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Abstract 

 

Introduction:  

Radiomic tools make it possible to extract large numbers of quantitative features from tumors using 

medical images (e.g. CT/ MRI/ PET) that, in contrast to biopsies, are able to characterize the whole 

tumor in a non-invasive way. To ensure interoperability of Radiomics, it is important to compare 

different tools. 

Objective:  

To assess (1) if there is a difference between the implementation and numerical output of the Maastro 

and Moffitt Radiomic algorithms and (2) if a specific setting in the Maastro tool make the numerical 

values of texture features between two tools comparable. 

Method:  

A retrospective quantitative comparison study was performed on a cohort of NSCLC patients (N=42). 

The features of both tools were matched by name and algorithm. RT-STRUCTS and CT-scans of the 

patients were loaded in the tools to gain numerical values. To evaluate the similarity of the numerical 

values between the tools, Pearson’s correlation coefficient and Lin’s concordance correlation 

coefficient (CCC) were used. Subsequently, textural feature values of Moffitt were compared to those 

calculated using different intensity resampling methods with the Maastro tool. 

Results:  

34 features were matched. The strength of linear association (SA) for the Pearson correlation 

coefficient was strong for 20 features, moderate for 5 features, weak for 1 feature, very weak for 1 

feature and there was no correlation for 7 features. The CCC of 9 features was almost perfect, the 

CCC of 1 feature was moderate and the CCC of 24 features was poor. There is no resampling method 

which made the output of textural features comparable and all CCC values were poor.  

Conclusion:  

This study has shown that comparing Radiomics results using different software implementations is 

not straightforward. To make comparisons in multicentre settings, and to ensure optimal decision 

support systems for lung cancer in the future, standardization of Radiomics is needed. 
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Samenvatting 
 

Inleiding: 

Radiomic tools kunnen grote aantallen kwantitatieve kenmerken (features) van tumoren uit medische 

beelden (bijvoorbeeld CT / MRI / PET) extraheren die, in tegenstelling tot biopten, de gehele tumor 

kunnen karaktiseren op een niet-invasieve manier. Om interoperabiliteit van Radiomics te waarborgen, 

is het belangrijk om verschillende instrumenten te vergelijken. 

Doelstelling: 

Onderzoeken (1) of er een verschil is tussen de implementatie en numerieke output van de Maastro 

en Moffitt Radiomic algoritmen en (2) het vinden van een specifieke instelling in de Maastro tool om 

numerieke waarden van textuur kermerken vergelijkbaar te maken tussen de tools. 

Methode: 

Een kwantitatieve retrospectieve vergelijkingsstudie werd uitgevoerd op een cohort van NSCLC-

patiënten (N=42). De features van beide tools werden gematched met behulp van namen en 

algoritmes. RT-STRUCTS en CT-scans van de patiënten werden in beide tools geladen om numerieke 

waarden te verkrijgen. Om de gelijkenis van de numerieke waarden tussen de tools te evalueren, zijn 

de Pearson correlatiecoëfficiënt en de concordantie correlatiecoëfficiënt (CCC) gebruikt. Vervolgens 

werden de waarden van textuur features van Moffitt vergeleken met de verschillende berekende 

intensiteit resampling instellingen van de Maastro tool.  

Resultaten: 

Vierendertig features zijn gematched. De Pearson correlatiecoëfficiënt toonde een sterke lineaire 

overeenkomst aan voor 20 features, een matige overeenkomst voor 5 features, een zwakke 

overeenkomst voor 1 feature, een zeer zwakke overeenkomst voor 1 feature en er was geen correlatie 

voor 7 features. De CCC van 9 features was bijna perfect, de CCC van 1 feature was matig en de 

CCC van 24 features was slecht. Alle resampling instellingen gaven slechte CCC’s en geen 

vergelijkbare output voor textuur features. 

Conclusie:  

Deze studie laat zien dat het niet eenvoudig is om Radiomics resultaten met verschillende 

softwareimplementaties te vergelijken. Om vergelijkingen in een multicentrische setting te maken en 

om te zorgen voor optimale beslissingsondersteunende systemen voor longkanker in de toekomst, is 

standaardisatie van Radiomics nodig. 
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Introduction 
 

Current cancer treatments are often inadequate, with 75% being ineffective in the clinic. This is 

thought to be due to the strong intra- and inter patient heterogeneity.
1,2

 Therefore, over the past 

decade, investment into new diagnostic and treatment modalities has been carried out. This has led to 

an increased amount of patient specific information, including identification of novel disease 

biomarkers using genomics, proteomics and non-invasive imaging approaches, in order to classify 

subgroups of patients to more adequately refer patients to the right treatment.
3
 Genomics and 

proteomic approaches are successfully used in the clinic currently to obtain the molecular 

characteristics of diseased tissues, but come with high associated risks and costs for the patient, 

because of biopsies. Therefore there is much room for improvement within clinical practice.
4
  

In the last ten years the use of medical imaging technologies (e.g. Computed Tomography (CT)/ 

Magnetic Resonance Imaging (MRI)/ Positron Emission Tomography (PET)) has greatly expanded. 

Primarily these technologies are used as a diagnostic tool however they play an increasingly crucial 

role in individualized patient care. Compared to other variables such as demographics, blood 

biomarkers, pathology and genomics, it is expected that imaging gives valuable complementary 

information, which can for instance be used to predict outcome for a specific patient.
5
 This new use of 

imaging is a major step towards personalized medicine and provides valuable diagnostic, prognostic 

and predictive information.
6  

Current imaging technology makes it possible to extract large numbers of quantitative features from 

tumors using medical images (e.g. CT/ MRI/ PET) that, in contrast to biopsies, are able to characterize 

the whole tumor in a non-invasive way.
5
 This field of research is referred to as Radiomics. Radiomic 

features can for instance, provide information about tumor image intensity, shape and texture. In order 

to extract these variables from medical images, software tools are being developed which implement 

Radiomic algorithms. The combination of specific variables as mentioned above (demographics, blood 

biomarkers, pathology and genomics) in combination with Radiomics has the potential to improve a 

patient’s prognostic information and make a step towards personalized medicine. However, combining 

these data is overly complex for clinicians. Therefore the use of decision support systems will be able 

to strive towards the right treatment for a specific patient in order to improve outcomes and Quality of 

Life (QoL) as well as efficiency of care for different cancer sites, e.g. lung cancer,  the leading cause of 

cancer related deaths amongst males and accounts for 13% of all cancer diagnosis.
7
 In 2012 there 

were 1.8 million new cases reported and it is projected that by 2030 the number of lung cancer deaths 

will have surpassed 10 million.
8
  

Radiomics is a rapidly expanding field of research that could have large clinical impact, providing an 

unprecedented opportunity to improve decision-support for physicians at low cost. Knowledge on 

Radiomic features of patients with non small cell lung carcinoma (NSCLC) is already available from 

earlier studies.
 5,8,9,10

 Because Radiomics is a relative new study, there is still much to explore in this 
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research field. In particular it has become apparent that there is a need for standardization of 

Radiomics.
11

 

Most of the research concerning Radiomics was undertaken in specific centers in the U.S., The 

Netherlands and Canada. Two of these centers, Moffitt Cancer Center (Tampa, FL, U.S.) and Maastro 

Clinic (Maastricht, The Netherlands), participate in the Quantitative Imaging Network (QIN) of the 

National Cancer Institute (NCI) of the U.S.
12

  

Moffitt has a vast database of patient samples including tissues and gene expression profiling. 

Maastro is a known world leader in radiation oncology.
8
 Gillies et al.

8
 describe the vision of both 

institutions as follows: “Moffitt and MAASTRO have shared a vision that quantitative features extracted 

from standard of care images have the potential to provide higher prognostic and predictive value.” 

Both institutes developed their own Radiomic tools and it is important to compare Radiomic results 

from different institutes. The algorithms implemented in the tools provide numerical values. In the 

Maastro tool it is possible to change certain parameters of feature calculations. Before calculating 

textural features, the image intensities are typically resampled into a reduced number of discrete bins. 

