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Samenvatting 
Voor een stage bij S[&]T moest een embedded systeem worden ontworpen dat GNSS-

storingssignalen kan detecteren. Het project dat voor de stage werd gedaan duurde 5 

maanden. Gedurende deze 5 maanden werd een embedded systeem ontworpen. 

Dit ontworpen systeem werd uiteindelijk Mobile GNSS Interference Detection of kortweg 

MGID. Voor het systeem is een software ontwerp gemaakt en geschreven. Hiervoor is een 

elektrisch ontwerp gemaakt inclusief een PCB-ontwerp.  

Tests werden gedaan met behulp van ontwikkelaarsborden. Met deze tests werd aangetoond 

dat het systeem in staat was om interferentie-informatie van de GNSS-ontvanger te krijgen. 

Het aparte GNSS storings-detectie circuit dat ook was ontworpen, kon niet goed worden 

getest. Dit zal worden gedaan door toekomstige ontwikkelaars van het project. 
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Dictionary 
MGID  Mobile GNSS Interference Detector. This is the name of the system designed for 

the project. 

GNSS Global Navigation Satellite system 

UART Universal asynchronous receiver-transmitter. 

PCB Printed circuit board 

trace PCB term that indicates a copper ‘wire’ that goes from component to components 

via PCB term that indicates a bridge between the copper layers 

CNO Carrier noise ratio 

STM32 The 32-bit microcontroller series from ST microelectronics. This is the 
microcontroller that is used for the project. 

ZED-
F9P 

GNSS receiver made by u-blox 

IDE Integrated Developer Environment 

UBX Communication protocol unique to u-blox products 
Table 1 dictionary 
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1 Introduction 
The company S[&]T[13] does a lot of research in the area of GNSS reliability. There currently 

is the need for a device that can detect and map GNSS interference sources and monitor the 

health of GNSS signals. To start the development of this, an intern is hired to start designing 

an embedded system. The main goal is to be able to measure sources of possible GNSS 

interference.  

At the start of the project the main goal was to create a basic prototype using off the shelf 

development tools. Another goal is to create a PCB design for this system. Creating a PCB 

prototype falls outside of the project due to current component shortages. 

This document will explain the basic concept of the embedded system, the software design, 

the electrical design and the PCB design. And an explanation of the concepts, problems, 

solutions and further developments of the system. 

The internship run from February 9th to June 3rd, 2022. 
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2 Organization 
This project has three parties involved. The intern represented by Thomas Joesoef Djamil. 

The company S[&]T, and the university, The Hague University of Applied Sciences. 

Within S[&]T there is a team that handles GNSS projects. This is the sensing and control 

group. This project is part of this group. The group consists of 8 members give or take. The 

number of members changes often as interns enter and leave the group. It is a multinational 

group of people with various types of engineering degrees. The supervisor of the group is 

Stefan van der Linden. 

Stefan will act as a mentor on behalf of the company for the intern. From the university Ad van 

den Bergh is assigned as mentor. 

The intern is hired for 5 months to work on the project. The project is managed by the intern 

himself and works independently. For technical assistance the intern can get help from the 

sensing and control group team. For assistance related to the process van den Bergh or van 

der Linden can be contacted.  

During the project the intern can work in the office or from home. At the office the intern has 

access to resources. This includes a desk spot to work on. Office desks are not assigned but 

due to human nature most people end up working at the same desk anyway. 

Furthermore, there is access to the basic equipment necessary for electronics developments. 

Such as basic electronic parts, cables and wires, voltage generators and oscillators. Electric 

measurement tools and an oscilloscope and spectrometer.  

Lastly there is access to online file storage from S[&]T to save the work on. A GitLab account 

is used to maintain the software via Git[14]. 
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3 Order requirements 
The main required goal of the embedded system is to be able to detect GNSS interference 

sources. This embedded system will during the project be a prototype made from off the shelf 

components. This means using components that can be used to create a system without the 

need of third-party fabrication. Such as PCB manufacturing or other fab facilities. Components 

that can be either connected with jumper wires or that can be soldered by a human need to 

be used. 

The embedded system needs to be able to do the following. It needs to be able to collect data 

from a GNSS receiver, most importantly the GNSS fix location and the carrier to noise ratio. 

Furthermore, the system is required to measure the power level of the GNSS carrier frequency 

using a custom designed circuit.  

The system needs to then be able to send collected data to a host that can then process this 

data. This would be a PC, or a server connected to the embedded system.  

Besides prototyping the system with developer components. A PCB design of the system will 

be designed.   

The final deliverables for the project are: a system design, an electrical design, a PCB design, 

Embedded system software, documentation and a developer prototype.  

3.1 Project borders 
The project will have multiple borders to section of what the projects goals exactly are.  

This project consists of: 

• Creating an embedded system using off the shelf components that can be used without 

the need of designing custom components. Such as a developer board. 

• Writing software 

• Designing an electrical circuit 

• Designing a PCB 

• Creating documentation for the system. 

This project does not contain 

• Ordering and prototype the PCB. 
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4 Mobile GNSS Interference Detection 

4.1 System goal 
The goal of the project is to create a mobile embedded device that is capable of detecting 

GNSS interference. The main purpose is to be able to map sources of GNSS interference. 

The main type of interference that needs to be detected is jamming, however, the system is 

also capable of detecting spoofing using build in functionality of the ZED-F9P[3]. This is the 

GNSS receiver that is used in the project.  

To jam a GNSS signal a RF signal is emitted by the jammer in the same frequency as the 

carrier frequency of the GNSS signal. This jamming signal is made by a high frequency 

oscillator that is connected to an antenna, sending these signals into the ether. And because 

of the weak power level of GNSS signals they are very easy to jam[15].  

GNSS signal spoofing is when a false GNSS signal is created which causes GNSS receivers 

to calculate the wrong position. This is more difficult to detect that jamming. Spoofing is usually 

detected by getting a genuine position fix first. If the position of a specific satellite suddenly 

changes unrealistically than it is almost certainly being spoofed. But it is also possible that a 

satellite gives a wrong location due to signal reflection.  

For GNSS jamming it is also possible for the cause to be unintentional, such as from random 

electromagnetic interference from devices, whereas spoofing is always intentional (not 

counting signal reflection).  

4.2 System concept 
The system would get the name Mobile GNSS Interference Detection or MGID in short. This 

system would consist of a microcontroller, a GNSS receiver and a GNSS jamming detection 

circuit. This system is in connection with a PC or server to transfer its data.  

The concept of this system is that it is small and easily transported. So that it can be used 

outdoors in field trials. The system should be relatively low cost and easy to understand and 

use.  

The system is designed in such a way that it basically can also act as a developer board with 

build in GNSS availability. This will make the system not only useful for the task that it was 

designed for, detecting and monitoring GNSS signals and interference. But could also be used 

for future projects of S[&]T, related to mobile GNSS solutions. 

4.3 Appendices 
This document includes a couple of appendices that show the design of the system. 

• A1 shows the electrical design

• A2 shows the PCB design

• A3 is the main function of the software

• A4 shows the most important C++ class of the system

• A5 is the processing of NMEA messages from the ZED-F9P receiver

• A6 are the FreeRTOS tasks

The software appendices are not meant to give a full overview. But they may provide better 

understanding and preview on how the software works. The three code snippets that were 

chosen to show the most important functionality and give a basic understanding of the rest of 

the code. 
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5 MGID architecture 
MGID consists of three distinct components. A STM32 microcontroller[2], a ZED-F9P GNSS 

receiver and a GNSS jamming detection circuit. These three components process the 

incoming signals coming from the antenna. The host is where the processed data is sent. It 

can the thought of as an output. But it is of course a two-way communication. The abstract 

base design is shown in Figure 1. 

 

 

 

Figure 1 Base design MGID 

5.1 ST Microcontroller 
The MGID system is based around the STM F429ZI microcontroller. This microcontroller is 

chosen because of its fast performance, many possibilities of serial communication and the 

relatively large flash and RAM sizes. This makes it the perfect fit for the purposes of the 

system. There was the desire to get a dual core version of the ST microcontroller, but none 

were in stock so the F429ZI was the second-best choice. 

5.2 ZED-F9P GNSS receiver 
In order to get a GNSS position a GNSS receiver is necessary. The receiver that was chosen 

is the ZED-F9P receiver. For its relatively cheap price and available. The ZED-F9P has many 

different functions that can be used to map GNSS interference. For example, a spoofing 

detection is built into the ZED-F9P. A basic jamming detection is also available. The receiver 
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processes the analog data and can that be retrieved via an UART connection by the ST 

microcontroller. Also, the ZED-F9P has an easily accessible developer board in the form of 

the C099[16].  

5.3 The host 
The host represents the entity that is communicating with the MGID. This is by default 

expected to be a PC connected with a USB cable (The protocol from the STM32 is UART, but 

a UART to USB is used). The host can collect data from the microcontroller. This is the data 

that is collected from the ZED-F9P receiver and from the analog jamming detection circuit. 

