
Countering Ransomware Using Anomaly Detection of
Endpoint Events

V.A. (Vincent) van der Eijk

Computer Engineering
The Hague University of Applied Sciences

Graduation report

December 21, 2017

iii

Abstract

Ransomware gained a lot of media attention in 2017 because of the many large-scale attacks that occurred
which managed to shut down multiple companies, or even hospitals, and resulted in signi�cant costs [4, 18].
Because this speci�c type of malware appears to be a lucrative business for criminals, it is of even greater
importance for cybersecurity vendors to provide the required measures to prevent ransomware infections by
implementing an anti-virus (AV) solution which is capable of mitigating a potential threat. However, the AV
solutions which are currently implemented are not build to act upon unknown malware. The Next-Generation
Anti-virus (NGAV) solution should therefore be able to dynamically analyze system events to classify speci�c
actions as malware. Although various cybersecurity vendors claim to have a solution, in practice a �awless
NGAV is yet nowhere to be found. This research focuses on the implementation of a behavioral and probability
based model to enhance the current AV solution of Fox-IT with the capability to detect unknown malware
processes. The main research question of this research is:

�Is it possible to accurately classify system processes on a Windows endpoint as ransomware based on its
features?�

A prototype is presented to extract potentially malicious features from Windows processes in order to classify
a process as benign or malicious. These features are recommended by various renowned security specialists
[2, 3, 14]. A machine learning classi�cation algorithm is trained with testing data of both malicious and benign
processes in order to make actual predictions for the testing data set. This is a novel approach where both
security intelligence is combined with machine learning whilst not performing an in-depth analysis of system
calls or machine code.

The data samples used as input for classi�cation were obtained in collaboration with the Threat Intelligence (TI)
department of Fox-IT to provide a sample set representing real-world ransomware for testing. The classi�cation
algorithm provided exceedingly well results, which is partially due to the fact that the chosen features did show
very strong characteristics of ransomware. The algorithm which was used in the �nal prototype even managed
to classify every single malware process correctly, directly at the root of the processes. With a True Positive
Rate (TPR), or recall, of 100%, the algorithm did alert on various benign processes. These processes all
contained features and behavior which indeed appeared malicious such as crash reporters which hooked in on a
failing process, or installers containing unsigned executables. However, the amount of false positives remained
relatively low overall and they could be easily prevented by whitelisting this small set of speci�c processes.

Vincent (V.A.) van der Eijk, �Countering Ransomware Using Anomaly Detection of Endpoint Events�. Gradu-
ation report to obtain the Bachelor's degree for the education of Computer Engineering, The Hague University
of Applied Sciences, 2017.

Keywords: anomaly detection, classi�cation, Fox-IT, malware, next-generation anti-virus, ransomware

v

Preface

This research has been commissioned by Fox-IT, a major cybersecurity �rm in Delft, The Netherlands. The
research is a part of the graduation internship in order to obtain the Bachelor's degree of Computer Engineering
at The Hague University of Applied Sciences. I would like to thank my supervisors Hans de Vreught and Pieter
Burghouwt for their valuable feedback during this research.

This research would not have been the same without the expertise from several employees of Fox-IT. Their
knowledge about malware and system processes provided useful insights for this research. Their help to provide
a testing environment and malware samples was of great value to achieve the results presented in this research.

Thank you.

Vincent van der Eijk
Delft, December 2017

Contents vii

Contents

1 Introduction . 1

1.1 Fox-IT CTM Endpoint Module . 1

1.2 Research Outline . 2

2 Company Background . 3

2.1 Goals & Activities . 3

2.2 Organizational Structure . 3

3 Research Description . 5

4 Initiation . 6

4.1 Approach . 6

4.2 Research outline . 7

4.3 Risks . 8

5 De�nition . 10

5.1 Literature Research . 10

5.2 Prototyping . 16

5.3 Research Requirements . 20

5.4 System Architecture . 21

6 Development . 22

6.1 System Architecture . 22

6.2 Sprints . 24

6.3 Testing . 29

7 Results . 31

7.1 Classi�cation performance . 31

8 Conclusion . 33

8.1 Recommendations . 34

viii Contents

9 Evaluation . 35

A Afstudeerplan . 39

B Plan of Action . 41

B.1 Introduction . 41

B.2 Background . 41

B.3 Goal . 41

B.4 Assignment . 41

B.5 Planning . 42

B.6 Project Boundaries . 43

B.7 Deliverables . 43

B.8 Risk Analysis . 44

C De�nition Report . 45

C.1 Problem Analysis . 45

C.2 Ransomware analysis . 45

C.3 Machine Learning . 47

C.4 Stakeholder Requirements . 51

C.5 Prototyping . 52

C.6 System Architecture . 55

D Development Report . 56

D.1 Prototype Design . 56

D.2 Prototype Backlog . 60

E Test Report . 68

E.1 Error Guessing . 68

E.2 DocumentReader . 70

E.3 Process . 72

List of Figures ix

E.4 Learning . 74

F Results . 75

F.1 Process Classi�cation . 75

G Collector Setup . 77

G.1 Networking Setup . 77

G.2 Endpoint Server . 78

G.3 Combining logs . 79

List of Figures

1 Fox-IT organizational diagram . 4

2 Prototype system architecture . 22

3 Prototype �owchart . 23

4 CTM Endpoint Server process monitoring rule . 25

5 Process tree representation . 27

6 Malware probability histogram . 31

7 Global prototype class diagram . 56

8 DocumentReader class diagram . 57

9 Classi�er class diagram . 58

10 Prototype �owchart . 59

11 Process tree representation . 62

12 Malware probability histogram . 75

13 Virtual network setup . 77

14 CTM Endpoint Server monitoring rule . 78

15 CTM Endpoint Server rule set . 79

x List of Tables

List of Tables

1 Project planning . 8

2 Insu�cient access to internal resources . 8

3 Ransomware encrypts endpoint . 9

4 Confusion matrix . 15

5 Prototype features summary . 19

6 Test results . 30

7 Classi�cation confusion matrix . 32

8 Project planning . 43

9 Insu�cient access to internal resources . 44

10 Ransomware encrypts endpoint . 44

11 Confusion Matrix . 50

12 Stakeholder overview . 51

13 Exploratory prototyping metrics . 55

14 EP-1 Data Acquisition . 60

15 US-1 Data Acquisition . 60

16 US-2 Data Acquisition . 61

17 EP-2 Classi�cation . 63

18 US-3 Classi�cation . 63

19 US-4 Classi�cation . 63

20 US-5 Classi�cation . 64

21 US-6 Classi�cation . 64

22 US-7 Classi�cation . 64

23 EP-3 Learning . 65

24 US-8 Learning . 66

List of Tables xi

25 US-9 Learning . 66

26 US-10 Learning . 66

27 TST-EG-1 Read log . 68

28 TST-EG-2 Tree model . 69

29 TST-UC-1 Tree model . 70

30 TST-UC-2 Feature reduction . 71

31 TST-UC-3 Feature selection . 71

32 TST-UC-4 Split dataset . 72

33 TST-UC-5 Predict malware probability . 72

34 TST-UC-6 Cluster alerts . 73

35 TST-UC-7 Classi�er precision . 73

36 TST-UC-8 Self-learning algorithm . 74

37 Classi�cation confusion matrix . 75

1 INTRODUCTION

1 Introduction

In the past year, a major surge of ransomware has taken place. This speci�c type of malware, meant to extort
its victims or to wreck systems completely, has had a big impact on society [4]. Ransomware has received a
lot of media attention since the large-scale attack of the WannaCry variant in May 2017, when it managed to
encrypt over 160,000 computers in only a couple of days. The WannaCry ransomware was particularly successful
because it managed to spread quickly through internal networks. The months following, new variants of the
WannaCry ransomware were released, which exploited the same vulnerabilities. Some of these did even greater
harm than the earlier WannaCry attack [4]. Ransomware infections are therefore not expected to diminish in
the future. Instead, according to the 2017 annual security report by Cisco, ransomware is growing at a yearly
rate of 350% [6]. The total cost of ransomware is predicted to be $5 billion for 2017 [7].

Due to the increase of this speci�c type of malware with disastrous consequences, it is crucial to have a
solution in place to detect and prevent new ransomware outbreaks. Traditional anti-virus (AV) solutions rely
on signature-based detection. This means that the hash, or the signature, of executables is compared against
a database of known hashes of malicious �les, and therefore �agged as malicious. This technique works very
well for known malware, but has the downside that it fails to detect new malware variants which have a
di�erent hash. The slightest change to the binary of the malware means that it can stay undetected by AV.
This traditional approach of AV is found on almost every endpoint, and provided a good solution for malware
attacks in the past. As malware evolved, the traditional AV solutions remained stagnant and therefore a new
and innovative approach is required.

To avoid the challenges of signature based detection that traditional AV has to cope with, the next-generation
anti-virus (NGAV) has been introduced. This type of endpoint protection takes a fundamentally di�erent
approach as it examines system events from a system-centric point of view [9]. By doing so, a behavioral
pattern is created in order to classify an event as malicious or benign. This results in a more dynamic AV
solution which is also able to �ag potentially malicious �les that haven't been seen before, independent of the
signature hash of the �le. The NGAV is a relatively new concept and still has to mature. There are currently
no known vendors of NGAV who o�er a solution which combines both security intelligence and logic to provide
a state-of-the-art security mechanism.

This approach of behavioral detection is often related to machine learning. When using machine learning as
a method for malware classi�cation, processes can be evaluated using a predictive algorithm to determine
the probability of a process being malicious or benign. Creating a model that is accurate for all cases is a
challenging task. The recent BadRabbit ransomware of October 2017 was classi�ed as legitimate by Microsoft
because the malware probability score was only a little below the threshold required to block its execution [9].
After evaluation, the ransomware received a higher classi�cation and was blocked by the Windows operating
system eventually. In the meantime eight other endpoints got infected.

Although a machine learning approach is not 100% safe, as the BadRabbit example shows, it is able to learn
quickly when deployed properly so actual threats can still be blocked faster than with traditional AV. The only
di�erence between 'known' and 'unknown' threats is time, and it is the duty of AV providers to reduce this as
much as possible [10].

1.1 Fox-IT CTM Endpoint Module

The CTM Endpoint Module is the AV solution provided by Fox-IT. The endpoint module provides system
hardening and protection which still relies for a large part upon signature-based detection for ransomware and

1

1.2 Research Outline 1 INTRODUCTION

static rule-based mechanisms. Although the Endpoint Module provides a good solution for endpoint protection,
it faces the same challenges as other signature-based AV solutions.

1.2 Research Outline

This research, commissioned by Fox-IT, is focused on the development of a new concept in cybersecurity
event monitoring to improve the detection capabilities of the CTM Endpoint Module. Additional background
information of Fox-IT is provided in Chapter 2. The description of the research assignment and the goal of
the research is given in Chapter 3. Chapter 4 states the approach of the research and provides a more detailed
overview of the project including the separate tasks and activities during the length of the research.

Before specifying the requirements of the research a literature review is performed to provide additional in-
formation about common ransomware characteristics and di�erent classi�cation techniques. Based on these
results, multiple exploratory prototypes are developed to establish the exact requirements of the research in
accordance with the product owner in Chapter 5.

The development of the �nal prototype is described in Chapter 6 which also included the designs of the
operation of the prototype. An agile approach was used during the development phase which is described
in three separate sprints. The tests that have been performed for the software are included in a separate
document, the Test Report, which is included in Appendix E.

The results of the �nal prototype are included in Chapter 7, and leads to a conclusion which is drawn in Chapter
8 which also provides recommendations for future work.

2

2 COMPANY BACKGROUND

2 Company Background

Fox-IT is a renowned provider of cybersecurity solutions. The company has customers worldwide, but is well-
known in the Netherlands because of the services they provide for the Dutch government. Customers of Fox-IT
are known for their vital infrastructures, such as the Dutch government. The motto of Fox-IT is: "For a more
secure society" [11].

2.1 Goals & Activities

The mission of Fox-IT has been formulated as: "To derive satisfaction from helping to create a more secure
society with the help of our technical and innovative solutions".

The Development CTMp (Cyber Threat Management platform) department is responsible for the development
of a platform to be deployed in the Security Operations Center (SOC) of Fox-IT. The network infrastructure
of customers of Fox-IT is continuously monitored by the SOC for any security incidents.

CTMp has an Endpoint department, which is responsible for the development of the CTM Endpoint Module.
The alerts generated by the CTM Endpoint Module enhance the other monitoring services that Fox-IT has
to o�er. More relevant reporting of security incidents will result in a faster response to serious threats and
therefore add value to the Managed Security Services of Fox-IT.

2.2 Organizational Structure

In November 2015 Fox-IT has been acquired by NCC group. Because of this acquisition, Fox-IT is now part of
a global team of more than 2,000 employees spread across 3 continents. This acquisition has had little impact
on the day-to-day activities of Fox-IT employees.

The technology portfolio of Fox-IT includes advanced tools to secure infrastructures and to operate advanced
security processes [12]. The CTMp department is included in the technology portfolio of Fox-IT. The intelligence
which is incorporated in the di�erent modules used by CTMp is obtained by the various departments of Fox-IT
which are in the �eld every day, seeing new attacks and context of their �ndings. In particular, the Threat
Intelligence (TI) department of Fox-IT is responsible for malware analysis, which also includes ransomware
samples.

The departments of Fox-IT which are relevant for this research are shown in Figure 1 on the following page.
The Endpoint Module department of CTMp is located under the technology portfolio of Fox-IT.

3

2.2 Organizational Structure 2 COMPANY BACKGROUND

Fig. 1: Fox-IT organizational diagram

4

3 RESEARCH DESCRIPTION

3 Research Description

This research has been introduced because there is not su�cient knowledge to detect and prevent an advanced
ransomware attack on Windows endpoint devices.

The primary goal of this research is to propose a solution in the form of a prototype that is able to classify
Windows processes that are retrieved from Windows endpoints into potentially malicious and benign events.

The main research question formulated to reach the goal of the research is therefore:

Is it possible to accurately classify system processes on a Windows endpoint as ransomware based
on its features?

In order to classify system processes, a selection of features has to be de�ned to serve as input for the
classi�cation algorithm. The selection of these features and the type of algorithm used for classi�cation is
determined by the following subquestions:

1. How are the features of system processes on a Windows endpoint being logged? In order to make
predictions about the nature of process logs these events have to be collected for further analysis.

2. What are the strongest features of ransomware noticeable on an endpoint? When the large amount of
system events is reduced to a minimum it is possible to make fast predictions with little overhead. This
requires a selection of only the most relevant features of processes that are related to ransomware.

3. Which type of algorithm is most suitable for classi�cation? Di�erent types of predictive classi�cation al-
gorithms may provide di�erent results. This includes the convergence rate for a self-learning classi�cation
algorithm which might make the classi�er more suitable to predict new situations.

4. What is a reasonable accuracy for the classi�cation of system processes? The answer to this question
is of great importance in order to verify that the classi�cation algorithm performs according to the
stakeholders' needs. This also includes determining which metrics are relevant for the calculation of the
performance of the classi�er.

In order to determine whether the results of the classi�cation algorithm are su�cient, the desired accuracy of
the algorithm has to be de�ned beforehand. It is recommended to implement a machine learning algorithm for
the classi�cation of processes in the prototype.

5

4 INITIATION

4 Initiation

This chapter provides a global overview of the research and several considerations which have been taken into
account at the start of the research.

Originally, the goal of the research has been formulated to detect anomalous patterns in the Windows kernel
in real-time to determine if an endpoint is being infected with ransomware. However, quickly after the start
of the research the description has been altered in a way to focus more on the feasibility of anomaly detection
itself. Both the real-time constraint and the direct interface to the Windows kernel are not applicable anymore
in the newly formulated goal, as mentioned in Chapter 3. Instead, event logs of endpoint devices will be used
for static classi�cation. If the results of this research show that anomaly detection and classi�cation of system
events is feasible, this technique might be incorporated in future releases of the CTM Endpoint Module.

4.1 Approach

To reach the goal of the research as stated in Chapter 3, ransomware samples have to be collected and analyzed
to retrieve process information. Additionally, a dataset consisting of benign processes has to be generated to
serve as a baseline for trusted processes. A set of the most speci�c features extracted from these processes
will be used as the input for the classi�cation algorithm. The feature set which will be used for classi�cation is
determined by performing literature research about malware characteristics, which provides an answer to the
research question:

• 'What are the strongest features of ransomware noticeable on an endpoint?'