To achieve this, two methods can be applied: (1) dividing the Houndsfield Units (HU) range into a fixed 

number of equally spaced bins, where the bin size (i.e. intensity resolution) depends on the range of 

HU values in each image; and (2) maintaining a constant bin size for each image. The choice of 

resampling methodology was shown to have a crucial effect on textural features and their 

interpretation in a study on PET images of NSCLC patients.
13

 The number of bins can be set to, e.g., 

8, 16 or 32 discrete values (this means that the HU values of every image will be “resampled” to the 

same range of values). The bin size (bin width) can be set to any value (in HU). The Maastro and 

Moffitt implementations both use a different resampling scheme. The default for the Maastro tool is a 

bin width of 25 HU, whereas the default for the Moffitt tool is to use 256 number of bins. In contrast to 

the Maastro tool, the resampling scheme cannot be altered in the Moffitt tool.  

Since this is a relatively new research area in lung cancer, it is valuable to compare the tools 

developed by different institutes, e.g., between Maastro and Moffitt, in order to potentially standardize 

Radiomics and to facilitate multi-institutional studies to optimize decision support systems for lung 

cancer globally in the future. 

Therefore, this project focused on the comparison of the implementation and numerical output of the 

Radiomic features algorithms of two research groups, Maastro and Moffitt. In conjunction with the 

differences observed between the two tools, parameters of texture features will be changed in the 

Maastro tool, to see if this affects numerical values obtained.  

The aim of this project is to assess (1) if there is a difference between the implementation and 

numerical output of the Maastro and Moffitt Radiomic algorithms in an identical dataset and                       

(2) if specific settings in the Maastro tool have to be applied to make numerical values of texture 

features between two tools comparable. This effort will lead to the following research question: 



Bachelor thesis | M.E. Pijls | MIRT | Fontys University of Applied Science | 2016 
 
9 

 

 

What is the difference in numerical values for Radiomic features obtained by the Maastro and 

Moffitt software tool in a cohort of NSCLC patients and can certain settings be applied to make 

the output in textural features comparable?  
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Method 

Design 
This research is a retrospective quantitative comparison study. In this study we investigated the 

difference between the numerical values for Radiomic features of NSCLC patients between Maastro 

and Moffitt and determined if changing the resampling scheme for textural features affects this 

difference. 

Population 

In this study data from a cohort of 52 NSCLC patients, treated between July 2015 and March 2016, 

have been included for analysis. Patients were randomly chosen from all patients treated with curative 

intent; all stages of NSCLC were included and there were no restrictions for age or gender. Patients 

with lung metastasis from a non-lung primary tumor were excluded from this study. For all included 

patients the treatment CT-scans and the corresponding structure sets (RTSTRUCTS) have been 

retrieved from the database of Maastro. In this process all data were anonymized by the IT department 

of Maastro, removing all privacy sensitive information.  

Measuring instruments 
All CT-scans were performed before radiation therapy at Maastro, according to standard clinical 

scanning protocols. In this population, patients were scanned on one of the following three scanners: a 

Sensation 10 CT scanner RT (Siemens, 2004), a Sensation Open CT scanner RT (Siemens, 2006), or 

a Biograph TruePoint 40 (PET)-CT RT (Siemens, 2006). A spiral CT was performed covering the 

complete thoracic region. Images were reconstructed with an in plane pixel spacing of 0.977 mm x 

0.977 mm, with a slice thickness of 3 mm. The primary lung tumor was delineated manually for 

treatment planning purposes on Eclipse (Varian Medical System, Palo Alto, CA, USA).  There was no 

contrast used. 

Data collection 
The CT-images and RTSTRUCTS were used for this comparison study. On the CT-images, the 

tumors can be defined with an ROI (Region Of Interest). These ROIs were defined by a physician. 

From the RTSTRUCTS, all Gross Tumor Volumes (GTVs) have been used in the Radiomic tools to 

extract the Radiomic features (Appendix I and II).  

 

The Radiomic tool of Maastro is designed by Ralph Leijenaar.
13,14

 The Maastro tool runs on MATLAB 

R2014a (8.3). The software is able to extract a large number of quantitative features, however, for this 

study we focused on the features of the following groups: first order statistics (N=15), shape and size 

based features (N=12) and gray-level co-occurrence matrix (GLCM) and gray-level run-length matrix 

(RLGL) textural features (N=44). Appendix I describes the definitions as follows: “First-order statistics 

describe the distribution of voxel intensities within the CT image through commonly used and basic 

metrics. In shape and size based features we included descriptors of the three-dimensional size and 

shape of the tumor region. Textural features describe patterns or the spatial distribution of voxel 
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intensities.” Textural features have different groups, namely GLCM and RLGL. If these abbreviations 

are standing in front of a feature, for example GLCM, this means that they belong to this particular 

group. Appendix I also describes corresponding algorithms of the features, used in this tool.
14,15

  

 

First, the data was loaded into the Maastro tool. Once loaded, the ROI of interest (in this case the 

GTV) was selected for each patient from the list of available ROIs (e.g. the lungs, the heart, etc.). The 

GTV was selected automatically whenever possible, but since there is no naming convention for ROIs 

(the GTV can be named, for instance, GTV-1, GTVp1, GTV-tumor, tumor, etc.), the software also 

allowed manual selection of the GTV for each patient. The features of interest, first order statistics, 

shape and size based features and the required textural features have been selected. The tool 

extracted these features from the selected GTVs of each patient and the results were exported into 

Excel spreadsheets, Microsoft Excel 2010. Most numerical values of the features are unitless. 

 

Moffitt uses MATLAB R2016a to extract Radiomic features. Appendix II describes the definitions of the 

features with corresponding algorithms used in this tool.
10,16

 Excel spreadsheets derived from the 

Maastro tool with the names of the selected GTVs were used. The RTSTRUCTS of the patients were 

loaded in MATLAB and the provided GTVs were selected. Moffitt extracted the GTVs of interest 

identified in the Maastro tool and converted them from Digital Imaging and Communications in 

Medicine (DICOM) format to Portable Network Graphics (PNG) images with a MATLAB script. The 

selected GTVs of both tools had to be the same to make a correct comparison. Converting an 

RTSTRUCT into a binary pixel mask is different in each tool, which may lead to differences in output. 

Then the CT-images and transformed GTVs were loaded in MATLAB so the features could be 

extracted with an implemented code. Most features were unitless and were imported into Excel 

spreadsheets, Microsoft Excel 2010. 

Data analysis 
To compare the Radiomic tools, first a list of included features was created. To make this list, the 

Radiomic features of Maastro and Moffitt were matched by name and by algorithm. Features that 

could not be matched were not included in this research. The included features and their respective 

feature groups (i.e. first order statistics, shape and size based features or textural features) are given 

in Table 1.  

To obtain the numerical values from the tools, the CT-images and RTSTRUCTS of each patient were 

processed by both tools. Each feature therefore had two values for each patient; one for the Maastro 

tool and one for the Moffitt tool.  

To evaluate the similarity of the Moffitt numerical values with the Maastro numerical values, the 

Pearson correlation coefficient and Lin’s concordance correlation coefficient (CCC) were used.
10
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The Pearson correlation coefficient has been calculated for each matching feature between Maastro 

and Moffitt, in order to be implemented in the CCC calculation. This coefficient has been calculated 

with the standard formula for correlation (=CORREL) in Excel. Correlation coefficient size is defined 

follows; If the correlation range (CR) is 0.81 to 1.00, the strength of linear association (SA) is strong, if 

CR is 0.61 to 0.80 the SA is moderate, if CR is 0.41 to 0.60 the SA is weak, if CR is 0.21 to 0.40 the 

SA is very weak and if CR is 0.00 to 0.20 there is no SA.
17

 

 

Let   and   be the feature values of the Maastro and Moffitt tool, respectively. The formula of the CCC 

then is:         
      

  
    

         
 
 

Where    is the Pearson correlation,   the standard deviation,    the variance, and   the mean.
18

  

The CCC has four different strength-of-agreements. A CCC >0.99 is almost perfect, a CCC between 

0.95 – 0.99 is substantial, a CCC between 0.90 – 0.95 is moderate and a CCC<0.90 is poor.
19

 First all 

components ( ,    and  ) have been calculated separately from each other and then the formula of 

the CCC was made in Excel combining all individual components. Because the manual input of the 

formula in Excel is prone to errors, the CCC was verified with an online calculator of the CCC.
20

  

 

The Pearson correlation coefficient and CCC values from -1 to +1 have been visualized in a column 

chart, with features on the x-axis and similarity on the y-axis (Figure 1). 