5.4 Jamming detection circuit 
This is an analog semiconductor circuit that is capable of detecting GNSS RF signals. If the 

incoming power is above the GNSS noise floor than it can be safely assumed that a GNSS 

jamming signal is nearby. With GNSS the signals are weaker that the ambient noise. So it 

should not be possible for a GNSS signal to be received that is stronger than the noise floor 

unless it is a very high grade fixed antenna. 

5.5 GNSS antenna 
The system needs to have a GNSS antenna to be able to receive GNSS signals for 

processing. The signals for the antenna are split and go to both the ZED-F9P receiver and the 

jamming detection circuit. By default, it is expected that an active antenna is used. A passive 

antenna with a high enough output can also work. The MGID should not rely on any specific 

type of antenna for maximum flexibility. 
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6 Prototyping 
For the prototyping of the MGID system a STM32 Nucleo developer board is used. The board 

that is used for this project is equipped with a F429ZI microcontroller.  

For the testing the GNSS connectivity a C099 test board is used. This is the test board for a 

ZED-F9P GNSS receiver. The test board comes with an active GNSS antenna for the L1 band. 

This test board also has a WIFI module build in. But 

since this module is not used, it is deactivated to 

save power and lower interference. 

The F429ZI is connected to the PC. The ZED-F9P 

is then connected with jumping wires to the F429ZI. 

The four wires that connect them are a 5 Volt wire 

for power, a GND wire, and the other two wires are 

used for the UART.  

The ZED-F9P has an active antenna connected. 

This active antenna is capable high precision 

geolocation and has a signal gain of roughly 20 dB. 

Besides the active antenna there is also a GNSS 

antenna on the roof of the S[&]T building. The roof 

antenna can get a gain of 40 dB.  

For prototyping there also is a prototype board 

made with an RF input and RF output. This board 

was used to test possible solutions to the problem 

of detecting GNSS jamming signals.  

The prototype setup is shown in Figure 2. 

  

Figure 2 Developer setup 
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7 Software architecture 
The STM32 microcontroller is an ARM based system that primarily runs on C but is also 

capable of running C++. For this project the decision was made to use C++ over C. The reason 

for this decision is because it became clear very quickly that this system was going to use 

many different elements. These elements could be easily subdivided into classes.  

From the very start the design, of the software, started with the idea of having a central 

controller that can control multiple components. Making it easy to add functionality to the 

system. Every function of the MGID is therefore represented by a component. The graph 

below shows the general architecture and dependencies of all classes1. (Figure 3) 

 

Figure 3 Software architecture 

7.1 Core principles 
It is important to understand how programming for the STM32 microcontroller works. 

Assuming using the standard STM IDE[9]. Whenever a project is made the user can choose in 

a menu which features, they want to use. When changes are made the system than generates 

a new main and a file which handles the interrupts. While the system does provide “safe” 

workspaces where user code can be placed inside of these files without being at risk of being 

overwritten during code generation. It is not ideal. 

For a large project like this it is decided that it is safer to use the concept of a protected main 

shown in appendix A3. Instead of writing the main code in the standard main an additional 

main file is written, MGIDmain. The generated main is only used to initialize STM components. 

Such as serial communication and GPIO ports. Once al the initialization is done. In the main 

a single call to the MGIDmain can be made with references to necessary STM32 components 

such as the UART handlers. From this point the true main is practically exited and the 

MGIDmain takes over. 

 
1 Connections to MGIDHALPROXY are not shown for visibility reasons in Figure 3. All MGID classes 
are dependent on it.  
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An additional benefit about this concept of using a protected main 

like this, is that it makes it very easy to switch ST microcontrollers. 

It also makes it possible to use the software as a library since it is 

not attached to anything. 

All of the code that is written for the MGID system is segregated 

into a separate folder. This does not have any functional reason 

other than making file management easier. (Figure 4) 

7.2 Basic readability 
For readability of the code some basic rules are laid out. All 

classes related to the MGID system will start with the prefix 

MGID.  

7.3 Main initialization 
The MGIDmain is exclusively used to initialize objects and 

variables. This main will initialize uint8_t buffers that are to be used 

by the UART and it will initialize all the classes shown in the graph. 

MGIDmain is shown partially in appendix A3. 

Once all the necessary variables and objects are initialized and 

loaded it will start FreeRTOS. The MGIDmain will then “end” and 

FreeRTOS takes over thread management. 

7.4 FreeRTOS 
Because the MGID system uses many different time critical functionality it was chosen to use 

FreeRTOS. Important to note is that in STM32, FreeRTOS is slightly different and is called 

CMIS_RTOS[12]. For the system two different threads are used. A thread that handles the 

measurements and continuous communication with a connected host. And a thread that 

handles the LED blinking. 

The system originally had more threads such as a spit between the communication with the 

host and communication with the ZED-F9P receiver. These threads ended up being combined 

and so the number of threads ended up being reduced in favor of using interrupt routines. 

Which is explained in the next chapter. 

7.5 Interrupts 
Because MGID is a time critical system it makes use of interrupts whenever possible instead 

of using sleep routines that block the entire processor. The only sleep routines used are the 

ones from CMSIS_OS that can jump threads when a sleep function is called. These interrupts 

are for the UART and ADC. By default, STM IDE generates interrupts handlers in its own file. 

These interrupts handlers have to be deleted from this file and then copied into the MGIDmain. 

This makes it much easier to keep the code clean, because again all the code should be within 

the MGID software package. It is important to remember that whenever code is generated by 

the STM IDE it remakes these handlers even if they already exist elsewhere. They have to 

then be deleted again otherwise the code will use the wrong handler. 

STM IDE will compile when two functions exist with the same name and not give a warning. If 

a developer doesn’t delete the generated function, it will not run the code written in MGIDmain. 

Any future developer needs to keep this in mind.  

Figure 4 MGID file structure 
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7.6 MGID classes 

7.6.1 MGIDCORE 
The MGIDCORE class is the central control system of the software. A single object is made 

by the main and controls the system. This core class object has multiple attached components 

that are used for the functionality of the system. The MGIDCORE is where the functionality of 

the FreeRTOS tasks are being executed. It is basically the central nervous system and 

controls everything and is the only class that has full visibility of the entire system (with the 

exception of the main of course). The class is shown in appendix A4. 

This class is fully dependent on its attached components in a software architecture sense. 

While this is not ideal, and it would be better to use interfaces for the components. There are 

two reasons why it is better to use a more basic approach to coding: 

- The first is that it is not expected for the system to get much more complex than it is 

right now. The system will not be big enough to warrant the full use of interfaces. It 

would make the system unnecessarily complex.  

- Not every employee at S[&]T who works on the STM microcontrollers is skilled with 

C++. Widespread use of interfaces could be difficult to work with for future developers 

who work on the project. 

The only interfaces that are used are interfaces to prevent dependencies from the components 

towards the MGIDCORE class. Having two-way dependencies like this is bad practice and the 

benefits of interfaces here are big enough to use them. Interface can be seen in Figure 3. 

7.6.2 MGIDTIME 

The MGIDTIME class is designed to keep track of time. It is not a component for MGIDCORE, 

but it is referenced. It contains functions that can translate time and date data from the NMEA[5] 

messages coming from the ZED-F9P receiver. It also has a time struct that can keep track of 

the time.  

MGID time has a struct called custom_time_t 

(Figure 5). This holds time information in such a 

way that it can easily convert time from the NMEA 

messages into this custom struct. This struct has 

functions attached to it that make updating easy 

and can easily be bound to the tick function of the 

operating system. Time gets automatically 

updated as the system clock keeps ticking.  

 

 

 

7.6.3 MGIDUART 
MGIDUART class has all functionality related to the use of the UART protocol by the system. 

It handles both outgoing and incoming communications.  

7.6.4 MGIDUARTGNSS 
The MGIDUARTGNSS class is a child class of MGIDUART. This class is modified with 

overridden functions that instead of talking with the host it will talk with the ZED-F9P over 

UART. The main function of this class it that it processes the NMEA messages coming from 

the ZED-F9P receiver, shown in appendix 5A. It takes all the text based messages and 

converts them to integers for compact storage.  

Figure 5 custom time struct 
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Besides NMEA messages this UART class also handles U-blox’s proprietary communication 

protocol UBX[4]. UBX is used both for inbound and outbound communications. U-Blox uses 

UBX to transmit information that are not send with NMEA. The most important one is the 

message that contains the CNO and other signal health variables. 

The UBX messages that are send to the ZED-F9P are meant for configuration purposes. 

7.6.5 MGIDTRANSMITTER 
This class is not used. It was originally intended to handle the functionality of GSM or other 

type of mobile data transceiver. However, this ended up not being a requirement of the system. 

It is still part of the code, but it has no functionality. 

7.6.6 MGIDADC 
For the analog part of the system an ADC measurement is required. The MGIDADC is the 

part of the system that handles that functionality. It takes the input of the system and converts 

it to millivolts.  