To determine which type of classi�cation algorithm is most suitable for the dataset di�erent exploratory proto-
types will be developed and tested for their accuracy. This will also be the main focus of the de�nition phase.
This approach of exploratory structural prototyping allows to quickly receive feedback in a short time span to
determine and verify the stakeholders' needs and to re�ne the actual software speci�cation, if necessary. The
prototyping phase will provide answers to the research questions:

• 'Which type of algorithm is most suitable for classi�cation?'

• 'What is a reasonable accuracy for the classi�cation algorithm?'

To determine whether a classi�cation algorithm performs according to the expectations it will be tested for a
variety of metrics including accuracy, speed and convergence of a machine learning algorithm.

The metric for the accuracy will be used to determine whether the chosen classi�cation algorithm performs
according to the expectations. During this phase the requirements of the prototype will be validated in
accordance with the product owner of the CTM Endpoint Module. When the actual software speci�cation are
in place, a global design of the software architecture will be developed that will act as a guidance during the
development phase.

The dataset containing process information is required prior to the development of the classi�cation algorithm
for testing of the classi�cation algorithm. A reliable dataset with accurate features of both malicious and benign

6

4 INITIATION 4.2 Research outline

data is required to train and test the algorithm. The Threat Intelligence (TI) department of Fox-IT provides
malware samples which will be run on a virtualized environment to collect information of system processes.
A virtual environment using its own internal network is used in order to reduce the risk of the malware to
spread. Additionally, this ensures that known-good snapshots of the environment can be restored quickly
after a malware infection to repeat experiments. The process information of benign processes is obtained
by simulating multiple uninfected Windows endpoints in the virtualized environment. Prior to the collection
process events, insight must be created in the logging of system processes and how these events could be used
as input for the classi�cation algorithm, which answers the �nal question:

• 'How are the features of system processes on a Windows endpoint being logged?'.

With the proper datasets obtained, the classi�cation algorithm can be tested and adjusted where required
during the development phase.

The last phase of the assignment, the development phase, consists of three sprints of three weeks each. This
time span of three weeks creates enough time to be able to develop signi�cant increments, while still having
su�cient iterations to adjust if necessary. The epics written during the de�nition phase will be used as an
initial starting point. At the end of the �rst two sprints new user-stories will be written for the following sprint,
based on remaining system requirements. At the end of this phase the development report and the test report
are completed.

By performing thorough tests of the classi�cation algorithm it is possible to ultimately draw valid conclusions
from the results. These results have to provide an answer whether it is possible to accurately classify system
processes on a Windows endpoint as ransomware by monitoring process features, which is the answer to the
primary research question.

4.2 Research outline

The global overview of each phase in this research and corresponding tasks are shown in Table 1. Every phase
will provide its own deliverables. The development phase will provide both a development report and a test
report. All deliverables are attached as an appendix. The �nal deliverables are the following:

• Plan of Action

• De�nition Report

• Development Report

• Test Report

Chapter 5 provides background information about characteristics of ransomware and malware in general. This is
the basis for the research to determine which features should be used for classi�cation. The actual methods for
classi�cation are reviewed to determine a set of possibilities for the structural exploratory prototyping phase.
Based on the results of the exploratory prototyping a classi�cation algorithm is chosen to be implemented
during the actual prototype development which is described in Chapter 6. The results of the prototype and an
explanation for these results is provided in Chapter 7. Chapter 8 concludes this research with answers to the
research questions and recommendations for future work.

7

4.3 Risks 4 INITIATION

Tab. 1: Project planning
Phase Task

Initiation
(1 week)

Assignment description
Analyzing project risks
Create planning

De�nition
(7 weeks)

Read about malware characteristics
Read about machine learning possibilities
Exploratory structural prototyping
Determining the stakeholders' needs
Write epics
Software architecture development

Development
(3 x 3 weeks)

Software development
Software testing

4.3 Risks

Because the research is exploratory by nature, there are no components of the CTM Endpoint Module which
can be negatively impacted based on the outcome of the research. The introduced risks are therefore only
related to the execution of the research and its corresponding prototype development, but not to the CTM
Endpoint Module itself.

4.3.1 Insu�cient access to internal resources

Due to only a moderate screening level as an intern at Fox-IT, there is no full access to internal resources. If
speci�c restricted resources are required, this could become a problem. This risk is described in Table 2. It is
also relevant for the access to malware samples, as there might be no authorization to run real malware in an
environment set up for this research.

Especially for the training data set it is required to have access to internal research about malware samples and
existing log �les. However, if access is restricted there are various technical analyses made available publicly
which could be used instead.

Tab. 2: Insu�cient access to internal resources
Description Insu�cient access to internal resources
Probability Medium
Impact Research cannot be performed or validated without the required test data, or tools to

generate this test data
Risk reduction Discuss the obtaining of internal resources in a timely manner
Impact
reduction

Obtain similar resources from a public source

Contingency
Plan

Implement a workaround for the speci�c situation which does not require this
restricted resource

8

4 INITIATION 4.3 Risks

4.3.2 Ransomware encrypts endpoint

Ransomware samples have to be monitored for their activity in order to make predictions based on their
behavior. If the ransomware manages to break out of its contained network environment it will encrypt the
(log) �les on the system, resulting in a loss of work. The setup of the network is described in more detail in
Appendix G.1 on page 77.

Tab. 3: Ransomware encrypts endpoint
Description Ransomware encrypts endpoints (on the network)
Probability Medium
Impact Log �les or other work might get encrypted and therefore lost
Risk reduction The ransomware samples are executed in a virtualized internal network environment

disconnected from an outside network. All machines except the targeted machine are
provided with the latest updates and security patches

Impact
reduction

Regular snapshots of known-good points in time are made to create a system restore.
Only log �les are stored on the machine

Contingency
Plan

Restore the most recent snapshot

9

5 DEFINITION

5 De�nition

This chapter, which describes the De�nition phase of the research provides insights in the execution of ran-
somware and di�erent classi�cation techniques such as supervised and unsupervised machine learning which
will be used for the �nal prototype to classify system events.

5.1 Literature Research

The literature research has been divided into four parts. To start with, a brief introduction is provided about
endpoint security and its known �aws in Section 5.1.1. Section 5.1.2 provides detailed background information
about ransomware and its common characteristics. These characteristics are expressed as features that will
be used for classi�cation. Section 5.1.3 provides information and possible approaches for classi�cation. This
includes machine learning in particular, which is the desired approach for the problem of anomaly detection.
The metrics to calculate the precision of the classi�cation algorithm are discussed which are required to provide
reliable results at the end of the research. This literature research is concluded in Section 5.1.4 with previous
work regarding this subject to provide background information about the current situation of anomaly detection
of endpoint devices.

5.1.1 Introduction to Endpoint Security

Traditional consumer anti-virus (AV) solutions which provide endpoint security are not capable of preventing
advanced threats. However, neither do enterprise-grade intrusion detection systems. Currently, most malware
detection approaches use common signature based detection algorithms. These algorithms scan the �le system
for hashes (signatures) of known malicious �les, or scan �les for known malicious byte patterns. This approach
works pretty well, although this is only the case if the signatures are updated regularly. In the event that a
malicious �le is altered, its signature changes and the �le is not detected anymore. Because the traditional AV
approach can only detect known signatures, it is impossible to detect zero-day exploits which can be the initial
attack vector of a ransomware attack.

While this technique of signature-based malware detection is used for most AV solutions for personal use, it is
not advanced enough to provide proper protection for high-value targets with a vital infrastructure such as the
customers of Fox-IT.

5.1.2 Ransomware Analysis

The Threat Intelligence (TI) department of Fox-IT has provided several malware samples to be used for
generating test data for this research. The following paragraphs discuss the malware characteristics found
by literature research and relates these characteristics to the features obtained from the samples provided by
Fox-IT.

Windows processes can be used to model the behavior of an endpoint. This model, or process tree creates an
overview of the relationship between parent and child processes instead of just an instance of a single process.
With the model of a process tree in place, anomalies can be detected in its branches based on the features of
the processes.

10

5 DEFINITION 5.1 Literature Research

Ransomware Features Ransomware, and malware in general, is known to show certain anomalies from
regular system processes. For regular users, processes are created in a predictable manner [3]. Most processes
are started by explorer.exe and not by cmd.exe. Furthermore certain operating system services are known not
to create new processes, which makes it suspicious and anomalous behavior if they do. This is a major indicator
which should be used when evaluating process creation events.

Russinovich, a renowned security researcher at Microsoft, states that ransomware has several characteristics
that can be observed during execution [2]. Ransomware is typically not a type of malware that is designed to
stay on a system undetected as it is meant to extort its victim. The best way to detect ransomware would be
to monitor processes on the system with a tool such as Process Monitor [13]. Russinovich states that processes
that are worth investigating are processes that contain features such as the lack of an icon, have no description,
are unsigned, or live in the Windows directory or user pro�le. These speci�c features can be explained due to
the fact that malware is developed with the purpose to extort its victim and not to be a high-quality piece of
software. Another recommendation given by the security researcher from Microsoft is to be especially wary of
items residing the the Windows directory or the AppData directory of the user pro�le.

According to Cisco, one of the most important characteristics of ransomware is the deletion of system shadow
copies, which prevent a system backup restore [14]. In 2014, the CryptoWall ransomware was the �rst ran-
somware family which incorporated this technique after it had been disclosed that a system could be restored
with a shadow copy [15]. The process to delete a shadow copy from the �le system should therefore also be
a major indicator of ransomware. Because administrative privileges are required to perform this action, an
elevated process should be hijacked �rst.

The recent WannaCry ransomware from May 2017 did show traces of all features mentioned in this section
which eventually led to the successful encryption of over 160,000 computers worldwide [16]. Using a publicly
available exploit the process lsass.exe, which has administrative privileges, was hijacked to eventually start
the process tasksche.exe which launches a command prompt to delete shadow copies and create persistence
at boot to show the ransom note by adding a key to the registry. Under normal circumstances, the process
lsass.exe should never start tasksche.exe.

To summarize, the features of system processes that will be used for classi�cation are the following:

• Residing directory

• Unsigned executables

• Deletion of shadow copies

• Lack of process meta-data

• Unknown process relationship

• Scripting �les

The �rst subquestion of this research can therefore already be answered, as this is the list of features that will
be used for classi�cation.

11

5.1 Literature Research 5 DEFINITION

Ransomware Samples The following ransomware samples have been provided by Fox-IT. These samples
have been harvested from infected machines. The malware has not been altered and should therefore be
representative for this research.

The ransomware samples have been run on a network of virtualized endpoints. Both the CTM Endpoint Module
and the tool ProcessMonitor collected logs of system process events during the execution of the ransomware
samples. Both monitoring tools were required to create a complete overview of the system, by merging the
features of both logs. The process and the setup used for collecting process event logs is described in more
detail in Appendix G.

• Locky: Ransomware family released in 2016. The ransomware became active again in the summer of
2017 when it was spread through multiple SPAM emails containing an invoice that required payment.
The attached document was a Microsoft Word document that contained malicious macros [17].

• Bitpaymer: A ransomware variant targeted at hospitals. The ransomware unpacks several malicious
unsigned executables into the user pro�le folder [18].

• GlobeImposter: This ransomware variant is obtained through a drive-by executed by a malicious Javascript
�le. This ransomware deletes shadowcopies from the system [19].

• Ja�: A ransomware variant that has been primarily spread through SPAM emails and spearphishing
attacks [20].

• WannaCry: The infamous ransomware which gained a lot of publicity because it managed to disrupt
infrastructure on a global level [21].

In addition to the ransomware samples mentioned above, two additional malware samples have been provided.
Note that these samples are not ransomware and are only being tested in order to see if the classi�cation
algorithm is also able to detect other kinds of malware instead of only ransomware which it will initially be
trained for.

• Geodo: Botnet used as a loader for more malware and SPAM [22].

• Trickbot: Banking malware which injects malicious code into the browser when speci�c websites are
accessed [23].

• Kronos: Banking malware which injects malicious code into the browser when speci�c websites are
accessed [24].

5.1.3 Machine Learning

The current implementation of rule-based classi�cation has several shortcomings by nature which can be
bypassed relatively easily. Because of these shortcomings, a new approach is desired. At the start of this
research, the suggestion was made to implement a classi�cation method using behavioral patterns and anomaly
detection, which leads towards a solution implementing machine learning.

A self-learning classi�cation algorithm is a solution which is likely to solve the problems introduced by static
signature-based detection as described in Section 5.1.1. This type of classi�cation algorithm is able to evaluate

12

5 DEFINITION 5.1 Literature Research

events and to classify them either as malicious or benign. The main strength of self-learning classi�cation
is that it is able to classify events which have not been hard-coded into the detection which is the case for
signature-based detection. This means that new variants of ransomware families, or even completely new
ransomware families, could still be detected dynamically based on their features instead of a static hash of the
executable. With the self-learning capabilities of the classi�cation algorithm it is even able to make even more
accurate predictions after it has seen a speci�c sample multiple times. The learning curve, or the convergence
rate, determines how well the classi�cation algorithm is able to adjust itself. This way, false positives can be
used as input for the algorithm to reduce the probability of occurrence in the future.

Four di�erent approaches for a machine learning algorithm are chosen for the exploratory prototyping. These
di�erent algorithms will be tested and evaluated based on their performance. The algorithm which performs
the best will be chosen for the implementation of the actual prototype. The metrics that will be tested on are
the following:

• Accuracy - The accuracy of the classi�er based on a manually crafted data set for training and testing

• Noise - How well the algorithm is able to handle irregularities in the dataset

• Convergence - How well the classi�er is able to learn from new data samples

• Execution time - How fast the classi�er is able to make a prediction

• Complexity - The complexity of the algorithm behind the classi�cation

Classi�cation Algorithms A classi�cation algorithm will be implemented to test which type of algorithm is
most suitable for the classi�cation of system processes. A variety of di�erent approaches for machine learning
implementation has been chosen in order to test the various di�erent characteristics of these algorithms. A
brief description of the algorithms which will be incorporated in the prototyping phase is presented below:

• Counting

This is the most trivial approach for the classi�cation problem. Given the set of features, the amount of
features that indicate ransomware can be counted and if a certain threshold is reached the process is being
classi�ed as malicious. Although this solution is very easy to implement it is expected to generate a lot of
false positives and false negatives. Another downside is that using this approach shows many similarities to a
rule-based AV solution, which makes it a less feasible solution. This is the only approach not implementing a
machine learning algorithm.

• Naive Bayes

The Naive Bayes algorithm is a supervised classi�cation algorithm that assumes independence among data
features. This algorithm is known to perform relatively well in general while being easy to implement. It is a
probabilistic algorithm that is trained by using already classi�ed data. To train the classi�er, both benign and
malicious data has to be collected for training [25].

• K-Modes Clustering

13

5.1 Literature Research 5 DEFINITION

The algorithm will generate clusters based on the features of the input data. When using a unsupervised
learning algorithm data does not have to be labeled to train the classi�cation algorithm. However, to test
the accuracy of the algorithm labeled test data is still required to determine if the predicted clusters of the
classi�cation algorithm are correct. This unsupervised learning algorithm is the only one suitable for discrete
values which are used for the data set of the CTM Endpoint Module. Because it is di�erent from the other
supervised learning algorithms it is interesting to try it during the exploratory prototyping phase. Because not
all data sets are suitable for clustering it is not always an e�ective approach [27, 26].

• Deep Neural Network

A Deep Neural Network is another approach to supervised machine learning and approximates a 'black-box'
approach where the models are determined empirically, instead of theoretically [42]. The approach of a neural
network makes it an interesting option to try during the prototyping phase.

The exploratory prototypes developed for the de�nition phase are described in more detail in Appendix C.5 on
page 52.

Dimensionality Reduction Machine learning implementations often su�er from the curse of dimensionality,
meaning the dataset contains too many features to make proper predictions. Datasets with too many features
are often noisy and contain features which are not relevant. Because of this characteristic of datasets, the
feature set has been reduced to only 6 features which are the most expressive, as discussed in Paragraph 5.1.2
on page 10.

Enhancing the dataset by removing redundant or irrelevant features will signi�cantly improve the performance
of the algorithm in the following ways:

• Better understanding of the data

• Improving prediction accuracy

• Faster predictions

The most expressive features of the dataset will be selected to optimize the classi�cation. The features which
have been mentioned in Section 5.1.2 on page 10 are the features that will remain after applying dimensionality
reduction to the dataset.

After applying feature selection and extraction as described in Section C.3.2 on page 49, a 15-fold increase in
performance could be obtained by discarding irrelevant features in the CTM Endpoint Module.

The remaining dataset will in turn be used to extract the 6 features which have been mentioned in Section
5.1.2. These features have been set by applying boolean logic to check for the presence of speci�c values which
apply to the corresponding feature. This results in a 1-dimensional dataset consisting of only 6 binary features
per process.