 

The CCC measures reliability between two variables, based on covariation and correspondence. The 

Pearson correlation coefficient measures the linear covariation between two variables, independently 

of correspondence. The Pearson correlation coefficient thus evaluates if there is a linear continuity 

between the numerical values of Maastro and Moffitt, whereas the CCC also evaluates the degree to 

which numerical values of matching features fall on the 45° line through the origin.
10,19,21,22,23 

To visualize the linearity between features, a scatter plot of the linear fit was made in Excel (Figure 2). 

For each feature a linear fit is calculated with formula y = ax + b, where a is the slope and b the 

intercept between the Maastro and Moffitt feature. R
2
 is the same as the Pearson correlation 

coefficient squared, so the linear correlation between both features expressed as a value between 0 

and 1, where 0 is no correlation and 1 is a perfect correlation. A value of +1 is a perfect correlation and 

-1 is a perfect negative correlation. 

 

For the second part of this study we determined if changing the intensity resampling scheme for 

texture in the Maastro tool would have an impact on the outcome
13

 and if matching this setting 

between both tools would make their outputs comparable. We changed the bin width in the Maastro 

tool to 1, 5, 10, 25 and 50 HU and the number of bins to 8, 16, 32, 64, 128 and 256, of which the latter 

matches the default setting of the Moffitt tool. The CCC was calculated for each feature, for all different 
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intensity resampling settings (i.e., for each setting the feature values were compared to those 

determined by the Moffitt software).  

Ethics 
All patient related data in this study was anonymized. Therefore, ethical approval by the Medical 

Committee was not required and it was not necessary to seek consent for its use. Attached is the 

signed cooperation contract from Maastro (Appendix III). In agreement with signing this contract all 

data has been contained within Maastro and remain anonymous (Article 12).   
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Results 
 

We matched 34 features from Maastro and Moffitt by name and algorithm; first order statistics (N=14), 

shape and size based features (N=3) and GLCM and RLGL textural features (N=17). See Table 1 for 

the list of matched features.  

Out of the 52 selected patients loaded in the Maastro tool, 10 patients did not have a defined GTV. 

Without a GTV the features cannot be extracted from the image, therefore these patients were 

excluded. The patients with a defined GTV (n=42) were included in this study.  

The Pearson correlation coefficient and CCC were calculated for all features using the default settings 

of the Maastro tool (bin width 25 HU) and the Moffitt tool (256 number of bins). The strength of 

association (SA) for the Pearson correlation coefficient was found to be strong for 20 features, 

moderate for 5 features, weak for 1 feature, very weak for 1 feature and there was no correlation for 7 

features. The CCC of 9 features was almost perfect, the CCC of 1 feature is moderate and the CCC of 

24 features is poor (Table 1). See Figure 1 for a column chart of these results.       

 

The Pearson correlation coefficient shows that 20 features have a strong SA and of these 20 features, 

9 have an almost perfect CCC. Four features have a moderate Pearson correlation coefficient, and 

just one of those features has a moderate CCC. All other features have poor agreement (Table 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Column chart of the CCC and Pearson correlation coefficient (cc) between the Maastro and Moffitt tool, with the 

default setting of the Maastro and Moffitt tool. The feature names of these numbers are shown in Table 1. 
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Table 1: Matching features of Maastro and Moffitt with the calculated CCC and Pearson correlation coefficient (cc), with a 

default setting for both tools. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Legend: 

Feature number Feature catagory Maastro Moffitt CCC  Pearson cc 

1 First order statistics Stats_energy  Energy 0.02 0.46 

2 First order statistics Stats_min  Min HU 0.03 0.99 

3 First order statistics Stats_max  Max HU 0.12 0.99 

4 First order statistics Stats_mean  Mean HU 0.02 0.99 

5 First order statistics Stats_var  Variance HU 0.99 0.99 

6 First order statistics Stats_skewness  Skewness HU 0.99 0.99 

7 First order statistics Stats_kurtosis  Kurtosis HU 0.99 0.99 

8 First order statistics Stats_std  Standard Deviation HU 0.99 0.99 

9 First order statistics Stats_md  Mean Absolute Deviation HU 0.99 0.99 

10 First order statistics Stats_median  Median HU 0.02 0.99 

11 First order statistics Stats_range  Range HU 0.99 0.99 

12 First order statistics Stats_entropy  Entropy 0.99 0.99 

13 First order statistics Stats_rms  RMS HU -0.03 -0,88 

14 First order statistics Stats_uniformity  Uniformity HU 0.99 0.99 

15 Shape & size Shape_volumeNumber  Connected 3D components 0.88 0.88 

16 Shape & size Shape_volume  Volume 0.99 0.99 

17 Shape & size Shape_maxDiameter3D  Longest Diameter 0.65 0.71 

18 Textural features RLGL_shortRunEmphasis  Short Run Emphasis (SRE) 0.89 0.91 

19 Textural features RLGL_longRunEmphasis  Long Run Emphasis (LRE) 0.81 0.82 

20 Textural features RLGL_grayLevelNonuniformity  Gray-Level Nonuniformity (GLN) 6.86E-06 0.74 

21 Textural features RLGL_runLengthNonuniformity  Run-Length Nonuniformity (RLN) -6.24E-06 -0.62 

22 Textural features RLGL_runPercentage  Run Percentage (RP) 0.91 0.91 

23 Textural features RLGL_lowGrayLevelRunEmphasis  Low Gray-Level Run Emphasis (LGRE) 0.41 0.96 

24 Textural features RLGL_highGrayLevelRunEmphasis  High Gray-Level Run Emphasis (HGRE) -0.04 -0.09 

25 Textural features RLGL_shortRunLowGrayLevEmpha  Short Run Low Gray-Level Emphasis (SRLGE) 0.46 0.97 

26 Textural features RLGL_shortRunHighGrayLevEmpha  Short Run High Gray-Level Emphasis (SRHGE) -0.00 -0.15 

27 Textural features RLGL_longRunLowGrayLevEmpha  Long Run Low Gray-Level Emphasis (LRLGE) 0.07 0.73 

28 Textural features RLGL_longRunHighGrayLevEmpha  Long Run High Gray-Level Emphasis (LRHGE) 0.69 0.83 

29 Textural features GLCM_energy avgCoocurrence-Energy 0.01 0.09 

30 Textural features GLCM_contrast avgCoocurrence-CONTRAST 0.00 0.64 

31 Textural features GLCM_homogeneity1 avgCoocurrence-HOMOGENEITY 0.29 0.63 

32 Textural features GLCM_maxProb avgCoocurrence-MAXPROB 0.01 0.16 

33 Textural features GLCM_entrop2 avgCoocurrence-ENTROPY 0.19 0.34 

34 Textural features GLCM_sumAvg avgCoocurrence-SUMMEAN -0.05 -0.06 
 

CCC Pearson correlation coefficient 

Almost perfect (> 0.99)  Strong (0.81 - 1.00)          

Substantial (0.95 - 0.99) Moderate (0.61 - 0.80) 

Moderate (0.90 - 0.95)   Weak (0.41 - 0.60)       

Poor (< 0.90)        Very weak (0.21 - 0.40)    

 
None (0.00 - 0.20)         
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The CCC values are generally poor (<0.90), indicating there is a substantial difference in feature 

values obtained with both tools. For the Pearson correlation coefficient all first order statistic features 

have a strong linear association, except the features Stats_energy and Stats_rms (Table 1).  

 

For two features we observed a substantial negative Pearson correlation. The Pearson correlation 

coefficient is -0.88 for matched feature 13 and -0.62 for matched feature 21. This means that these 

features have an inverse linear relationship and act in the opposite way. The interpretation of a perfect 

negative correlation is that for an increase in X of 1, there is a decrease in Y of 1.  

 

It appears that Maastro has four different ways to calculate the diameter, while Moffitt has just one 

feature to calculate the diameter. Moffitt calculates the diameter only full 3D and Maastro calculates 

the diameter in full 2D transversal, full 2D coronal and full 2D sagittal, in addition to the calculation of 

full 3D. We calculated the CCC for the four different diameters of Maastro and the diameter of Moffitt. 