The ADC takes its input from the GNSS JAMMING circuit. By design the higher the GNSS 

power level is the higher the DC input on the ADC is. The ADC can be calibrated on command 

show in chapter 10 Communication interface. During calibrating the systems checks what the 

nominal GNSS power level is. Once calibrating is stopped the average value is saved. If a 

GNSS power level is detected that is a certain percentage above the threshold (can be 

configured by the user). Figure 6. 

Calibrating can only be done if it is known that there is no GNSS jamming signal nearby. 

Because otherwise it would save the amplitude of that signal and the jamming detection would 

only trigger is there would be an even stronger jamming signal nearby. 

The ADC is checked in a constant loop. At the start of the program an ADC measurement is 

requested. When the ADC is finished an interrupt is fired. During the interrupt routine a new 

measurement will be called. Resulting in a very fast constant measuring of the ADC. 

7.6.7 MGIDHALPROXY 
MGIDHALPROXY consists of only a header file. This file 

originally only contained a reference to the HAL library. 

The reason for this proxy was to make it easy to switch 

microcontrollers. Every ST Microcontroller has a different 

library. So, when switching microcontroller all the 

developer must do is change the library in this file and all 

the components and classes will have the correct 

dependencies.  

This file is now also being used to store configuration 

variables using define. (Figure 6) 

7.6.8MGIDUSRLED 
The system uses LED lights to communicate with the 

developer without the need for a serial communication. It is a quick way to tell if the system is 

working correctly. The MGIDUSRLED is the class that handles the control of the LED lights. 

If the LED light stops blinking it means the system has crashed. 

If a successful command is sent to the MGID the user LED lights will blink. Making it clear that 

the command was received and accepted. 

Figure 6 Example of configuration 
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7.7 Direct memory access 
The fact the system is going to run at least two UART connections with constant connection. 

It became very clear that using only software interrupts was not going to work. There was too 

much interference between the UART controllers. Also, FreeRTOS does not function well with 

constantly firing UART interrupts for every character that is registered by the UART controller. 

Therefore, it was decided to use DMA for UART controllers. Using DMA, no individual 

interrupts are fired when receiving characters over UAR. When the line goes idle (so UART 

has finished) a single interrupt is given by the controller. This then allows the software to 

process the data that is in the DMA buffer. The single DMA interrupt is handled as quickly as 

possible and then exits so the FreeRTOS can take over again with thread management. This 

makes it so an entire message only requires a single interrupt, instead of firing an interrupt 

every character that comes in. 

 

7.8 Connection with host 
The user can communicate with the ST microcontroller over UART. In order to be able for this 

communication to be useful a proprietary protocol is used. The user can send command 

through character strings. The character strings always start with MGID as an identifier. 

Hyphens are then used to separate words. For example, if you want to ping the MGID to see 

if the connection works, MGID-PING can be sent. The MGID will then send a message back.  

Messages you get back from the MGID are sent in a way that make it easy to log. The 

message structure of the MGID is as follows: 

MGID|[TICKS]|[MGIDCOMPONENT]|:[MESSAGE] 

An example of a message from the MGID is: “MGID|2823443|CORE|:ping“. The message 

ends with a “ \n\r” and always starts with MGID for synchronization purposes.  

It is important to note that messages send to the MGID need to be sent as one continues 

UART message. Otherwise the MGID will try and process a message after every single 

character. Most serial terminals for PC’s send individual characters when typing in characters. 

It is important to make sure that there are no pauses between the characters. 

The communication is shown in chapter 10 Communication interface 

7.9 Connection with ZED-F9P 
For the communication with the ZED-F9P two different protocols are used. The UBX protocol 

that is proprietary to U-Blox IC’s and the NMEA protocol for GNSS data.  

The UBX protocol sends raw data over the UART in the form of bytes. So not as characters. 

Because it is actual bytes. “/n”, “/r” and “/0” cannot be relied on for synchronization. Byte 4 and 

5 of the UBX message contain the total size of the message and starts with two 

synchronization bits at the start of the message. The UBX protocol has no characters and is 

therefore not human readable. 

The NMEA protocol is a character-based protocol. Which means that it sends text that can 

easily be read and understood by humans.  

7.10 Booting the system 
The system will be booted with the expectation that the ZED-F9P is using default operating 

parameters. It is important to know that by default the ZED-F9P is not correctly setup for the 

STM32 to communicate with it.  
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When the system is booted, and the program starts, the first thing that happens is the STM32 

sending the ZED-F9P a message to increase the baudrate to the maximum value. This is done 

to increase the amount of time the system has to process the message. All data from the ZED-

F9P is send every second. The STM32 needs to be done with processing the data before the 

next round comes in. Otherwise, the system would run into problems. 

After the ZED-F9P has its baud rate updated, STM32 also updates its baudrate to the fastest 

possible.  After this the system will configure the ZED-F9P (Figure 7) so that it will send UBX 

messages over UART that contain information over the signal health. This includes CNO, the 

signal gain. And if the ZED-F9P thinks there is a spoofing or jamming signal.  

Once the ZED-F9P is configured it the system can start processing the incoming data. The 

serial interface with the STM32 can be checked to see if the ZED-F9P is correctly configured. 

When a successful UBX message is send to the ZED-F9P and acknowledgement message is 

sent back. With the way the system works. Three acknowledgements should be received. 

From this point forward it will get in its operating loop until the system is shutoff. The baud rate 

change will not receive an acknowledgment since the change in baudrate prevents the 

message coming through. 

 

 

Figure 7 Function that is used during boot to configure ZED-F9P 
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8 MGID electrical design 
Before a PCB design can be made a clear electrical design is designed. The abstract of the 

electrical design is show in Figure 8. The connection between the power supply and other 

components is not shown. 

 

 

Figure 8 Simplified Electrical design 

8.1 Power supply 
The POWER IN node shows from where the system is getting power. This power can come 

from three different sources. From the USB power, a barrel jack or through a battery 

connector. The voltage source can be selected via a jumper header. This incoming power will 

first go to a 5 volt linear regulator. From here the voltage is lowered again to 3.3 volt. The ZED-

F9P requires a low noise power supply. The NCV8705 low noise regulator is delivering power 

to the ZED-F9P. 
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8.2 MCP2221 
Because the ST microcontroller is programmed with UART in mind it cannot directly be 

connected to the USB. In order for the MCU to talk with the host a MCP2221 USB to UART 

converter is necessary.  

8.3 JTAG Programmer 
A JTAG connection is required to program the F429ZI. This connection is connected to a ST-

Link programmer[10]. Unlike STM32 developer boards the MGID system does not use an 

onboard chip for programming. As a matter of fact, ST-LINK chips are not even available for 

consumers to put on their PCB designs. It is expected to use a JTAG connection to program 

the designed device. 

The ST-Link programmer is a device that can be connected with a PC. The ST-Link will then 

work as a bridge between the STM32 and the PC. 

8.4 GNSS Jamming Detection 
GNSS signals have a very low power level at earth’s surface. The average gain of GNSS 

signals is roughly -127.5 dBm. 0 dBm would mean the power equivalent of 1 milliwatt. So  

-127.5 dBm is equal to 0,18 femtowatt.  

The fragility of GNSS signals makes it very easy to jam these signals. Any GNSS signal 

jammer will easily exceed this power level. This does make it very easy to detect GNSS 

jammer signals. If a power spike is detected that is well above the -127.5 dBm GNSS it can 

be safely assumed that a GNSS jamming signal is active nearby. 

For the detection of GNSS signals a MAX2015 high frequency detection chip is used. This 

integrated circuit is capable of detecting 0.1 GHz to 3 GHz signals. The way the detections 

works is that it takes the incoming RF signals and converts them to a DC voltage. It can detect 

RF signals with a power level from -65 dBm to 10 dBm. The output voltage increases linearly 

based on the logarithmic input. For every dB in input there is a flat increase in voltage. 

Because the MAX2015[6] has such a wide bandwidth in which it can detect RF signals it could 

give problems with detecting the wrong RF frequency. This won’t, however, be a problem for 

detecting only the GNSS signals. GNSS antenna’s and LNA’s[7] already filter out all other 

frequencies. No additional filter circuit would need to be added. 

8.5 GNSS RF input 
The system is designed to be used with an antenna that has a gain of at least 20 dB. The 

noise floor of GNSS signals is in worst case around the -127 dBm mark. The MAX2015 RF 

detector can only detect RF signals with a power level of at least -65 dBm. 

The RF input needs to be split into two separate RF lines (Figure 9). With RF signals it is not 

possible to simply spit the lines. The reason for this is that the power level of the RF signal is 

measured by driving a load. In the case of GNSS this is a 50 ohm load. So if two different 

GNSS integrated circuits are loaded in parallel it would lower the resistance load to 25 ohm. 

This would cause the integrated circuits to not work correctly. A signal spitter is used to 

maintain the proper 50 ohm load.  

The downside of this is that this signal splitter works as a voltage divider. It cuts the available 

power in half. Resulting in a 3 dB loss.  
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Figure 9 RF signal chain 

With an active antenna gain of 20 dB and further cable losses of an estimated -6 dB. The end 

gain for the ZED-F9P receiver and the RF detector would be -109 dBm. In order to compensate 

for the loss in gain. A low noise amplifier (LNA) is added to boost the gain level. 