The reduced feature set will provide more understanding of the data and result in signi�cantly faster predictions.

14

5 DEFINITION 5.1 Literature Research

Classi�er Accuracy Brownlee, the author of various books regarding machine learning, provided a writeup on
the pitfalls of calculating the accuracy of classi�cation algorithms and how this result can often be misleading
[41]. The results are misleading because of the class imbalance in the dataset which is used for classi�cation,
which is also referred to as the Accuracy Paradox. Additional measures are required to properly evaluate the
classi�cation algorithm.

A measure which is commonly used which provides a good insight in the performance of the classi�cation
algorithm is the precision. This value is the number of True Positives divided by the number of True positives
and False Positives. This results in a score which represents the overall ability of the classi�cation algorithm
to correctly predict True Positives. For the ransomware classi�cation problem where the amount of malicious
processes is signi�cantly less compared to benign processes, it is desired to know the ability to correctly predict
True Positive results instead of True Negatives.

To provide a clean and unambiguous solution to present the predictions made by the classi�cation algorithm,
a confusion matrix is used. This table shows a clear overview of the correctly and incorrectly predicted results
which will be used to calculate the metrics to determine classi�er performance. An example of a confusion
matrix is provided in Table 4.

Tab. 4: Confusion matrix
Predicted \ Actual Positive Negative

Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)

The following can therefore be said about the last subquestion of this research regarding the accuracy of the
classi�cation algorithm:

"What is a reasonable accuracy for the implementation of the classi�cation algorithm?"

The accuracy of the algorithm itself is not relevant as this does not say much about its predictive capabilities.
Instead, the precision metric is the most important for the malware classi�cation problem. With the formula to
calculate the precision of the classi�cation algorithm, its is also signi�cantly easier to assign a speci�c value to
the metric of the required performance. The total amount of True and False positives have to be tracked down
in order to set a minimum requirement for the classi�cation algorithm to achieve. The exact interpretation of
this requirement is provided in Section 5.3 on page 20 in collaboration with the actors involved in the CTM
Endpoint Module. The formula for the precision, also referred to as the Positive Predictive Value (PPV) is as
follows:

PPV =
TP

TP + FP
(1)

Additional metrics that provide insight in the performance of the algorithm are the False Postive Ratio (FPR)
and the True Positive Ratio (TPR), which provide information about the amount of incorrectly classi�ed
negatives and correctly classi�ed positives. The following formulas are used to calculate these metrics:

FPR =
FP

FP + TN
(2)

TPR =
TP

TP + FN
(3)

15

5.2 Prototyping 5 DEFINITION

5.1.4 Related Work

At the time this research was initiated, researchers at Fox-IT were looking into the deployment of the X-Pack
plug-in for Elasticsearch [34]. This plug-in supports several di�erent features to enhance an Elasticsearch
deployment, which is currently used in the CTM Endpoint Module, by including machine learning capabilities.
The results are not impressive so far, as it only makes use of a simple probabilistic algorithm to determine
feature importance and to generate a subset of events of interest. The problem with this approach is that,
even if it succeeds to provide decent results, the false negatives will still not be detected because the plug-in is
only used together with the data that was already present. Furthermore the plug-in comes with a signi�cant
price tag, which doesn't make it an attractive solution.

Malware classi�cation by means of anomaly detection is not a new concept. There are plenty of research papers
that write about the possibilities of classifying malware types to ease the process of detection. Although most
of these researches, of which some even date back to 2008 [35], claim to have outstanding results, anomaly
based classi�cation implementations �which should be the holy grail of cybersecurity� are yet nowhere to be
found. The results are often not as promising as they appear because of the Accuracy Paradox described in
the previous section.

Malware classi�cation is often performed by analyzing binary �les in the sample data set on a system call level
[35, 37, 36]. This approach seems to be reliable, but has many familiarities with traditional AV solutions using
signature-based detection. The research mentioned in [36] uses a clustering algorithm to automatically group
malware into families to ease detection and further research.

In the past years several researchers have been performed and published regarding the topic of anomaly detection
by using machine learning. These researches often rely on complex neural networks for the classi�cation of
malware samples. The main focus of the research appears to be the implementation of a machine learning
algorithm and does not take the threat intelligence and malware characteristics into account as a recent study
from [1] shows. The research is focused on the early stage malware detection using a recurrent neural network.
It is said claims to detect whether an executable is malicious of benign within the �rst 4 seconds of execution
with 93% accuracy. The neural network used in this research used features of the actual machine running the
malware. Features such as the memory usage, CPU usage and other generic hardware monitoring approaches
were used for malware classi�cation. As the CTM Endpoint Module of Fox-IT contains more detailed process
information, it will be more likely to develop a successful classi�cation algorithm for ransomware by using better
indicators.

5.2 Prototyping

The various approaches that have been used in the previous work mentioned in Section 5.1.4 show interesting
approaches and results. These approaches (a simple probabilistic algorithm, clustering and a neural network)
will be developed as an exploratory prototype to discover which approach is most suitable for the classi�cation
of the current feature set provided by the CTM Endpoint Module.

The structural exploratory prototyping technique is used to verify the initial needs of the stakeholders involved
in the development of the �nal prototype. Appendix B.4 on page 42 lists the candidate requirements which
already have been established at the start of the research. This prototyping phase will take these requirements
into account and will both validate these requirements and elaborate on them.

16

5 DEFINITION 5.2 Prototyping

To validate the requirements, four di�erent exploratory prototypes are developed in a short timespan to receive
quick feedback from the stakeholders to determine which approach will best �t their needs. The chosen
approaches are already introduced in Section 5.1.3 and make sure that a variety of prototypes is tested in order
to explore the di�erent approaches to tackle the problem of classi�cation. The chosen approaches are using a
Naive Bayes classi�cation algorithm, clustering, a deep neural network, and the regular counting of features.

The exploratory prototyping is primarily used to get an idea of which kind of algorithm provides the best
performance for the problem of ransomware classi�cation. Because the prototyping has been performed early-
on in the research, there was no veri�ed data set available for testing purposes. To make sure the accuracy
of the classi�cation algorithms could still be tested, a dataset with similar a similar categorical data structure
was manually crafted for testing purposes.

The metrics mentioned in Section C.3 on page 47 are used to test the performance of the prototype.

5.2.1 Naive Bayes

The �rst prototype is using the Naive Bayes classi�cation algorithm. This type of algorithm is relatively easy
to implement yet known to produce accurate results. Although it is an algorithm based on a relatively simple
concept, it often has an exceedingly well performance compared to other more complex algorithms. Naive
Bayes is a probabilistic algorithm that assigns each feature a probability based on its occurrence.

For data sets similar to the CTM Endpoint Module data set, the implemented Naive Bayes algorithm has an
accuracy of 99.9%. Algorithm 1 contains the straightforward implementation of the Naive Bayes algorithm for
a Bernoulli distribution [30].

import sklearn.naive_bayes.BernoulliNB

df = generate_dataset ()

results = BernoulliNB (). fit(df.train , df.train.classes). predict(df.test)

Algorithm 1: Naive Bayes Prototype

5.2.2 Deep Neural Network

The following exploratory prototype makes use of a Deep Neural Network (DNN), which is a more complex
approach for classi�cation. The DNN is implemented using the open-source software library TensorFlow, which
is developed by Google [31].

The con�guration for the neural network, the hidden layers which are built up by neurons, is con�gured in the
same way as is done in the examples given by TensorFlow [32]. The approach shows promising results within
a relatively short execution time. The prototype with the TensorFlow implementation reaches an accuracy of
99.6% up to 100%, depending on the con�guration of the neural network. A better accuracy does cost more
computational power and therefore requires a longer execution time.

Algorithm 2 contains a code snippet from the implementation of the DNN classi�cation algorithm.

17

5.2 Prototyping 5 DEFINITION

import tensorflow as tf

df = generate_dataset ()

cls = tf.contrib.learn.DNNClassifier(

feature_columns=df.columns ,

hidden_units =[10, 20, 10],

n_classes =2)

result = cls.fit(input_fn=df.train , steps =500). evaluate(input_fn=df.test)

Algorithm 2: Deep Neural Network Prototype

5.2.3 K-Modes

The two previous exploratory prototypes mentioned in Sections 5.2.1 and 5.2.2 are supervised learning algo-
rithms, which means that they require pre-classi�ed datasets in order to train the model.

The k-modes algorithm is an unsupervised machine learning algorithm and does not require labeled data to
train the classi�er with. Based on the features of the data set the algorithm will create n clusters which
new entries will be related to. Using the k-modes algorithm new data entries will be classi�ed to the nearest
cluster. As the dataset is di�cult to classify manually because of the many di�erent (unknown) processes, an
unsupervised approach might be preferred over supervised classi�cation.

However, in order to validate if the output of the classi�cation algorithm is correct, the process data samples
still need to be classi�ed for testing. Another common problem of clustering is that not all data sets are suitable
for clustering which might lead to wrong results.

The clustering algorithm reaches an accuracy of approximately 85% up to 90%. The code snippet of the
prototype implementing the k-modes cluster is provided in Algorithm 3.

import kmodes

df = generate_dataset ()

km = kmodes.KModes(n_clusters =2, n_init =10)

results = km.fit(df)

Algorithm 3: K-Modes Prototype

5.2.4 Counting

A di�erent and more trivial approach which does not use machine learning would be to count the amount
of features that are positive. Because the dataset contains binary data, where a '1' would indicate a feature
is present and '0' means it does not, this approach is actually expected to perform overall pretty well. The
threshold to classify a data sample as malicious is set to 3; which means half of the features in the dataset
should be positive. This value turned out to provide the best results after testing.

The accuracy of this prototype provided similar results to the Naive Bayes classi�cation algorithm provided in
Section 5.2.1, although the accuracy of this exploratory prototype would drop drastically if the dataset contains
a lot of noisy features.

18

5 DEFINITION 5.2 Prototyping

The algorithm to count the features in the data set is provided in Algorithm 4.

df = generate_dataset ()

results = [None] * len(df)

for index in range(len(df)):

results[i] = 1 if sum(list(df[i]) > 3 else 0

Algorithm 4: Counting Prototype

Prototyping Results

All classi�cation algorithms performed rather well. The k-modes clustering algorithm was the only algorithm
that did not provide su�cient results to consider for further development based on its accuracy. Although
the other algorithms (Naive Bayes, Deep Neural Network, and Counting) provided a good accuracy overall,
the Naive Bayes machine learning algorithm is chosen for further development as it provides the best results
overall. Table 5 shows the scores assigned to each metric.

The other metrics that have been taken into account, which are the noise, execution time, and complexity of
the prototypes do not di�er much and therefore are not decisive, except for the complexity of the Deep Neural
Network implementation. This approach appears to be too complex for the prototype to be developed.

Tab. 5: Prototype features summary
Category Naive Bayes K-Modes Cluster Deep Neural Network Counting
Accuracy + + � + + +
Noise � � + � �
Convergence + � + + � �
Execution time + + � +
Complexity + + � � ++

Based on these results, the Naive Bayes machine learning algorithm is chosen for further implementation of
the �nal prototype as it has the best results overall. The implementation of the Naive Bayes machine learning
algorithm is described in detail in Chapter 6

During the prototyping phase a new requirement has come forward. Currently, the CTM Endpoint Module can
either allow or block system events. The prototype can, due to the use of a machine learning algorithm and
the behavioral model of the system process tree, assign probabilities to sequential events. Each branch of the
process tree will be monitored individually. If a branch reaches a certain threshold it can be �agged to monitor
by a security analyst, and if a next threshold is surpassed the process can be blocked completely. A branch
in the process tree might be used to accumulate a total malware score. Additionally, there should be no time
constraint in place to monitor sequential events, as malware might make use of a the internal Windows Task
Scheduler tasksche.exe to purposely delay its execution [33].

19

5.3 Research Requirements 5 DEFINITION

5.3 Research Requirements

The exploratory prototyping phase described in Section 5.2 was used to validate the requirements for the �nal
prototype to be developed.

In order to address the impact of this research an overview of all the actors who are directly a�ected by the
development of the CTM Endpoint Module has been made. This global overview is shown in Table 12 on
page 51. The development team of the CTM Endpoint Module, the actors who are most directly involved,
are not taken into account as they are not impacted by this research. This requirements analysis is required in
order to determine whether the �nal prototype performs as desired. The actors who are involved in the CTM
Endpoint Module have been identi�ed as the following:

The end user has a computer with the CTM Endpoint Module installed on it. This actor is directly a�ected
by the performance of the software. The end user does not want to be infected with ransomware and therefore
the CTM Endpoint Module should block a malicious event before it does irreversible harm to the system of the
end user. The end user does not want to receive unnecessary noti�cations of possible insecure system behavior,
which means that false positive alerts should be reduced to a minimum.

The alarms generated by the prototype have to be analyzed by a security analyst for further inspection. This
actor is responsible for monitoring security incidents reported by the classi�cation algorithm. Due to limited
time to handle an incident, no more than a total of 100 incidents per day can be reported, including false
positives. Ideally, the amount of incidents will go down to only 10 incidents per day, which is a realistic amount
of true positive alarms as this is the average amount of serious incidents. This means that the classi�cation
algorithm requires a minimum precision, or Positive Predictive Value (PPV), of 10%.

The product owner of the CTM Endpoint Module is responsible for the development and performance of
the software. To guarantee maintainability of the algorithm it should be written in Python 3.5, which is the
common programming language for CTMp. A high true positive ratio is required to be able to maintain
the high performance of the CTM Endpoint Module. This is preferably achieved using a new and innovative
solution using a self learning anomaly detection algorithm. An implementation using open-source software
libraries is preferred to avoid costs. The prototype should be able to classify potentially malicious system
events from legitimate system events. The prototype is meant to explore the possibilities of classi�cation of
system processes and does not have to operate in real-time. The overall system performance of the system
running the prototype does therefore not have to be taken into account.

The above descriptions of the actors are summarized as environment requirements and system requirements:

Environment Requirements

• The prototype uses a self-learning classi�cation algorithm

• The prototype is written in Python 3.5

• The prototype must have a higher precision than the current implementation of the CTM Endpoint
Module

• The performance of the system running the prototype does not have to be taken into account

• The prototype will be trained and tested with live malware samples in a virtualized environment

20

5 DEFINITION 5.4 System Architecture

System Requirements

• The prototype is able to classify process creation events from a log �le

• The prototype should have a precision (PPV) of at least 10%

• The prototype will not handle system events in real-time

• The prototype �ags an event to monitor if the likelihood of being malicious exceeds a probability of at
least 50%

• The prototype �ags an event to block if the likelihood of being malicious exceeds a probability of at least
95%

5.4 System Architecture

Based on the prototyping process described in Paragraph 5.2 on page 16, the supervised learning approach was
chosen for further development develop as it provided the most promising results. The complete and detailed
overview of the architecture of the �nal prototype to be developed is provided Appendix D on page 56 and will
be discussed globally in Chapter 6 on the following page.

21

6 DEVELOPMENT

6 Development

The system architecture which resulted from the de�nition phase and the exploratory prototyping is presented
in this chapter, along with the actual development of the prototype. The development is split up into three
di�erent sprints with their own themes, or epics. Each sprints has its own code snippet included to provide a
global overview of the actual software. This chapter concludes with the results obtained by the testing of the
prototype.

6.1 System Architecture

The system architecture has been developed with the aim to keep the prototype simple, yet easy to extend if a
more complex classi�cation algorithm is required. Although the Naive Bayes classi�cation has shown the most
promising results for the exploratory prototype, it is not unimaginable that a new kind of machine learning
algorithm is introduced in the future. Because of this probable scenario, the specialized instance of such a
machine learning algorithm is designed to be derived from a base class Classi�er which contains all default
methods for classi�cation. The modular design also makes to possible to run di�erent models simultaneously
and to compare their results. A global overview of the design of the class diagram is shown in Figure 2.
Note that the K-Modes clustering algorithm and the Deep Neural Network have only been tested during the
exploratory prototyping and will not be incorporated in the �nal prototype.

Fig. 2: Prototype system architecture

The class DocumentReader in the top-left corner of Figure 2 is a generic class responsible for loading and
converting documents to a log �le, which can be interpreted by the Process and Classi�er class to convert
to a 2-dimensional DataFrame object for classi�cation. The subclasses EventReader and ProcessReader are
responsible for loading the speci�c Event and Process logs, which are generated by the CTM Endpoint Server
and ProcessMonitor respectively.

The Process class which is the main component of the prototype requires a ProcessMonitor log �le to construct
a process tree model. This model is used by a Classi�er instance to make predictions of the process classes
being either malicious or benign. A detailed class diagram is included in Appendix D.