The CCC values were all poor and the CCC of the match Shape_maxDiameter3D (full 3D) of Maastro 

and Longest Diameter of Moffitt was 0.65. See Appendix IV for all CCC values of the compared 

diameter features of Maastro and Moffitt. 

 

A scaling difference was found in some features. First order statistics Maastro features Stats_min, 

Stats_max, Stats_median and Stats_mean have a scaling difference of +1000 HU compared to the 

Moffitt features, which is reflected in the intercept of a linear fit between the Maastro and Moffitt values 

(Appendix V). In Appendix V the intercept, slope and R
2 

(which equals the Pearson correlation 

coefficient squared) for all first order statistic values are shown. A scatter plot of the maximum HU 

(Moffitt: “Max HU” and Maastro “Stats_max”) visualizes the linear fit and the offset in HU (Figure 2). As 

illustrated in Appendix V, this also applies to Stats_min, Stats_median and Stats_mean. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Scatterplot of linear fit of features Stats_max (Maastro) v.s. Max HU (Moffitt). 
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For the second part of this study, the resampling scheme was changed several times to assess 

whether changing this setting had an impact on the obtained results for the included textural features 

and to find out if matching the setting of the Moffitt tool (256 number of bins) and the Maastro tool 

results in comparable numerical values for both tools. We also identified the resampling schemes 

which produced CCC values closest to one. The results for each resampling scheme are provided in 

Appendix VI. In Table 2 the CCC values for the default settings of the Maastro tool (bin width 25 HU), 

the resampling scheme of the Moffitt tool (256 number of bins) and the resampling method that 

resembles the output of the Moffitt tool most closely, including the respective CCC values, are 

presented. 

 

Indicated by low CCC values, there is no resampling method for which the values of all features match 

between both tools. When matching the resampling method (256 number of bins), the average for the 

CCC values of the RLGL features is 0.22 and 0.09 for GLCM features. 
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Table 2: Different resampling methods with CCC values of the default settings of both tools and CCC values which are closest to one.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOB = number of bins and BW = bin width. 

 

      
Resampling method 

 Feature number Maastro Moffitt CCC (BW = 25) CCC (NOB = 256) CCC closest to 1 NOB BW 

18 RLGL_shortRunEmphasis  Short Run Emphasis (SRE) 0.89 0.16 0.92 64 - 

19 RLGL_longRunEmphasis  Long Run Emphasis (LRE) 0.81 0.08 0.82 64 - 

20 RLGL_grayLevelNonuniformity  Gray-Level Nonuniformity (GLN) 0 0 0 - 1 

21 RLGL_runLengthNonuniformity  Run-Length Nonuniformity (RLN) -6.24E-06 -4.01E-06 -3.38E-06 - 1 

22 RLGL_runPercentage  Run Percentage (RP) 0.91 0.13 0.89 64 - 

23 RLGL_lowGrayLevelRunEmphasis  Low Gray-Level Run Emphasis (LGRE) 0.41 0.66 0.75 - 1 

24 RLGL_highGrayLevelRunEmphasis  High Gray-Level Run Emphasis (HGRE) -0.04 0 0.60 64 - 

25 RLGL_shortRunLowGrayLevEmpha  Short Run Low Gray-Level Emphasis (SRLGE) 0.46 0.76 0.84 - 1 

26 RLGL_shortRunHighGrayLevEmpha  Short Run High Gray-Level Emphasis (SRHGE) 0 0.01 0.01 256 - 

27 RLGL_longRunLowGrayLevEmpha  Long Run Low Gray-Level Emphasis (LRLGE) 0.07 0.58 0.75 - 1 

28 RLGL_longRunHighGrayLevEmpha  Long Run High Gray-Level Emphasis (LRHGE) 0.69 0.01 0.85 64 - 

29 GLCM_energy avgCoocurrence-Energy 0.01 0 0.37 8 - 

30 GLCM_contrast avgCoocurrence-CONTRAST 0 0.44 0.44 256 - 

31 GLCM_homogeneity1 avgCoocurrence-HOMOGENEITY 0.29 0.06 0.70 16 - 

32 GLCM_maxProb avgCoocurrence-MAXPROB 0.01 0 0.35 8 - 

33 GLCM_entrop2 avgCoocurrence-ENTROPY 0.19 0.02 0.49 32 - 

34 GLCM_sumAvg avgCoocurrence-SUMMEAN -0.05 0.01 0.19 64 - 
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Discussion 
  

The purpose of this study was to investigate if there is a difference between the numerical values for 

Radiomic features obtained by the Maastro and Moffitt software tool and whether it is possible to apply 

specific settings for the output to be comparable – in this case regarding the intensity resampling for 

textural features.  

 

We found substantial differences in numerical output between the Maastro and Moffitt tool. Differences 

in first order statistic features are due to the pre-processing. Shape and size features and textural 

features have differences likely due to research groups implementing algorithms of features differently. 

Alternatively, both tools have different settings for these feature groups which can also result in 

differences. There is no gold standard, but it is clear that standardization is necessary. 

 

As mentioned earlier, the feature names of each tool are different and algorithm matching was 

necessary to identify similar features. Regardless of the difference in feature definition lists, we were 

able to match 34 features by name and algorithm. Name alone was not sufficient to identify matching 

features, as the algorithms may be different even if the name is the same. 

 

Preprocessing of the images is different in both tools, but is not the only source of discrepancy. To 

prevent negative values, Maastro adds +1000 HU to the intensity values. This affects first order 

statistic features Stats_min, Stats_max, Stats_mean, Stats_median, Stats_energy and Stats_rms, 

which is reflected in the low CCC values for these features. The Pearson correlation coefficient (and 

R
2
), however, show that Stats_min, Stats_max, Stats_mean and Stats_median have strong linear 

relationships (R>0.99). The feature values for these features can be corrected by subtracting 1000 HU 

after feature extraction by the Maastro tool, which will then give the same numerical values for both 

tools. Hereby these features can be directly compared to each other. Features Stats_energy and 

Stats_rms cannot be straightforwardly corrected in a similar fashion due to the quadratic term in the 

feature’s mathematical definition. We calculated all features without the preprocessing of +1000 HU 

for one patient, to see if it affects other feature groups. We found that the addition of 1000 HU does 

not affect shape and size features and textural features, because the numerical values of these 

features remained the same. 

 

The Longest Diameter feature in the Moffitt tool was defined as the diameter in full 3D. Maastro 

calculates the diameter in four different ways; full 3D, full 2D transversal, full 2D coronal and full 2D 

sagittal. The CCC comparing the full 3D feature from Maastro with the Moffitt Longest Diameter 

feature was poor (<0.90). Comparing Longest Diameter with the alternative Maastro features did not 
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improve the CCC value. Therefore we have to conclude that there is an underlying difference in 

calculation.  

 

The numerical values of the features Shape_volumeNumber (Maastro) and Connected 3D 

components (Moffitt) are all similar except the numerical values of one patient. Although the 

agreement is good, this is not reflected in the CCC value. Hence, the CCC appears to be not a useful 

method to compare these features, due to the distribution of this feature. 

 

There is no resampling possible in the Moffitt software, unlike in the Maastro tool. Moffitt uses 256 

number of bins to generate textural features. Multiple resampling methods were calculated in the 

Maastro tool, to find out which setting of the Maastro tool matched with the default setting of the Moffitt 

tool. We changed the number of bins in the Maastro tool multiple times in 8, 16, 32, 64, 128 and 256. 

We also changed the bin width in the Maastro tool to 1, 5, 10, 25 and 50 HU. Above a certain bin width 

it will not be meaningful to calculate the features, however a maximum of 50 HU was chosen as a 

reasonable upper limit for this study. Only two features had reasonable agreement in numerical values 

for both tools using 256 number of bins, namely RLGL_shortRunHighGrayLevEmpha and 

GCLM_contrast. All resampling methods gave different results for textural features in this study, thus 

the change of intensity is an important factor. Leijenaar et al.
13

 carried out a similar study which 

examined if SUV discretization in FDG-PET images affects textural features. This study showed that 

different discretization methods affect textural features.
13

  

CCC values with the default setting of Maastro (bin width = 25 HU) were found to be poor (<0.90). 

