelect)[0][i]

126. self.amount_sensor2Files = len(self.sensor2Files)

127. if self.amount_sensor2Files < 1:

128. print('no files for sensor 2 loaded')

129.

130. ''''' Check if the files are loaded and set the amount of files to the amountFiles label'''

131. if self.emptycheck1 == False:

132. if self.amount_sensor1Files > 0:

133. if self.amount_sensor2Files > 0:

134. self.amountFiles.setText(str('Sensor 1 = ') + str(self.amount_sensor1Files) + str(' | ')

 + str('Sensor 2 = ') + str(self.amount_sensor2Files))

135.

136. if self.amount_sensor1Files and self.amount_sensor2Files == 0:

137. self.amountFiles.setText('No files loaded')

138.

139. if self.amount_sensor1Files > 0:

140. '''''because genfromTXT in ManualData.py cannot read from dict types,

141. the values are taken and put into a list, the ID's are not used'''

142. self.sensor1FilesList = list(self.sensor1Files.values())

143. ''''' Make use of the selected data'''

144. self.sensor1 = data.LoadFiles(self.sensor1FilesList)

145. if self.amount_sensor2Files > 0:

146. self.sensor2FilesList = list(self.sensor2Files.values())

147. self.sensor2 = data.LoadFiles(self.sensor2FilesList)

148.

149. if self.amount_sensor1Files > 0:

150. ''''' Let the lables display the right values'''

151. self.amountTime.setText('time is calculated here')

152. self.amountPackets.setText(str(self.sensor1.amount_packets))

153. self.time = self.sensor1.amount_packets / self.setFrequency

154. self.amountTime.setText(str(time.strftime("%M:%S", time.gmtime(self.time))))

155. else:

156. if self.amount_sensor2Files > 0:

157. self.amountTime.setText('time is calculated here')

158. self.amountPackets.setText(str(self.sensor2.amount_packets))

159. self.time = self.sensor2.amount_packets / self.setFrequency

160. self.amountTime.setText(str(time.strftime("%M:%S", time.gmtime(self.time))))

161. else:

162. pass

163.

164. ''''' Set the selected files into the comboxes above graph1 to select'''

165. self.selectDataFileShow1.clear() #clear the combobox first before adding items

166. if self.amount_sensor1Files > 0:

167. sensor1files = str(self.sensor1FilesList)

168. if "Mag" in sensor1files:

169. self.selectDataFileShow1.addItem("Gyroscopes", QtCore.QVariant(1))

170. self.selectDataFileShow1.addItem("Accelerometers", QtCore.QVariant(2))

171. self.selectDataFileShow1.addItem("Magnetometers", QtCore.QVariant(3))

172. if "Euler" in sensor1files:

173. self.selectDataFileShow1.addItem("Euler", QtCore.QVariant(4))

174. self.runGraphics1()

175. else:

176. pass

177.

178. ''''' Set the selected files into the comboxes above graph2 to select'''

179. self.selectDataFileShow2.clear() #clear the combobox first before adding items

180. if self.amount_sensor2Files > 0:

181. sensor2files = str(self.sensor2FilesList)

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 56

182. if "Mag" in sensor2files:

183. self.selectDataFileShow2.addItem("Gyroscopes", QtCore.QVariant(1))

184. self.selectDataFileShow2.addItem("Accelerometers", QtCore.QVariant(2))

185. self.selectDataFileShow2.addItem("Magnetometers", QtCore.QVariant(3))

186. if "Euler" in sensor2files:

187. self.selectDataFileShow2.addItem("Euler", QtCore.QVariant(4))

188. self.runGraphics2()

189.

190. def saveFiles(self):

191. self.location = QtWidgets.QFileDialog.getSaveFileName(self, 'Save File', '', 'CSV(*.csv)')

192. print(type(self.location[0]), self.location[0])

193. print(self.location)

194. pass

195.

196. def calibrate(self):

197. ''''' First check if there are files of two sensors loaded '''

198. if self.setCalibration == 2 and self.manualCalBox == 2:

199. if self.amount_sensor1Files == 0 or self.amount_sensor2Files == 0:

200. print('Need two IMU files for calibration!')

201. return

202. ''''' collect and initialize data first to put in fuctions, then runfunctions:

203. 1. set derivative (takes starting and ending value and put these ito new arrays. One gyro, o

ne accellero and

204. one derivative of the gyro.

205. 2. run calibration (takes the three variables from 1 and put these in the loops for finding

J and O, these

206. values are returned from te function and can be used for calculation.

 '''

207.

208. '''''' $$ 1 $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

$$$$$$$$$$$$ '''

209.

210. ''''' gather the neccesary data to put in new arrays for accelerometer and gyroscope, and gyro d

erivative'''

211. print('running data preperation......')

212. startCalData = int(self.packageEdit1.text()) # get input from text-edit to set as start-

datafile

213. stopCalData = int(self.packageEdit2.text()) # get input from text-edit to set as stop-

datafile

214. frequency = self.setFrequency # get the set frequency

215. gData1 = self.sensor1.gData # get complete array of gyroscope data R(1*3) of sensor

1

216. gData2 = self.sensor2.gData # get complete array of gyroscope data R(1*3) of sensor

2

217. aData1 = self.sensor1.aData # get complete array of accellerometer data R(1*3) of se

nsor 1

218. aData2 = self.sensor2.aData # get complete array of accellerometer data R(1*3) of se

nsor 2

219. ''''' Run the function to set the new arrays which are used for calibration'''

220. # prepare the data for calibration in the range set by start/stop:

221. self.dataSetting = data.Derivative(gData1, gData2, aData1, aData2, startCalData, stopCalData, se

lf.dt, frequency)

222.

223. gyro1 = self.dataSetting.gyro1 # take gyroscope data from function and rename for c

alibration function

224. gyro2 = self.dataSetting.gyro2 # do the above for sensor 2

225. gyro1der = self.dataSetting.gyro1der # take gyro derivative data from function and rename

 for calibration function

226. gyro2der = self.dataSetting.gyro2der # do the above for sensor 2

227. accel1 = self.dataSetting.accel1 # take accellero data from function and rename for c

alibration function

228. accel2 = self.dataSetting.accel2 # do the above for sensor 2

229.

230. '''''' $$ 2 $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

$$$$$$$$$$$$ '''

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 57

231. print('running calibration......')

232. ''''' Set guessing values for the angles and vectors, to start the first alibration look with. T

he outcoms are optimalized'''

233. x = np.array([[20], [60], [25], [55]]) # enter an initial guess for the agnles, used for the

 spherical coordinates of J

234. x = x / 180 * np.pi # change the angles in radians

235. o1 = np.array([0.1, 0.1, 0.1]) # enter an initial guess for the vector o1, which is the dista

nce to the joint

236. o2 = np.array([0.1, 0.1, 0.1]) # enter an initial guess for the vector o2, which is the dista

nce to the joint

237. # set starting value for the loop to 0, because the calibration takes new variables from 1 which

 start with 0:

238. startCal = 0

239. # set the stopping value for the loop to the minimum value found in all the generated gyro, acce

l and derivative

240. # files. This assures there is no array that exceeds the minimum length of any other array.

241. stopCal = min([len(gyro1), len(gyro2), len(gyro1der), len(gyro2der), len(accel1), len(accel2)])

242.

243. ''''' run the calibration function, it takes variables from above and gives the J and O, witch a

re joint axis

244. coordinates and the joint position coordinates '''

245. self.calibration = calb.CalibrationJ(x, gData1, gData2, gyro1, gyro2, startCal, stopCal, frequen

cy, self.dt)

246. self.newj1 = self.calibration.newj1 # get the optimized J and set it as a variable witch can

 be

247. self.newj2 = self.calibration.newj2 # used everywhere in the program.

248. print('new J1 and J2 are set: ', self.newj1, self.newj2)

249. self.calibrationStatus.setText('Succeeded')

250. if self.setCalibration == 2 and self.manualCalBox == 0:

251. self.calibrationStatus.setText('Check use manual data box!')

252. print('automated clibration missing')

253. if self.setCalibration == 3 and self.manualCalBox == 2:

254. self.calibrationStatus.setText('3D NA')

255. print('program 3D kinematics first')

256. else:

257. return

258.

259. def angleCalculation(self):

260. if self.amount_sensor1Files == 0 or self.amount_sensor2Files == 0:

261. return

262.

263. print('calculating the angle..')

264. self.angle = [] #empty the variable

265. ''''' ^^^^^^^^^^^^^^^^^^^^ RUN ANGLE.PY TO CALCULATE THE ANGLES ^^^^^^^^^^^^^^^^^^^^^^^^'''

266. self.angle = angle.AngleCalculation(0, 0, self.newj1, self.newj2, 0, 0, self.sensor1.gData, self.sen

sor2.gData,

267. self.setFrequency)

268.

269. if self.sensor1.RM == True:

270. self.selectAngleShowCombo.clear()

271. self.selectAngleShowCombo.addItem("Euler X", QtCore.QVariant(1))

272. self.selectAngleShowCombo.addItem("Euler Y", QtCore.QVariant(2))

273. self.selectAngleShowCombo.addItem("Angle R Cos", QtCore.QVariant(5))

274. print('comboset')

275. if self.sensor1.CIM == True:

276. self.selectAngleShowCombo.clear()

277. self.selectAngleShowCombo.addItem("Angular rotation for Gyroscope", QtCore.QVariant(3))

278. self.selectAngleShowCombo.addItem("Angular velocity", QtCore.QVariant(4))

279. else:

280. print("no data received for angle calculation")

281. self.runGraphics3()

282.

283. def port(self):

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 58

284. print('port function not defined')

285.

286. ''''' Underneith this line are general functions for the UI, '''

287.

288. def runGraphics1(self):

289. if self.reloadCancel1 == False:

290. self.sensorGraph1.clear()

291. if self.reload1 == True:

292. self.setGraph1Show = 1

293. self.data1x = []

294. self.data1y = []

295. self.data1z = []

296. if self.amount_sensor1Files == 0:

297. print('no files to display graph 1')

298. else:

299. range1axis = [0]

300. range1axis = np.arange(1, self.sensor1.amount_packets+1)

301. if self.setGraph1Show == 1:

302. self.data1x = self.sensor1.gyroX

303. self.data1y = self.sensor1.gyroY

304. self.data1z = self.sensor1.gyroZ

305. if self.setGraph1Show == 2:

306. self.data1x = self.sensor1.accelX

307. self.data1y = self.sensor1.accelY

308. self.data1z = self.sensor1.accelZ

309. if self.setGraph1Show == 3:

310. self.data1x = self.sensor1.magnetoX

311. self.data1y = self.sensor1.magnetoY

312. self.data1z = self.sensor1.magnetoZ

313. self.sensorGraph1.plot(x=range1axis, y=self.data1x, pen='b')

314. self.sensorGraph1.plot(x=range1axis, y=self.data1y, pen='r')

315. self.sensorGraph1.plot(x=range1axis, y=self.data1z, pen='g')

316. self.sensorGraph1.show()

317. else:

318. print('check selected data for graphics 1')

319.