22

6 DEVELOPMENT 6.1 System Architecture

The �ow chart of the prototype is shown in Figure 3. The �ow chart provides an overview of the internal
operation of the prototype.

Fig. 3: Prototype �owchart

The development of the �nal prototype based on this system architecture is split in three sprints of three weeks
each, which is described in Section 6.2 on the following page.

23

6.2 Sprints 6 DEVELOPMENT

6.2 Sprints

An agile approach is used during the development of the prototype. This approach is chosen because it is
likely that the prototype will change over time. Features such as a self-learning capability are added in a later
sprint after the base model of the classi�er has been implemented. The agile approach o�ers the possibility
to often receive feedback based on the progress. Software testing has been performed simultaneous with the
development of the prototype. The testing strategy is further elaborated upon in Section 6.3 on page 29. The
software of the prototype is developed in Python, following the standard conventions from the PEP 8 style
guide and the docstring conventions from PEP 257 [38, 39]. By creating code consistency it will be signi�cantly
easier to maintain and transfer the source code of the prototype after the end of this research.

The development phase of the research has been split up in three sprints of three weeks each. Every sprint has
a main theme which has the focus on a speci�c group of user stories. The theme of a sprint is de�ned by its
epic. The user stories related to the development of the �nal prototype are attached in Appendix ??.

6.2.1 Data Acquisition

The Epic for this sprint is de�ned as:

Create a single data set with logs from multiple sources by extracting the most important features.

The �rst sprint is aimed at collecting and formatting the data required for the classi�cation. In order to obtain
all features required for classi�cation, data has to be collected from multiple sources. Both the event collector
from the CTM Endpoint Module and ProcessMonitor supply a dataset containing process events which are
merged to create a new dataset with combined features. Feature selection is applied on this dataset to reduce
the amount of features to enable faster classi�cation and improved understanding of the data, as mentioned
in Section 5.1.3 on page 12. Finally, the dataset is converted to a DataFrame object to make it suitable for
classi�cation by a machine learning algorithm.

The process of data collection and rule set con�guration is described in more detail in Appendix G on page 77.
Figure 4 on the facing page shows the custom rule that has been created in order to log only process create
events to be used as input for the prototype. Appendix G.2 on page 78 provides an explanation of the operation
of the CTM Endpoint Server rule set.

24

6 DEVELOPMENT 6.2 Sprints

Fig. 4: CTM Endpoint Server process monitoring rule

Unfortunately, multiple logging methods were required because they both provided di�erent information about
features. The CTM Endpoint Module of Fox-IT provided a lot of information about the single processes on a
system, but because of the current implementation of the logging it does not contain process IDs (PIDs) of
child processes. Without these PIDs it is not possible to create a process tree.

In order to obtain this missing information the ProcessMonitor logs are used, which do store the PIDs of
the child processes. These logs can be matched based on their name, parent process ID and command line
arguments. When a match is found the informative features are merged to establish a �nal process tree.

Algorithm 5 is a global example of the basic logic used for the modeling of the process tree.

25

6.2 Sprints 6 DEVELOPMENT

The process tree root is used for the linking child processes

root = Process(name='system ', pid=0, children =[], root=True , parent=None)

for line in processfile.csv:

features = line.split ()

Process (** features)

class Process:

def __init__(self , ** kwargs):

self.features = ** kwargs.split()

if (self.root) or (root is None):

return

if self.children is None:

self.parent.children.append(self)

else:

child = Process(parent=self , self.child_args)

If the parent process already exists because it already has created

another child process , add the new child to the existing parent.

if child is not None:

for process in root.walk ():

if (process.pid == self.pid) and (process.name == self.name):

if child is not None:

process.children.append(child)

return

Set references for top -level processes without a parent

if self.parent is None:

self.parent = root

root.children.append(self)

Algorithm 5: Process tree creation pseudo code

This algorithm provides a model of the system process tree which looks like the following shown in Figure 5
on the facing page, when displayed in the command line interface of the prototype. Each line in this �gure
represents a process and its corresponding process ID. Other attributes, such as the process features are omitted
in this �gure. This model allows computational operations required in order to make predictions regarding the
malware probability of a process, which is further developed in the next sprint.

26

6 DEVELOPMENT 6.2 Sprints

Fig. 5: Process tree representation

6.2.2 Classi�cation

This sprint's epic is:

Accurately classify system processes as malicious or benign.

The main focus of this sprint is the integration of the classi�cation algorithm. According to the prototyping
phase described in Section 5.2 on page 16, a Naive Bayes classi�cation algorithm is most suitable for the
current data set. This classi�cation algorithm knows three di�erent types of classi�cation for di�erent types of
data sets, because a data set containing continuous variables has di�erent characteristics compared to a data
set containing discrete or binary variables [30].

• Gaussian: This type of Naive Bayes is used for data sets of which the features follow a normal distribution.

• Multinomial: Is used for discrete feature variables.

• Bernoulli: This is a binomial model which is used when the features of the data set are binary data.

Because the features of the processes to be classi�ed are reduced to binary data the Bernoulli classi�cation
will be used.

27

6.2 Sprints 6 DEVELOPMENT

The Python libraries pandas and sklearn provide a solid framework for data science and machine learning [28, 29]
. These libraries will be used for the development of this research as they are commonly used for scienti�c
research, data science and machine learning and have proven their e�ectiveness. Extensive documentation of
the software libraries makes it a good choice for the implementation in the �nal prototype to be developed.

Algorithm 6 shows the basic structure of the Classi�er base class, including a specialized instance of the
NaiveBayesClassi�er.

class Classifier:

def __init__(self , df , target)

self.df = df

self.target = target

self.train , self.test = self.split_train_test(self.df)

class NaiveBayesClassifier(Classifier):

Set the mode of the classifier. Bernoulli , Gaussian or Multinominal

mode = sklearn.BernoulliNB ()

Initialize the dataframe parameters from the base class

def __init__(self , df , target):

super (). __init__(df, target)

self.model = NaiveBayesClassifier.mode.fit(self.df, self.df.classes)

Predict the class of a process dataframe

Remodel the estimator model based on the prediction

def predict(self , process):

return self.model.predict(process)

Algorithm 6: Classi�cation pseudo code

The following sprint focuses on the implementation of a self-learning classi�cation algorithm for the prototype
to further enhance its predictive capabilities.

6.2.3 Learning

The epic for the �nal sprint where the �nal improvements of the classi�cation algorithm are implemented is:

Train the classi�cation algorithm based on its input to improve future classi�cations.

The self-learning capabilities of the machine learning algorithm have been improved in this sprint. The optional
features have been applied to the classi�cation algorithm to ensure that the model can be altered after creation.
This way any false positives it generated can be used as input for the classi�cation algorithm to reduce the
change of that false positive occurring again in the future.

Algorithm 6 from the previous paragraph is extended with self-learning features. The extension of this code is
shown in Algorithm 7.

28

6 DEVELOPMENT 6.3 Testing

class Classifier:

def __init__(self , df , target)

self.df = df

self.target = target

self.train , self.test = self.split_train_test(self.df)

class NaiveBayesClassifier(Classifier):

Set the mode of the classifier. Bernoulli , Gaussian or Multinominal

mode = BernoulliNB ()

Initialize the dataframe parameters from the base class

def __init__(self , df , target):

super (). __init__(df, target)

self.model = NaiveBayesClassifier.mode.fit(self.df, self.df.classes)

Predict the class of a process dataframe

Remodel the estimator model based on the prediction

def predict(self , process):

cls = self.model.predict(process)

self.remodel(process , cls)

Input a process dataframe including its class to remodel the estimator

def learn(self , process , cls):

self.remodel(process , cls)

Appends the process dataframe including its class to remodel the estimator

def remodel(self , process , cls):

self.df = self.df.append(process.append(cls))

self.model = NaiveBayesClassifier.mode.fit(self.df)

Algorithm 7: Learning pseudo code

6.3 Testing

Software testing is performed using the built-in Python unittest library. Test cases have been developed
according to the Python unittest standards [40].

Software testing occurred parallel to the development of the �nal prototype. The Use Case Test (UCT) strategy
has been used in combination with Error Guessing (EG). The UCT strategy requires the use cases de�ned in
Appendix E on page 68 as a basis for the test development. In addition to the UCT strategy the Error Guessing
technique is applied in order to to test the cases which are prone to failures, based on experience gained during
the development of the prototype.

The test cases included in Appendix E.1 are based on the use cases and Appendix E.2 includes the test cases
based on the error guessing technique. The use-case based tests consist of a test-suite for each user story,
which are built up of di�erent test cases.

Especially the error-guessing test cases revealed various software bugs in the code for which would occur in
uncommon situations, such as the same process being added to the process tree with a di�erent reference,
or the occurrence of a circular reference resulting in a in�nite loop while traversing the process tree. Some

29

6.3 Testing 6 DEVELOPMENT

failures which have been discovered by Error Guessing have not been �xed in the prototype as they have an
insigni�cant impact on the prototype itself and its �nal results.

All use case based tests which are most important for the validation of the correct execution of the prototype
are successful. These results verify that the prototype is working according to the expectations given normal
circumstances. Table 6 provides a summary of the test results from the test cases from Appendix E.

Tab. 6: Test results
Test Case Result
TST-EG-1 Test Successful
TST-EG-2 Test Failed
TST-UC-1 Test Successful
TST-UC-2 Test Successful
TST-UC-3 Test Successful
TST-UC-4 Test Successful
TST-UC-5 Test Successful
TST-UC-6 Test Successful
TST-UC-7 Test Successful
TST-UC-8 Test Successful

The test case that failed, TST-EG-2, did not impact the outcome of the results of the prototype. The bug in
the software is documented so that it can be �xed in the event of the implementation of the prototype in the
future.

30

7 RESULTS

7 Results

A prototype was developed to classify system events as either malicious or benign. The goal of the research
has therefore been reached. The actual performance of the prototype is presented in the following section.

7.1 Classi�cation performance

The prototype managed to detect all of the malware samples that were used as input, while only resulting in
4 false positives for the complete dataset.

The classi�cation results of the prototype are shown in Figure 6. The orange bars represents all process which
are actually malicious and the blue bars represent benign processes. At the �rst sight, it would appear that a
lot of malicious processes would go unnoticed if they have a malware probability score of 0.5 or less. However,
this is not the case. All processes that are malicious and score below 0.95 are actually child processes of the
initial malicious executable. These processes also do not have to be malicious by nature, but are marked as
malicious because they are a child of a malicious process. If the prototype would be implemented in real time
and all processes that would score above the threshold of 0.95, its child processes that would create false
negatives would never be created. This is why only the �rst alert is taken into account when the threshold is
reached, and not the child processes that will be created afterwards.

Fig. 6: Malware probability histogram

A total of 17 cases were created for all the malware samples, of which 4 were false positives. The predictive
ability of the model using the cases to cluster alerts is represented by the confusion matrix in Table 7 on the
next page.

31

7.1 Classi�cation performance 7 RESULTS

A numeric representation of the output of the classi�cation algorithm is shown in the confusion matrix in
Table 7. This confusion matrix displays the results of the predictive capabilities of the algorithm to easily
deduct which prediction are made correctly and incorrectly. It is important to mention that the results in the
confusion matrix are only the predicted values with a probability of 95% or higher to be

Tab. 7: Classi�cation confusion matrix
Predicted \ Actual True False

True 13 4
False 0 1110

The precision of the output is calculated using the following formula:

PPV =
TP

TP + FP
(4)

With the data from the confusion matrix from table 7 the precision of the prototype is calculated.

PPV =
13

13 + 4
∗ 100% = 76, 5%

The classi�cation algorithm manages to reach an precision of 76.5%.

The overall accuracy of the classi�cation algorithm is to be determined by the following formula:

ACC =
(TP + TN)

(TP + FP + FN + TN)
(5)

The overall accuracy of the model is therefore:

ACC =
13 + 1110

13 + 4 + 0 + 1110
∗ 100% = 99, 65%

The TPR and the FPR are:

TPR =
13

13 + 0
∗ 100% = 100%

FPR =
4

4 + 1110
∗ 100% = 0, 35%

Although the False Positive Rate is very low, it should be noted that there is a clear explanation for false
positives that occurred as they did indeed show all the required signs of a malicious process which should be
worth further investigation, if they occurred in a real-world scenario. The occurrence of false positives and
their origin is further discussed in Chapter 9 on page 35.

32

8 CONCLUSION

8 Conclusion

The prototype provided exceedingly well results, and managed to obtain a precision of 76.5%. The minimum
required precision of 10% has therefore been greatly surpassed and the prototype provided results that were
well beyond the initial expectations.

The classi�cation algorithm was able to classify every single malicious process correctly whilst producing a
relatively low amount of false positives, which makes it a very suitable approach for malware classi�cation.
This approach does not only reduce the amount of false positives by more than 96%, but it is also capable of
alerting on malicious processes which can not be detected in the current situation.

The prototype was primarily developed for the classi�cation of ransomware, however, other generic malware
samples were also classi�ed correctly by its algorithm. It can therefore be concluded that the chosen approach
makes it possible to classify generic types of malware just as well as ransomware, although the prototype has
initially been designed for the latter.

Based on these results from Chapter 7, the main research question can be answered:

Is it possible to accurately classify system processes on a Windows endpoint as ransomware based
on its features?

Yes. Ransomware, and malware in general, show speci�c characteristics which make it very suitable for
ransomware classi�cation. By creating a model of the system process tree, underlying process relationships
can be used to provide an accurate classi�cation of malicious processes and its sub-processes.

The sub-questions, which were a part of the literature research and the prototyping, will be summarized again.
These question did eventually lead to the conclusion stated above.

1. How are the features of system processes on a Windows endpoint being logged?

The features of system processes are logged by the CTM Endpoint module and contain a total of 25
features, which are used to extract more speci�c features from. However, because the process ID's are
not being logged, the third party utility ProcessMonitor is required in order to log all required data for
the construction of a process tree and classi�cation.

2. What are the strongest features of ransomware noticeable on an endpoint?

Ransomware, and malware in general, contains speci�c features which can be distinguished from benign
processes. Literature research in Section 5.1 on page 10 has pointed out the di�erent characteristics of
malware which would provide strong indicators, which have been tested and validated during the devel-
opment of the prototype. The strongest features are a combination of 6 di�erent characteristics which
are commonly shared by malware. These are:

• The directory the process resides in

• If the process is signed

• Deletion of a system shadowcopy

• Process meta-data such as a description or icon

33

8.1 Recommendations 8 CONCLUSION

• If the process executes a scripting �le

• If the process is a known child process of its parent

3. Which type of algorithm is most suitable for classi�cation?

The Naive Bayes classi�cation algorithm proved to be most suitable for the current dataset. Its accuracy,
simplicity and speed are factors that make this algorithm very suitable for the classi�cation of the dataset.
This has been con�rmed by the phase of structural exploratory prototyping in Section 5.2 on page 16

4. What is a reasonable accuracy for the classi�cation of system processes?

The accuracy does not provide much information about the overall performance of an estimator model.
Instead, the precision is a value that provides a lot more information about the actual performance of
the algorithm. In accordance with the product owners and security analysts, a minimum precision of a
classi�cation algorithm was determined at 10%.

8.1 Recommendations

With the outstanding results that have been obtained by the prototype, it is recommended to continue the
development of the prototype and to incorporate it in the driver of the CTM Endpoint Module to support the
real-time monitoring of system processes. The implementation of the classi�cation algorithm is expected to
provide very little overhead for the end user of an endpoint, as there are relatively few process creation events
on an endpoint when compared to all other system events.

If the updated CTM Endpoint Module is deployed on multiple endpoints, signi�cantly more data can be
collected to train the self-learning algorithm that it uses. When extensively trained, the algorithm is expected
to provide even more reliable results. This research regarding the system based behavioral modeling of process
events provides a solid basis for the �rst steps towards the transformation of the CTM Endpoint Module into
a Next Generation Anti-Virus solution.

34

9 EVALUATION

9 Evaluation

Originally, the goal of the research has been formulated to detect anomalous patterns in the Windows kernel in
real-time to determine if an endpoint is being infected with ransomware. However, quickly after the start of the
research the description has been altered in a way to provide more focus on researching the feasibility of anomaly
detection itself. Therefore, both the real-time constraint and the direct interface to the Windows kernel are
not applicable anymore in the newly formulated goal of the research as described in Chapter 4. Instead, event
logs of endpoint devices were collected and used for static classi�cation of system process events.

During the research there were three factors which in�uenced the progress that had not been foreseen. It was
expected that malware logs were already available from earlier analyses. There were logs available, although
the speci�c information required for this research was not present. Therefore a test environment had to be set
up for malware analysis.