It is however not possible to endlessly keep boosting the gain of GNSS signals. Every time a 

LNA is used in the signal chain. Additional noise is added to the signal. Eventually the noise 

becomes too great, and it will drown out the usable GNSS signals. This is important for the 

ZED-F9P since it needs to process GNSS signals. However, the MAX2015 detector only 

measures the amplitude of the signal. It would not be important to maintain the health of the 

signals that go to the RF detect circuit.   

For the LNA amplification a MAX2659[7] is used. This LNA is specifically designed to boost 

GNSS signals of the L1 band. Perfect fit for the needs of this project. 

8.6 GPIO headers 
While the MGID design does not require any GPIO output to external components or devices. 

Since many GPIO pins of the ST microcontroller are not used it would be a good idea to make 

some of them available. The MGID system will most likely be used for future projects related 

to GNSS interference. By making GPIO ports of the STM available the system is made more 

future proof. Allowing future projects to use the system as a type of developer board with 

integrated GNSS functionality. These GPIO headers can be seen near the STM32 in Figure 

12. 

8.7 LED feedback lights 
To make it easy for the user to see if the components are working correctly, it is useful to place 

feedback LED lights. Three different components on the board support LEDs to give feedback 

to the user. The STM32, the ZED-F9P and the MCP2221. With these LEDs the user can 

instantly see if the system is powered and based on the blinking if it is working, without the 

need to make a communications connection with the board. 

For the MGID there are three LEDs made available to the user to program. These can be seen 

on the top left of the board in Figure 10.  
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9 PCB Design 
For the MGID a PCB design is designed. This 

compact PCB of 100 mm by 105 mm (Figure 10).2 The 

PCB design is made in Kicad[8]. 

The PCB is using a standard two copper layer design. 

The lower copper layer is a copper fill that connects 

all ground collections. The upper layer contains the 

traces that connects the components.  

The layout of the board can be divided into four 

quadrants.  

The top left quardrant is for the STM32 microcontroller 

and the GPIO pin headers.  

On the top right the ZED-F9P is located with the 

GNSS RF input placed in the corner. 

The lower left is where the power and usb inputs are 

located. Near these power input the voltage regulators are located. Both the 5 volt and 3.3 volt 

regulater are placed here. The low noise 3.3 volt regultator is placed near the ZED-F9P on the 

right side of the board. 

The lower right is reserved for the GNSS jamming circuit detection.  

9.1 PCB design principles 
The requirements of the system are quite high in terms of 

components. The STM32 and ZED-F9P together result in a 

lot of necessary traces to be drawn on the PCB. In order to 

keep the design manageable traces are laid out parallel to 

each other as much as is possible. This design principle 

allows to easily manage many different traces. The main 

benefit is that collections of traces can easily go under in a 

single location (Figure 11). If traces were not bundled 

together like this, it would result in many different trace 

passes in different areas. Resulting the lower copper layer 

looking similar to Swiss cheese. 

Components are laid out in such a way to minimize the 

amount of distance traces have to travel and to minimize the 

amount that traces have to pass over each other.  

Because the system works with low power RF signals it is 

very important to keep the amount of noise generated by the PCB at a minimum. Lowering 

the amount of interference is done through a couple of means.  

First it is important to keep the ground plane as intact as possible. The ground plane should 

fill the entire board and always have multiple points of contact. If there only is one point of 

contract that keeps a strip of ground connected to the ground plan. This strip will act like an 

antenna and create noise on the ground plane.  

 
2 Not all components on the PCB render have 3D components. Most notably the ZED-F9P on the right 
side does not have a model. 

Figure 10 Render of PCB 

Figure 11 Example of proper trace bus 

overpass 
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Another source of possible noise is placing high value resistors close to data lines or other 

types of switching power sources. Finally, traces should never have 90 degree turns. Only 

exception when they come from via’s. 

When traces must pass over each other they should do this as fast as possible. So, they 

should pass perpendicular to each other whenever possible. 

Capacitors should always be placed as close as possible to the pin they are trying to voltage 

stabilize. For some components multiple capacitors are recommended. In this case the 

smallest capacitor is placed closest to the component. 

Traces that are designed for power delivery are made as wide as possible. Wider traces have 

less resistance resulting in less noise over the power lines.  It also makes it less likely that a 

trace is burned if too much power flows through it. For this embedded system that is not likely 

to happen but is still something to keep in mind.  

9.2 PCB design rules 
The design rules of the PCB tell exactly what the minimal dimensions are for traces and via’s. 

And the distances between via’s. These minimal design rules are there to make sure that the 

PCB can be fabricated by a PCB manufacturer. It also limits the cost of a PCB. Most 

manufacturers have breakpoints on how small a dimension can be. If a design goes over such 

a breakthrough the price can rise quite a lot. The design rules that were chosen for the design 

are based on the smallest components chosen. In this case that is the STM32 microcontroller. 

Which has very little space between the pins (Figure 12). 

Figure 12 STM32 footprint and pin headers 
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9.3 STM32 
The STM32 microcontroller is placed on the top left of the board (Figure 12). The GPIO ports 

and GPIO pin headers are placed in such a way, so it is easy to create parallel trace busses 

that can easily be managed in the design.  

The STM32 has multiple pins all around the IC’s that take the main 3.3 voltage as VCC input. 

At every one of the pins a 100 nF capacitor is placed to maintain stability on the voltage.  

There is a JTAG connector above the STM32. This JTAG is for the ST-Link programmer. The 

JTAG connector header is placed close to the edge of the board. This makes it easy to place 

and remove the connector if necessary. When placing the connector, the user can use the 

edge of the PCB as anchor point. Preventing the user from possibly touching board 

components and thus preventing damage. 

9.4 Dual pin headers 
On both sides of the STM32 the GPIO pin headers are located. They are placed close to the 

board so the large number of traces that go between them can be kept as short as possible.  

 

9.5 ZED-F9P 
The ZED-F9P positioned on the top right side 

of the board (Figure 13). The chip enclosed in 

a plastic housing. This plastic housing 

prevents airflow that could negatively affect 

the temperature balance of the chip[1]. This 

disruption of the temperature balance causes 

the sensitive chip to decrease in performance. 

For this reason, there is the plastic housing. 

This plastic housing can be seen in Figure 2 

on the developer board. 

The ZED-F9P also has an additional ground 

fill on the upper copper layer to increase the 

grounding benefit. There is a low noise 

voltage regulator near the ZED-F9P, as close 

as is possible. 

The RF input is located close above the ZED-

F9P. The input trace is kept as short as 

possible as to minimize the loss of the signal. 

The data traces coming from the right side of 

the chip is not ideal. Because of this reason the traces need to take a long way round the 

board to reach the GPIO ports and connected LEDs. But because the RF input trace needs to 

point to the top corner of the board it was necessary to make this decision.  

Left of the RF input there is a spot where the solder mask is removed exposing the ground fill. 

This open space is there so there is the possibility to clamp something to it improving the 

ground connection by introducing more material. 

Figure 13 ZED-F9P with RF input 
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9.6 Jamming circuit detection 
The jamming circuit detection consists 

of two LNA’s going to the input of the 

MAX2015 RF Detector (Figure 14). The 

jamming circuit is quite far away from 

the RF input. This is not ideal especially 

since the RF line comes close to the 

data lines. But since data integrity is not 

important for the jamming circuit it is not 

really of a concern. And it is unlikely that 

there would be enough interference that 

the amplitude of the signal would 

change. 

The system has a lot of open space 

available on the board. This is by design 

to allow easy changes and additions to 

the board. The jamming circuit detection is the part of the electrical design that is most likely 

to change in the future. 

9.7 Choice of components 
At first for the choice of the components the schematics of the dev-boards (Figure 2) of the 

STM32 MCU and ZED-F9P were analyzed. The components that are used for these boards 

have proven to work so they were a good choice as a starting point in the design of the system. 

Both the STM32 manual[2] and the ZED-F9P manual[1] have examples of circuit design that 

are given to show what is best practice. 

However, for fabricating the PCB. The fabrication services of EuroCircuits[11] would have been 

used.  EuroCircuits has a list of components that are readily available to be used. Using these 

components is significantly cheaper than having components that need to be ordered on 

demand. 

EuroCircuits has four tiers of availability from most ideal to least ideal. Generic parts, electronic 

stock, on demand or customer delivered. Generic parts are only basic passive components 

such as resistors and capacitors. Electronic stock contains many of the most used IC 

components. On demand has most of the electronic component library but not everything. An 

extra fee needs to be paid for on demand ordering. Customer delivered is when the customer 

who made the order has to deliver the components themselves. Which adds a lot of 

complications. Such as longer delivery time or having to set up the process of delivering 

components to EuroCircuits. 