320. def runGraphics2(self):

321. if self.reloadCancel1 == False:

322. self.sensorGraph2.clear()

323. if self.reload2 == True:

324. self.setGraph2Show = 1

325. self.data2x = []

326. self.data2y = []

327. self.data2z = []

328. if self.amount_sensor2Files == 0:

329. print('no files to display graph 2')

330. else:

331. range2axis = [0]

332. range2axis = np.arange(1, self.sensor2.amount_packets + 1)

333. if self.setGraph2Show == 1:

334. self.data2x = self.sensor2.gyroX

335. self.data2y = self.sensor2.gyroY

336. self.data2z = self.sensor2.gyroZ

337. if self.setGraph2Show == 2:

338. self.data2x = self.sensor2.accelX

339. self.data2y = self.sensor2.accelY

340. self.data2z = self.sensor2.accelZ

341. if self.setGraph2Show == 3:

342. self.data2x = self.sensor2.magnetoX

343. self.data2y = self.sensor2.magnetoY

344. self.data2z = self.sensor2.magnetoZ

345. self.sensorGraph2.plot(x=range2axis, y=self.data2x, pen='b')

346. self.sensorGraph2.plot(x=range2axis, y=self.data2y, pen='r')

347. self.sensorGraph2.plot(x=range2axis, y=self.data2z, pen='g')

348. self.sensorGraph2.show()

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 59

349. else:

350. print('check selected data for graphics 2')

351.

352. def runGraphics3(self):

353. self.angleGraph.clear()

354. range3axis = []

355. self.data3a = []

356. self.data3y = []

357. self.data3z = []

358. if self.amount_sensor2Files == 0:

359. print('no files to display graph 3')

360. else:

361. print('now running the graphics script 3....')

362. if self.setGraph3Show == 1:

363. self.data3a = self.angle.angleXrm1D

364. self.data3y = self.angle.angleXrm2D

365. self.data3z = self.angle.angleXrm1D + self.angle.angleXrm2D

366. if self.setGraph3Show == 2:

367. self.data3a = self.angle.angleYrm1D

368. self.data3y = self.angle.angleYrm2D

369. self.data3z = self.angle.angleYrm1D + self.angle.angleYrm2D

370. if self.setGraph3Show == 3:

371. range3axis = np.arange(1, len(self.angle.angleG) + 1)

372. self.data3a = self.angle.angleG

373. if self.setGraph3Show == 4:

374. range3axis = np.arange(1, len(self.angle.angleV) + 1)

375. self.data3a = self.angle.angleV

376. if self.setGraph3Show == 5:

377. range3axis = np.arange(1, len(self.angle.angleR) + 1)

378. self.data3a = self.angle.angleRxD

379. # self.data3y = self.angle.angleRinvD

380. # self.data3z = self.angle.angleRzD

381. self.angleGraph.plot(x=range3axis, y=self.data3a, pen='y')

382. # self.angleGraph.plot(x=range3axis, y=self.data3y, pen='r')

383. # self.angleGraph.plot(x=range3axis, y=self.data3z, pen='g')

384. self.angleGraph.show()

385.

386. def graphHandle1(self): # function that is performed when the values of the graphics-

combobox are changed

387. self.setGraph1Show = self.selectDataFileShow1.currentData()

388. print('Selection graph-type 1', self.setGraph1Show)

389. self.runGraphics1()

390.

391. def graphHandle2(self):

392. self.setGraph2Show = self.selectDataFileShow2.currentData()

393. print('Selection graph-type 2', self.setGraph2Show)

394. self.runGraphics2()

395.

396. def graphHandle3(self):

397. self.setGraph3Show = self.selectAngleShowCombo.currentData()

398. print('Selection graph-type 3', self.setGraph3Show)

399. self.runGraphics3()

400.

401. if __name__ == "__main__":

402. app = QtWidgets.QApplication(sys.argv)

403. application = MainWindow()

404. application.show()

405. app.exec_()

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 60

4.3 ThesisApp.py

1. __author__ = 'Arno van der Zwet'

2. __copyright__ = "Copyright 2017, Arno van der Zwet"

3. __title__ = 'Thesis Human Kinetic Technology'

4.

5. # This file is created for

6. # -*- coding: utf-8 -*-

7.

8. # Form implementation generated from reading ui file 'IMU.ui'

9. #

10. # Created by: PyQt5 UI code generator 5.8

11. #

12. # WARNING! All changes made in this file will be lost!

13.

14. import sys

15. from PyQt5 import QtCore, QtGui, QtWidgets

16. from pyqtgraph import PlotWidget

17.

18.

19. class Ui_MainWindow(object):

20.

21. ''''' This is the main window class, this class is used and run in the main program. It will load all th

e elements

22. of the programm and place these in the User Interface (UI). The basic structure and layout of this UI wa

s made

23. with the help of QtDesigner, part of QtCreator. The output of the designer are .ui files, but were conve

rted

24. in to windows command prompt using the 'pyuic' command (pyuic5 -x "ThesisApp.ui" -

o "ThesisApp.py). The outcome

25. is part 1 and 3 of this python file, saved as .py file. '''

26.

27. '''''\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ PART 1 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ '''

28. def setupUi(self, MainWindow):

29. MainWindow.setObjectName("MainWindow")

30. MainWindow.resize(990, 801)

31. self.centralwidget = QtWidgets.QWidget(MainWindow)

32. self.centralwidget.setObjectName("centralwidget")

33. self.gridLayout = QtWidgets.QGridLayout(self.centralwidget)

34. self.gridLayout.setObjectName("gridLayout")

35. self.verticalLayout_4 = QtWidgets.QVBoxLayout()

36. self.verticalLayout_4.setObjectName("verticalLayout_4")

37. self.gridLayout.addLayout(self.verticalLayout_4, 2, 5, 1, 1)

38. self.line = QtWidgets.QFrame(self.centralwidget)

39. self.line.setFrameShape(QtWidgets.QFrame.VLine)

40. self.line.setFrameShadow(QtWidgets.QFrame.Sunken)

41. self.line.setObjectName("line")

42. self.gridLayout.addWidget(self.line, 2, 1, 1, 1)

43. self.groupBox_4 = QtWidgets.QGroupBox(self.centralwidget)

44. self.groupBox_4.setMaximumSize(QtCore.QSize(16777215, 300))

45. self.groupBox_4.setObjectName("groupBox_4")

46. self.horizontalLayout_5 = QtWidgets.QHBoxLayout(self.groupBox_4)

47. self.horizontalLayout_5.setObjectName("horizontalLayout_5")

48. self.verticalLayout_9 = QtWidgets.QVBoxLayout()

49. self.verticalLayout_9.setObjectName("verticalLayout_9")

50. self.formLayout_7 = QtWidgets.QFormLayout()

51. self.formLayout_7.setSizeConstraint(QtWidgets.QLayout.SetFixedSize)

52. self.formLayout_7.setFieldGrowthPolicy(QtWidgets.QFormLayout.AllNonFixedFieldsGrow)

53. self.formLayout_7.setRowWrapPolicy(QtWidgets.QFormLayout.DontWrapRows)

54. self.formLayout_7.setLabelAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignTop)

55. self.formLayout_7.setFormAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignTop)

56. self.formLayout_7.setContentsMargins(-1, 0, -1, -1)

57. self.formLayout_7.setObjectName("formLayout_7")

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 61

58. self.angleLabel = QtWidgets.QLabel(self.groupBox_4)

59. self.angleLabel.setObjectName("angleLabel")

60. self.formLayout_7.setWidget(1, QtWidgets.QFormLayout.LabelRole, self.angleLabel)

61. self.selectAngleShowCombo = QtWidgets.QComboBox(self.groupBox_4)

62. self.selectAngleShowCombo.setMaximumSize(QtCore.QSize(16777215, 50))

63. self.selectAngleShowCombo.setObjectName("selectAngleShowCombo")

64. self.formLayout_7.setWidget(1, QtWidgets.QFormLayout.FieldRole, self.selectAngleShowCombo)

65. self.verticalLayout_9.addLayout(self.formLayout_7)

66. self.angleGraph = PlotWidget(self.groupBox_4)

67. self.angleGraph.setObjectName("angleGraph")

68. self.verticalLayout_9.addWidget(self.angleGraph)

69. self.verticalLayout_9.setStretch(1, 10)

70. self.horizontalLayout_5.addLayout(self.verticalLayout_9)

71. self.gridLayout.addWidget(self.groupBox_4, 4, 1, 1, 1)

72. self.horizontalLayout_10 = QtWidgets.QHBoxLayout()

73. self.horizontalLayout_10.setObjectName("horizontalLayout_10")

74. self.verticalLayout = QtWidgets.QVBoxLayout()

75. self.verticalLayout.setObjectName("verticalLayout")

76. self.groupBox1 = QtWidgets.QGroupBox(self.centralwidget)

77. self.groupBox1.setMaximumSize(QtCore.QSize(400, 16777215))

78. self.groupBox1.setObjectName("groupBox1")

79. self.horizontalLayout_2 = QtWidgets.QHBoxLayout(self.groupBox1)

80. self.horizontalLayout_2.setObjectName("horizontalLayout_2")

81. self.groupBox_6 = QtWidgets.QGroupBox(self.groupBox1)

82. self.groupBox_6.setObjectName("groupBox_6")

83. self.verticalLayout_2 = QtWidgets.QVBoxLayout(self.groupBox_6)

84. self.verticalLayout_2.setObjectName("verticalLayout_2")

85. self.openFileButton = QtWidgets.QPushButton(self.groupBox_6)

86. self.openFileButton.setObjectName("openFileButton")

87. self.verticalLayout_2.addWidget(self.openFileButton)

88. self.openPortButton = QtWidgets.QPushButton(self.groupBox_6)

89. self.openPortButton.setObjectName("openPortButton")

90. self.verticalLayout_2.addWidget(self.openPortButton)

91. spacerItem = QtWidgets.QSpacerItem(20, 40, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expa

nding)