The Endpoint Module did not provide the required features for process tree creation, which is why the third
party application ProcessMonitor was required in order to enhance the logs of the Endpoint Module. Although
this logging required a signi�cant additional e�ort for the development of the prototype, it did provide additional
insights in system processes which bene�ted the research.

A third hiccup during the research was a ransomware sample which unexpectedly encrypted a remote virtual
machine where the logs were written to. This speci�c action has been de�ned as a risk during the risk analysis
in Section 3 on page 9. Although the most recent Windows updates and security measures were in place the
ransomware still managed to bypass the Windows Firewall and Windows Defender to successfully encrypt the
machine, which resulted in a loss of the log �les. The impact of the risk was reduced to a minimum because
a snapshot of the earlier known-good state could still be restored.

These three factors which in�uenced the research eventually resulted in a lack of time to test a more represen-
tative sample size of both malicious and benign processes. The data set which was used for testing contained
a total of 1127 processes, which included 12 di�erent malware samples and various di�erent installers and
other legitimate programs. Although a malware sample is made up of one or more di�erent processes and can
therefore contain more than one malicious process, the data set is relatively small. Ideally, a larger amount of
malware and legitimate installers would have been used as input for the prototype to draw more substantiated
conclusions.

However, the used malware samples were a random selection and obtained from real-world encounters, which
makes it a representative sample set for this research and therefore provide su�cient basis to substantiate the
drawn conclusions.

35

References References

References

[1] Rhode, M. (2017). Early Stage Malware Prediction Using Recurrent Neural Networks.

[2] Russinovich, M. (2015). Malware Hunting with the Sysinternals Tools.

[3] Kornblum, J. (2010). Windows Memory Analysis.

[4] Mathews, L. (2017). NotPetya ransomware attack cost shipping giant Maersk
over 200 million. https://www.forbes.com/sites/leemathews/2017/08/16/

notpetya-ransomware-attack-cost-shipping-giant-maersk-over-200-million/. Accessed
on: September 2017.

[5] Khandelwal, S. (2017). Petya Ransomware spreading rapidly worldwide, just like WannaCry. https:
//thehackernews.com/2017/06/petya-ransomware-attack.html. Accessed on: September 2017.

[6] Periman, K. (2017). Ransomware lessons for the �nancial industry. https://blogs.cisco.com/

financialservices/ransomware-lessons-for-the-financial-services-industry. Accessed
on: September 2017.

[7] Morgan, S. (2017). Ransomware damage report. https://cybersecurityventures.com/

ransomware-damage-report-2017-5-billion/. Accessed on: September 2017.

[8] Johnson, B. (2016). What is next generation Antivirus? https://www.carbonblack.com/2016/11/10/

next-generation-antivirus-ngav/. Accessed on: December 2017.

[9] Treit, R. (2017). Detonating a bad rabbit: Windows Defender Antivirus and layered
machine learning defenses. https://blogs.technet.microsoft.com/mmpc/2017/12/11/

detonating-a-bad-rabbit-windows-defender-antivirus-and-layered-machine-learning-defenses/.
Accessed on: December 2017.

[10] Fox-IT. Security solutions to protect your business. https://www.fox-it.com/en/

our-areas-of-expertise/cyber-threat-management/. Accessed on: December 2017.

[11] Fox-IT. For a more secure society. https://www.fox-it.com/en/about-fox-it/manifesto/, Ac-
cessed on: November 2017.

[12] Fox-IT. Our services & technology. https://www.fox-it.com/en/our-technology-services/. Ac-
cessed on: December 2017.

[13] Russinovich, M. Process Monitor v3.40. https://docs.microsoft.com/en-us/sysinternals/

downloads/procmon. Accessed on: October 2017.

[14] Hulse, E. (2016). The general behavior of ransomware. https://blogs.cisco.com/security/

the-general-behavior-of-ransomware. Accessed on: October 2017.

[15] Sophos News (2015). The current sate of ransomware: CryptoWall. https://news.sophos.com/en-us/
2015/12/17/the-current-state-of-ransomware-cryptowall/,. Accessed on: October 2017.

[16] Van Dantzig, M. (2017). FAQ on the WanaCry ransomware outbreak. https://blog.fox-it.com/
2017/05/13/faq-on-the-wanacry-ransomware-outbreak/. Accessed on: October 2017.

[17] Bacurio, F. (2017). Locky Unleashes Multiple Spam Waves with
a New Variant �ykcol�. https://blog.fortinet.com/2017/09/21/

locky-unleashes-multiple-spam-waves-with-a-new-variant-ykcol. Accessed on: Novem-
ber 2017.

36

References References

[18] Cimpanu, C. (2017). BitPaymer Ransomware Hits Scottish Hospitals. https://www.

bleepingcomputer.com/news/security/bit-paymer-ransomware-hits-scottish-hospitals/.
Accessed on: November 2017.

[19] Zhang, X. (2017). Analysis of New GlobeImposter Ransomware Variant. https://blog.fortinet.

com/2017/08/05/analysis-of-new-globeimposter-ransomware-variant. Accessed on: November
2017.

[20] Fortiguard Labs (2017). Ja� Ransomware. https://fortiguard.com/encyclopedia/botnet/

7630282. Accessed on: November 2017.

[21] Lakhani, A. (2017). Critical Update: WannaCry Ransomware. https://blog.fortinet.com/2017/08/
05/analysis-of-new-globeimposter-ransomware-variant. Accessed on: November 2017.

[22] Fortiguard Labs (2017). Geodo. https://fortiguard.com/encyclopedia/botnet/7630048. Accessed
on: November 2017.

[23] Zhang, X. (2016). Deep Analysis of the Online Banking Botnet Trickbot. https://blog.fortinet.com/
2016/12/06/deep-analysis-of-the-online-banking-botnet-trickbot. Accessed on November
2017.

[24] Fortiguard Labs (2016). Kronos. https://fortiguard.com/encyclopedia/botnet/7629833. Ac-
cessed on: November 2017.

[25] Brownlee, J. (2016). Naive Bayes for Machine Learning. https://machinelearningmastery.com/

naive-bayes-for-machine-learning/. Accessed on: October 2017.

[26] Huang, Z. (1997). A Fast Clustering Algorithm to Cluster Very Large Categorical Data Sets in Data
Mining.

[27] pypi (2017). kmodes 0.7. https://pypi.python.org/pypi/kmodes/. Accessed on: October 2017.

[28] Pandas. https://pandas.pydata.org/. Accessed on: October 2017.

[29] Scikit-learn. http://scikit-learn.org/stable/. Accessed on: October 2017.

[30] Scikit-learn. Naive Bayes. http://scikit-learn.org/stable/modules/naive_bayes.html. Ac-
cessed on: October 2017.

[31] TensorFlow. An open-source software library for Machine Intelligence. https://www.tensorflow.org/.
Accessed on: October 2017.

[32] TensorFlow (2017). tf.contrib.learn.DNNClassi�er. https://www.tensorflow.org/api_docs/python/
tf/contrib/learn/DNNClassifier. Accessed on October 2017.

[33] Symantec. (2017). Ransom.Wannacry. https://www.symantec.com/security_response/writeup.

jsp?docid=2017-051310-3522-99&tabid=2. Accessed on: October 2017.

[34] Elastic.co, X-Pack for the Elastic Stack. https://www.elastic.co/guide/en/x-pack/current/

xpack-introduction.html. Accessed on: September 2017.

[35] Rieck, K. (2008). Learning and Classi�cation of Malware Behaviour.

[36] Ye, Y. (2010). Automatic Malware Categorization Using Cluster Ensemble.

[37] Hofmeyr, S.A. (1998). Intrusion Detection using Sequences of System Calls.

37

References References

[38] Van Rossum, G., Warsaw, B., Coghlan, N. (2013). PEP 8 � Style Guide for Python Code. https:
//www.python.org/dev/peps/pep-0008/. Accessed on: November 2017.

[39] Goodger, D., Van Rossum, G. (2001). PEP 257 � Docstring Conventions. https://www.python.org/
dev/peps/pep-0257/. Accessed on: November 2017.

[40] Python Unittest Documentation. https://docs.python.org/3/library/unittest.html. Accessed
on: November 2017.

[41] Brownlee, J. (2014). Classi�cation Accuracy is Not Enough: More Per-
formance Measures You Can Use. https://machinelearningmastery.com/

classification-accuracy-is-not-enough-more-performance-measures-you-can-use/. Ac-
cessed on: December 2017.

[42] Knight, W. (2017). DARPA is funding project that will try to open
up AI's black boxes. https://www.technologyreview.com/s/603795/

the-us-military-wants-its-autonomous-machines-to-explain-themselves/. Accessed on:
December 2017.

[43] VirtualBox. Virtual Networking. https://www.virtualbox.org/manual/ch06.html. Accesed on: Oc-
tober 2017.

[44] CTM Endpoint Module Dev.Team (2017). Rule User Manual for CTM Endpoint Module

38

A AFSTUDEERPLAN

A Afstudeerplan

Titel afstudeeropdracht:

Countering malware using anomaly detection of endpoint events in the Windows kernel

Opdrachtomschrijving

Bedrijf

Fox-IT is een Nederlands bedrijf dat is gespecialiseerd in cybersecurity. De grootste klanten van het bedrijf zijn
overheden, �nanciële instellingen en bedrijven met een vitale infrastructuur.

De opdracht is ontstaan door de grote opkomst van ransomware in het afgelopen jaar. Door de grote toename
in deze soort malware is het van belang dat er een werkend concept wordt ontwikkeld om dit soort besmettingen
bij klanten van Fox-IT te kunnen voorkomen. Omdat het klantenbestand van Fox-IT bestaat uit organisaties
met een vitale infrastructuur dient deze opdracht een signi�cant maatschappelijk belang.

Voor de opdracht worden malware samples beschikbaar gesteld door Fox-IT. Door deze samples in een Elas-
ticsearch database te laden kan anomaly detection worden toegepast of speci�eke patronen te bepalen. Met
behulp van machine learning kunnen deze patronen gebruikt om nog onbekende patronen te kunnen beoordelen
op ransomware.

Probleemstelling

Er is niet voldoende kennis in de cybersecurity sector om een aanval met ransomware in real-time te kunnen
detecteren op end point devices die op Windows draaien.

Doelstelling van de afstudeeropdracht

Het doel van de opdracht is om real-time afwijkende patronen te kunnen detecteren in de Windows kernel om
zo te kunnen beoordelen of een end point device wordt getro�en door ransomware.

Resultaat

Om de doelstelling van de opdracht te kunnen bereiken wordt een prototype ontwikkeld dat gebruik maakt van
machine learning dat in staat is om de afwijkende patronen van malware te kunnen detecteren in de Windows
kernel.

Uit te voeren werkzaamheden, inclusief een globale fasering, mijlpalen en bijbehorende activiteiten

Initiatiefase (1 week)

• Verhelderen opdracht

• Project risico's analyseren

39

A AFSTUDEERPLAN

• Planning opstellen

De�nitiefase (7 weken)

• Inlezen naar malware karakteristieken

• Inlezen naar machine learning voor beoordelen events

• Exploratory structural prototyping voor bepalen (on)mogelijkheiden

• Achterhalen behoeften belanghebbenden

• Opzetten architectuur

Ontwikkelfase (3x 3 weken)

• Schrijven van een rule set voor anomaly detection

• Ontwikkelen prototype

• Testen prototype

Op te leveren (tussen)producten

• Plan van Aanpak

• De�nitierapport

• Ontwikkelrapport

• Testrapportage

Te demonstreren competenties en wijze waarop

G1: Praktische aspecten hanteren in (internationale) projecten
Dit wordt aangetoond aan de hand van de risicoanalyse in het plan van aanpak.

A1: Analyseren van het probleemdomein
Dit wordt aangetoond aan de hand van de beschrijving van de prototypes in het de�nitierapport.

C8: Ontwerpen van een technisch informatiesysteem
Dit wordt aangetoond aan de hand van het ontwerp van de rule set en de prototypes.

D16: Realiseren van een technisch informatiesysteem
Dit wordt aangetoond aan de hand van de gebruikte frameworks.

D17: Testen van software systemen
Dit wordt aangetoond aan de hand van de testrapportage in het ontwikkelrapport.

40

B PLAN OF ACTION

B Plan of Action

B.1 Introduction

The past year a major increase in ransomware infections has taken place. Due to the increase in this speci�c
type of malware with disastrous results, it is crucial to develop a solution to detect and prevent a possible
outbreak. Traditional event monitoring is not advanced enough to detect these types of advanced threats,
which is why a new approach is required for system event monitoring. This research, commissioned by Fox-
IT, is focused on the research and development of a new concept in cybersecurity event monitoring which is
theoretically capable of detecting and preventing ransomware infections in real-time.

The research of this assignment will be focused on the feasibility of realizing an anomaly based event detection
algorithm to evaluate if events on endpoint devices are potentially malicious. If this research proves to be
positive, a prototype will be developed to improve the accuracy and to further reduce the alerts generated
from system events collected by the Endpoint module of the Cyber Threat Management platform (CTMp) of
Fox-IT.

B.2 Background

Traditional event monitoring is based upon static rulesets. These rulesets work by the principle of whitelisting
and blacklisting speci�c actions, therefore creating a sandbox-like environment for endpoints. Con�guration of
these rules is a labor-intensive tasks for both the initial con�guration and maintenance afterwards, while still
not being able to reduce the amount of false positives to the desired minimum. To avoid the many downsides
of the traditional rule set implementation, it is desired to develop an anomaly based detection algorithm which
is a completely new technique in endpoint security monitoring. This research is focused on the various possible
concepts of such algorithms and their implementation in the Endpoint module of CTMp.

B.3 Goal

The goal of the research is to propose a solution in the form of a working prototype that is able to classify
system event data samples that are retrieved from Windows endpoints into potentially malicious and benign
events.

B.4 Assignment

To reach the goal of the research as stated in Paragraph B.3, research will have to be performed regarding the
feasibility of an anomaly based detection algorithm for data samples of system events. Based on the results on
the research a prototype will be developed utilizing an anomaly based detection algorithm to detect and alert
on potentially malicious events.

41

B.5 Planning B PLAN OF ACTION

Candidate Requirements

The requirements of the prototype have been established in accordance with the company supervisor. The
following candidate requirements have been formulated at the start of the research:

• The prototype must be written in the default programming language used by the Endpoint development
team, which is Python 3.5

• The prototype should be able to detect and alert on potentially malicious events

• Input for the classi�cation algorithm consists of malware samples and endpoint event data samples from
Fox-IT

• The accuracy of the classi�cation algorithm has to be higher than the currently implemented ruleset in
the Endpoint module of CTMp

• The anomaly detection algorithm of the prototype should make use of a self-learning classi�cation algo-
rithm

• The prototype does not have to process system events in real-time

B.5 Planning

The research will consist of three separate phases, each with their own deliverables. Table 8 on the facing page
shows each phase with its corresponding tasks and duration.

The initiation phase of the research is used for elaboration of the original assignment. The possibilities and
impossibilities are discussed with the company supervisor to be able to create a realistic planning for the total
duration of the research. The plan of action is delivered by the end of this phase.

During the de�nition phase the main focus is on the exploratory structural prototyping, where the feasibility of
several di�erent anomaly based concepts are tested. This approach is used as it allows to quickly receive feed-
back in a short time span to determine the stakeholders' needs and to re�ne the actual software speci�cations,
if necessary. When the details of the �nal prototype to be developed are in place, the epics will be written to
describe the global features of the software that will make up the most viable product. Based on the epics, a
software architecture is developed to be used as a starting point for the actual development of the software.
The de�nition report is completed by the end of this phase.

The last phase of the assignment, the development phase, consists of three sprints of three weeks each. This
time span of three weeks creates enough time to be able to develop signi�cant increments, while still having
su�cient iterations to adjust if necessary. The epics written during the de�nition phase will be used as an
initial starting point. At the end of the �rst two sprints new user-stories will be written for the following sprint,
based on remaining system requirements. At the end of this phase the development report and the test report
are completed.

42

B PLAN OF ACTION B.6 Project Boundaries

Tab. 8: Project planning
Phase Task

Initiation
(1 week)

Assignment description
Analyzing project risks
Create planning

De�nition
(7 weeks)

Read about malware characteristics
Read about machine learning possibilities
Exploratory structural prototyping
Determining the stakholders' needs
Write epics
Software architecture development

Development
(3 x 3 weeks)

Software development
Software testing

B.6 Project Boundaries

The research was initiated on September 4th, 2017 and will end on December 21th, 2018. This means there are
e�ectively 17 weeks available to perform this research, which is in accordance with the planning as described
in Table 8 in Paragraph B.5 on the preceding page.