The electrical and PCB design was slightly revised in order to adjust for the EuroCircuits 

fabrication process. The voltage regulators were switched out for components that are in their 

electronic stock. The STM32 microcontroller is part of the electronic stock. Unfortunately, the 

Maxim Integrated components can only be delivered by the customer. This makes the 

manufacturing process more expensive. No good alternatives are available.  

 

  

Figure 14 GNSS Jamming detection circuit 
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10 Communication interface 

10.1 Interfacing with host 
In this chapter there is a quick overview on how the 

communication between the host PC and MGID 

works.  

In it is shown what the user will see in the terminal 

during first boot (Figure 15). The first two lines 

indicate the start of the two threads that are started 

by FreeRTOS. The following three ACK messages 

are indications that the ZED-F9P has received the 

correct configuration messages. The MGID will 

forward those messages to the host PC well. As can 

be seen. 

A total of four configuration messages are sent. Only three ACK messages returned. This is 

because the first configuration message is the baud switch. Because the baud rate switches 

it is not possible to receive the ACK message. The other three messages are received 

correctly.  

In Figure 16 it is shown what happens when the user requests GNSS feedback using 

command “MGID-GNSS-FBK-CMPCT”.  

 

 

 

 

 

 

 

 

 

Figure 15 Boot message from MGID 

Figure 16 Basic compact feedback from MGID 
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In Figure 17 it is shown what happens when the user requests GNSS feedback using 

command “MGID-GNSS-FBK-INTER”. This command only makes the MGID return the CNO 

data and possible spoofing and jamming results from the ZED-F9P. This is the minimal data 

transfer option for the MGID if 

only signal health is important. 

 

 

 

 

 

In Figure 18 it is shown what happens when the user requests GNSS feedback using 

command “MGID-GNSS-FBK-ON”. With this command the MGID directly forwards the NMEA 

messages from the ZED-F9P to the host PC. This is a useful option if the host PC wants to 

process the NMEA messages themselves. 

 

 

  

Figure 17 Compact signal health feedback 

Figure 18 Forwarding of the NMEA messages from the ZED-F9P 
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10.2 Command list 

10.2.1List 

Command Description 

MGID-PING Ping to the microcontroller. Get PONG back. 
Use to check connectivity 

MGID-LED-OFF Turn off the user feedback leds 

MGID-LED-ON Turn on the user feedback leds 

MGID-TIM-UPDATE-[YEAR]-[MONTH]-
[DAY] 

Update the datetime. Only works when not 
using the ZED-F9P. Because NMEA 
overwrites it 

MGID-GNSS-FBK-ON Turns on direct feedback data from the ZED-
F9P 

MGID-GNSS-FBK-CMPCT Turn on feedback but in a processed format 
from MGID 

MGID-GNSS-FBK-INTER Turn on feedback but only show interference 
data 

MGID-ADC-RAW Get current ADC measurement in raw 12-bit 
data. 

MGID-ADC-MVOLT Get current ADC measurement in millivolt 

MGID-GNSS-POS Get current langlong GNSS position 

MGID-GNSS-SIGNAL Get current GNSS signal state in dB 

MGID-GNSS-HEALTH Get the health of signals 

MGID-GNSS-SATS Get current connected satellites 

MGID-GNSS-TIME Get the time from the GNSS satellites 

MGID-GNSS-SATS Get current visible satellites 

MGID-GNSS-Inter Get current interference status 

MGID-ADC-CALI-ON Start calibrating the ADC (must be no GNSS 
interference while calibrating) 

MGID-ADC-CALI-OFF Complete calibrating 

  
Table 2 MGID commands 

10.2.2Extended explanation 
Some of the commands require more explanation on what exactly is happening. The 

calibration commands are explained in the MGIDADC section of the software architecture. 

The MGID-GNSS-HEALTH command will return values related to spoofing and jamming. This 

return message starts with spoof/jam in the message field. It is then followed by whether there 

is a suspected spoofing. If there is no spoofing a none is returned. Then an array of all 

communications band is given with a warning if they are being jammed or not. This is given 

by the string values of “none, warning, critical”. The difference between warning and critical is 

that with a warning information can still be accessed but there is a lot of noise on the line. 

Critical means that the noise level is too great for the signal to be usable. 
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11 Processing data with Python scripts 
In order to process the logging messages (Figure 19) to useful data. Two python scripts are 

written. One python script takes the logging messages and converts them to a csv data file 

(Figure 20 and Figure 21). The other python script can take the made csv file and turns the 

data into graphs that a human can understand. Chapter 11.1 Python graphs.  

 

 

Figure 19 example of logged data 

 

Figure 20 Starting data tables 

 

Figure 21 Example of reading data from log 
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11.1 Python graphs 
In this chapter multiple graphs are shown that showcase the data that has been collected 

over the duration of roughly 12 hours. The graphs show the capability of the system. 

 

Figure 22 Carrier to noise measurements 

Figure 22 shows the Carrier to Noise ratio. The graph shows that there is a slow oscillation 

at play. This makes sense since as time goes on. Satellites enter and exit the field of view of 

the antenna. Increasing and decreasing the signal health based on how well each satellites 

information is being received. 

 

Figure 23 Number of visible satellites 

Figure 23 show the total amount of visible satellites by the ZED-F9P receiver. This is the 

total number and not all of these satellites will be used for position calculation. This will be 

because the signal of these satellites is too far degraded to make an accurate calculation. 

But the satellite is still visible to the receiver. 

 In Figure 24, Figure 25, Figure 26 and Figure 27 the pseudoranges of randomly chosen 

satellites are graphed (GPS 13, GPS 30, GPS 24 and GPS 16).  Multiple things can be 

derived from these. GPS  30 has a very stable pseudorange calculation with only starting to 

lose signal when the satellite is getting far away from the receiver.  

Both GPS 13 and GPS 24 are suffering from the same problem. The correct distance is 

shown but is often offset by a fixed amount up to an unrealistic distance. This could be 

because they both have a weak signal and the receiver struggles and gets the wrong 

distance. Or because there is some kind of reflection that causes a distance offset.  

GPS 16 has no jumps in distance, but clearly the receiver does not get a good signal. 
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Figure 24 Pseudorange of GPS satellite 13 

 

 

Figure 25 Pseudorange of GPS satelite 30 

 

 

Figure 26 Pseudorange of GPS satellite 24 
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Figure 27 Pseudorange of GPS satellite 16 
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12 Design validation 
Checking if the design is correct and valid is very important for this project. The ZED-F9P is 

an expensive part and so is making a custom PCB with included component placing. There 

are many things that need to be made sure will function correctly. A single flaw could turn the 

entire system into a dud. If there is, it would not realistically be possible to do a small fix after 

the PCB has been delivered. An entire new PCB would have to be ordered, which would 

obviously cost a lot. 

The two ways that the system could have a serious design flaw is if there is a flaw in the 

electrical design itself or if there is a flaw in the design of the PCB. 

Possible bugs and glitches in the software are not really of great concern since these can be 

fixed after the ordering of the PCB. A problem with the software can be fixed by simply 

reprogramming the STM32.   

12.1 Electrical design 
The electrical design of the PCB is quite simple. In the end it uses simple linear voltage 

converters to feed of the shelf integrated chips. The design is also based of the developer 

board of the STM32. The only danger is that the capacitors are not enough to keep the 

voltages stable. But this is unlikely and even if this is the case. Replacing capacitors is one of 

the things that could realistically be fixed after ordering the PCB. 

The biggest danger in the design is that the RF circuit does not work. There are two major 

points of possible failure in the design that need to be checked. The first is if the first LNA in 

the sequence might add too much noise and causing the ZED-F9P to not be able to make a 

position fix reliable. While it is calculated that the noise level should remain in acceptable limits 

it is still something that should be kept in mind. A physical test on this specific question is 

advised. 

Another possible problem is that the RF detector circuit does not function like expected and is 

not possible to detect GNSS interference sources. Because it was not possible to physically 

test this circuit it cannot be made certain that it will work. This is the main thing that still needs 

to be validated and tested by future development. 

12.2 PCB design 
For the PCB design there are three possible ways that there could be a flaw in the design. 

The first is that a component footprint is wrong making it not possible to place the component 

on the board. 

Another possible flaw is an incorrectly laid trace that makes a wrong connection. This is most 

likely to happen with the large IC’s that have many traces, such as either the STM32 or ZED-

F9P. 

The final flaw that is possible, is electrical interference because of the way the traces, 

components, and copper fills are laid out.  

13.3 Performed design validations  
In order to control if the system has no mistakes in the design either the software, electrical or 

PCB design a system design validation is required. This is to improve the quality of the work 

and can prevent future errors. Below a table can be found with all of the validation checks that 

have been done in order to validate the system. 
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Design type Validation Result 

Electrical All electrical connections 
are correct 

Valid 

Electrical Power regulators feed 
sufficient power to the 
system 

Valid, the power regulator used has the 
same power output as the STM devboard. 
Which is already proven to work in practice 

Electrical Too much noise on the RF 
input 

Valid, calculation of the expected noise 
shows that the noise figure stays within 
limits 

PCB  Pins are correct Valid 

PCB Footprints are correct Invalid, some of the footprints on the board 
did not fit the components. This has been 
updated accordingly  

PCB No violated design rules Valid, all design measurements were within 
the design rules 

Software  Software stability The system has proven to run for at least 12 
hours with no problems. 