92. self.verticalLayout_2.addItem(spacerItem)

93. self.horizontalLayout_2.addWidget(self.groupBox_6)

94. self.groupBox = QtWidgets.QGroupBox(self.groupBox1)

95. self.groupBox.setObjectName("groupBox")

96. self.verticalLayout_7 = QtWidgets.QVBoxLayout(self.groupBox)

97. self.verticalLayout_7.setObjectName("verticalLayout_7")

98. self.manualCheckBox = QtWidgets.QCheckBox(self.groupBox)

99. self.manualCheckBox.setObjectName("manualCheckBox")

100. self.verticalLayout_7.addWidget(self.manualCheckBox)

101. self.packageEdit1 = QtWidgets.QLineEdit(self.groupBox)

102. self.packageEdit1.setMaximumSize(QtCore.QSize(100, 16777215))

103. self.packageEdit1.setObjectName("packageEdit1")

104. self.verticalLayout_7.addWidget(self.packageEdit1)

105. self.packageEdit2 = QtWidgets.QLineEdit(self.groupBox)

106. self.packageEdit2.setMaximumSize(QtCore.QSize(100, 16777215))

107. self.packageEdit2.setObjectName("packageEdit2")

108. self.verticalLayout_7.addWidget(self.packageEdit2)

109. self.calibrationComboBox = QtWidgets.QComboBox(self.groupBox)

110. self.calibrationComboBox.setMaximumSize(QtCore.QSize(100, 16777215))

111. self.calibrationComboBox.setObjectName("calibrationComboBox")

112. self.verticalLayout_7.addWidget(self.calibrationComboBox)

113. self.calibrateButton = QtWidgets.QPushButton(self.groupBox)

114. self.calibrateButton.setMinimumSize(QtCore.QSize(100, 23))

115. self.calibrateButton.setMaximumSize(QtCore.QSize(100, 16777215))

116. self.calibrateButton.setObjectName("calibrateButton")

117. self.verticalLayout_7.addWidget(self.calibrateButton)

118. spacerItem1 = QtWidgets.QSpacerItem(20, 40, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Exp

anding)

119. self.verticalLayout_7.addItem(spacerItem1)

120. self.horizontalLayout_2.addWidget(self.groupBox)

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 62

121. self.groupBox_5 = QtWidgets.QGroupBox(self.groupBox1)

122. self.groupBox_5.setObjectName("groupBox_5")

123. self.verticalLayout_8 = QtWidgets.QVBoxLayout(self.groupBox_5)

124. self.verticalLayout_8.setObjectName("verticalLayout_8")

125. self.label_3 = QtWidgets.QLabel(self.groupBox_5)

126. self.label_3.setMaximumSize(QtCore.QSize(100, 20))

127. self.label_3.setObjectName("label_3")

128. self.verticalLayout_8.addWidget(self.label_3)

129. self.frequencyComboBox = QtWidgets.QComboBox(self.groupBox_5)

130. self.frequencyComboBox.setObjectName("frequencyComboBox")

131. self.verticalLayout_8.addWidget(self.frequencyComboBox)

132. self.pushButton = QtWidgets.QPushButton(self.groupBox_5)

133. self.pushButton.setObjectName("pushButton")

134. self.verticalLayout_8.addWidget(self.pushButton)

135. spacerItem2 = QtWidgets.QSpacerItem(20, 40, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Exp

anding)

136. self.verticalLayout_8.addItem(spacerItem2)

137. self.angleButton = QtWidgets.QPushButton(self.groupBox_5)

138. self.angleButton.setObjectName("angleButton")

139. self.verticalLayout_8.addWidget(self.angleButton)

140. spacerItem3 = QtWidgets.QSpacerItem(20, 40, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Exp

anding)

141. self.verticalLayout_8.addItem(spacerItem3)

142. self.horizontalLayout_2.addWidget(self.groupBox_5)

143. self.verticalLayout.addWidget(self.groupBox1)

144. self.groupBox_2 = QtWidgets.QGroupBox(self.centralwidget)

145. self.groupBox_2.setMaximumSize(QtCore.QSize(400, 16777215))

146. self.groupBox_2.setObjectName("groupBox_2")

147. self.horizontalLayout_6 = QtWidgets.QHBoxLayout(self.groupBox_2)

148. self.horizontalLayout_6.setObjectName("horizontalLayout_6")

149. self.horizontalLayout_12 = QtWidgets.QHBoxLayout()

150. self.horizontalLayout_12.setObjectName("horizontalLayout_12")

151. self.verticalLayout_12 = QtWidgets.QVBoxLayout()

152. self.verticalLayout_12.setObjectName("verticalLayout_12")

153. self.label_NumberOfFiles = QtWidgets.QLabel(self.groupBox_2)

154. self.label_NumberOfFiles.setMaximumSize(QtCore.QSize(200, 16777215))

155. self.label_NumberOfFiles.setObjectName("label_NumberOfFiles")

156. self.verticalLayout_12.addWidget(self.label_NumberOfFiles, 0, QtCore.Qt.AlignLeft)

157. self.label_MeasureTime = QtWidgets.QLabel(self.groupBox_2)

158. self.label_MeasureTime.setMaximumSize(QtCore.QSize(200, 16777215))

159. self.label_MeasureTime.setObjectName("label_MeasureTime")

160. self.verticalLayout_12.addWidget(self.label_MeasureTime)

161. self.label_amountPackets = QtWidgets.QLabel(self.groupBox_2)

162. self.label_amountPackets.setMaximumSize(QtCore.QSize(200, 16777215))

163. self.label_amountPackets.setObjectName("label_amountPackets")

164. self.verticalLayout_12.addWidget(self.label_amountPackets)

165. self.label_calibration = QtWidgets.QLabel(self.groupBox_2)

166. self.label_calibration.setMaximumSize(QtCore.QSize(200, 16777215))

167. self.label_calibration.setObjectName("label_calibration")

168. self.verticalLayout_12.addWidget(self.label_calibration)

169. self.label_angle = QtWidgets.QLabel(self.groupBox_2)

170. self.label_angle.setMaximumSize(QtCore.QSize(200, 16777215))

171. self.label_angle.setObjectName("label_angle")

172. self.verticalLayout_12.addWidget(self.label_angle)

173. spacerItem4 = QtWidgets.QSpacerItem(20, 40, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Exp

anding)

174. self.verticalLayout_12.addItem(spacerItem4)

175. self.horizontalLayout_12.addLayout(self.verticalLayout_12)

176. self.verticalLayout_13 = QtWidgets.QVBoxLayout()

177. self.verticalLayout_13.setObjectName("verticalLayout_13")

178. self.amountFiles = QtWidgets.QLabel(self.groupBox_2)

179. self.amountFiles.setMaximumSize(QtCore.QSize(200, 16777215))

180. self.amountFiles.setObjectName("amountFiles")

181. self.verticalLayout_13.addWidget(self.amountFiles, 0, QtCore.Qt.AlignLeft)

182. self.amountTime = QtWidgets.QLabel(self.groupBox_2)

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 63

183. self.amountTime.setMaximumSize(QtCore.QSize(200, 16777215))

184. self.amountTime.setObjectName("amountTime")

185. self.verticalLayout_13.addWidget(self.amountTime)

186. self.amountPackets = QtWidgets.QLabel(self.groupBox_2)

187. self.amountPackets.setMaximumSize(QtCore.QSize(200, 16777215))

188. self.amountPackets.setObjectName("amountPackets")

189. self.verticalLayout_13.addWidget(self.amountPackets)

190. self.calibrationStatus = QtWidgets.QLabel(self.groupBox_2)

191. self.calibrationStatus.setMaximumSize(QtCore.QSize(200, 16777215))

192. self.calibrationStatus.setObjectName("calibrationStatus")

193. self.verticalLayout_13.addWidget(self.calibrationStatus)

194. self.amountAngle = QtWidgets.QLabel(self.groupBox_2)

195. self.amountAngle.setMaximumSize(QtCore.QSize(200, 16777215))

196. self.amountAngle.setObjectName("amountAngle")

197. self.verticalLayout_13.addWidget(self.amountAngle)

198. spacerItem5 = QtWidgets.QSpacerItem(20, 40, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Exp

anding)

199. self.verticalLayout_13.addItem(spacerItem5)

200. self.horizontalLayout_12.addLayout(self.verticalLayout_13)

201. self.listLoadedFiles = QtWidgets.QListWidget(self.groupBox_2)

202. self.listLoadedFiles.setMaximumSize(QtCore.QSize(300, 16777215))

203. self.listLoadedFiles.setObjectName("listLoadedFiles")

204. self.horizontalLayout_12.addWidget(self.listLoadedFiles, 0, QtCore.Qt.AlignLeft)

205. self.horizontalLayout_6.addLayout(self.horizontalLayout_12)

206. self.verticalLayout.addWidget(self.groupBox_2)

207. self.verticalLayout.setStretch(0, 5)

208. self.horizontalLayout_10.addLayout(self.verticalLayout)

209. self.groupBox_3 = QtWidgets.QGroupBox(self.centralwidget)

210. self.groupBox_3.setObjectName("groupBox_3")

211. self.verticalLayout_6 = QtWidgets.QVBoxLayout(self.groupBox_3)

212. self.verticalLayout_6.setObjectName("verticalLayout_6")

213. self.formLayout_4 = QtWidgets.QFormLayout()

214. self.formLayout_4.setObjectName("formLayout_4")

215. self.sensorDataLabel1 = QtWidgets.QLabel(self.groupBox_3)

216. self.sensorDataLabel1.setObjectName("sensorDataLabel1")

217. self.formLayout_4.setWidget(1, QtWidgets.QFormLayout.LabelRole, self.sensorDataLabel1)

218. self.selectDataFileShow1 = QtWidgets.QComboBox(self.groupBox_3)

219. self.selectDataFileShow1.setObjectName("selectDataFileShow1")

220. self.formLayout_4.setWidget(1, QtWidgets.QFormLayout.FieldRole, self.selectDataFileShow1)

221. self.verticalLayout_6.addLayout(self.formLayout_4)

222. self.sensorGraph1 = PlotWidget(self.groupBox_3)

223. self.sensorGraph1.setObjectName("sensorGraph1")

224. self.verticalLayout_6.addWidget(self.sensorGraph1)

225. self.formLayout_3 = QtWidgets.QFormLayout()

226. self.formLayout_3.setObjectName("formLayout_3")

227. self.sensorDataLabel2 = QtWidgets.QLabel(self.groupBox_3)

228. self.sensorDataLabel2.setObjectName("sensorDataLabel2")