Before implementing an algorithm, research has to be performed to determine whether it is actually possible
to implement a classi�cation algorithm based on the available data to train a classi�er. Fox-IT has various
data samples available of both malware and legitimate data which can be used for training and testing of the
classi�cation algorithm. If this data does not seem to be su�cient for the training of a classi�cation algorithm
another solution will be implemented, which is described in Table ?? in Paragraph B.8 on the following page.

The prototype is primarily developed for endpoint devices of 'Local User' accounts. Endpoints that are used
by 'Administrator' accounts will not be taken into account for this research.

There is no budget required for software for the successful completion of the research. All required tools are
available as open-source software.

B.7 Deliverables

Each phase of the research will yield its own deliverables, such as described in Paragraph B.5 on the preceding
page. The following products will be delivered at the end of the internship:

• Plan of Action

• De�nition Report

• Development Report

• Test Report

43

B.8 Risk Analysis B PLAN OF ACTION

B.8 Risk Analysis

Insu�cient access to internal resources
Due to the moderate screening level, there is no full access to internal resources. If speci�c restricted resources
are required, this could become a problem. This risk is described in Table 9. It is also relevant for the access
to malware samples, as there might be no authorization to run real malware in an environment set up for this
research.

Tab. 9: Insu�cient access to internal resources
Description Insu�cient access to internal resources
Probability Medium
Impact Research cannot be performed or validated without the required test data
Remediation Discuss the need of the speci�c resources with the stakeholders to get access, or try

to implement a workaround of the solution which does not require this speci�c
resource.

Ransomware encrypts endpoint
Ransomware samples have to be run on a network an monitored for their activity in order to make predictions
based on its behavior. If the ransomware manages to break out of its contained environment it will encrypt
the (log) �les on the system, resulting in a loss of work.

Tab. 10: Ransomware encrypts endpoint
Description Ransomware encrypts endpoints (on the network)
Probability Medium
Impact Log �les or other work might get encrypted and therefore lost
Risk reduction The ransomware samples are executed in a virtualized internal network environment

disconnected from an outside network. All machines except the targeted machine are
provided with the latest updates and security patches

Impact
reduction

Regular snapshots of known-good points in time are made to create a system restore.
Only log �les are stored on the machine

Contingency
Plan

Restore the most recent snapshot

44

C DEFINITION REPORT

C De�nition Report

C.1 Problem Analysis

Fox-IT does not have su�cient knowledge to detect and prevent an advanced ransomware attack on Windows
endpoint devices.

In order to detect ransomware attacks, the detection mechanism of the anti-virus (AV) solution will have to
be improved. A new approach is required which resulted in this research with the following primary research
question:

Is it possible to accurately classify system processes on a Windows endpoint as ransomware based
on its features?

In order to classify system processes, a selection of features has to be de�ned to serve as input for the
classi�cation algorithm. The selection of these features and the type of algorithm used for classi�cation is
determined by the following subquestions:

1. How are the features of system processes on a Windows endpoint being logged?

2. What are the strongest features of ransomware noticeable on an endpoint?

3. Which type of algorithm is most suitable for classi�cation?

4. What is a reasonable accuracy for the classi�cation of system processes?

C.1.1 Signature based detection

Traditional consumer anti-virus (AV) solutions which provide endpoint security are not capable of preventing
advanced threats. However, neither do enterprise-grade intrusion detection systems. Currently, most malware
detection approaches use common signature based detection algorithms. These algorithms scan the �le system
for hashes (signatures) of known malicious �les, or scan �les for known malicious byte patterns. This approach
works pretty well, although this is only the case if the signatures are updated regularly. In the event that a
malicious �le is altered, its signature changes and the �le is not detected anymore. Because the traditional AV
approach can only detect known signatures, it is impossible to detect zero-day exploits which can be the initial
attack vector of a ransomware attack.

While this technique of signature-based malware detection is used for most AV solutions for personal use, it is
not advanced enough to provide proper protection for high-value targets with a vital infrastructure such as the
customers of Fox-IT.

C.2 Ransomware analysis

The Threat Intelligence (TI) department of Fox-IT has provided several malware samples to be used for
generating test data. Section C.2.1 on the next page discusses the malware characteristics found by literature
research and Section C.2.2 on page 47 relates these features to the samples provided by Fox-IT.

45

C.2 Ransomware analysis C DEFINITION REPORT

C.2.1 Ransomware features

Ransomware, and malware in general, is known to show certain anomalies from regular system processes. For
regular users, processes are created in a predictable manner [3]. Most processes are started by explorer.exe and
not by cmd.exe. Furthermore certain operating system services are known not to create new processes, which
makes it suspicious and anomalous behavior if they do. This is a major indicator which should be used when
evaluating process creation events.

Russinovich, a renowned security researcher at Microsoft, states that ransomware has several characteristics
that can be observed during execution [2]. Ransomware is typically not a type of malware that is designed to
stay on a system undetected as it is meant to extort its victim. The best way to detect ransomware would be
to monitor processes on the system with a tool such as Process Monitor [13]. Russinovich states that processes
that are worth investigating are processes that contain features such as the lack of an icon, have no description,
are unsigned, or live in the Windows directory or user pro�le. These speci�c features can be explained due to
the fact that malware is developed with the purpose to extort its victim and not to be a high-quality piece of
software. Another recommendation given by the security researcher from Microsoft is to be especially wary of
items residing the the Windows directory or the AppData directory of the user pro�le.

According to Cisco, one of the most important characteristics of ransomware is the deletion of system shadow
copies, which prevent a system backup restore [14]. In 2014, the CryptoWall ransomware was the �rst ran-
somware family which incorporated this technique after it had been disclosed that a system could be restored
with a shadow copy [15]. The process to delete a shadow copy from the �le system should therefore also be
a major indicator of ransomware. Because administrative privileges are required to perform this action, an
elevated process should be hijacked �rst.

The recent WannaCry ransomware from May 2017 did show traces of all features mentioned in this section
which eventually led to the successful encryption of over 160,000 computers worldwide [16]. Using a publicly
available exploit the process lsass.exe, which has administrative privileges, was hijacked to eventually start
the process tasksche.exe which launches a command prompt to delete shadow copies and create persistence
at boot to show the ransom note by adding a key to the registry. Under normal circumstances, the process
lsass.exe should never start tasksche.exe.

To summarize, the features of system processes that will be used for classi�cation are the following:

• Residing directory

• Unsigned executables

• Deletion of shadow copies

• Lack of process meta-data

• Unknown process relationship

• Scripting �les

46

C DEFINITION REPORT C.3 Machine Learning

C.2.2 Ransomware samples

The following ransomware samples have been provided by Fox-IT. These samples have been harvested directly
from infected machines. The malware has not been altered and should therefore be representative for this
research.

The ransomware samples have been run on a network of virtualized endpoints. Both the CTM Endpoint module
and the tool ProcessMonitor collected logs of system process events during the execution of the ransomware
samples. Both monitoring tools were required to create a complete overview of the system, by merging the
features of both logs. The process and the setup used for collecting process event logs is described in more
detail in Appendix G.

• Locky: Ransomware family released in 2016. The ransomware became active again in the summer of
2017 when it was spread through multiple SPAM emails containing an invoice that required payment.
The attached document was a Microsoft Word document that contained malicious macros [17].

• Bitpaymer: A ransomware variant targeted at hospitals. The ransomware unpacks several malicious
unsigned executables into the user pro�le folder [18].

• GlobeImposter: This ransomware variant is obtained through a drive-by executed by a malicious Javascript
�le. This ransomware deletes shadowcopies from the system [19].

• Ja�: A ransomware variant that has been primarily spread through SPAM emails and spearphishing
attacks [20].

• WannaCry: The infamous ransomware which gained a lot of publicity because it managed to disrupt
infrastructure on a global level [21].

In addition to the ransomware samples mentioned above, two additional malware samples have been provided.
Note that these samples are not ransomware and are only being tested in order to see if the classi�cation
algorithm is also able to detect other kinds of malware instead of only ransomware which it will initially be
trained for.

• Geodo: Botnet used as a loader for more malware and SPAM [22].

• Trickbot: Banking malware which injects malicious code into the browser when speci�c websites are
accessed [23].

• Kronos: Banking malware which injects malicious code into the browser when speci�c websites are
accessed [24].

C.3 Machine Learning

A self-learning classi�cation algorithm is a solution which is likely to solve the problems introduced by static
signature-based detection as described in Section C.1. This type of classi�cation algorithm is able to evaluate
events and to classify them either as malicious or benign. The main strength of self-learning classi�cation
is that it is able to classify events which have not been hard-coded into the detection which is the case for

47

C.3 Machine Learning C DEFINITION REPORT

signature-based detection. This means that new variants of ransomware families, or even completely new
ransomware families, could still be detected dynamically based on their features instead of a static hash of the
executable. With the self-learning capabilities of the classi�cation algorithm it is even able to make even more
accurate predictions after it has seen a speci�c sample multiple times. The learning curve, or the convergence
rate, determines how well the classi�cation algorithm is able to adjust itself. This way, false positives can be
used as input for the algorithm to reduce the probability of occurrence in the future.

Four di�erent approaches for a machine learning algorithm are chosen for the exploratory prototyping. These
di�erent algorithms will be tested and evaluated based on their performance. The algorithm which performs
the best will be chosen for the implementation of the actual prototype. The following metrics are used:

• Accuracy - The accuracy of the classi�er based on a manually crafted data set for training and testing

• Noise - How well the algorithm is able to handle irregularities in the dataset

• Convergence - How well the classi�er is able to learn from new data samples

• Execution time - How fast the classi�er is able to make a prediction

• Complexity - The complexity of the algorithm behind the classi�cation

C.3.1 Classi�cation algorithms

A classi�cation algorithm will be implemented to test which type of algorithm is most suitable for the classi-
�cation of system processes. A variety of di�erent approaches for machine learning implementation has been
chosen in order to test the various di�erent characteristics of these algorithms. A brief description of the
algorithms which will be incorporated in the prototyping phase is presented below:

• Counting

This is the most trivial approach for the classi�cation problem. Given the set of features, the amount of
features that indicate ransomware can be counted and if a certain threshold is reached the process is being
classi�ed as malicious. Although this solution is very easy to implement it is expected to generate a lot of
false positives and false negatives. Another downside is that using this approach shows many similarities to a
rule-based AV solution, which makes it a less feasible solution. This is the only approach not implementing a
machine learning algorithm.

• Naive Bayes

The Naive Bayes algorithm is a supervised classi�cation algorithm that assumes independence among data
features. This algorithm is known to perform relatively well in general while being easy to implement. It is a
probabilistic algorithm that is trained by using already classi�ed data. To train the classi�er, both benign and
malicious data has to be collected for training [25].

• K-Modes Clustering

48

C DEFINITION REPORT C.3 Machine Learning

The algorithm will generate clusters based on the features of the input data. When using a unsupervised
learning algorithm data does not have to be labeled to train the classi�cation algorithm. However, to test
the accuracy of the algorithm labeled test data is still required to determine if the predicted clusters of the
classi�cation algorithm are correct. This unsupervised learning algorithm is the only one suitable for discrete
values which are used for the Endpoint data set. Because it is di�erent from the other supervised learning
algorithms it is interesting to try it during the exploratory prototyping phase. Because not all data sets are
suitable for clustering it is not always an e�ective approach [27, 26].

• Deep Neural

Network A Deep Neural Network is another approach to supervised machine learning and approximates a
'black-box' approach where the models are determined empirically, instead of theoretically [42]. The approach
of a neural network makes it an interesting option to try during the prototyping phase.

C.3.2 Dimensionality Reduction

Machine learning implementations often su�er from the curse of dimensionality, meaning the dataset contains
too many features to apply proper predictions. Datasets with too many features are often noisy and contain
features which are not relevant.

Enhancing the dataset by removing redundant or irrelevant features will signi�cantly improve the performance
of the algorithm in the following ways:

• Better understanding of the data

• Improving prediction accuracy

• Faster predictions

The most expressive features of the dataset have to be selected to optimize the classi�cation. The features
mentioned in Paragraph C.2.1 on page 46 will therefore be the features that will remain after applying dimen-
sionality reduction to the dataset.

Feature Selection The CTM Endpoint module stores 25 di�erent features of a process, with an average of
15 KB of data per entry. This is a signi�cant amount of data to process, especially with the aim of real-time
processing in the future. The feature selection process could still provide a great improvement in performance.

The initial amount of 25 features can be reduced to only 14 which are required to extract data from to construct
the features mentioned in Section C.2.1. This new dataset has an average size of 1 KB for each entry which
therefore results in a 15-fold increase in performance.

Feature Extraction The newly created feature set of 14 features is used to extract the six features mentioned
in Section C.2.1. These features have been set by applying simple boolean logic to check if speci�c values are
present that apply to the corresponding feature. This results in a 1-dimensional dataset consisting of only 6
binary features.

49

C.3 Machine Learning C DEFINITION REPORT

C.3.3 Classi�cation accuracy

Brownlee, the author of various books regarding machine learning, provided a writeup on the pitfalls of calcu-
lating the accuracy of classi�cation algorithms and how this result can often be misleading [41]. The results are
misleading because of the class imbalance in the dataset which is used for classi�cation, which is also referred
to as the Accuracy Paradox. Additional measures are required to properly evaluate the classi�cation algorithm.

A measure which is commonly used which provides a good insight in the performance of the classi�cation
algorithm is the precision. This value is the number of True Positives divided by the number of True positives
and False Positives. This results in a score which represents the overall ability of the classi�cation algorithm
to correctly predict True Positives. For the ransomware classi�cation problem where the amount of malicious
processes is signi�cantly less compared to benign processes, it is desired to know the ability to correctly predict
True Positive results instead of True Negatives.

To provide a clean and unambiguous solution to present the predictions made by the classi�cation algorithm,
a confusion matrix is used. This table shows a clear overview of the correctly and incorrectly predicted results
which will be used to calculate the metrics to determine classi�er performance. An example of a confusion
matrix is provided in Figure 7 on page 32.

Tab. 11: Confusion Matrix
Predicted \ Actual Positive Negative

Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)

The following can therefore be said about the last subquestion of this research regarding the accuracy of the
classi�cation algorithm:

"What is a reasonable accuracy for the implementation of the classi�cation algorithm?"

The accuracy of the algorithm itself is not relevant as this does not say much about its predictive capabilities.
Instead, the precision metric is the most important for the malware classi�cation problem. With the formula to
calculate the precision of the classi�cation algorithm, its is also signi�cantly easier to assign a speci�c value to
this metric. The total amount of True and False positives have to be tracked down in order to set a minimum
requirement for the classi�cation algorithm to achieve. The exact interpretation of this requirement is provided
in Section 5.3 on page 20 in collaboration with the actors involved in the CTM Endpoint Module. The formula
for the precision, also referred to as the Positive Predictive Value (PPV) is as follows:

PPV =
TP

TP + FP
(6)

Additional metrics that provide insight in the performance of the algorithm are the False Postive Ratio (FPR)
and the True Positive Ratio (TPR), which provide information about the amount of incorrectly classi�ed
negatives and correctly classi�ed positives. The following formulas are used to calculate these metrics:

FPR =
FP

FP + TN
(7)

50

C DEFINITION REPORT C.4 Stakeholder Requirements

TPR =
TP

TP + FN
(8)

C.4 Stakeholder Requirements

To determine whether the prototype performs as desired, the requirements of all actors who are involved are
taken into account. The actors are de�ned as all the people within Fox-IT who are either directly or indirectly
involved with the Endpoint module itself or the alarms generated by it. The actors who are involved in the
CTM Endpoint module are shown in Table 12.

Tab. 12: Stakeholder overview
Actor Role Impact
Security Analyst

• An employee of Fox-IT responsible for

monitoring security incidents

• The security analyst can't do his work if

the system is �ooded with indicators

End User

• The employee of a customer of Fox-IT

• User of the Endpoint module

• A�ected by system performance

• Unable to work during ransomware

infection

Product Owner

• Responsible for development of CTMp

Endpoint module

• Responsible for development of CTMp

Endpoint module

• Better performance and reliability of

Endpoint server

• Requires new approach to continue

development

The end user has a computer with the CTM Endpoint Module installed on it. This actor is directly a�ected
by the performance of the Endpoint module. The end user does not want to be infected with ransomware and
therefore the endpoint module should block a malicious event before it does irreversible harm to the system
of the end user. The end user does not want to receive unnecessary noti�cations of possible insecure system
behavior, which means that false positive alerts should be reduced to a minimum.