Table 3 Performed validation checks 
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13 Future developments 
Because of the limitations during the internship, lack of physical testing due to component 

shortages and the time limit for such a complex system, there are future developments 

required to make a functional prototype of the system. To make it clear. It was never expected 

at the start of the internship that a PCB would be ordered. But is would have been nice if it 

was possible if there was a lot of time left over. 

For future developers of this project a wiki was written on the GitLab page of the project. This 

GitLab wiki contains all of the information necessary to continue this project.  

13.1 Testing of jamming detection circuit 
The most important development that still needs to happen is to be able to physically test the 

jamming detection circuit to see what the test results are. A test would need to be done with 

the components from the design and then using a jamming signal to validate if the circuit is 

capable of detecting jamming signals. 

Not only would there need to be determined if it is capable of detecting jamming signal but 

also measuring at which interference level the circuit can detect them. 

13.2 Choose housing for the system 
Currently the system does not have a case or housing in which it is going to be build. It would 

be a good idea to have a solid case for it, making it more rugged to be used in the field. The 

PCB design right now does not have any mounting holes. And this is on purpose because no 

case or housing has been selected yet. Future developers would have to add mounting holes 

so that the PCB would fit in their chosen housing/case. 

13.3 Creating an order to a PCB manufacturer 
If a design is finalized that has proven to work in practice. A PCB can be ordered from a PCB 

manufacturer. But it is important to understand that this manufacturer also needs to install the 

components on the PCB. The components for this system are not capable of being installed 

using human soldering techniques.  

The most important thing that future developers need to keep in mind is that the ZED-F9P is 

a very sensitive piece of circuitry. It requires a very specific soldering heat diagram in order to 

be correctly installed and not be damaged. 

13.4 Testing and validating the PCB prototype in practice 
If a PCB prototype is made, then it needs to be tested in practice using actual GNSS jamming 

signals. It should be looked at if it is possible somewhere to perform such a test and document 

the measured results. 

13.5 Mobile communication possibilities 
When the system has been validated, it might be useful to add some kind of mobile 

communication. Such as GSM or satellite communication. This would allow the system to 

operate without the need of a human operator with a PC. The system is designed to be able 

to communicate with other devices. There are multiple ways that other devices could be 

connected. Such as USB, UART and I2C. USB would be the safest option since this 

connection has retention that prevents the cable from getting loose (USB-C). 

The UART and I2C connection are easier to work with but would have to be done via pin 

headers which don’t have the most rigid connections. Still since the system is not expected to 

move when placed it is not the biggest worry. 
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13.6 Find ways to integrate the system in other projects 
Because of the modular nature of the PCB it would be very easy to use the system in other 

projects. The system is not just designed to perform a single task. The combination of having 

a programmable microcontroller, GNSS receiver and GNSS jamming detection on a single 

board can be very useful in the future. S[&]T has many GNSS related projects so looking for 

ways to use the MGID system could prove beneficial. 

13.7 Ideal future use of the system 
If this system can successfully and reliably detect the power level of GNSS interference. 

Multiple MGID systems could theoretically work together to possibly triangulate the GNSS 

interference jamming location using their last known positions. By comparing the different 

power levels that the MGID systems are monitoring a rough estimation can be made in 

which direction the jamming signal is coming from. 
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14 Problems and solutions 
During the project there were multiple times that it ran into problems. This could either be 

because of problems with the planning or because of problems with the technical side. 

14.1 Long component delivery time 
During the first attempt at making a RF jamming detection circuit a couple of components had 

to be ordered. This resulted in a very long delivery time in which there was no more work to 

be done by the planning. To fix this the planning was changed so instead of doing the PCB 

design last, the RF jamming detection would be done last.  

So the PCB design started without having a RF jamming detection circuit. This would have 

been added later during the internship. 

14.2 Not able to use basic components for detecting RF signals 
At the start of the project there were ideas on how to be able to detect GNSS jamming. The 

first idea was to simply measure the power output of the active antenna. There were two 

designs made that simply used basic components in order to attempt to measure the RF 

amplitude. 

14.2.1Measuring the active antenna power 
The design of the first attempt was to use a current 

measurement circuit on the ground line of the 

antenna. A differential circuit was used using single 

supply high accuracy operational amplifiers and a low 

ohm resistor in series with the active antenna. This 

system during testing could read out a voltage. 

However, the voltage that was measured was only DC 

voltage. The circuit was tested at multiple times a day 

and also multiple places. It always read out the same 

voltage. While there was no possibility to test the 

circuit with a jamming signal. It can be safely assumed 

that the circuit is not capable of detecting increasing 

power usage of the active antenna. This is most likely 

because the drawn power is in AC. Which a DC 

measurement circuit is not capable of detecting.  

14.2.2 Attempting to rectify the AC RF signal 
Because measuring the DC voltage was not an 

option. Another design was made to attempt to rectify 

the RF signal so it could be measure by a DC 

differential circuit. Using high frequency Schottky 

diodes capable of switching at speeds even higher 

that GNSS signals. The circuit was almost identical to 

the DC measurement circuit except with a rectified AC 

signal instead. 

This circuit also did not work. During testing there was no DC output measured. The reason 

for this is quite simple. GNSS signals do not have enough power to come even close to being 

able to switch Schottky diodes.  

It was obvious that it would not work based on the low output of GNSS signals and the high 

forward voltage requirements of diodes. But since most of the circuit was reused from the 

previous circuit, and thus did not take long to make, it was worth a shot. 

Figure 28 Failed design of a GNSS detection circuit 
using OPAMPS 
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14.2.3 Using premade IC’s 
After these two failed attempts at measuring GNSS antenna output it became clear that it is 

not possible to use basic electrical components to measure GNSS signals. These signals are 

both too fast and too low power. The best way forward is to create a circuit using premade 

IC’s that are designed to work with high frequency RF signals. 

After searching on the website of different semiconductor manufacturers, the MAX2015 chip 

was found, and this is now what is used in the current design. But sadly, the developer test 

circuits had a delivery time much longer than the internship.  

14.3 Bad initial trace management 
In the first draft of the PCB an the chosen GPIO locations for the STM32 microcontroller 

resulted in a non-ideal situation with way the traces ended up having to be laid out. Seen in 

Figure 29. 

 

Figure 29 Initial STM32 trace layout 

It was realized that this trace design was too messy to be approved for prototyping. The 

decision was made to go back to the choice of GPIO ports and change them around, so they 

result in a cleaner design. This design can be seen in the chapter for the STM32 in PCB 

design. In Figure 12.   
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14.4 No possibility of testing with jamming signals 
While the project was about detecting GNSS jamming signals. There was no possibility to 

actually use a GNSS jamming signal to test the prototype. The possession and usage of 

jammers is illegal in the Netherlands. The science and control group did have a GNSS 

jamming test at a military base. But this was too early in the internship for the MGID prototype 

to participate in. 

14.5 Running out of microcontroller memory 
Because of the complexity and real-time nature of the system it was very easy to run out 

memory. Both flash and RAM memory were at risk.  

The reason for the difficulties came from three separate reasons. The first reason is C++. C++ 

uses more memory that straight C. The possibility to use C instead was thought of but in the 

end, it was decided to use C++. The benefits of C++ outweigh its higher memory requirements.  

FreeRTOS is the biggest user of memory in the system. However, FreeRTOS can be 

considered mandatory for a real-time system this size.   

The final big user of memory, specifically RAM, are the unsigned integer buffers for the UART 

controllers. The receiver memory for the GNSS receiver UART needs to be quite large. 

Because the ZED-F9P microcontroller sends one long string of NMEA messages the buffer 

needs to be large enough to contain all the characters.  

Before the F4 microcontroller another microcontroller was used. This microcontroller ended 

up not having enough memory by quite a lot. It had to be swapped out mid testing to the F4. 

The benefit of the modular software architecture design came into play here. It was very easy 

to convert the software to use the F4 microcontroller instead. 

But even with this microcontroller it was still very important to keep the memory usage low. All 

variables are kept with as low of a memory use as is possible. Always using the lowest 

unsigned integer possible and making sure all unused variables are cleaned up, so they don’t 

take up unnecessary RAM. Also making use of pointers to access large variables instead of 

cloning them in functions. 

In the end only 15% of the RAM is used. And 6% of the flash memory. This might seem 

contradictory to the previous paragraphs. But if no thought was put into memory management 

the memory usage could easily be double the current values. 

14.6 The float to string problem 
During development a strange problem occurred related to using the C++ string library. The 

system would always crash when trying to use the function std::to_string(float). This resulted 

in not being able to convert float values to human readable data to send over the UART. Two 

variables use float values. The GNSS geolocation and the pseudoranges of the sattelites. Two 

different solutions were made to bypass this limitation. 