229. self.formLayout_3.setWidget(1, QtWidgets.QFormLayout.LabelRole, self.sensorDataLabel2)

230. self.selectDataFileShow2 = QtWidgets.QComboBox(self.groupBox_3)

231. self.selectDataFileShow2.setObjectName("selectDataFileShow2")

232. self.formLayout_3.setWidget(1, QtWidgets.QFormLayout.FieldRole, self.selectDataFileShow2)

233. self.verticalLayout_6.addLayout(self.formLayout_3)

234. self.sensorGraph2 = PlotWidget(self.groupBox_3)

235. self.sensorGraph2.setEnabled(True)

236. self.sensorGraph2.setObjectName("sensorGraph2")

237. self.verticalLayout_6.addWidget(self.sensorGraph2)

238. self.sensorGraph2.raise_()

239. self.sensorGraph1.raise_()

240. self.horizontalLayout_10.addWidget(self.groupBox_3)

241. self.horizontalLayout_10.setStretch(1, 50)

242. self.gridLayout.addLayout(self.horizontalLayout_10, 3, 1, 1, 1)

243. MainWindow.setCentralWidget(self.centralwidget)

244. self.menubar = QtWidgets.QMenuBar(MainWindow)

245. self.menubar.setGeometry(QtCore.QRect(0, 0, 990, 21))

246. self.menubar.setObjectName("menubar")

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 64

247. self.menuOpen_File = QtWidgets.QMenu(self.menubar)

248. self.menuOpen_File.setObjectName("menuOpen_File")

249. self.menuCalibration = QtWidgets.QMenu(self.menubar)

250. self.menuCalibration.setObjectName("menuCalibration")

251. self.menuCalibration_2 = QtWidgets.QMenu(self.menuCalibration)

252. self.menuCalibration_2.setObjectName("menuCalibration_2")

253. self.menuView = QtWidgets.QMenu(self.menubar)

254. self.menuView.setObjectName("menuView")

255. self.menuSensor1 = QtWidgets.QMenu(self.menuView)

256. self.menuSensor1.setObjectName("menuSensor1")

257. self.menuSensor2 = QtWidgets.QMenu(self.menuView)

258. self.menuSensor2.setObjectName("menuSensor2")

259. MainWindow.setMenuBar(self.menubar)

260. self.statusbar = QtWidgets.QStatusBar(MainWindow)

261. self.statusbar.setObjectName("statusbar")

262. MainWindow.setStatusBar(self.statusbar)

263. self.actionOpen_File = QtWidgets.QAction(MainWindow)

264. self.actionOpen_File.setObjectName("actionOpen_File")

265. self.actionExit = QtWidgets.QAction(MainWindow)

266. self.actionExit.setObjectName("actionExit")

267. self.actionSave = QtWidgets.QAction(MainWindow)

268. self.actionSave.setObjectName("actionSave")

269. self.actionExit_2 = QtWidgets.QAction(MainWindow)

270. self.actionExit_2.setObjectName("actionExit_2")

271. self.actionManual = QtWidgets.QAction(MainWindow)

272. self.actionManual.setObjectName("actionManual")

273. self.actionAutomatic = QtWidgets.QAction(MainWindow)

274. self.actionAutomatic.setObjectName("actionAutomatic")

275. self.actionGyroscope_data = QtWidgets.QAction(MainWindow)

276. self.actionGyroscope_data.setObjectName("actionGyroscope_data")

277. self.actionAccelerometer_data = QtWidgets.QAction(MainWindow)

278. self.actionAccelerometer_data.setObjectName("actionAccelerometer_data")

279. self.actionMagnetometer_data = QtWidgets.QAction(MainWindow)

280. self.actionMagnetometer_data.setObjectName("actionMagnetometer_data")

281. self.actionExit_3 = QtWidgets.QAction(MainWindow)

282. self.actionExit_3.setObjectName("actionExit_3")

283. self.actionAccelerometer = QtWidgets.QAction(MainWindow)

284. self.actionAccelerometer.setObjectName("actionAccelerometer")

285. self.actionGyroscope = QtWidgets.QAction(MainWindow)

286. self.actionGyroscope.setObjectName("actionGyroscope")

287. self.actionMagnetometer = QtWidgets.QAction(MainWindow)

288. self.actionMagnetometer.setObjectName("actionMagnetometer")

289. self.actionClear_cashe = QtWidgets.QAction(MainWindow)

290. self.actionClear_cashe.setObjectName("actionClear_cashe")

291. self.actionConnection = QtWidgets.QAction(MainWindow)

292. self.actionConnection.setObjectName("actionConnection")

293. self.actionQuit = QtWidgets.QAction(MainWindow)

294. self.actionQuit.setObjectName("actionQuit")

295. self.menuOpen_File.addAction(self.actionOpen_File)

296. self.menuOpen_File.addAction(self.actionSave)

297. self.menuOpen_File.addSeparator()

298. self.menuOpen_File.addAction(self.actionQuit)

299. self.menuCalibration_2.addAction(self.actionManual)

300. self.menuCalibration_2.addAction(self.actionAutomatic)

301. self.menuCalibration.addAction(self.actionConnection)

302. self.menuCalibration.addAction(self.menuCalibration_2.menuAction())

303. self.menuCalibration.addSeparator()

304. self.menuCalibration.addAction(self.actionClear_cashe)

305. self.menuSensor1.addAction(self.actionGyroscope_data)

306. self.menuSensor1.addAction(self.actionAccelerometer_data)

307. self.menuSensor1.addAction(self.actionMagnetometer_data)

308. self.menuSensor2.addAction(self.actionGyroscope)

309. self.menuSensor2.addAction(self.actionAccelerometer)

310. self.menuSensor2.addAction(self.actionMagnetometer)

311. self.menuView.addAction(self.menuSensor1.menuAction())

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 65

312. self.menuView.addAction(self.menuSensor2.menuAction())

313. self.menubar.addAction(self.menuOpen_File.menuAction())

314. self.menubar.addAction(self.menuCalibration.menuAction())

315. self.menubar.addAction(self.menuView.menuAction())

316.

317. self.retranslateUi(MainWindow)

318. QtCore.QMetaObject.connectSlotsByName(MainWindow)

319.

320. '''''\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ PART 2 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

'''

321. '''''######## here are general button activities, do not delete, but copy when the layout is renewed

 ##########'''

322. #self.openPortButton.clicked.connect(MainWindow.closeApplication)

323. self.actionQuit.triggered.connect(MainWindow.closeApplication)

324. self.selectDataFileShow2.activated['QString'].connect(MainWindow.update)

325. self.packageEdit1.setText("start number")

326. self.packageEdit2.setText("end number")

327. #add STANDARD items to comboBox, variable items are set in Main

328. self.calibrationComboBox.addItem("2D Kinematics", QtCore.QVariant(2))

329. self.calibrationComboBox.addItem("3D Kinematics", QtCore.QVariant(3))

330. self.frequencyComboBox.addItem("1 Hz", QtCore.QVariant(1))

331. self.frequencyComboBox.addItem("2 Hz", QtCore.QVariant(2))

332. self.frequencyComboBox.addItem("4 Hz", QtCore.QVariant(4))

333. self.frequencyComboBox.addItem("8 Hz", QtCore.QVariant(8))

334. self.frequencyComboBox.addItem("16 Hz", QtCore.QVariant(16))

335. self.frequencyComboBox.addItem("32 Hz", QtCore.QVariant(32))

336. self.frequencyComboBox.addItem("64 Hz", QtCore.QVariant(64))

337. self.frequencyComboBox.addItem("128 Hz", QtCore.QVariant(128))

338. self.frequencyComboBox.addItem("256 Hz", QtCore.QVariant(256))

339. self.frequencyComboBox.addItem("512 Hz", QtCore.QVariant(512))

340.

341. # at initialize, get the QVariant (data) from the combobox and put it in setCalibration

342. self.setCalibration = self.calibrationComboBox.currentData()

343. self.setFrequency = self.frequencyComboBox.currentData()

344.

345. #if checkbox is changed, runHandle which gets the string and data

346. self.calibrationComboBox.currentIndexChanged[str].connect(self.calibrationHandle)

347. self.frequencyComboBox.currentIndexChanged[str].connect(self.frequencyHandle)

348. self.selectDataFileShow1.currentIndexChanged[str].connect(self.graphHandle1)

349. self.selectDataFileShow2.currentIndexChanged[str].connect(self.graphHandle2)

350. self.selectAngleShowCombo.currentIndexChanged[str].connect(self.graphHandle3)

351. self.manualCheckBox.stateChanged.connect(self.manualHandle)

352.

353. '''''\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ PART 3 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ '''

354. ''''' @@@@@@@@@@@@@@@@@ Here the strings and titles are set in the elements @@@@@@@@@@@@@@@@@@@@@@

@@'''

355. def retranslateUi(self, MainWindow):

356. _translate = QtCore.QCoreApplication.translate

357. MainWindow.setWindowTitle(_translate("MainWindow", "Thesis IMU 2017 1.0"))#copy in new layout

358. self.groupBox_4.setTitle(_translate("MainWindow", "Angle"))

359. self.angleLabel.setText(_translate("MainWindow", "Select Angle"))

360. self.groupBox1.setTitle(_translate("MainWindow", "Data Tools"))

361. self.groupBox_6.setTitle(_translate("MainWindow", "Start"))

362. self.openFileButton.setText(_translate("MainWindow", "Open File"))

363. self.openPortButton.setText(_translate("MainWindow", "Open Port"))

364. self.groupBox.setTitle(_translate("MainWindow", "Calibration"))

365. self.manualCheckBox.setText(_translate("MainWindow", "Use manual data"))

366. self.calibrateButton.setText(_translate("MainWindow", "Calibrate"))

367. self.groupBox_5.setTitle(_translate("MainWindow", "Data"))

368. self.label_3.setText(_translate("MainWindow", "Frequency"))

369. self.pushButton.setText(_translate("MainWindow", "PushButton"))

370. self.angleButton.setText(_translate("MainWindow", "Calculate Angel"))

371. self.groupBox_2.setTitle(_translate("MainWindow", "Data information"))

372. self.label_NumberOfFiles.setText(_translate("MainWindow", "Files loaded"))

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 66

373. self.label_MeasureTime.setText(_translate("MainWindow", "Measuring time (sec):"))

374. self.label_amountPackets.setText(_translate("MainWindow", "Number of packets:"))

375. self.label_calibration.setText(_translate("MainWindow", "Calibration"))

376. self.label_angle.setText(_translate("MainWindow", "Angle"))

377. self.amountFiles.setText(_translate("MainWindow", "No files selected"))

378. self.amountTime.setText(_translate("MainWindow", "......"))