However, even when matching the resampling scheme using 256 number of bins, the overall 

agreement in numerical values of the textural did not significantly approve, with an average for the 

CCC values of 0.22 for gray-level run-length features (RLGL) and 0.09 for gray-level co-occurrence 

features (GLCM).  

This study is one of the first studies comparing Radiomic software tools of two institutes. A recent 

conference contribution, Berthon et al.
24

, about texture analysis for Positiron Emission Tomography in 

oesophageal cancer shows that comparison between Radiomic methods is important to help 

standardize Radiomics.
24

 

The usability of the Moffitt tool was less than the Maastro tool. The Moffitt software consists of several 

different programs and there was no resampling possible. This has an influence on the outcome of this 

study because we cannot compare multiple resampling settings.  

In this study we chose to focus on a select group of features. There are more feature groups available 

in both tools. Although tools worldwide have similar features, each institution may apply them in a 

different way resulting in disparate results from the same sample analysis. We observed that Maastro 

and Moffitt investigated different features.
5,10,13,16 

It is possible that other features correspond better. 

Therefore we recommend to do further research in matching features. 
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To make a Radiomic tool that can be used in the clinic, more research has to be performed. Firstly, 

standardization of terminology of similar features used in different tools is required. Therefore, further 

research in the details of the differences in implementation for features that have the same name and 

definition should be done. Next, it is also required to explore all different kind of features used in both 

tools, in order to define a standard set of features that should be minimal integrated in each tool. 

Finally, for future comparison and validation, it is necessary that the software used in both tools is 

compatible. We therefore recommend further research to investigate the differences between the tools 

and to ensure interoperability. 

This comparative study has clearly pointed to the need of standardization of Radiomic algorithms, 

methods and tools before integration in decision support systems for lung cancer, and most important, 

validated in a multi-centric setting. 

.  
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Conclusion: 
 

A substantial difference between the Maastro and Moffitt tool in terms of feature values was observed. 

Some first order statistic features have a scaling difference of +1000 HU compared to the Moffitt 

features, but can be corrected afterwards to make them comparable between both tools. However, in 

general there is a poor agreement between both tools.  

When applying the same 256 number of bins intensity resampling for texture calculation in the Maastro 

tool as is used by the Moffitt tool, the agreement between both tools was still poor. Even though 

changing the intensity resampling scheme does affect numerical values for textural features, we have 

shown that there are more underlying differences that have to be investigated. 

This study has shown that comparing Radiomic results using different software implementations is not 

straightforward. To make comparisons in multicentre settings, and to ensure optimal decision support 

systems for lung cancer in the future, standardization of Radiomics is needed. 
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Appendices 

Appendix I: Definition of imaging features Maastro Clinic 
 

Supplement I: Radiomics Features 

In this study we explore a feature-based approach to extract and quantify meaningful and reliable 

information from CT images. In this section we describe in detail the different groups of imaging traits 

assessed in our study, that were used to derive a prognostic model in non-small cell lung carcinoma. 

We evaluated a total number of 440 CT imaging features, which are divided in four groups as follows: 

 

Group 1. First order statistics 

Group 2. Shape and size based features 

Group 3. Textural features 

Group 4. Wavelet features 

Group 1. First order statistics 

 

First-order statistics describe the distribution of voxel intensities within the CT image through 

commonly used and basic metrics. Let   denote the three dimensional image matrix with   voxels and 

  the first order histogram with    discrete intensity levels. The following first order statistics were 

extracted: 

1.1.  Energy: 

             
 

 

 

1.2.  Entropy: 

                     

  

   

 

1.3.  Kurtosis: 

         

 
 
            
   

  
 
 
            
    

  

where    is the mean of  . 

1.4.  Maximum: 

The maximum intensity value of  .  
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1.5.  Mean: 

     
 

 
     

 

 

 

1.6.  Mean absolute deviation: 

The mean of the absolute deviations of all voxel intensities around the mean intensity value. 

1.7.  Median: 

The median intensity value of  . 

1.8.  Minimum: 

The minimum intensity value of  . 

1.9.  Range: 

The range of intensity values of  . 

1.10.  Root mean square (RMS): 

     
       
 

 
 

1.11.  Skewness: 

         

 
 
            
   

  
 
 
            
    

  

where    is the mean of  . 

1.12.  Standard deviation: 

                    
 

   
           
 

   

 

   

 

where    is the mean of  . 

1.13.  Uniformity: 

                 

  

   

 

1.14.  Variance: 

         
 

   
           
 

   

 

where    is the mean of  . 

The standard deviation, variance and mean absolute deviation are measures of the histogram 

dispersion, that is, a measure of how much the gray levels differ from the mean. The variance, 

skewness and kurtosis are the most frequently used central moments. The skewness measures the 

degree of histogram asymmetry around the mean, and kurtosis is a measure of the histogram 

sharpness. As measures of histogram randomness we computed the uniformity and entropy of the 

image histogram. 
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Group 2. Shape and size based features 

In this group of features we included descriptors of the three-dimensional size and shape of the tumor 

region. Let in the following definitions   denote the volume and   the surface area of the volume of 

interest. We determined the following shape and size based features: 

2.1.  Compactness 1: 

              
 

   
 
 

 

2.2.  Compactness 2: 

                 
  

  
 

2.3.  Maximum 3D diameter: 

The maximum three-dimensional tumor diameter is measured as the largest pairwise 

Euclidean distance, between voxels on the surface of the tumor volume. 

2.4.  Spherical disproportion: 

                        
 

    
 

Where   is the radius of a sphere with the same volume as the tumor. 

2.5.  Sphericity: 

           
 
 
     

 
 

 
 

2.6.  Surface area: 

The surface area is calculated by triangulation (i.e. dividing the surface into connected 

triangles) and is defined as: 

   
 

 
           

 

   

 

Where   is the total number of triangles covering the surface and  ,   and   are edge vectors 

of the triangles. 

2.7.  Surface to volume ratio: 

                        
 

 
 

2.8.  Volume: 

The volume (   of the tumor is determined by counting the number of pixels in the tumor 

region and multiplying this value by the voxel size. 

The maximum 3D diameter, surface area and volume provide information on the size of the lesion. 

Measures of compactness, spherical disproportion, sphericity and the surface to volume ratio describe 

how spherical, rounded, or elongated the shape of the tumor is. 
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Group 3. Textural features 

 

The features shown above that resulted from group 1 (first-order statistics) provide information related 

to the gray-level distribution of the image; however they do not provide any information regarding the 

relative position of the various gray levels over the image. In this group we therefore included textural 

features describing patterns or the spatial distribution of voxel intensities, which were calculated from 

respectively gray level co-occurrence (GLCM), gray level run-length (GLRLM) and gray level size-zone 

(GLSZM) texture matrices. Determining texture matrix representations requires the voxel intensity 

values within the VOI to be discretized. Voxel intensities were therefore resampled into equally spaced 

bins using a bin-width of 25 Hounsfield Units. This discretization step not only reduces image noise, 

but also normalizes intensities across all patients, allowing for a direct comparison of all calculated 

textural features between patients. Texture matrices were determined considering 26-connected 

voxels (i.e. voxels were considered to be neighbors in all 13 directions in three dimensions). 

 

Gray-Level Co-Occurrence Matrix based features 

 

A GLCM is defined as           , a matrix with size       describing the second-order joint 

probability function of an image, where the      th element represents the number of times the 

combination of intensity levels   and   occur in two pixels in the image, that are separated by a 

distance of   pixels in direction  , and    is the number of discrete gray level intensities. As a two 

dimensional example, let the following matrix represent a 5x5 image, having 5 discrete gray levels: 

  

     

     

     

     

     

 

For distance     (considering pixels with a distance of 1 pixel from each other) in direction    , 

where 0 degrees is the horizontal direction, the following GLCM is obtained: 

       

     

     

     

     

     

 

In this study, distance   was set to 1 and direction   to each of the 13 directions in three dimensions, 

yielding a total of 13 gray level co-occurrence matrices for each 3D image. From these gray-level co-

occurrence matrices, several textural features are derived. Each 3D gray level co-occurrence based 

feature was then calculated as the mean of the feature calculations for each of the 13 directions. 
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Let: 

       be the co-occurrence matrix for an arbitrary   and  , 

   be the number of discrete intensity levels in the image, 

  be the mean of       , 

             
  
   

 be the marginal row probabilities, 

             
  
   

 be the marginal column probabilities, 

   be the mean of   , 

   be the mean of   , 

   be the standard deviation of   , 

   be the standard deviation of   , 

                
  
   

  
   

,      ,            , 

                
  
   

  
   

,        ,             , 

                     
  
   

 be the entropy of   , 

                     
  
   

 be the entropy of   , 

                       
  
   

  
   

 be the entropy of       , 

                              
  
   

  
   

, 

                                  
  
   

  
   

. 