14.6.1 GNSS location 
For the GNSS location instead of storing the data in a float 

variable it is stored in a struct containing only integers see 

picture. Having the whole numbers and decimals separated. An 

extra variable is necessary to count the number of zeros before 

the possible decimal. Basically, the exponent 10 of the value. 

(Figure 30). Similar to how floats save their data. With the 

exception of not suffering from floating point error. 
Figure 30 Precise pos structs 
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A custom function was made to both set the values of the position from a string. That would 

normally imply a float value. Another function is present to turn the position back into a string. 

So the data can be send to a host PC for a human operator to read. 

14.6.2 Satellite pseudoranges 
Extracting the float data from the pseudoranges of the satellites was a bit more difficult to do. 

The GNSS location was send from the ZED-F9P using NMEA (character strings) whereas the 

pseudoranges are send using UBX protocol. So, bytes that directly translate to data. The 

pseudoranges are send in 8 bytes. These 8 bytes together form a double.  

It would be possible to translate this double into multiple integers in the same way done with 

GNSS location. But it would require a lot of work and in the end it would not be important. 

Unlike the GNSS geolocation data it is not important that a human operator can read the 

pseudoranges. However, sending the raw data is also not an option. Because the databytes 

could be any number. It is also possible that the send data contains characters such as “\n”, 

“\r” or “\0”. Which would ruin the readability of the terminal. 

 

The best thing to do is save the data as a 64 unsigned integer and turn it into a hexadecimal 

string during communication. A 64 unsigned integer has the same number of bytes as a 

double. The data of the double could be stored in the unsigned integer. To do this it is important 

to know that the incoming data is in 8 bit unsigned integers, a byte. So we could insert 8 bit 

integers into the 64 bit integer and then use bitwise operations to fill the 64 integer. But it would 

be faster to just write straight to the memory location of the 64 bit integer instead. Using a 

single clock cycle instead of dozens. Especially important since this code is inside a interrupt 

service routine. 

 

What we do is, get the memory location of the 

64 bit integer using a pointer and then cast it 

to a 8 bit integer pointer. Then by simply 

advancing the pointer in memory it is possible 

to fill the 64 bit variable quickly with 8 bit data.  

(Figure 31).  

With the double saved as a 64 bit unsigned integer it can easily be transformed into a 8 

character hexadecimal string that can be send to the host (Figure 16). The host can than 

transform this string into a double variable. This process is shown in chapter 11 Processing 

data with Python scripts.  

 

 

  

Figure 31 Fast data transfer using pointer 
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15 Competencies 
During the internship it is expected that the intern is capable of a multitude of competencies 

that are expected of an electrical engineer. These competencies are analysis, design 

realization, managing and research. 

15.1 Analysis 
For the design of the system a thorough analysis was required. The system that was going to 

be designed did not have exact specifications. Therefore, there was a lot of design that had 

to thought of from the ground up. It had to be clear which steps had to be taken in order to 

finish the project.  

The analysis of the problem showed that it was going to be difficult to know exactly what 

exactly was going to be done over the duration of the project. There was a plan of approach 

made that was considered the safest and most flexible way to tackle the problem. 

It was decided to start with software since this is the most malleable part. If things did not work 

out exactly as planned than it could easily be changed. As time went on work became more 

hardware related. By already having a software design it was clear what exactly was expected 

of the hardware. And if changes had to be made to the software than that was easy since, 

again, software is malleable and can thus quickly and easily change to suit the need of the 

system. 

The most difficult part to get an analysis of was for the problem of how to detect GNSS 

jamming signals. There was a lot of research required to understand exactly how to do it. The 

initial analysis of the problem was wrong since it became clear that using basic electrical 

components it was not possible to detect GNSS signals. After these failures there was a better 

understanding of the problem. Allowing to reanalyze it and come up with a solution that works. 

This analysis allowed for the design of a system that fulfills the order requirements. And best 

fits into the possibilities of S[&]T. 

Analysis of the project did not stop after the initial gathering of order requirements. During the 

development the sensing and control team was working on processing data related to 

pseudoranges of satellites. I upgraded the system to also take in pseudorange data from the 

ZED-F9P. This data is valuable to the group and even though it was not in initial requirements 

it was added as a useful addition. 

15.2 Design 
During the internship a design was made for the MGID system. The design consists of three 

separate parts. A software design, an electrical design and a PCB design.  

A lot of attention was put in the design of the system. The main goal of the system was to 

make it easy to expand for future developers. Since it was very clear from the start of the 

project that it would not be possible to finish it during a single internship. The design all three 

areas were all kept as modular as possible. 

For the software an object-based approach using C++ was used. This approach using 

components allows for easy addition and modification. It is very clear by the naming of the 

class and their functions what everything does.  

The electrical design is the least modular. The main thing that was kept in mind with the 

electrical design was the addition of GPIO pin headers for the STM32 microcontroller. Even 

though the MGID system doesn’t use most of the GPIO ports. There are made available to 

future developers. Another thing that was added is the possibility to use different power 
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sources. During prototyping only power from a USB was used. But making it possible to use 

batteries or wall-brick supplies adds to the future applications of the system. 

The PCB design is also kept as clean as possible. This was done in the way of dividing the 

board into four quadrants. Each with its own clear purpose. The lower right corner of the board 

is where the GNSS RF jamming detection circuit is located. Since it is expected that this part 

of the circuit might be changed in the future. There is open space left open so that a future 

developer has the room required if they need it. 

15.3 Realization 
While it was not possible to fully realize the MGID system due to a combination of time 

constraints and component shortage. A prototype using the Nucleo developer board and ZED-

F9P was put together and used for testing. 

During testing this setup was able to record the carrier to noise ratio of the signals. Which is 

considered the most important part of the system. 

While there was no full realization of the hardware. The software that was written has been 

fully realized. The software works as intended and is capable of talking with the ZED-F9P 

GNSS receiver, can record ADC data and can send the results to a host PC for recording 

data. 

There were also the two failed designs for the GNSS jamming detection circuit. And while 

these systems did not work in their function because of their design. The actual boards that 

were soldered together did work in their designed function it was just that the GNSS signals 

where not powerful enough to drive the system.  

Lastly using the developer board prototype. Tests were able to be done and data could be 

logged and processed. 

15.4 Managing 
The project was complete managed by the intern himself. This was a difficult task because 

the problem was very open. There were many ways that the problem could have been tackled. 

This required a good planning and understanding of development processes. How to exactly 

go about working on certain aspects of the system. And when to move on to the next phase. 

The project started of quite rapidly with quick developments on the software. Unfortunately, 

when it came to the hardware development multiple issues came to light. The first problem 

are the component shortages that are currently present in 2022 due to the ongoing worldwide 

crisis’s such as COVID-19 and the war in Ukraine. This made designing the hardware very 

difficult.  

Because it was no longer possible to work efficiently on the hardware side of the project, the 

quick decision was made to not lose time and instead go on to work on the PCB design and 

documentation of the project. The hardware design was going to be done last, while having to 

wait for components. 

The resources required to make a successful hardware design were just not available. While 

a hardware design was made it has not been practically tested. 

It was very tough but, in the end, it was possible to make the project into something that is 

useful and could easily be picked up and finished by future developers. 



44/52 
V1.0 30-5-2022

15.5 Research 
In order to be able to complete the project it was necessary to do research in the workings of 

GNSS signals. GNSS signals are very difficult to work with. The combination of high carrier 

frequency and ultra-low power at earth’s surface make it almost impossible to do anything 

without any specialized IC’s. 

At the start of the internship there was not much knowledge about GNSS signals. Most of this 

was basic understanding of the satellite constellations and that uses three directional 

positioning to geo locate a position. 

The main goal of the research was to understand how GNSS signals work on a fundamental 

level. The research that has been done allowed a greater understanding on how GNSS 

receivers are capable of converting the low power signals into usable data. What GNSS 

signals exactly consist of and how the range calculations for satellites are done. 
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16 Conclusion 
At the end of the internship a design is delivered containing a design for a mobile embedded 

system that is capable of measuring and monitoring GNSS signals. The design consists of 

an electrical design, PCB design, system design and software package. Additionally, 

documentation is written for future developers that include, detailed explanations of how the 

system is designed and works. And what steps need to be taken in order to finish the PCB 

prototype. 

The MGID design is fully realized in theory and largely tested in practice, minus the GNSS 

power RF detection. Due to lack of component availability. The software is proven to work 

reliably and can collect data from the ZED-F9P. Both the software design and the hardware 

design are very modular and can easily be changed or expanded upon by future developers. 