379. self.amountPackets.setText(_translate("MainWindow", "......"))

380. self.calibrationStatus.setText(_translate("MainWindow", "not done yet"))

381. self.amountAngle.setText(_translate("MainWindow", "......"))

382. self.groupBox_3.setTitle(_translate("MainWindow", "Measured data"))

383. self.sensorDataLabel1.setText(_translate("MainWindow", "Data Sensor 1"))

384. self.sensorDataLabel2.setText(_translate("MainWindow", "Data Sensor 2"))

385. self.menuOpen_File.setTitle(_translate("MainWindow", "File"))

386. self.menuCalibration.setTitle(_translate("MainWindow", "Options"))

387. self.menuCalibration_2.setTitle(_translate("MainWindow", "Calibration"))

388. self.menuView.setTitle(_translate("MainWindow", "View"))

389. self.menuSensor1.setTitle(_translate("MainWindow", "Data sensor 1"))

390. self.menuSensor2.setTitle(_translate("MainWindow", "Data sensor 2"))

391. self.actionOpen_File.setText(_translate("MainWindow", "Open"))

392. self.actionExit.setText(_translate("MainWindow", "Exit"))

393. self.actionSave.setText(_translate("MainWindow", "Save"))

394. self.actionExit_2.setText(_translate("MainWindow", "Exit"))

395. self.actionManual.setText(_translate("MainWindow", "Manual"))

396. self.actionAutomatic.setText(_translate("MainWindow", "Automatic"))

397. self.actionGyroscope_data.setText(_translate("MainWindow", "Gyroscope"))

398. self.actionAccelerometer_data.setText(_translate("MainWindow", "Accelerometer"))

399. self.actionMagnetometer_data.setText(_translate("MainWindow", "Magnetometer"))

400. self.actionExit_3.setText(_translate("MainWindow", "Quit"))

401. self.actionAccelerometer.setText(_translate("MainWindow", "Accelerometer"))

402. self.actionGyroscope.setText(_translate("MainWindow", "Gyroscope"))

403. self.actionMagnetometer.setText(_translate("MainWindow", "Magnetometer"))

404. self.actionClear_cashe.setText(_translate("MainWindow", "Clear cache"))

405. self.actionConnection.setText(_translate("MainWindow", "Connection"))

406. self.actionQuit.setText(_translate("MainWindow", "Quit"))

407. self.actionQuit.setWhatsThis(_translate("MainWindow", "Quit the program"))

408.

409. '''''\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ PART 4 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ '''

410. ''''' @@@@@@@@@@@@@@@@@@ Here some extra functionality is created for the UI @@@@@@@@@@@@@@@@@'

''

411. # method for closing the app by sys exit, afer clicked yes in message box

412. def closeApplication(self):

413. choise = QtWidgets.QMessageBox.question(self, 'Quit Application', "Are you sure you want to quit?",

414. QtWidgets.QMessageBox.Yes | QtWidgets.QMessageBox.No)

415. if choise == QtWidgets.QMessageBox.Yes:

416. sys.exit()

417. else:

418. pass

419.

420. # method for closing the app by sys exit, afer clicked yes in message box

421. def calibrationHandle(self, text):

422. self.setCalibration = self.calibrationComboBox.currentData()

423. print('Calibration is set to: %s' % text)

424. print('calibration value', self.setCalibration)

425.

426. def frequencyHandle(self, text):

427. self.setFrequency = self.frequencyComboBox.currentData()

428. self.setDataJump = self.setFrequency/10

429. print('frequency: ', self.setFrequency)

430.

431. def manualHandle(self):

432. self.manualCalBox = self.manualCheckBox.checkState()

433. self.packageEdit1.setText('')

434. self.packageEdit2.setText('')

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 67

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 68

4.4 Data.py

1. __author__ = 'Arno van der Zwet'

2. __copyright__ = "Copyright 2017, Arno van der Zwet"

3. __title__ = 'Thesis Human Kinetic Technology'

4. '''''

5. created on: feb 2017

6. file name: Data.py

7. purpose: load and manipulate csv files for main.py

8. '''

9.

10. #import the nessacary modules and functions, this may also conttain funtions from pythonfiles that are made

for this project

11.

12. import numpy as np

13.

14. '''''## FILE LOADING ##

#'''

15.

16.

17. class LoadFiles:

18.

19. def __init__(self, filenames): #init is used to set variables for the class, it takes the arguments that

 are after self

20. nofilecheck = not all(filenames)

21. if nofilecheck == True:

22. return

23. self.filenames = filenames

24. self.amount_files = len(self.filenames) #read how many files are selected

25. print("files in manualData", self.amount_files)

26. '''''Check which file contains each strings is which and put them into a variable'''

27. # first set the strings of what the list should be checked of

28. self.txtCIM = "CalInertialAndMag"

29. self.txtIO = "DigitalIO"

30. self.txtEA = "EulerAngles"

31. self.txtQ = "Quaternion"

32. self.txtRM = "RotationMatrix"

33. self.amount_packets = []

34.

35. if self.amount_files == 0: #if only one file is selected, generate nly one file.

36. print("no files were selected")

37. self.CIM = []

38. self.IO = []

39. self.EA = []

40. self.Q = []

41. self.RM = []

42. else:

43. # Take the list of sensor one and search in the text for each strings set above.

44. # Every 'if' statement sets loads the data if it contains the text

45. for text in self.filenames:

46. if self.txtCIM in text:

47. self.dataCIM = np.genfromtxt(text, delimiter=",", skip_header=1)

48. self.CIM = True

49. #if self.txtIO in text:

50. #self.dataIO = np.genfromtxt(text, delimiter=",", skip_header=1)

51. #self.IO = True

52. if self.txtEA in text:

53. self.dataEA = np.genfromtxt(text, delimiter=",", skip_header=1)

54. self.EA = True

55. if self.txtEA not in text:

56. self.EA = False

57. if self.txtQ in text:

58. self.dataQ = np.genfromtxt(text, delimiter=",", skip_header=1)

59. self.Q = True

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 69

60. if self.txtQ not in text:

61. self.Q = False

62. if self.txtRM in text:

63. self.dataRM = np.genfromtxt(text, delimiter=",", skip_header=1)

64. self.RM = True

65. if self.txtRM not in text:

66. self.RM = False

67. self.amount_packets = len(self.dataCIM)

68. print('amount of packets', self.amount_packets)

69. if self.RM == True:

70. self.rmData = self.dataRM [0:, range(1, 10)]

71. else:

72. pass

73. if self.CIM == True:

74. self.gData = self.dataCIM[0:, range(1, 4)]

75. self.aData = self.dataCIM[0:, range(4, 7)]

76.

77. self.gyroX = self.dataCIM[0:, 1]

78. self.gyroY = self.dataCIM[0:, 2]

79. self.gyroZ = self.dataCIM[0:, 3]

80. self.accelX = self.dataCIM[0:, 4]

81. self.accelY = self.dataCIM[0:, 5]

82. self.accelZ = self.dataCIM[0:, 6]

83. self.magnetoX = self.dataCIM[0:, 7]

84. self.magnetoY = self.dataCIM[0:, 8]

85. self.magnetoZ = self.dataCIM[0:, 9]

86. self.gyro = self.dataCIM[1:, range(1, 4)]

87. self.accel = self.dataCIM[1:, [4, 5, 6]]

88. else:

89. pass

90.

91.

92. class Derivative:

93. def __init__(self, gData1, gData2, aData1, aData2, start, stop, dt, frequency):

94. print('running derivative...')

95. self.gData1 = gData1

96. self.gData2 = gData2

97. self.aData1 = aData1

98. self.aData2 = aData2

99. (print('data loaded'))

100. length = [len(self.gData1), len(self.gData2)]

101. print(min(length))

102. self.dt = dt

103. self.frequency = frequency

104. self.dt2 = self.dt/self.frequency

105. self.start = start - 1

106. self.stop = stop - 1

107. self.gyro1 = dict()

108. self.gyro2 = dict()

109. self.gyro1der = dict()

110. self.gyro2der = dict()

111. self.accel1 = dict()

112. self.accel2 = dict()

113. for u in range(self.start, self.stop, dt):

114. self.gyro1[u] = np.append([self.gData1[u]], [])

115. self.gyro2[u] = np.append([self.gData2[u]], [])

116. self.gyro1der[u] = np.append([((self.gData1[u - 2 * self.dt]) - (8 * self.gData1[u - self.dt]) +

 (

117. 8 * self.gData1[u + self.dt]) - (self.gData1[u + 2 * self.dt])) / (12 * self.dt2)], [])

118. self.gyro2der[u] = np.append([((self.gData2[u - 2 * self.dt]) - (8 * self.gData2[u - self.dt]) +

 (

119. 8 * self.gData2[u + self.dt]) - (self.gData2[u + 2 * self.dt])) / (12 * self.dt2)], [])

120. self.accel1[u] = np.append([self.aData1[u]], [])

121. self.accel2[u] = np.append([self.aData2[u]], [])

122. self.gyro1 = list(self.gyro1.values())

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 70

123. self.gyro2 = list(self.gyro2.values())

124. self.gyro1der = list(self.gyro1der.values())

125. self.gyro2der = list(self.gyro2der.values())

126. self.accel1 = list(self.accel1.values())

127. self.accel2 = list(self.accel2.values())

128. print('derivative set')

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 71

4.5 Calibration.py

1. __author__ = 'Arno van der Zwet'

2. __copyright__ = "Copyright 2017, Arno van der Zwet"

3. __title__ = 'Thesis Human Kinetic Technology'

4.

5.

6. #import the nessacary modules and functions, this may also conttain funtions from pythonfiles that are made

for this project

7. import numpy as np

8. import math as mt

9.

10.

11. class CalibrationJ:

12.

13. def __init__(self, x, gData1, gData2, gyro1, gyro2, start, stop, frequence, dt):

14. self.x = x

15. self.gyro1 = gyro1

16. self.gyro2 = gyro2

17. self.start = start

18. self.stop = stop

19. self.frequence = frequence

20. self.dt = dt

21. self.dtx = self.dt/frequence

22. self.gData1 = gData1

23. self.gData2 = gData2

24. self.defineJ() # run this method while initialize

25.