 

3.1.  Autocorrelation: 

                          

  

   

  

   

 

3.2.  Cluster Prominence: 

                                      
 
      

  

   

  

   

 

3.3.  Cluster Shade: 

                                 
 
      

  

   

  

   

 

3.4.  Cluster Tendency: 

                                    
 
      

  

   

  

   

 

3.5.  Contrast: 
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3.6.  Correlation: 

            
                     

  
   

  
   

          
 

3.7.  Difference entropy: 

                                        

    

   

 

3.8.  Dissimilarity: 

                           

  

   

  

   

 

3.9.  Energy: 

                  

  

   

  

   

 

3.10.  Entropy ( ): 

                             

  

   

  

   

 

3.11.  Homogeneity 1: 

                
      

       

  

   

  

   

 

3.12.  Homogeneity 2: 

                
      

        

  

   

  

   

 

3.13.  Informational measure of correlation 1 (IMC1): 

     
        

ma        
 

3.14.  Informational measure of correlation 2 (IMC2): 

                      

3.15.  Inverse Difference Moment Normalized (IDMN): 

       
      

   
      

   

  

   

  

   

 

3.16.  Inverse Difference Normalized (IDN): 

      
      

   
     
 

 

  

   

  

   

 

3.17.  Inverse variance: 
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3.18.  Maximum Probability: 

                    ma          

3.19.  Sum average: 

                       

   

   

 

3.20.  Sum entropy: 

                                  

   

   

 

3.21.  Sum variance: 

                            

   

   

 

3.22.  Variance: 

                       

  

   

  

   

 

 

Gray-Level Run-Length matrix based features 

 

Run length metrics quantify gray level runs in an image. A gray level run is defined as the length in 

number of pixels, of consecutive pixels that have the same gray level value. In a gray level run length 

matrix         , the      th element describes the number of times   a gray level   appears 

consecutively in the direction specified by  , and    is the number of discrete gray level intensities. As 

a two dimensional example, consider the following 5x5 image, with 5 discrete gray levels: 

  

     

     

     

     

     

 

The GLRL matrix for    , where 0 degrees is the horizontal direction, then becomes: 
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In this study, a GLRL matrix was computed for every of the 13 directions in three dimensions, from 

which the below textural features were derived. Each 3D GLRL feature was then calculated as the 

mean of the feature values for each of the 13 directions. 

 

Let: 

         be the      th entry in the given run-length matrix   for a direction  , 

   the number of discrete intensity values in the image, 

   the number of different run lengths, 

   the number of voxels in the image. 

3.23.  Short Run Emphasis (SRE) 

    

   
        
  

 
  
   

  
   

          
  
   

  
   

 

3.24.  Long Run Emphasis (LRE) 

    
            

  
   

  
   

          
  
   

  
   

 

3.25.  Gray Level Non-Uniformity (GLN) 

    
           

  
    

   
   

          
  
   

  
   

 

3.26.  Run Length Non-Uniformity (RLN) 

    
           

  
   

 
 

  
   

          
  
   

  
   

 

3.27.  Run Percentage (RP) 

     
        

  

  

   

  

   

 

3.28.  Low Gray Level Run Emphasis (LGLRE) 

      
   

        
  

 
  
   

  
   

          
  
   

  
   

 

3.29.  High Gray Level Run Emphasis (HGLRE) 

      
            

  
   

  
   

          
  
   

  
   

 

3.30.  Short Run Low Gray Level Emphasis (SRLGLE) 

       

   
        
    

 
  
   

  
   

          
  
   

  
   

 

3.31.  Short Run High Gray Level Emphasis (SRHGLE) 
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3.32.  Long Run Low Gray Level Emphasis (LRLGLE) 

       
   

          

  
 

  
   

  
   

          
  
   

  
   

 

3.33.  Long Run High Gray Level Emphasis (LRHGLE) 

       
              

  
   

  
   

          
  
   

  
   

 

 

Gray-Level size-zone matrix based features 

 

A gray level size-zone matrix describes the amount of homogeneous connected areas within the tumor 

volume of a certain size and intensity. In a gray level size-zone matrix       , the      th element 

describes the number of times a homogeneous connected region with of size j, with intensity   

appears. As a two dimensional example, consider the following 5x5 image, with 5 discrete gray levels: 

  

     

     

     

     

     

 

The gray level size-zone matrix        then becomes: 

  

     

     

     

     

     

 

Let: 

       be the      th entry in the given size-zone matrix  , 

   the number of discrete intensity values in the image, 

   the size of the largest,homogeneous region in the volume of interest, 

   the number homogeneous areas in the image. 

 

 

 



Bachelor thesis | M.E. Pijls | MIRT | Fontys University of Applied Science | 2016 
 

34 
 

3.34.  Small area Emphasis (SAE) 

    

   
      
  

 
  
   

  
   

        
  
   

  
   

 

3.35.  Large area Emphasis (LAE) 

    
          

  
   

  
   

        
  
   

  
   

 

3.36.  Intensity variability (IV) 

   
         

  
    

   
   

        
  
   

  
   

 

3.37.  Size-zone variability (SZV) 

    
         

  
   

 
 

  
   

        
  
   

  
   

 

3.38.  Zone Percentage (ZP) 

     
      

  

  

   

  

   

 

3.39.  Low intensity Emphasis (LIE) 

    
   

      
  

 
  
   

  
   

        
  
   

  
   

 

3.40.  High intensity Emphasis (HIE) 

    
          

  
   

  
   

        
  
   

  
   

 

3.41.  Low intensity small area Emphasis (LISAE) 

      

   
      
    

 
  
   

  
   

        
  
   

  
   

 

3.42.  High intensity small area Emphasis (HISAE) 
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3.43.  Low intensity large area Emphasis (LILAE) 

      
   

        

  
 

  
   

  
   

        
  
   

  
   

 

3.44.  High intensity large area Emphasis (HILAE) 

      
            

  
   

  
   

        
  
   

  
   

 

 

Group 4. Wavelet features: first order statistics and texture of wavelet decompositions 

Wavelet transform effectively decouples textural information by decomposing the original image, in a 

similar manner as Fourier analysis, in low –and high-frequencies. In this study a discrete, one-level 

and undecimated three dimensional wavelet transform was applied to each CT image, which 

decomposes the original image   into 8 decompositions. Consider   and   to be a low-pass (i.e. a 

scaling) and, respectively, a high-pass (i.e. a wavelet) function, and the wavelet decompositions of   

to be labeled as     ,     ,     ,     ,     ,     ,      and     . For example,      is then 

interpreted as the high-pass sub band, resulting from directional filtering of   with a low-pass filter 

along x-direction, a low pas filter along y-direction and a high-pass filter along z-direction and is 

constructed as: 

                                         

  

   

  

   

  

   

 

Where    is the length of filter   and    is the length of filter  . The other decompositions are 

constructed in a similar manner, applying their respective ordering of low or high-pass filtering in x, y 

and z-direction. Wavelet decomposition of the image   is schematically depicted in Figure 1. Since 

the applied wavelet decomposition is undecimated, the size of each decomposition is equal to the 

original image and each decomposition is shift invariant. Because of these properties, the original 

tumor delineation of the gross tumor volume (GTV) can be applied directly to the decompositions after 

wavelet transform. In this study “Coiflet 1” wavelet was applied on the original CT images. For each 

decomposition we computed the first order statistics as described in Group 1 and the textural features 

as described in Group 3. 
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Supplement I Figure 1: Schematic of the undecimated three dimensional wavelet transform applied 

to each CT image. The original image   is decomposed into 8 decompositions, by directional low-pass 