The alarms generated by the prototype have to be analyzed by a security analyst for further inspection. This
actor is responsible for monitoring security incidents reported by the classi�cation algorithm. Due to limited
time to handle an incident, no more than 100 incidents per day can be reported, including false positives.
Ideally, the amount of incidents will go down to only 10 incidents per day, which is a realistic amount of true
positive alarms as this is the average amount of serious incidents. This means that the classi�cation algorithm
requires a minimum precision, or Positive Predictive Value (PPV), of 10%.

The product owner of the CTM Endpoint module is responsible for the development and performance of
the software. To guarantee maintainability of the algorithm it should be written in Python 3.5, which is the

51

C.5 Prototyping C DEFINITION REPORT

common programming language for CTM. A high true positive ratio is required to be able to maintain the high
performance of the Endpoint module. This is preferably achieved using a new and innovative solution using a
self learning anomaly detection algorithm. An implementation using open-source software libraries are preferred
to avoid costs. The prototype should be able to classify potentially malicious system events from legitimate
system events. The prototype is meant to explore the possibilities of classi�cation of system processes and
does not have to operate in real-time. The overall system performance of the system running the prototype
does therefore not have to be taken into account.

The above descriptions of the actors are summarized as environment requirements and system requirements:

Environment Requirements

• The prototype uses a self-learning classi�cation algorithm

• The prototype is written in Python 3.5

• The prototype must have a higher precision than the current implementation of the Endpoint Module
for CTMp.

• The performance of the system running the prototype does not have to be taken into account.

• The prototype will be trained and tested with live malware samples in a virtualized environment

System Requirements

• The prototype is able to classify process creation events from a log �le

• The prototype should have a precision (PPV) of at least 10%

• The prototype will not handle system events in real-time

• The prototype �ags an event to monitor if the likelihood of being malicious exceeds a probability of at
least 50%

• The prototype �ags an event to block if the likelihood of being malicious exceeds a probability of at least
95%

C.5 Prototyping

The needs of the stakeholders that have been described in Paragraph C.4 on the previous page will be validated
by using the technique of exploratory structural prototyping. Four di�erent prototypes are developed in a short
timespan to receive quick feedback from the stakeholders to determine which approach will best �t their needs.
The chosen approaches for the exploratory prototyping have already been introduced in Section C.3.1.

The exploratory prototyping is primarily used to get an idea of which kind of algorithm provides the best
performance for the problem described in Paragraph C.1. Because the prototyping has been performed early-
on in the research, there was no veri�ed data set available for testing purposes. To make sure the accuracy
of the classi�cation algorithms could still be tested, a dataset with similar a similar categorical data structure
was manually crafted for testing purposes.

The metrics mentioned in Section C.3 are used to test the performance of the prototype.

52

C DEFINITION REPORT C.5 Prototyping

• Accuracy

• Noise

• Convergence

• Execution time

• Complexity

C.5.1 Naive Bayes

The �rst prototype is using the Naive Bayes classi�cation algorithm. This type of algorithm is relatively easy
to implement yet known to produce accurate results. Although it is an algorithm based on a relatively simple
concept, it often has an exceedingly well performance compared to other more complex algorithms. Naive
Bayes is a probabilistic algorithm that assigns each feature a probability based on its occurrence.

For data sets similar to the Endpoint data set the implemented Naive Bayes algorithm has an accuracy of
99.9%. Algorithm 1 contains the straightforward implementation of the Naive Bayes algorithm for a Bernoulli
distribution [30].

import sklearn.naive_bayes.BernoulliNB

df = generate_dataset ()

results = BernoulliNB (). fit(df.train , df.train.classes). predict(df.test)

Algorithm 8: Naive Bayes Prototype

C.5.2 Deep Neural Network

The following exploratory prototype makes use of a Deep Neural Network (DNN), which is a more complex
approach for classi�cation. The DNN is implemented using the open-source software library TensorFlow, which
is developed by Google [31].

The con�guration for the neural network, the hidden layers which are built up by neurons, is con�gured in the
same way as is done in the examples given by TensorFlow [32]. The approach shows promising results within
a relatively short execution time. The prototype with the TensorFlow implementation reaches an accuracy of
99.6% up to 100%, depending on the con�guration of the neural network. A better accuracy does cost more
computational power and therefore requires a longer execution time.

Algorithm 2 contains a code snippet from the implementation of the DNN classi�cation algorithm.

53

C.5 Prototyping C DEFINITION REPORT

import tensorflow as tf

df = generate_dataset ()

cls = tf.contrib.learn.DNNClassifier(

feature_columns=df.columns ,

hidden_units =[10, 20, 10],

n_classes =2)

model = cls.fit(input_fn=df.train , steps =500)

results = model.evaluate(input_fn=df.test)

Algorithm 9: Deep Neural Network Prototype

C.5.3 K-Modes

The two previous exploratory prototypes mentioned in Sections 5.2.1 and 5.2.2 are supervised learning algo-
rithms, which means that they require pre-classi�ed datasets in order to train the model.

The k-modes algorithm is an unsupervised machine learning algorithm and does not require labeled data to
train the classi�er with. Based on the features of the data set the algorithm will create n clusters which
new entries will be related to. Using the k-modes algorithm new data entries will be classi�ed to the nearest
cluster. As the dataset is di�cult to classify manually because of the many di�erent (unknown) processes, an
unsupervised approach might be preferred over supervised classi�cation.

However, in order to validate if the output of the classi�cation algorithm is correct, the process data samples
still need to be classi�ed for testing. Another common problem of clustering is that not all data sets are suitable
for clustering which might lead to wrong results.

The clustering algorithm reaches an accuracy of approximately 85% up to 90%. The code snippet of the
prototype implementing the k-modes cluster is provided in Algorithm 3.

import kmodes

df = generate_dataset ()

km = kmodes.KModes(n_clusters =2, n_init =10)

results = km.fit(df)

Algorithm 10: K-Modes Prototype

C.5.4 Counting

A di�erent and more trivial approach which does not use machine learning would be to count the amount
of features that are positive. Because the dataset contains binary data, where a '1' would indicate a feature
is present and '0' means it does not, this approach is actually expected to perform overall pretty well. The
threshold to classify a data sample as malicious is set to 3; which means half of the features in the dataset
should be positive.

54

C DEFINITION REPORT C.6 System Architecture

The accuracy of this prototype provided similar results to the Naive Bayes classi�cation algorithm provided in
Section 5.2.1, although the accuracy of this exploratory prototype would drop drastically if the dataset contains
a lot of noisy features.

The algorithm to count the features in the data set is provided in Algorithm 4.

df = generate_dataset ()

results = [None] * len(df)

for index in range(len(df)):

results[i] = 1 if sum(list(df[i]) > 3 else 0

Algorithm 11: Feature Counting Prototype

C.5.5 Conclusion

All classi�cation algorithms performed rather well. The k-modes clustering algorithm was the only algorithm
that did not provide su�cient results to consider for further development. Although the other algorithms (Naive
Bayes, Deep Neural Network, and Counting) provided a good accuracy overall, the Naive Bayes machine learning
algorithm is chosen for further development as it provides the best results overall. Table 13 shows the scores
assigned to each metric.

Tab. 13: Exploratory prototyping metrics
Category Naive Bayes K-Modes Cluster Deep Neural Network Counting
Accuracy + + � + + +
Noise � � + � �
Convergence + � + + � �
Execution time + + � +
Complexity + + � � ++

During the prototyping phase a new requirement has come forward. Currently, the CTM Endpoint module can
either allow or block system events. The prototype can, due to the use of a machine learning algorithm and
the behavioral model of the system process tree, assign probabilities to sequential events. Each branch of the
process tree will be monitored individually. If a branch reaches a certain threshold it can be �agged to monitor
by a security analyst, and if a next threshold is surpassed the process can be blocked completely. A branch
in the process tree might be used to accumulate a total malware score. There should be no time constraint
in place to monitor sequential events, as malware might make use of a the internal Windows Task Scheduler
tasksche.exe to purposely delay it's execution [33].

C.6 System Architecture

Based on the prototyping process described in Paragraph C.5 on page 52, the supervised learning approach
has been chosen to develop further after the �rst promising results. The detailed design of the �nal prototype
is included in Appendix D.

55

D DEVELOPMENT REPORT

D Development Report

This report elaborates on the development of the machine learning algorithm used to evaluate potentially
malicious system events.

D.1 Prototype Design

The system architecture has been developed with the aim to keep the prototype simple, yet easy to extend if a
more complex classi�cation algorithm is required. Although the Naive Bayes classi�cation has shown the most
promising results for the exploratory prototype, it is not unimaginable that a new kind of machine learning
algorithm is introduced in the future. Because of this probable scenario, the specialized instance of such a
machine learning algorithm is designed to be derived from a base class Classi�er which contains all default
methods for classi�cation. The modular design also makes to possible to run di�erent models simultaneously
and to compare their results. A global overview of the design of the class diagram is shown in Figure 2.
Note that the K-Modes clustering algorithm and the Deep Neural Network have only been tested during the
exploratory prototyping and will not be incorporated in the �nal prototype.

Fig. 7: Global prototype class diagram

The class DocumentReader in the top-left corner of Figure 2 is a generic class responsible for loading and
converting documents to a log �le, which can be interpreted by the Process and Classi�er class to convert
to a 2-dimensional DataFrame object for classi�cation. The subclasses EventReader and ProcessReader are
responsible for loading the speci�c Event and Process logs, which are generated by the endpoint server and
ProcessMonitor respectively.

56

D DEVELOPMENT REPORT D.1 Prototype Design

The Process class is the base entity for a system process. The attributes of this class include the features
which will be used for classi�cation by the classi�er. A new instance of a process is created for each process
found by the ProcessReader class. The process class creates a new child Process instance if the process is a
parent process. It will then link itself to its parent and child class by adding a reference to these instances.
The class method treeview() will start at the root process and traverse the complete tree structure recursively
structure based on references linked to child processes.

Classi�er is the base class for classi�er models. Di�erent types of classi�cation algorithms inherit the data
structure from their parent class including methods for creating a dataset for training and testing, and to learn
or predict new samples entered into the classi�er. Each subclass of the Classi�er base class contain methods
speci�c to the classi�cation algorithm. For the �nal prototype, only the NaiveBayesClassi�er class has been
implemented.

Figure 8 shows the detailed class diagram including functions and attributes o� the DocumentReader compo-
nent of the prototype in relation to the Process class.

Fig. 8: DocumentReader class diagram

Figure 9 on the following page shows the detailed relationship between the Process class and the Classi�er.

57

D.1 Prototype Design D DEVELOPMENT REPORT

Fig. 9: Classi�er class diagram

The �ow chart of the program is shown in Figure 10 on the next page. The �ow chart provides an overview of
the internal operation of the prototype.

58

D DEVELOPMENT REPORT D.1 Prototype Design

Fig. 10: Prototype �owchart

59

D.2 Prototype Backlog D DEVELOPMENT REPORT

D.2 Prototype Backlog

The prototype development is divided into the themes data acquisition, classi�cation, and accuracy. Those
themes describe the three main components of the prototype and are translated to an epic.

The theme classi�cation contains epics for the type of classi�cation algorithm being implemented. The size
of a user story is determined by the points it has, where a single point is the equivalent of four hours, and
therefore 2 points make up a single day.

Based on the requirements that have been determined in Appendix C.4 on page 51 the following user stories
are written. The tests for the user stories are attached in Appendix E on page 68.

D.2.1 Data Acquisition

This sprint Epic is de�ned as the following:

Create a single data set with logs from multiple sources by extracting the most important features.

A detailed description of epic and its user stories is provided below:

Tab. 14: EP-1 Data Acquisition
Type Epic
Name EP-1 Data Acquisition
Description Create a single data set with logs from multiple sources by extracting the most

important features.
Acceptance Criteria

• The feature set has been reduced

• The feature set contains the most important features regarding ransomware

• Irrelevant features regarding ransomware are discarded

• Features are expressed as binary data

Size 30

Tab. 15: US-1 Data Acquisition
Type User Story
Name US-1 Data Acquisition
Description As a product owner, I want the prototype to use only the most expressive

features, so that classi�cation will be faster and more accurate.
Acceptance Criteria

• Irrelevant features regarding ransomware are discarded

• The feature set has been reduced

Size 10

60

D DEVELOPMENT REPORT D.2 Prototype Backlog

Tab. 16: US-2 Data Acquisition
Type User Story
Name US-2 Data Acquisition
Description As a product owner, I want the prototype to create a model from the system

process tree, so that process relationships can be mapped
Acceptance Criteria

• Every process has a parent/child relationship

• A process tree is created from the input log �les

Size 20

Algorithm 12 shows a simpli�ed overview of a part of the code which resulted from the �rst sprint.

The process tree root is used for the linking child processes

root = Process(name='system ', pid=0, children =[], root=True , parent=None)

for line in processfile.csv:

features = line.split ()

Process (** features)

class Process:

def __init__(self , ** kwargs):

self.features = ** kwargs.split()

if (self.root) or (root is None):

return

if self.children is None:

self.parent.children.append(self)

else:

child = Process(parent=self , self.child_args)

If the parent process already exists because it already has created

another child process , add the new child to the existing parent.

if child is not None:

for process in root.walk ():

if (process.pid == self.pid) and (process.name == self.name):

if child is not None:

process.children.append(child)

return

Set references for top -level processes without a parent

if self.parent is None:

self.parent = root

root.children.append(self)

Algorithm 12: Process tree creation pseudo code

This algorithm provides a model of the system process tree which looks like the following shown in Figure 11 on
the next page when displayed in the command line interface of the prototype. Each line in this �gure represents

61

D.2 Prototype Backlog D DEVELOPMENT REPORT

a process and its corresponding process ID. Other attributes, such as the process features are omitted in this
�gure.

Fig. 11: Process tree representation

D.2.2 Classi�cation

The Epic for this sprint is de�ned as:

Accurately classify system processes as malicious or benign.

A detailed description of epic and its user stories is provided below:

62

D DEVELOPMENT REPORT D.2 Prototype Backlog

Tab. 17: EP-2 Classi�cation
Type Epic
Name EP-2 Classi�cation
Description Accurately classify system processes as malicious or benign.
Acceptance Criteria

• The precision of the classi�cation algorithm is at least 10%

• Processes are being classi�ed with a probability between 0% and 100%

• The classi�er is trained using a di�erent data set than the testing data.

Size 30

Tab. 18: US-3 Classi�cation
Type User Story
Name US-3 Classi�cation
Description As a product owner, I want the classi�cation algorithm to use a training and a

testing dataset, so that the validity of process is ensured.
Acceptance Criteria

• The classi�cation algorithm is able to train using a training dataset

• The accuracy of the classi�cation can be tested using a testing dataset

Size 10

Tab. 19: US-4 Classi�cation
Type User Story
Name US-4 Classi�cation
Description As a product owner, I want the classi�cation algorithm to predict the likelihood of

a process being malicious, so that malicious processes can be blocked
Acceptance Criteria

• Processes are being classi�ed with a probability between 0% and 100%

• The classi�cation algorithm uses a Bernoulli Naive Bayes implementation to
make predictions

Size 8

63

D.2 Prototype Backlog D DEVELOPMENT REPORT

Tab. 20: US-5 Classi�cation
Type User Story
Name US-5 Classi�cation
Description As a security analyst, I want to see less false positives, so that I will work more

e�ciently
Acceptance Criteria

• An overall precision of the classi�cation algorithm of at least 10%

Size 4

Tab. 21: US-6 Classi�cation
Type User Story
Name US-6 Classi�cation
Description As a security analyst, I want the prototype to correlate multiple similar alerts into

a single case, so that I have more contextual information
Acceptance Criteria

• Alerts are grouped by branch

• The root process of a branch is the parent process of the �rst encountered
malicious process in the branch.

• The case is named after the root process of its branch

Size 4

Tab. 22: US-7 Classi�cation
Type User Story
Name US-7 Classi�cation
Description As an endpoint user, I want the classi�cation algorithm to block all ransomware

processes, so that my work does not get lost
Acceptance Criteria

• The classi�cation algorithm does not produce false negative alerts

• The probability threshold for blocking a process is set at the optimal level

Size 4

A part of the simpli�ed code that resulted from the second sprint is provided in Algorithm 13 on the facing
page:

64

D DEVELOPMENT REPORT D.2 Prototype Backlog

class Classifier:

def __init__(self , df , target)

self.df = df

self.target = target

self.train , self.test = self.split_train_test(self.df)

class NaiveBayesClassifier(Classifier):

Set the mode of the classifier. Bernoulli , Gaussian or Multinominal

mode = sklearn.BernoulliNB ()

Initialize the dataframe parameters from the base class

def __init__(self , df , target):

super (). __init__(df, target)

self.model = NaiveBayesClassifier.mode.fit(self.df, self.df.classes)

Predict the class of a process dataframe

Remodel the estimator model based on the prediction

def predict(self , process):

return self.model.predict(process)

Algorithm 13: Classi�cation pseudo code

D.2.3 Learning

The Epic for this sprint is de�ned as:

Train the classi�cation algorithm based on its input to improve future classi�cations.