The completion of the internship and the fulfillment of the product order. Have shown that the 

competencies of Analysis, design, research, managing and realization are acquired.  
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Appendix A1: Electrical design 
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Appendix A2: PCB design 
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Appendix A3: Software main 
// RX buffers for the uarts 
uint8_t rxBuffer_user[RX_USER_BUF_SIZE] = {'0'}; 

uint8_t rxBuffer_Gnss[RX_GNSS_BUF_SIZE] = {'0'}; 

// freeRTOS thread handlers 
osThreadId_t MGID_thread_Led_handle; 

osThreadId_t MGID_thread_Uart_handle; 

const osThreadAttr_t MGID_Led_attr = { 

  .name = "MGID_task_Led", 

 .stack_size = 256 * 4, 
  .priority = (osPriority_t) osPriorityLow, 

}; 

const osThreadAttr_t MGID_Uart_attr = { 
  .name = "MGID_task_Uart", 

 .stack_size = 1024 * 4, 
  .priority = (osPriority_t) osPriorityHigh, 

}; 

osMutexId_t MGID_mutex_uartHandle; 

const osMutexAttr_t MGID_mutex_uart_attributes = { 
  .name = "MGID_mutex_uart" 

}; 

// create the core and its subcomponents 

MGID_Core mgidCore; 
MGID_USR_LED userLed; 

MGID_UART userUARTClass; 
MGID_UART_GNSS gnssUARTClass; 

MGID_ADC adcClass; 

void MGID_task_led_start(void *argument); 

void MGID_task_Uart_start(void *argument); 

//This is a protected main function to prevent the generated code from possibly interfering 
void MGID_main(GPIO_TypeDef* usrLed, uint16_t usrLedPin, UART_HandleTypeDef* usrUart, UART_HandleTypeDef* gnssUart, ADC_HandleTypeDef* 
adcHandle){ 

osKernelInitialize(); 

//init mutexes 

MGID_mutex_uartHandle = osMutexNew(&MGID_mutex_uart_attributes); 

  //init MGID sub components for use 

userLed.InitUsrLed(usrLed, usrLedPin); 
userUARTClass.InitUart(usrUart, &MGID_mutex_uartHandle, rxBuffer_user, sizeof(rxBuffer_user)); 

gnssUARTClass.InitUart(gnssUart, &MGID_mutex_uartHandle, rxBuffer_Gnss, sizeof(rxBuffer_Gnss)); 
userUARTClass.InitParentCore(&mgidCore); 

gnssUARTClass.InitParentCore(&mgidCore); 
adcClass.InitADC(adcHandle); 

mgidCore.InitFeedbackLed(&userLed); 

mgidCore.InitUserUART(&userUARTClass); 
mgidCore.InitGnssUART(&gnssUARTClass); 

mgidCore.InitADC(&adcClass); 
mgidCore.SendUserLedState(1); 

//start threads 
  MGID_thread_Uart_handle = osThreadNew(MGID_task_Uart_start, NULL, &MGID_Uart_attr); 

  MGID_thread_Led_handle = osThreadNew(MGID_task_led_start, NULL, &MGID_Led_attr); 

 // uint8_t buffer[] = "Pre FreeRTOS Test message\r\n"; 
 // HAL_UART_Transmit(usrUart, buffer, sizeof(buffer), 10); 

  osKernelStart();//code in this function stops here. freeRTOS takes over 

while(1){ 

//should never reach this 

} 

} 
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Appendix A4: MGIDCORE class 
class MGID_USR_LED;//Forward declarations to prevent bad dependencies 
class MGID_UART; 
class MGID_UART_GNSS; 
class MGID_ADC; 
struct custom_time_t; 
 
//MGID Core is the main component of MGID and has many subcomponents that handle functionality 
class MGID_Core:  public MGID_Core_Interface { 
public: 
 MGID_Core(); 
 
 //All these components need to be initialized in order for the MGID to function correctly 
 virtual void InitFeedbackLed(MGID_USR_LED* newLed); 
 virtual void InitUserUART(MGID_UART* newUart); 
 virtual void InitGnssUART(MGID_UART_GNSS* newUart); 
 virtual void InitADC(MGID_ADC* newADC); 
 //start the receivers of the UARTs so they can start receiving messages 
 virtual void SetUARTReceiver(); 
 //Send message to Host PC 
 virtual void SendUserMessage(string msgOrigin, string sendString); 
 //Send a new state to the feedbackled 
 virtual void SendUserLedState(uint8_t newState); 
 //Check if there is an incoming user command 
 virtual void CheckForUserCommands() override; 
 //IRQ relay to the uart component IRQ 
 virtual void HandleUARTIRQ(UART_HandleTypeDef* huartHandle); 
 //IRQ relay to the ADC component IRQ 
 virtual void HandleADCIRQ(ADC_HandleTypeDef* adcHandle); 
 //This is the looping task that controls the LED called from the freeRTOS task 
 virtual void MGIDTaskLed(); 
 //This is the looping task that controls the uart messages to the host called from the freeRTOS task 
 virtual void MGIDTaskUart(); 
 //This relays the tick count to the timer. Called from the freeRTOS tickHandler 
 virtual void CoreTick(); 
 //Basic get functions 
 virtual UART_HandleTypeDef* MGIDGetUartUser(); 
 virtual UART_HandleTypeDef* MGIDGetUartGnss(); 
 
 virtual ~MGID_Core(); 
 
private: 
 MGID_USR_LED* feedbackLed;// pointer to the LED component 
 MGID_UART* userUart; //debugging UART to the PC (host) 
 MGID_UART_GNSS* gnssUart; //uart that goes to the ZED GNSS Module 
 MGID_ADC* adcModule; //ADC access 
 custom_time_t time; 
 virtual void blinkLed();//call the blink on the feedbackLed 
}; 
 
#endif /* INC_MGIDCORE_H_ */ 
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Appendix A5: Processing NMEA messages 
void MGID_UART_GNSS::ProcessNMEA(uint8_t* tBuffer, uint16_t tBufferSize){ 

if(tBuffer[0] != '$'){ 
return; 

} 
uint16_t position = 1; 
string stringVar; 
stringVar = this->GetWordFromBuffer(&position); 
if(stringVar == "GNGLL"){ 

stringVar = this->GetWordFromBuffer(&position); 
gpsPos.latitude.SetFromString(stringVar); 

stringVar = this->GetWordFromBuffer(&position); 
if(stringVar == "N"){ 

gpsPos.isNorth = true; 
}else{ 

gpsPos.isNorth = false; 
} 
stringVar = this->GetWordFromBuffer(&position); 
gpsPos.longitude.SetFromString(stringVar); 
stringVar = this->GetWordFromBuffer(&position); 
if(stringVar == "W"){ 

gpsPos.isWest = true; 
}else{ 

gpsPos.isWest = false; 
} 
stringVar = this->GetWordFromBuffer(&position); 
ProcessNMEATime(&stringVar); 
return; 

}; 
if(stringVar == "GPGSV" || stringVar == "GLGSV" || stringVar == "GAGSV" || stringVar == "GBGSV"){ 

GNSS_TYPE currentType; 
if(stringVar == "GPGSV"){ 

currentType = GNSS_TYPE::GPS; 
}else if(stringVar == "GLGSV"){ 

currentType = GNSS_TYPE::GLONASS; 
}else if(stringVar == "GAGSV"){ 

currentType = GNSS_TYPE::Galileo; 
}else if(stringVar == "GBGSV"){ 

currentType = GNSS_TYPE::BeiDou; 
} 
ProcessSattelite(currentType, position); 
return; 

} 
if(stringVar == "GNZDA"){ 

stringVar = this->GetWordFromBuffer(&position); 
stringVar = this->GetWordFromBuffer(&position);//day 

timeTemp.SetDay(atoi(stringVar.c_str())); 

stringVar = this->GetWordFromBuffer(&position);//month 
timeTemp.SetMonth(atoi(stringVar.c_str())); 
stringVar = this->GetWordFromBuffer(&position);//year 
timeTemp.SetYear(atoi(stringVar.c_str())); 

} 
} 
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Appendix A6: MGIDCORE tasks 
void MGID_Core::MGIDTaskLed(){ 

  /* Infinite loop */ 
SendUserMessage(MGID_UART_MSG_CORE, "START USER LED THREAD"); 

  while(1){ 
osDelay(MGID_CFG_LEDBLINKSPEED); 
blinkLed(); 

  } 
} 

void MGID_Core::MGIDTaskUart(){ 
  /* Infinite loop */ 
SendUserMessage(MGID_UART_MSG_CORE, "START USER UART THREAD"); 
SetUARTReceiver(); 
gnssUart->InitGNSSModule(); 
const uint16_t loopCount = MGID_CFG_UARTPINGSPEED/MGID_CFG_CMDCHECKSPEED;//make sure this results in a value higher than 0 
uint16_t loopCounter  = 0; 
while(1) 
{ 

time = gnssUart->GetTime(); 
osDelay(MGID_CFG_CMDCHECKSPEED); 
if(loopCounter >= (loopCount - 1)){//-1 because we count from 0 

SendUserMessage(MGID_UART_MSG_CORE, "PING"); 
loopCounter = 0; 

}else{ 
loopCounter++; 

} 

adcModule->PerformADCMeasurement(); 
if(adcModule->IsInterferenceFlagSet()){ 

//above nominal power detected on antenna. warn host 
SendUserMessage(MGID_UART_MSG_ADC, "INTERFERENCE POWERSURGE"); 

} 
} 

} 