(i.e. a scaling) and high-pass (i.e. a wavelet) filtering:     ,     ,     ,     ,     ,     ,      

and     . 
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Appendix II: Definition of imaging features Moffitt Cancer Center 

Image Feature List – Version 1.0 

 

No. Feature Description Calculation Range 

3D features    

1 Border Length  The border length of an image object is defined as the 
sum of edges of the image object that are shared with 
other image objects or are situated on the edge of the 
entire scene. 
The border length of a 3D image object is the sum of 
border lengths of all image object slices multiplied by the 
spatial distance between the slices. 
For torus and image objects with holes the border length 
sums the inner and outer border 

 

       

         

   

                        

 
Parameters 
bv: border length of image object v 
bv(slice): border length of image object slice 
bv(z): border length of image object in z-direction 
uslices: spatial distance between slices in the coordinate 
system unit 

[0, ∞] 

2. Length  The length of an image object is the largest of three 
eigenvalues of a rectangular 3D space that is defined by 
the same volume as the image object and the same 
proportions of eigenvalues as the image object. 
The length of an image object can be ≤ the largest of 
dimensions of the smallest rectangular 3D space 
enclosing the image object. 

 [0, ∞] 

3. Thickness The thickness of an image object is the smallest of three 
eigenvalues of a rectangular 3D space that is defined by 
the same volume as the image object and the same 
proportions of eigenvalues as the image object 
The thickness of an image object can be ≤ than the 
smallest of dimensions of the smallest rectangular 3D 
space enclosing the image object 

 [0, ∞] 
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4. Width The width of an image object is the middle of three 
eigenvalues of a rectangular 3D space that is defined by 
the same volume as the image object and the same 
proportions of eigenvalues as the image object. 
The width of an image object can be smaller or equal 
than the middle of dimensions of the smallest rectangular 
3D space enclosing the image object. 

 [0, ∞] 

5. Length/Thickness 
 

The length-to-thickness ratio of an image object. Length/Thickness 
 

[0, ∞] 

6. Length/Width The length-to-width ratio of an image object. Length/Width 
 

[0, ∞] 

7. Number of Pixels 
 

Number of pixels forming an image object.  [0, scene 
size] 

8. Volume 
 

The number of voxels forming an image object rescaled 
by using unit information for x 
and y coordinates and distance information between 
slices. 
 

Vv= #Pv*u²*uslices 
 
Vv: volume of image object v 
#Pv: total number of voxels contained in Pv 
u: size of a slice pixel in the coordinate system unit 
uslices: spatial distance between slices in the coordinate 
system unit 

[0, scene 
size] 

9. Asymmetry The more longish an image object, the more asymmetric 
it is. The feature value increases 
with the asymmetry. 
The asymmetry is calculated from the ratio between the 
smallest and largest 
eigenvalues of the image object. 

   
     

     
 

 
λmin: minimal eigenvalue 
λmax: maximal eigenvalue 

[0, 1] 

10. Border Index 
 

The more rough or 
jagged an image object is, the higher its border index. 
Similar to Shape index feature, but border index uses a 
rectangular approximation 
instead of a square. The smallest rectangle enclosing the 
image object is created. The 
border index is then calculated as the ratio of the Border 
length feature of the image object to the border length of 
this smallest enclosing rectangle. 
Expression: 

 
bv/2(lv+Wv) 
 
bv: image object border length 
lv: length of an image object v 
wv : width of an image object v 
 

[1, ∞] 
1 = ideal. 

11. Compactness A figure for the compactness of a 3D image object is 
calculated by a scaled product of its three eigenvalues 

2 λ1*2 λ2*2 λ3/Vv 
 

[0, ∞] 
1 = ideal. 
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2 λ1, 2 λ2, 2 λ3 divided by the number of its pixel/voxel. 
We include a factor of 2 with each eigenvalue, since 

λi eigenvectors represent otherwise half axes of an 
ellipsoid defined by its covariance matrix. The chosen 
approach thus provides an 
estimate of a cuboid occupied by the object. 

λ1: eigenvalue 1 of a 3D image object v 
λ2: eigenvalue 2 of a 3D image object v 
λ3: eigenvalue 3 of a 3D image object v 
Vv: volume of image object v 
 

12. Density The Density feature describes the spatial distribution of 
the pixels of an image object. 
The ideal compact shape on a pixel raster is the cube. 
The more the shape of an image 
object is like a cube, the higher its density. The more the 
shape of an image object is like 
a filament, the lower its density. 
It is calculated by the edge of the volume fitted cube 
divided by the fitted sphere radius. 

   
 

                     
 

 
Vv: volume of image object v 
3√V: edge of the volume fitted cube 
√Var(X) + Var(Y) + Var (Z): radius of the fitted sphere 

[0, 
depended 
on shape of 
image 
object] 

13. Elliptic Fit It describes how well an image object fits into an ellipsoid 
of similar size and proportions. 
While 0 indicates no fit, 1 indicates for a complete fitting 
image object. 
The calculation is based on an ellipsoid with the same 
volume as the considered image 
object. The proportions of the ellipsoid are equal to the 
proportions of the length to 
width to thickness of the image object. The volume of the 
image object outside the 
ellipsoid is compared with the volume inside the ellipsoid 
that is not filled out with the 
image object. 

 = 2.#{x,y,z)Pv : εv(X,Y,Z)1}/#Pv-1 
 
εv(x,y,z): elliptic distance at a pixel (x,y,z) 
Pv: set of pixels of an image object v 
#Pv: total number of pixels contained in Pv 

[0, 1]; 1 = 
complete 
fitting, 
whereas 0 = 
only 50% or 
less voxels 
fit inside the 
ellipsoid 

14. Main direction Main direction feature of a three-dimensional image 
object is computed as follows: 
1. For each image object slice (a 2D pieces of the image 
object in a slice) the centers of 
gravities are calculated. 
2. The coordinates of all centers of gravities are used to 
calculate a line of best fit 
according to the Weighted Least Square method. 
3. The angle α between the resulting line of best fit and 
the z-axis is returned as 

  
[0, 90] 
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feature value 

15. Radius of Largest 
Enclosed Ellipse 

It describes how much the shape of an image object is 
similar to an ellipsoid. The calculation is based on an 
ellipsoid with the same volume as the object and based 
on the covariance matrix. This ellipsoid is scaled down 
until it is totally enclosed by the 
image object. The ratio of the radius of this largest 
enclosed ellipsoid to the radius of the 
original ellipsoid is returned as feature value. 

εv(xo,yo,zo) 
with (xo,yo,zo) = min εv(x,y,z), (x,y,z)∉Pv 
εv(x,y,z): elliptic distance at a pixel (x,y,z) 
Expression: 
 

[0, ∞] 

16. Radius of Smallest 
Enclosing Ellipse 

The calculation is based on an ellipsoid with the same 
volume as the image object and 
based on the covariance matrix. This ellipsoid is enlarged 
until it encloses the image 
object in total. The ratio of the radius of this smallest 
enclosing ellipsoid to the radius of 
the original ellipsoid is returned as feature value. 

εv(xo,yo,zo) 

with (xo,yo,zo) = max εv(x,y,z), (x,y,z)∈σPv 
 
εv(x,y,z): elliptic distance at a pixel (x,y,z) 

[0, ∞] 
 

 

17. Rectangular Fit It describes how well an image object fits into a cuboid of 
similar size and proportions. 
While 0 indicates no fit, 1 indicates for a complete fitting 
image object. The calculation is based on a cuboid with 
the same volume as the considered image object. The 
proportions of the cuboid are equal to the proportions of 
the length to width to thickness of the image object. The 
volume of the image object outside the rectangle is 
compared with the volume inside the cuboid that is not 
filled out with the image object. 

