Permanent Magnet Synchronous or Induction Machine, selection and control for electric vehicles Technologies, Constraints, Possibilities & Outlook THUAS Delft, The Netherlands Prof oP. dr.ir. P.J. van Duijsen

www.caspoc.com/iqpc2021

March 24th 2021

- Architecture of the control in a traction drive
- ② Similarities in the construction of motors, power electronics and control of traction drives
- Solution observers, sensored or sensorless
- Ost price versus operational costs with regard to efficiency
- Outlook for the next generation traction drive
- Onclusions

Control and motor physics

- AC motor dynamics
- AC motor thermal
- Power Electronics
- IGBT thermal
- Control

- Motor dynamics
- Control dynamics

Type of motors, but what is a motor?

- DC motor
- Synchronous motor
- Induction motor

Relation between motor types

- DC
- Synchronous
- Brushless
- PMSM
- IPM
- IM

Most electrical machines have a three phase winding!

- Constant Torque
- Driving & Braking
- two-level inverter

A Two-Level Inverter is mostly enough for controlling the current inside the electric machine

Where is the torque coming from?

Where is the speed coming from?

Where is the power coming from?

Maximum Voltage, Maximum Current?

• $U = \omega \cdot \Phi$

• $T = I \cdot \Phi$

• $P = \omega \cdot T = U \cdot I$

Maximum Torque, Maximum Power?

CPSR: Constant Power Speed Range

Direct-Quadrature Axis, Direkte-Quer Achse

- d Direct Axis Field
- q Quadrature Axis Torque
- $T = \Phi_d \cdot I_q$

Maximum power when angular dist

Direct-Quadrature Axis, Direkte-Quer Achse

- d Direct Axis Field
- q Quadrature Axis Torque
- $T = \Phi_d \cdot I_q$

Maximum power when angular dist

Encoder for the position

- Encoder for position
- Sensorless

Easy implementation, but requires expensive encoder or Sensorless: Instaspin

- Encoder for angular speed
- Calculation of Slip

- Encoder for angular speed
- Direct Field Observer
- No need for Field sensors

Difference in Control

Digital or analog control

- Digital control
- Floating Point
- Fixed Point
- Export of C-code

Winding loss, Iron Loss

- Winding loss
- $R_s \cdot I^2$
- Core loss
- $c \cdot B^{\times} H^{y}$
- Stray loss
- Mechanical loss

Permanent Magnet Synchronous or Induction Machine, s

• Rotor winding

- Rotor winding loss
- Same stator winding loss
- 4% more loss for the IM

From: Performance/cost comparison of induction-motor & permanent-magnet-motor in a hybrid electric car, Malcolm Burwell International Copper Association

- Drive cycle
- UDDS
- Urban road
- Many stops

The motor is never operated at maximum efficiency!

- Rotor copper cast loss
- Rotor alu cast loss

From: Improved high speed efficiency of induction motors/rotors for xEV traction, Malcolm Burwell International Copper Association

How bad is this?

On average : 1kWh = 5kmBut depends on the Drive Cycle

- Nissan Leaf: 15kWh = 100km
- Tesla X: 27*kWh* = 100*km*
- Audi Etron: 28kWh = 100km
- I-Pace: 30kWh = 100km
- eBike: 1kWh = 120km

IPM: Price for the magnets IM: Price for the extra fuel

- Average life time of a car: 200.000km
- Required energy: $200.000 km \cdot \frac{1kWh}{5km} = 40.000 kWh$
- Lost Energy(4%): $0.04 \cdot 40.000 kWh = 1600 kWh$
- Lost money: $1600kWh \cdot \frac{Euro0.20}{1kWh} = Euro320$

Suggestion: Solar power to charge your car?

- Costs? Magnets?
- Manufacturing costs
- Optimization geometry to reduce ripple torque
- Optimize thermal design, not over-design
- Modeling and simulation, but know what to optimize
- Materials 6.5% Silicon steel

Traction Motor: IPM or IM?

- Field Oriented Control of IPM or IM, No difference!
- IPM: Pay for the magnets, definitely!
- IPM: Pay for the encoder, definitely!
- IPM: Encoder wiring breakdown, possible!
- IM: Pay for the fuel, Solar power?

Thank you!