26. def defineJ(self):

27. iter = 0

28. self.meanError = [0] # create variable for vstack, 0 because it does not work if variable is empty

29. print("Initial values used for optimization: ", self.x, self.start, self.stop, self.dt)

30. for p in range(0, 30):

31. np.seterr(all='ignore') # this function makes sure no error appears when the value given in np.c

os nears 0

32. '''''Before the loop is run, first initialate the vales for the function:'''

33. # from x (the spherical coordinates):

34. phi1 = self.x[0]

35. theta1 = self.x[1]

36. phi2 = self.x[2]

37. theta2 = self.x[3]

38. # create empty arrays to fill:

39. errorVector = [0] # empty the errorvector

40. self.jacobian = np.array([0, 0, 0, 0]) # empty the jacobian matrix

41. self.pseudoInverse = [] # empty the pseudoInverse of the Jacobian

42. ''''' @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ step 1 @@

@@@'''

43. ''''' step 1: calculate J1 and J2, and take one row from G1 and G2

 '''

44. self.j1 = np.array([mt.cos(phi1)*mt.cos(theta1), mt.cos(phi1)*mt.sin(theta1), mt.sin(phi1)])

45. self.j2 = np.array([mt.cos(phi2)*mt.cos(theta2), mt.cos(phi2)*mt.sin(theta2), mt.sin(phi2)])

46.

47. for h in range(0, self.stop):

48. g1 = self.gyro1[h]

49. g2 = self.gyro2[h]

50. g1x = self.gyro1[h][0]

51. g1y = self.gyro1[h][1]

52. g1z = self.gyro1[h][2]

53. g2x = self.gyro2[h][0]

54. g2y = self.gyro2[h][1]

55. g2z = self.gyro2[h][2]

56. ''''' @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ step 2 @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

@@@@@@@'''

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 72

57. ''''' Step 2: Calculate the errorVector

 '''

58. errorVector = np.vstack((errorVector, np.array([np.linalg.norm(np.cross(

59. self.j1, g1)) - np.linalg.norm(np.cross(self.j2, g2))])))

60. ''''' @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ step 3 @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

@@@@@@@'''

61. ''''' step 3.1: Calculate the Jacobian

 '''

62. jacob = np.array([(2 * abs(g1x * np.sin(phi1) - g1z * np.cos(phi1) * np.cos(theta1)) * np.si

gn(

63. g1x * np.sin(phi1) - g1z * np.cos(phi1) * np.cos(theta1)) * (g1x * np.cos(phi1) + g1z *

np.cos(

64. theta1) * np.sin(phi1)) + 2 * abs(g1y * np.sin(phi1) - g1z * np.cos(phi1) * np.sin(theta

1)) * np.sign(

65. g1y * np.sin(phi1) - g1z * np.cos(phi1) * np.sin(theta1)) * (g1y * np.cos(phi1) + g1z *

np.sin(

66. phi1) * np.sin(theta1)) - 2 * abs(g1y * np.cos(phi1) * np.cos(theta1) - g1x * np.cos(phi

1) * np.sin(

67. theta1)) * np.sign(g1y * np.cos(phi1) * np.cos(theta1) - g1x * np.cos(phi1) * np.sin(the

ta1)) * (

68. g1y * np.cos(theta1) * np.sin(phi1) - g1x * np.sin(phi1) * np.sin(theta1))) / (2 * (abs(

g1y * np.cos(

69. phi1) * np.cos(theta1) - g1x * np.cos(phi1) * np.sin(theta1)) ** 2 + abs(g1x * np.sin(

70. phi1) - g1z * np.cos(phi1) * np.cos(theta1)) ** 2 + abs(g1y * np.sin(phi1) - g1z * np.co

s(

71. phi1) * np.sin(theta1)) ** 2) ** (1 / 2)),

72. -

(2 * abs(g1y * np.cos(phi1) * np.cos(theta1) - g1x * np.cos(phi1) * np.sin(theta1)) * np.sign(

73. g1y * np.cos(phi1) * np.cos(theta1) - g1x * np.cos(phi1) * np.sin(theta1)) * (

74. g1x * np.cos(phi1) * np.cos(theta1) + g1y * np.cos(phi1) * np.sin(theta1)) - 2 * g1z * a

bs(

75. g1x * np.sin(phi1) - g1z * np.cos(phi1) * np.cos(theta1)) * np.sign(g1x * np.sin(

76. phi1) - g1z * np.cos(phi1) * np.cos(theta1)) * np.cos(phi1) * np.sin(theta1) + 2 * g1z *

 abs(

77. g1y * np.sin(phi1) - g1z * np.cos(phi1) * np.sin(theta1)) * np.sign(g1y * np.sin(

78. phi1) - g1z * np.cos(phi1) * np.sin(theta1)) * np.cos(phi1) * np.cos(theta1)) / (2 * (ab

s(

79. g1y * np.cos(phi1) * np.cos(theta1) - g1x * np.cos(phi1) * np.sin(theta1)) ** 2 + abs(

80. g1x * np.sin(phi1) - g1z * np.cos(phi1) * np.cos(theta1)) ** 2 + abs(g1y * np.sin(

81. phi1) - g1z * np.cos(phi1) * np.sin(theta1)) ** 2) ** (1 / 2)),

82. -

(2 * abs(g2x * np.sin(phi2) - g2z * np.cos(phi2) * np.cos(theta2)) * np.sign(g2x * np.sin(

83. phi2) - g2z * np.cos(phi2) * np.cos(theta2)) * (g2x * np.cos(phi2) + g2z * np.cos(theta2

) * np.sin(

84. phi2)) + 2 * abs(g2y * np.sin(phi2) - g2z * np.cos(phi2) * np.sin(theta2)) * np.sign(g2y

 * np.sin(

85. phi2) - g2z * np.cos(phi2) * np.sin(theta2)) * (g2y * np.cos(phi2) + g2z * np.sin(phi2)

* np.sin(

86. theta2)) - 2 * abs(g2y * np.cos(phi2) * np.cos(theta2) - g2x * np.cos(phi2) * np.sin(

87. theta2)) * np.sign(g2y * np.cos(phi2) * np.cos(theta2) - g2x * np.cos(phi2) * np.sin(the

ta2)) * (

88. g2y * np.cos(theta2) * np.sin(phi2) - g2x * np.sin(phi2) * np.sin(theta2))) / (2 * (abs(

89. g2y * np.cos(phi2) * np.cos(theta2) - g2x * np.cos(phi2) * np.sin(theta2)) ** 2 + abs(

90. g2x * np.sin(phi2) - g2z * np.cos(phi2) * np.cos(theta2)) ** 2 + abs(g2y * np.sin(

91. phi2) - g2z * np.cos(phi2) * np.sin(theta2)) ** 2) ** (1 / 2)),

92. (2 * abs(g2y * np.cos(phi2) * np.cos(theta2) - g2x * np.cos(phi2) * np.sin(theta2)) * np

.sign(

93. g2y * np.cos(phi2) * np.cos(theta2) - g2x * np.cos(phi2) * np.sin(theta2)) * (g2x * np.c

os(

94. phi2) * np.cos(theta2) + g2y * np.cos(phi2) * np.sin(theta2)) - 2 * g2z * abs(g2x * np.s

in(

95. phi2) - g2z * np.cos(phi2) * np.cos(theta2)) * np.sign(g2x * np.sin(phi2) - g2z * np.cos

(

96. phi2) * np.cos(theta2)) * np.cos(phi2) * np.sin(theta2) + 2 * g2z * abs(g2y * np.sin(

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 73

97. phi2) - g2z * np.cos(phi2) * np.sin(theta2)) * np.sign(g2y * np.sin(phi2) - g2z * np.cos

(

98. phi2) * np.sin(theta2)) * np.cos(phi2) * np.cos(theta2)) / (2 * (abs(g2y * np.cos(phi2)

* np.cos(

99. theta2) - g2x * np.cos(phi2) * np.sin(theta2)) ** 2 + abs(g2x * np.sin(phi2) - g2z * np.

cos(

100. phi2) * np.cos(theta2)) ** 2 + abs(g2y * np.sin(phi2) - g2z * np.cos(phi2) * np.sin(

101. theta2)) ** 2) ** (1 / 2))])

102. jacob1 = jacob[0, 0] # take 1st value from the array jacob

103. jacob2 = jacob[1, 0] # take 2nd value from the array jacob

104. jacob3 = jacob[2, 0] # take 3rd value from the array jacob

105. jacob4 = jacob[3, 0] # take 4th value from the array jacob

106. # organize and stack(add) the above values into the jacobian matrix

107. self.jacobian = np.vstack((self.jacobian, np.array([jacob1, jacob2, jacob3, jacob4])))

108. '''''end of the loop, the arrays created are used under this line'''

109.

110. errorVector = errorVector[1:, :] # throw away the first column because it contains zero's

111. self.jacobian = self.jacobian[1:, :] # throw away the first column because it contains zero's

112. ''''' step 3.2: Calculate the pseudo inverse of the jacobian

 '''

113. self.pseudoInverse = np.linalg.pinv(self.jacobian)

114. ''''' @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ step 4 @@

@@@'''

115. ''''' step 4: Update x by x = x - mppi*errorJ

 '''

116. dot = np.dot(self.pseudoInverse, errorVector)

117. self.new_x = self.x - dot

118. self.x = self.new_x

119. ''''' For optimalization of the loop: '''

120. iter = iter+1 # raise amount of iterations with 1 after each loop

121. self.meanError = np.vstack((self.meanError, abs(np.mean(errorVector)))) # set errorvalue to ab

solute, this assures the loop

122. # ends even if the error is negative

123. else:

124. self.meanError = self.meanError[1:, :]

125. print('Number of iterations', iter)

126. print('Final error: ', self.meanError)

127. self.newj1 = self.j1

128. self.newj2 = self.j2

129. print('norm J1, J2 for unitvector', np.linalg.norm(self.j1), np.linalg.norm(self.j2))

130. print('length errorvector:', len(errorVector))

131. return

132.

133. def checkSign(self):

134. print('çhecking signs.....')

135. self.sign1 = np.dot(self.gData1[3300, 0:], self.newj1)

136. self.sign2 = np.dot(self.gData2[3300, 0:], self.newj2)

137. print(self.sign1, self.sign2)

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 74

4.6 Angle.py

1. __author__ = 'Arno van der Zwet'

2. __copyright__ = "Copyright 2017, Arno van der Zwet"

3. __title__ = 'Thesis Human Kinetic Technology'

4.

5. import numpy as np

6. import scipy.integrate as scip

7.

8.

9. class AngleCalculation:

10.