 
                          

   
 

 
ρv(x,y,z): rectangular distance at a pixel (x,y) 
#Pv: total number of pixels contained in Pv 

[0, 1]; 1 = 
complete 
fitting, 
whereas 0 = 
0% fits 
inside the 
rectangular 
approximati
on 

18. Roundness Describes how much the shape of an image object is 
similar to an ellipsoid. The more the shape of an image 
object is similar to an ellipsoid, the lower its roundness. It 
is calculated by the difference of the enclosing ellipsoid 
and the enclosed ellipsoid. The radius of the largest 
enclosed ellipsoid is subtracted from the radius of the 
smallest 
enclosing ellipsoid. 

  
       

    
εv 
max: radius of smallest enclosing ellipsoid 
εv 
min: radius of largest enclosed ellipsoid 

[0, ∞]; 0 = 
ideal. 

19. Shape Index The smoother the surface of an image object is, the lower 
its shape index. It is calculated from the Border length 
feature of the image object divided by four times the 
square root of its area. 

Bv/Vv 
bv: image object border length 
Vv: volume of image object v 
 

[1, ∞]; 1 = 
ideal. 
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20. Histogram features The intensity histogram h(a) is the number of pixels 
occurred for brightness level “a” plotted against their 
brightness level.  The probability distribution of the 
brightness P(a) can be calculated as well. Six features:  
mean, standard deviation, skewness, kurtosis, energy, 
entropy were incorporated. 

 

1. mean=          
     
    

2. sd=                   
     
    

3. skewness=
                  
     
   

                   
     
   

    
 

4. kurtosis=
                  
     
   

                   
     
   

  
 

5. energy=                
     
    

6. entropy=                      
     
    

 

Where intensity range is [0,range] (normalized) 

prob(i)=
       

        
 , hist(i) is the frequency of intensity i 

appears. 

 

21. Run length matrix 
features 

Run-length texture features examine runs of similar gray 
values in an image. Runs may be labeled according to 
their length, gray value, and direction (either horizontal or 
vertical). Long runs of the same gray value  correspond to 
coarser textures, whereas shorter runs correspond to 
finer textures. Texture content was quantified by 
computing 11 features derived from the run-length 
distribution matrix. They are   
1: Short Run Emphasis (SRE).  
2: Long Run Emphasis (LRE).  
3: Gray-Level Nonuniformity (GLN).  
 4: Run Length Nonuniformity (RLN).   
5: Run Percentage (RP).   
6: Low Gray-Level Run Emphasis (LGRE).   
7: High Gray-Level Run Emphasis (HGRE).   
8: Short Run Low Gray-Level Emphasis (SRLGE).   
9: Short Run High Gray-Level Emphasis (SRHGE).   
10: Long Run Low Gray-Level Emphasis (LRLGE).   

       is the element of run-length matrix, let M be the 

number of gray levels, N be the maximum run length.     
is the total number of runs,    is the number of pixels in 

the image. Define 3 new matrices first. 

(a)                  

(b)               
    

(c)               
    

 

1. SRE=
 

  
 

     

  
 
    

2. LRE=
 

  
        

  
    

3. GLN=
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11: Long Run High Gray-Level Emphasis (LGHGE).  4. RLN=
 

  
      

  
    

5. RP=
  

  
 

6. LGRE=
 

  
 

     

  
 
    

7. HGRE=
 

  
        

  
    

8. SRLGE=
 

  
  

      

     
 
   

 
    

9. SRHGE=
 

  
  

         

  
 
   

 
    

10. LRLGE=
 

  
  

         

  
 
   

 
    

LRHGE=
 

  
               

   
 
    

22. Co-occurrence matrix 
features 

The Co-occurrence matrix is a matrix that contains the 
frequency of one gray level intensity appearing in a 
specified spatial linear relationship with another gray level 
intensity within a certain range. Computation of features 
requires first constructing the co-occurrence matrix, then 
different measurements can be calculated based on the 
matrix. The measurements include: contrast, energy, 
homogeneity, entropy, mean and max probability. 

       is the element of the co-occurrence matrix. 
 

1. Contrast=                  

2. Energy=                  

3. Homogeneity= 
      

           

4. Entropy=                         

5. Sum Mean=0.5*                 

Max probability=max(      ) 

 

23. Laws features Laws features are constructed from a set of five one-
dimensional filters, each designed to reflect to a different 
type of structure in the image. These one-dimensional 
filters are defined as E5 (edges), S5 (spots), R5 (ripples), 
W5 (waves), and L5 (low pass, or average gray value). 
By using these 1-D convolution filters, 3D filters are 
generated by convolving 3 types of 1D filter, such as 
L5L5L5, L5L5E5, L5L5S5, L5L5R5, L5L5W5, etc. The 

For each filtered images (125), the energy was calculated 
as following: 
 

,  

 

 

  
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total number of 3-D filters is 125. After the convolution 
with the 3D filters for the image, the energy of the texture 
feature can be computed. 

 

Where R is a normalizing factor, I and J, K are image 
dimensions,          is derived from the convolution filters 
and original image. 

24. Wavelet decomposition The discrete wavelet transform can iteratively decompose 
an image (3D) into four components. Each iteration splits 
the image both horizontally and vertically into low-
frequency (low pass) and high-frequency (high pass) 
components. Thus, four components are generated: a 
high-pass/high-pass component consisting of mostly 
diagonal structure, a high-pass/low-pass component 
consisting mostly of vertical structures, a low-pass/high-
pass component consisting mostly of horizontal structure, 
and a low-pass/low-pass component that represents a 
blurred version of the original image. Subsequent 
iterations then repeat the decomposition on the low-
pass/low-pass component from the previous iteration. 
These subsequent iterations highlight broader 
diagonal, vertical, and horizontal textures. And for each 
component, we calculated the energy feature. 

 
 

  

 
         shows the subblock elements and M, N, and L are 
the dimensions of each subblock and   

  
The number of features really depends on the number 
of decomposition level selected.  
1 level:  2* 8(block) = 16 features 

     2 level:  2* 15(block) = 30 features 

 

25. Fractional Anisotropy Fractional anisotropy of long vs. short axis 
                        

             
  

 

 
 

 
L: Length 
W: Width 
T: Thickness 

 

26. Spherecity It describes how spherical is the image object. 
 
 
       

 
 

  
 

Ap = surface area 
Vp = volume 

 

27 Number of 
Macrospiculations 

Number countable spiculations of tumor   

31. Distance of center of Measure of distance from center of gravity to border of   
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gravity to border of 
tumor 

the tumor. Reported as average, std dev, minimum and 
maximum. 

 
32. 

 
Attachment of tumor to 
other anatomical 
structures 

Describes the attachment of the tumor to the other 
anatomical structures. Reported as relative border to 
lung, relative border to attached structure, ratio of free to 
attached surface area. 

  

33. Intensity value of tumor 
in HU 

Brightness values of tumors measured in Hounsfield units 
(HU). Reported as mean(HU) and Std Dev (HU) 
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Appendix III: Cooperation contract Maastro Clinic 
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Appendix IV: CCC values of the compared diameter features 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Maastro features Moffitt feature CCC 

Shape_maxDiameter2D1  Longest Diameter 0.68 

Shape_maxDiameter2D2  Longest Diameter 0.69 

Shape_maxDiameter2D3  Longest Diameter 0.57 

Shape_maxDiameter3D  Longest Diameter 0.65 
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Appendix V: Calculated intercept, slope and R2 for all first order statistic 

features 
 

Moffitt features Maastro features Intercept Slope R
2
 

 Energy Stats_energy 1.00E+10 14.61 0.21 

 Min HU Stats_min 965.24 0.95 0.99 

 Max HU Stats_max 999.72 0.99 0.99 

 Mean HU Stats_mean 999.87 0.99 0.99 

 Variance HU Stats_var 49.58 0.99 0.99 

 Skewness HU Stats_skewness 0 0.99 0.99 

 Kurtosis HU Stats_kurtosis -0.02 1 0.99 

 Standard Deviation HU Stats_std 0.08 0.99 0.99 

 Mean Absolute Deviation HU Stats_md -0.02 1 0.99 

 Median HU Stats_median 999.95 0.99 0.99 

 Range HU Stats_range 8.89 0.99 0.99 

 Entropy Stats_entropy 0 1 0.99 

 RMS HU Stats_rms 1120.20 -0.86 0.77 

 Uniformity HU Stats_uniformity 0 0.99 0.99 
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Appendix VI: CCC values for each resampling scheme in textural features 
 

 