A detailed description of epic and its user stories is provided below:

Tab. 23: EP-3 Learning
Type Epic
Name EP-3 Learning
Description Train the classi�cation algorithm based on its input to improve future

classi�cations.
Acceptance Criteria

• A security analyst is able to provide input for the classi�cation algorithm to
learn

• The classi�cation algorithm updates its model after a classi�cation

Size 30

65

D.2 Prototype Backlog D DEVELOPMENT REPORT

Tab. 24: US-8 Learning
Type User Story
Name US-8 Learning
Description As a product owner, I want the prototype to implement a self-learning algorithm,

encourage innovation
Acceptance Criteria

• The classi�cation algorithm has a self-learning capability

Size 10

Tab. 25: US-9 Learning
Type User Story
Name US-9 Learning
Description As a security analyst, I want to enter incorrect predictions into the classi�er, so

that the classi�er will be trained for the future
Acceptance Criteria

• The classi�cation algorithm is using a dynamic estimator model

• The classi�cation algotihm allows input to add to its model

Size 10

Tab. 26: US-10 Learning
Type User Story
Name US-10 Learning
Description As a security analyst, I want the prototype to automatically learn relationships

between trusted processes, so that the probability of false positives occurring is
reduced

Acceptance Criteria

• Process relationships are updated automatically after classi�cation

Size 10

A part of the resulting source code from this last sprint is show (simpli�ed) in Algorithm 14 on the next page

66

D DEVELOPMENT REPORT D.2 Prototype Backlog

class Classifier:

def __init__(self , df , target)

self.df = df

self.target = target

self.train , self.test = self.split_train_test(self.df)

class NaiveBayesClassifier(Classifier):

Set the mode of the classifier. Bernoulli , Gaussian or Multinominal

mode = BernoulliNB ()

Initialize the dataframe parameters from the base class

def __init__(self , df , target):

super (). __init__(df, target)

self.model = NaiveBayesClassifier.mode.fit(self.df, self.df.classes)

Predict the class of a process dataframe

Remodel the estimator model based on the prediction

def predict(self , process):

cls = self.model.predict(process)

self.remodel(process , cls)

Input a process dataframe including its class to remodel the estimator

def learn(self , process , cls):

self.remodel(process , cls)

Appends the process dataframe including its class to remodel the estimator

def remodel(self , process , cls):

self.df = self.df.append(process.append(cls))

self.model = NaiveBayesClassifier.mode.fit(self.df)

Algorithm 14: Sprint 3 code snippet

67

E TEST REPORT

E Test Report

To verify the correct execution of the classi�cation algorithm test cases have been written for the critical
components of the prototype. Each class has its own test suite which is described below:

Software testing occurred parallel to the development of the �nal prototype. The Use Case Test (UCT) strategy
has been used in combination with Error Guessing (EG). The UCT strategy requires the use cases de�ned in
Section # as a basis for the test development. In addition to the UCT strategy the Error Guessing technique
is applied in order to to test the cases which are prone to failures, based on experience gained during the
development of the prototype.

The test cases included in Appendix E.1 are based on the use cases and Appendix E.2 includes the test cases
based on error guessing.

Especially the error-guessing test cases revealed various software bugs in the code for which would occur in
uncommon situations, such as the same process being added to the process tree with a di�erent reference,
or the occurrence of a circular reference resulting in a in�nite loop while traversing the process tree. Some
failures which have been discovered by Error Guessing have not been �xed in the prototype as they have an
insigni�cant impact on the prototype itself and its �nal results.

All use case based tests which are most important for the validation of the correct execution of the prototype
are successful. These results verify that the prototype is working according to the expectations given normal
circumstances.

Tests are developed using the built-in Python unittest library. Test cases have been written according to the
Python unittest standards [40].

E.1 Error Guessing

Tab. 27: TST-EG-1 Read log
Name TST-EG-1 Read log
Description The correct amount of logs are imported by the ProcessReader
Precondition The ProcessMonitor log �le is imported as 'proclog.csv', and includes at least 1

process.
Expected output The process tree model has the same size as the unique amount of processes in

the logs, excluding the root process.
Test steps

1. Get the unique amount of logs from 'proclog.csv' + 1

2. The length of the process tree model should be equal to the amount from
step 1;
len(Node.root.walk()) == step 1

Result The test is successful. Both lengths are equal, all process are included in the tree
model.

68

E TEST REPORT E.1 Error Guessing

Tab. 28: TST-EG-2 Tree model
Name TST-EG-2 Tree model
Description Identical processes are combined as a single process.
Precondition The ProcessMonitor log �le is imported as 'proclog.csv', and includes at least 1

process. The system root process has been initialized.
Expected output The process tree model merges identical processes as a single process
Test steps

1. Initialize an instance of the ProcessReader class;
pcr = ProcessReader()

2. Read the �le 'proclog.csv';
pcr.read('proclog.csv')

3. Get the amount of processes in the current tree model;
len1 = len(Process.root.walk())

4. Read the �le 'proclog.csv' again;
pcr.read('proclog.csv')

5. Get the amount of processes in the new tree model;
len2 = len(Process.root.walk())

6. Check if the length from the �rst model is equal to the length of the second
model;
len1 == len2

Result The test failed. Processes are not merged when read directly from the log �le.

69

E.2 DocumentReader E TEST REPORT

E.2 DocumentReader

Tab. 29: TST-UC-1 Tree model
Name TST-UC-1 Tree model
Description The log �les from the enpoint server and ProcessMonitor are combined to

construct a model of the process tree
Precondition Log �les from the endpoint server and Processmonitor are imported as

'epslog.json' and 'proclog.csv'. A system root process has been initialized as the
root for the process tree model as Process.root.

Expected output A tree model is constructed using the �le 'proclog.csv' by the ProcessReader()
class. The EventLogReader() class reads the �le 'epslog.csv' and appends the
features to the tree model.

Test steps

1. Read the �le 'proclog.csv';
ProcessReader.read_log('proclog.csv')

2. Read the �le 'epslog.json';
output = EventLogReader.read_log('epslog.json')

3. Merge the log �les;
Node.root.merge_logs(output)

4. Verify all processes have been matched;
count([True if p.matched for p in Process.root.walk()]) ==

len(Process.root.children)

Result The test is successful. All processes have been matches, execpt the child
processes of the system root; as these can not be logged by design as they are
already started at the time the logging is initiated.

70

E TEST REPORT E.2 DocumentReader

Tab. 30: TST-UC-2 Feature reduction
Name TST-UC-2 Feature reduction
Description The feature set of a single process entry should be reduced to a maximum of 6

featues which should be used for classi�cation.
Precondition A model of the processtree has been created and feature extraction has been

applied.
Expected output Every process entry has exactly 6 features. This includes the root system process,

child processes and processes that do not have a reference to the endpoint log �le.
Test steps

1. Iterate over the process tree model in pre-order mode;
for process in Process.root.walk(order='pre-oder')

2. Create a dataframe for a single node;
df = process.get_dataframe()

3. Check the length of the dataframe;
len(list(df.columns)) == 6

Result The test is successful. Every dataframe is of length 6; which is equal to the
amount of features used for classi�cation

Tab. 31: TST-UC-3 Feature selection
Name TST-UC-3 Feature selection
Description Feature selection drops the unusable features from the original log �le to reduce

the total amount of features.
Precondition A model of the processtree has been created.
Expected output The original feature set of processes has been reduced from 25 to 14 features.
Test steps

1. Iterate over the process tree model in pre-order mode;
for process in Process.root.walk(order='pre-oder')

2. Create a dataframe for a single node;
df = process.get_dataframe()

3. Verify the amount of features in the dataframe is equal to 14;
len(list(df.columns)) == 14

Result The test is successful. Every dataframe is of length 6; which is equal to the
amount of features used for classi�cation

71

E.3 Process E TEST REPORT

E.3 Process

Tab. 32: TST-UC-4 Split dataset
Name TST-UC-4 Split dataset
Description The dataframe containing all processes is split into a training and testing dataset

to determine the accuracy of the model
Precondition A model of the processtree has been created.
Expected output Every process entry has exactly 6 features. This includes the root system process,

child processes and processes that do not have a reference to the endpoint log �le.
Test steps

1. Iterate over the process tree model in pre-order mode;
for process in Process.root.walk(order='pre-oder')

2. Create a dataframe for a single node;
df = process.get_dataframe()

3. Verify the amount of features in the dataframe is equal to 6;
len(list(df.columns)) == 6

Result The test is successful. Every dataframe is of length 6; which is equal to the
amount of features used for classi�cation

Tab. 33: TST-UC-5 Predict malware probability
Name TST-UC-5 Predict malware probability
Description The classi�cation algorithm predicts the likelihood of a process being malware.
Precondition A process tree model has been initialized. The Classi�er (cls) has been initialized

with a dataframe which has been split up into training and testing data. The
classi�cation algorithm has been trained.

Expected output The classi�cation algorithm assigns each process a score between 0 and 1, where
0 would be not malicious and 1 would be very malicious.

Test steps

1. Make a single prediction for each process in the process tree;
cls.predict(p.to_dataframe()) for p in

Process.root.walk(order='pre-order')

Result The test is successful. All processes receive a malware probability score. The
processes which have been marked as malware beforehand received a score of 0.95
or higher.

72

E TEST REPORT E.3 Process

Tab. 34: TST-UC-6 Cluster alerts
Name TST-UC-6 Cluster alerts
Description Processes being marked as malicious which are in the same branch are correlated

into a single case.
Precondition A model of the process tree has been created. The model of has been classi�ed by

the classi�cation algorithm.
Expected output The amount of cases created is equal to the amount of malware samp
Test steps

1. Walk the process tree in pre-order mode;
for process in Process.root.walk(order='pre-order')

2. If the node is the �rst malicious node in the branch, mark the underlying
branch (including the current process parent) and return;
if process.probability > threshold:

process.parent.create_case()

Result The test is successful. All detected malware samples are assigned a case which
includes all processes started by the malware.

Tab. 35: TST-UC-7 Classi�er precision
Name TST-UC-7 Classi�er precision
Description Calculate the precision of the classi�cation algorithm.
Precondition A model of the process tree has been classi�ed by the classi�cation algorithm.
Expected output The precision of the classi�cation algorithm is at least 10%
Test steps

1. Get the total amount of true positives (TP)

2. Get the total amount of false positives (FP)

3. Calculate the precision (PPV) using;
PPV = TP / (TP + FP)

Result The test is successful. The precision is above 10%

73

E.4 Learning E TEST REPORT

E.4 Learning

Tab. 36: TST-UC-8 Self-learning algorithm
Name TST-UC-8 Self-learning algorithm
Description The algorithm is self-learning and adjusts its model correctly after receiving

feedback
Precondition The classi�er (cls) has been initialized without a model or training
Expected output The �rst classi�cation scores 50% and is therefore marked as '1'. After learning,

this value is adjusted to the learning input.
Test steps

1. Get the probability of a (random) entry;
p = cls.predict(pd.DataSeries([0, 1, 0, 1, 0, 1]))

2. Verify the probability p is 1, as the classi�er is not trained;
p == 1

3. Learn the classi�er that the entry from step 1 is not malicious;
cls.learn(pd.DataSeries([0, 1, 0, 1, 0, 1, 0])

4. Get the probability of the entry in step 1;
p = cls.predict(pd.DataSeries([0, 1, 0, 1, 0, 1]))

5. Verify the probability p is 0, as the classi�er has learned this entry is not
malicious and therefore assigns a lower score;
p == 0

Result The test is successful. The self-learning classi�cation model successfully learned
from the user input.

74

F RESULTS

F Results

This document provides the results obtained by the �nal prototype that was developed for this research.

F.1 Process Classi�cation

A total of 1127 processes have been used as input for the classi�cation algorithm. Figure 12 shows the output
results of the classi�cation algorithm. The orange bars represents all process which are actually malicious and
the blue bars represent benign processes. The processes which scored lower than 0.1% are discarded from the
�gure, as this would create a spike of hundreds of legitimate, and only legitimate, processes.

Fig. 12: Malware probability histogram

The confusion matrix in Table 37 shows the distribution of the predicted classes and their actual class.

Tab. 37: Classi�cation confusion matrix
Predicted \ Actual True False

True 13 4
False 0 1110

75

F.1 Process Classi�cation F RESULTS

With the data from the confusion matrix from table 7 on page 32 the precision of the prototype is calculated.

PPV =
13

13 + 4
∗ 100% = 76, 5%

The classi�cation algorithm manages to reach an precision of 76.5%.

The overall accuracy of the model is calculated using the following formula:

ACC =
13 + 1110

13 + 4 + 0 + 1110
∗ 100% = 99, 65%

The accuracy is able to predict if a process is malicious or not with an accuracy of 99,65%.

The TPR and the FPR are:

TPR =
13

13 + 0
∗ 100% = 100%

FPR =
4

4 + 1110
∗ 100% = 0, 35%

76

G COLLECTOR SETUP

G Collector Setup

This document describes the approach to create an environment for the collection of data sets required as
input for the prototype developed during this research.

G.1 Networking Setup

Figure 13 shows an overview of the network setup to collect the log �les from the ransomware samples.

Fig. 13: Virtual network setup

The host (MGMT-HOST-PC) is the computer which runs VirtualBox with three virtual machines in an internal
network [43]. The machines on the internal network are not connected to the host in any way, which reduces
the risk of a ransomware outbreak over the network to a minimum.

Two virtual machines are con�gured as endpoints running Windows 10. One of these endpoints is used for
monitoring (WIN-10-MONITOR) to write the log �les to, and the other virtual machine (WIN-10) will run the

77

G.2 Endpoint Server G COLLECTOR SETUP

ransomware samples to get infected. This endpoint is not patched, has its �rewall turned o� and Windows
Defender disabled in order to make sure the ransomware could be executed without being blocked by Windows.

The monitoring VM is con�gured with the latest security updates in order to reduce the risk of an infection
over the network.

Both Windows 10 endpoints are connected to the third virtual machine, which is the CTM Endpoint Server.
This server controls the rule set deployed on its clients and stores the alerts generated by triggered rule events.
This server is running on Debian Jessie and is con�gured with a �rewall.

Both Windows endpoints are connected to the server with the CTM Endpoint Module Agent. The monitoring
VM is con�gured with the default rule set to block any known malicious source while the other Windows 10
endpoint, which runs the ransomware, is con�gured with a rule set which will only monitor system processes.

In order to only log system processes a custom rule has been written for the CTM Endpoint Module, which is
shown in Figure 14.

Fig. 14: CTM Endpoint Server monitoring rule

G.2 Endpoint Server

The CTM Endpoint Server logs system events when an event matches a rule speci�ed in the con�guration of
the CTM Endpoint Server. The global design of a rule collection is de�ned by the following structure as shown
in Figure 15.

78

G COLLECTOR SETUP G.3 Combining logs

Fig. 15: CTM Endpoint Server rule set

A custom collection is written to �lter all Process Create events on the connected endpoints. As the only
requirement is to �lter out these type of events, the rule syntax is relatively simple. A GenericSet Group used
to de�ne a group of executables and a group for any object. The Rule Entry is set to Watch, a feature that
is not mentioned in Figure 15 as it is primarily used for testing purposes. The behavior of the Watch node is
documented in the Rule Manual [44].

The rule that has been written using the rule syntax for the CTM Endpoint Module is shown in �gure 3. This
rule �lters all process creation events and writes them to the database.

The rule entry �lters events by checking the CommandLine arguments of a process event for any input in
combination with the AccessMask value set to read, execute. This results in all process creation events to
trigger the rule. The action LOG_TO_SERVER de�nes that an event matching the rule will be logged to the
server.

G.3 Combining logs

Unfortunately, multiple logging methods were required because they both provided di�erent information about
features. The CTM Endpoint Module of Fox-IT provided a lot of information about the single processes on a
system, but because of the current implementation of the logging it does not contain process IDs (PIDs) of
child processes. Without these PIDs it is not possible to create a process tree.

In order to obtain this missing information the ProcessMonitor logs are used, which do store the PIDs of
the child processes. These logs can be matched based on their name, parent process ID and command line
arguments. When a match is found the informative features are merged to establish a �nal process tree.

79