11. def __init__(self, newO1, newO2, newJ1, newJ2, aData1, aData2, gData1, gData2, frequency):

12. self.newO1 = newO1

13. self.newO1 = newO2

14. self.newJ1 = newJ1

15. self.newJ2 = newJ2

16. self.aData1 = aData1

17. self.aData2 = aData2

18. self.gData1 = gData1

19. self.gData2 = gData2

20. self.C = [1, 0, 0]

21. self.rotMat = []

22. self.frequency = frequency

23. self.angleG()

24.

25. def angleG(self):

26. length = [len(self.gData1), len(self.gData2)]

27. stop = min(length)

28. self.angleV = []

29. print('checkpoint2')

30. for i in range(0, stop-1):

31. g11 = self.gData1[i]

32. g12 = self.gData1[i+1]

33. g21 = self.gData2[i]

34. g22 = self.gData1[i+1]

35. G1 = g12-g11

36. G2 = g22-g21

37. self.angleV = np.append(self.angleV, [(np.dot(G1, self.newJ1)) - (np.dot(G2, self.newJ2))])

38. self.angleGdeg = np.rad2deg(self.angleV)

39. self.angleG = scip.cumtrapz(self.angleV, dx=(1/self.frequency))

40. self.angleG2deg = np.trapz(self.angleV, dx=(1/self.frequency))

Application of an automated sensor to segment alignment method for IMU-based kinematical joint angle estimation during treadmill cycling 17
juni 2017

A.P. van der Zwet Page | 75

Table 7, Overview of the input data for the Calibration tests and the Hypothesis. The first five tests are different measurements, the sixth and seventh test will be executed with the IMU-data
from measurement 5.

Input Hypothesis

Test number Filename
StartValueData
Synchronization

Calibration
dataset

Initial value for X (phi1,
theta1, phi2, theta2) J1 J2

Iterations
for J Sign Angle min Angle max

1

1,1 968
0,1 ; 0,5 ; 0,2 ; 0,5

0,000 0,000

< 20 + ± 90 ± 180 1,2 1150 0,000 0,000

 1,000 -1,000

2

2,1 2056
0,1 ; 0,5 ; 0,2 ; 0,5

0,000 0,000

< 20 - ± 90 ± 180 2,2 2240 0,000 0,000

 1,000 1,000

3

3,1 1700
0,1 ; 0,5 ; 0,2 ; 0,5

- -

< 20 + ± 90 ± 180 3,2 1897 - -

 - -

4

4,1 1296
0,1 ; 0,5 ; 0,2 ; 0,5

- -

< 20 + ± 90 ± 180 4,2 1457 - -

 - -

5

5,1 1828
0,1 ; 0,5 ; 0,2 ; 0,5

- -

< 20 + ± 90 ± 180 5,2 1663 - -

 - -

6

5,1 1828

Same as test 5 0,4 ; 0,2 ; 0,1 ; 0,7 Same as test 5 < 20 + ± 90 ± 180 5,2 1663

7

5,1 1828 859

0,4 ; 0,2 ; 0,1 ; 0,7 Same as test 5 < 20 + ± 90 ± 180 5,2 1663 5

 886

Application of an automated sensor to segment alignment method for IMU-based kinematical joint
angle estimation during treadmill cycling | A.P. van der Zwet

A.P. van der Zwet Page | 76

6.1 Results calibration tests

Figure 19, Results Test 1, L: Progress of the mean error during 30 optimization iterations. R: Angular rotations of the total measurement.

Table 8, Result overview from the calibration test. The used data-points for calibration were selected randomly using the
ginput() function. The amount of data is the total amount of gyroscope data that is run through the optimization loop 30
times.

Testnr

Data used

calibration

(start, step, stop)

Amount of

data

Iterations

for J Sign Determined J1 Determined J2

425 -0,040 -0,043 -0,040 -0,043

5 0,060 -0,047 0,060 -0,047

1449 0,997 -0,998 -0,003 0,002

433 0,012 0,000 0,012 0,000

5 0,006 0,017 0,006 0,017

1609 1,000 1,000 0,000 0,000

445 0,123 0,123

5 -0,099 0,078

1719 -0,987 0,989

1478 -0,136 -0,283

5 0,102 0,219

2622 0,985 -0,934

423 0,255 0,309

5 0,167 0,283

1530 -0,952 0,908

423 0,255 0,309 0,000 0,000

5 0,167 0,283 0,000 0,000

1530 -0,952 0,908 0,000 0,000

859 0,235 0,227 -0,020 -0,081

5 0,359 0,294 0,192 0,011

886 -0,903 0,928 0,049 0,020

Averages (test 1-6): 228 15

6

236

229

222

18

25

18

15

6

7

222

16255

1

2

3

4

5

11

Result Calibration

-

13

205

Deviation of predicted J from

hypothesis

-

-

+

-

-

-

Application of an automated sensor to segment alignment method for IMU-based
kinematical joint angle estimation during treadmill cycling 17 juni 2017

Pagina | 77

Figure 22, Results Test 2, L: Progress of the mean error during 30 optimization iterations. R: Angular rotations of the total measurement, in
here the difference in rotations when 2 segments rotate(0..2100) and if one segments rotates (2100 ..4900).

Figure 21, Results Test 3, L: Progress of the mean error during 30 optimization iterations. R: Angular rotations of the total measurement,
the cross reflects the function ‘ginput()’ which allows to select coordinates in the graph.

Figure 20, Results Test 4, L: Progress of the mean error during 30 optimization iterations. R: Angular rotations of the total measurement.

Application of an automated sensor to segment alignment method for IMU-based
kinematical joint angle estimation during treadmill cycling 17 juni 2017

Pagina | 78

Figure 24, Results Test 6, L: Progress of the mean error during 30 optimization iterations. R: Angular rotations of the total measurement.
Different start-angles for J1 and J2 show a similar result as test 5, only it takes a bit longer to optimize.

Figure 25, Results Test 5, L: Progress of the mean error during 30 optimization iterations. R: Angular rotations of the total measurement.

Figure 23, Results Test 7, L: Progress of the mean error during 30 optimization iterations. R: Angular rotations of the total measurement.
Less data-points for optimization show in the left graph that the optimization becomes unstable

Application of an automated sensor to segment alignment method for IMU-based
kinematical joint angle estimation during treadmill cycling 17 juni 2017

Pagina | 79

6.2 Results angular rotation test

File(s)

LoggedData

K1_

LoggedData

K2_

Selected calibration data 1092 2109

Amount calibration data

Initial X values

Iterations for J

Determined J1, J2 -0,296 -0,011

-0,113 0,011

0,948 1,000

Synchronize point angle

Startangle

Angles calculated for RMSE

File(s)

Amount tracking frames

Angle amount for RMSE

Synchronize point angle

Video IMU

Maximum angle 183,3 183,5

Minimum angle 33,3 33,1

Mean angle 108,6 108,8

Average angle deviation (deg)

Number used for RMSE

Sum squared deviation

RMSE

610

Info IMU

204

0,4 ; 0,2 ; 0,1 ; 0,7

12

2603

168,5

512

Info video

KinoveaTrajectory.txt

511

394

Measurement

0,18

392

1117

1,69

Table 9, Overview of the Angular rotation test results.

Figure 26, Plot of mean error during the 30 iterations of the
optimization process. J1 & J2 are found within 10 iterations.

Figure 28, Plot of the angular rotation during the selected
measurement data

Figure 27, Plot of the angular displacement of the whole
angular rotation measurement.

Application of an automated sensor to segment alignment method for IMU-based
kinematical joint angle estimation during treadmill cycling 17 juni 2017

Pagina | 80

6.3 Results bike test

Figure 29, Plot of mean error during the 30 iterations of the
optimization process. J1 & J2 are found within 15 iterations.

Figure 31, Plot of the angular rotation during the selected
measurement data

Figure 30, Plot of the angular displacement of the whole bike
measurement. The angles are not correct due to a wrong sign.

Figure 32, Plot of the right angular displacement of the whole
measurement, after the sign was inverted

Table 10, overview of the bike test results.

File(s)

LoggedData

BikeSb_

LoggedData

BikeOb_

Selected calibration data 9952 11091

Amount calibration data

Initial X values

Iterations for J

Determined J1, J2 -0,382 -0,015

0,293 -0,998

0,877 -0,059

Synchronize point angle

Startangle

Angles calculated for RMSE

File(s)

2222 2732

Amount tracking frames

Angle amount for RMSE

Synchronize point angle

Video IMU

Maximum angle 157,7 157,3

Minimum angle 81,4 76,1

Mean angle 116,1 112,7

Average angle deviation

Number used for RMSE

Sum squared deviation

RMSE

91

511

272

4,30

Measurement

Info IMU

Info video

228

155,2

9865

272

-3,38

5033

15

0,4 ; 0,2 ; 0,1 ; 0,7

272

KinoveaTrajectory.txt

Application of an automated sensor to segment alignment method for IMU-based
kinematical joint angle estimation during treadmill cycling 17 juni 2017

Pagina | 81

2017

Validation of IMU-based knee
angle measurement during
treadmill cycling.

JUNE 2017

A.P. VAN DER ZWET

Application of an automated sensor to segment alignment method for IMU-based
kinematical joint angle estimation during treadmill cycling 17 juni 2017

Pagina | 82

Validation of IMU-based knee angle
measurement during treadmill cycling.

Author

Arno van der Zwet

Student number

12104582

Date

Monday 12th September 2016

University & Study

The Hague University of Applied Sciences, Human Kinetic Technology

Work field

Sensors/sport innovation

Extern project

No

Reader

Docent supervisor: Daphne Wezenberg

Email: d.wezenberg@hhs.nl

E-mail

arnovanderzwet@gmail.com

Total ECTS up till period 12

58 ECTS

Application of an automated sensor to segment alignment method for IMU-based
kinematical joint angle estimation during treadmill cycling 17 juni 2017

Pagina | 83

1. Subject ... 82

2. Introduction ... 84

3. Method .. 85

4. Planning ... 86

Appendix I – Reference List ... 87

Appendix II – Planning .. 88

Appendix III - Personal learning goals ... 89

Application of an automated sensor to segment alignment method for IMU-based
kinematical joint angle estimation during treadmill cycling 17 juni 2017

Pagina | 84

Internal Measuring Unit (IMU) based measurements in sports and daily activities are trending. These
the latest developments in IMU allow the measurement devices to measure the least amount of
movement in 3D of the human body by using three accelerometers, combined with three gyroscopes
and a magnetometer.

Within every sport where sports gear is needed, companies are developing their gear to the highest
standards. As the equipment evolves, so does the market of custom made sports gear which in cycling
means getting a bike fitting. During a bike fitting the position of
the cyclist on the bike is measured and changed by for instance
adjusting the saddle height, width of the handlebar, length of the
stem, or even inserting special shoe-inlays. A bike fitting is done
to find the ideal bike position, which results in a greater power
output on the pedals with the same physiological effort
(heartrate or maximal muscle activity) and with less injuries, this
is done by measuring the angles of the legs, arms, and torso,
sometimes combined with physiological data like power output
and heartrate. No standards in positioning are found because the
position on the bike depends on the anatomical build of each
individual athlete (muscle length and bone structure). All bike
fitting-providers mostly use the same method: the movements of
the cyclist are recoded by an 2D video capturing system or an 3D
optical motion capturing system (Bioracer Belgium, 2016) (retul,
2016), while the cyclists ride their bikes that are fixed into a
trainer (figure 1). This bike fixation is done to hold the athlete centered to the motion capturing system
for higher accuracy, but this fixation of the bike is unnatural compared to a ride on the road, where
the bike can move freely underneath the body. Another downside of the methods in bike fitting is that
the power output during a bike fitting lasts only as long as the bike fitting takes, which mostly is 1,5
hours maximum. As cycling is an endurance sport, cyclists sometimes ride their bikes for even more
than four hours, where exhaustion of muscles can appear, which may result in a different position on
the bike. For instance when the adductor muscles of the upper legs get tired, the knees can move to
a more lateral position and the load-distribution within the knee-joint changes to medial direction.
The unnatural bike fixation together with the limitation of long-time muscle exhaustion, makes a new
method of measuring the cyclists position on the open road beneficial.

For developing a method that can be used to measure body movements during cycling on an public
road, it is necessary to first validate an internal measuring system that can be worn by the cyclist. An
internal measuring system contains Internal Measuring Units (IMU’s) that can be used for recording
accelerations (accelerometers) and angular movements (gyroscopes) in all three planes x, y and z.
Although no studies have been found which contain knee angle measurements during cycling, some
studies with other activities like walking and jumping (Glen Cooper, 2009; S.A.A.N. Bolink, 2016; J.
Favre, 2009) show that angles can be determined using IMU’s and have a great correlation with 3D
optical motion capturing systems like Optitrack. However one study in walking (Glen Cooper, 2009)
shows that the correlation of the determined angles gets less, as the speed of the activity rises.
Because the knee makes the biggest angular movement and acceleration during cycling, the knee
movement is chosen for this study. The goal of this study is therefore answer the main question: Can
IMU’s be used to measure the absolute angular changes, and movements of the knee in all 3 planes
during treadmill cycling, and at what cadence will measurements still be valid?

Figure 33, Tacx trainer
source: http://www.wigglestatic.com/product-
media/5360075251/T2600_Tacx_Blue_Motion_traine
r_back_1207.jpg?w=2000&h=2000&a=7

Application of an automated sensor to segment alignment method for IMU-based
kinematical joint angle estimation during treadmill cycling 17 juni 2017

Pagina | 85

Optitrack is determined as golden standard for motion analysis (Farrokh F. Mohammadzadeh, 2015)
and will be therefore suitable for validating the angle measurement and knee movements, done by
the IMU’s during cycling.

Within this study five healthy subjects, aged between 18 and 65 years old, which are in possession of

a bike with cadence sensor, will participate in a measurement just like
a bike fitting. Because Optitrack will be used as golden standard for
validation the bike needs be fixed onto a Tacx Flow trainer and will
thereby reduce the lateral movements of the bike and test subjects,
which also makes the determination of the absolute knee angle in the
sagittal plain easier. The bike will be placed within the range of the
Optitrack system for synchronized measurements with the IMU’s.
Each test subject will ride their bikes for a total of five minutes, with
the first minute as warm-up. Because this study requires different
kind of speeds for the knee to move, the test subjects will ride their
bikes with four different cadence speeds (50, 70, 90, and 110 RPM),
each lasting for one minute. This allows the determined absolute knee
angle to be validated at different kind of cadences. The resistance
during this study is not significant as long as the test subject can reach
the maximum cadence, the Tacx Flow will be set on the standard
slope of 0%.

The IMU’s that will be used for this study are four x-IMU’s (x-IO) which
have a dimension of 57x38x21 mm, and can measure accelerations

and rotations in three planes x, y and z. The x-IMU’s will be fixed onto four different places on the left
leg (figure 2). On the lower leg two x-imu’s are placed on 1/4 ad 3/4 of the length on a virtual line from
the lateral Malleolus of the ankle to the caput Fibulae. The two remaining x-imu’s are placed on 1/4
and 3/4 of the length on a virtual line from the lateral epicondyle of the knee to the trochanter major.

The angle can then be determined within a Python program by the position of the four x-imu’s, and
by Euler decomposition which uses the place and direction of two x-imu’s (one on the lower leg, one
on the upper leg). Because the angles will be determined by using gyroscopic and accelerometer data
in planes x, y, and z, Python also will be used to filter out the lateral and vertical accelerations produced
by the high cadence circular movement of the fixed foot, which should result into a clear angular
change of the knee. The absolute knee angles calculated with each method will be compared to the
Optitrack angles and be validated using SPSS.

There are two sub-questions to be answered during this study:

 What is the difference in angle determination between different kind of cadences?

 How many IMU’s are necessary for a valid knee-angle measurement and where on the leg do
they need to be fixed?

Hopefully the average correlation value of the validation will be > 0.8 which means that the angular
determination by the x-IMU’s are valid, but expected is that the lower cadences (50 & 70 RPM) show
a bigger correlation than the higher cadences (90 & 110 RPM) as in the previous study on walking
speeds (Glen Cooper, 2009).

Figure 34, yellow stars show the
location of the x-imu’s on the left leg

Application of an automated sensor to segment alignment method for IMU-based
kinematical joint angle estimation during treadmill cycling 17 juni 2017

Pagina | 86

At the start of the project the first chapter (introduction) of the report is almost finished. The
upcoming 14 weeks after the presentation of the project plan will be mainly consist out of
programming in Python and adjusting the method. After that it’s testing the code, executing tests
with the test subjects and writing the report after analyzing the test results. The general overview of
the planning can be found in Apendix II and will be a guideline for the project to finish on time.
Beside this project there is no other schoolwork which may endanger the planning.

Application of an automated sensor to segment alignment method for IMU-based
kinematical joint angle estimation during treadmill cycling 17 juni 2017

Pagina | 87

Bioracer Belgium. (2016). bioracermotion.com. Retrieved from www.bioracermotion.com:
http://bioracermotion.com/?page_id=7

Farrokh F. Mohammadzadeh, S. L. (2015). Feasibility of a Wearable, Sensor-based Motion Tracking System.
Procedia Manufacturing, Volume 3, 192-199. Retrieved 5 2016

Glen Cooper, I. S. (2009). Inertial sensor-based knee flexion/extensio angle estimation. Journall of
Biomechanics 42, 2678-2685.

J. Favre, R. A. (2009). Functional calibration procedure for 3D knee joint angle description using inertial
sensors. Journal of Biomechanics, Volume 42, 2330-2335.

retul. (2016, 5). www.retul.com - Vantage 3D Motion Capture System. Retrieved from www.retul.com:
https://www.retul.com/retul-products/vantage-motion-capture-system/

S.A.A.N. Bolink, H. N. (2016). Validity of an inertial measurement unit to assess pelvic orientation angles during gait, sit–
stand transfers and step-up transfers: Comparison with an optoelectronic motion capture system. Medical
Engineering & Physics, Volume 38, 225-231.

Application of an automated sensor to segment alignment method for IMU-based kinematical joint angle estimation during treadmill cycling 17
juni 2017

A.P. van der Zwet Page | 88

Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Planning
< 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 1 2

Concept project plan

< 12-
sep

Final project plan
12-sep

Presentation project plan
19-sep

Programming phase

General python code

X-imu read code

Trial testing X-imu

Angle filter code

Real-time data stream

Method phase

Fine-tuning method

Trial measurement

Testing phase

Testing subjects

Analyzing results

General

Meeting with the supervisor

Writing report

Hand in thesis
 28-dec

Defense preparation

Defense

Application of an automated sensor to segment alignment method for IMU-based kinematical joint
angle estimation during treadmill cycling | A.P. van der Zwet

A.P. van der Zwet Page | 89

Working according to a plan:

During my last internship I was working with a strict schedule, but found that really difficult. During
execution of my project I will have to do every task that is planned for that specific day or week. The
planning from appendix II will be the weekly guideline but I am going to make planning’s for each day
as well.

Writing an article:

In the past I have only written one introduction for an article during an internship. But performing a
study on my own and writing an article about that subject will be a first for me. This project is
therefore the ideal way to practice my writing skills, as well as documentation which need to be
flawless.

Programming:

During the Human Kinetic Technology study I have encountered several programming languages like
Matlab and C. But in our future work field there is another language called Python, that is also usable
for data-management. Writing a python program for the x-imu data will not only increase my
knowledge about Python itself, but also improve my general program skills.

Application of an automated sensor to segment alignment method for IMU-based kinematical
joint angle estimation during treadmill cycling 17 juni 2017

A.P. van der Zwet Page | 90

Working according to a plan:
During my last internship I was working with a strict schedule, but found that really difficult.
During execution of my project I will have to do every task that is planned for that specific
day or week. The planning from appendix II will be the weekly guideline but I am going to
make planning’s for each day as well.

Evaluation:
Working according to plan is clearly something I have to improve, due to the delay of this
project. Working and studying will go together, but only if there are strict planning’s or day-
/week-goals. Evaluating this goal makes me eager to set new ones for myself in the future,
regarding project planning.

Writing an article:
In the past I have only written one introduction for an article during an internship. But
performing a study on my own and writing an article about that subject will be a first for me.
This project is therefore the ideal way to practice my writing skills, as well as documentation
which need to be flawless.

Evaluation:
This thesis was an excellent way to train my writing skills. Because my native langue is Dutch,
writing the thesis in English made is extra challenging. Also the methodology of the
algorithm was a good way to practice my writing skills. Explaining the method is what I found
extremely difficult.

Programming:

During the Human Kinetic Technology study I have encountered several programming
languages like Matlab and C. But in our future work field there is another language called
Python, that is also usable for data-management. Writing a python program for the x-imu
data will not only increase my knowledge about Python itself, but also improve my general
program skills.

Evaluation:

During this study I was able to master Python and its syntax. After writing the algorithm in
python and Matlab, I have now much more experience in how to set up programs for
research.

