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Abstract

Introduction:

Radiomic tools make it possible to extract large numbers of quantitative features from tumors using
medical images (e.g. CT/ MRI/ PET) that, in contrast to biopsies, are able to characterize the whole
tumor in a non-invasive way. To ensure interoperability of Radiomics, it is important to compare

different tools.

Objective:
To assess (1) if there is a difference between the implementation and numerical output of the Maastro
and Moffitt Radiomic algorithms and (2) if a specific setting in the Maastro tool make the numerical

values of texture features between two tools comparable.

Method:

A retrospective quantitative comparison study was performed on a cohort of NSCLC patients (N=42).
The features of both tools were matched by name and algorithm. RT-STRUCTS and CT-scans of the
patients were loaded in the tools to gain numerical values. To evaluate the similarity of the numerical
values between the tools, Pearson’s correlation coefficient and Lin's concordance correlation
coefficient (CCC) were used. Subsequently, textural feature values of Moffitt were compared to those

calculated using different intensity resampling methods with the Maastro tool.

Results:

34 features were matched. The strength of linear association (SA) for the Pearson correlation
coefficient was strong for 20 features, moderate for 5 features, weak for 1 feature, very weak for 1
feature and there was no correlation for 7 features. The CCC of 9 features was almost perfect, the
CCC of 1 feature was moderate and the CCC of 24 features was poor. There is no resampling method

which made the output of textural features comparable and all CCC values were poor.

Conclusion:
This study has shown that comparing Radiomics results using different software implementations is
not straightforward. To make comparisons in multicentre settings, and to ensure optimal decision

support systems for lung cancer in the future, standardization of Radiomics is needed.
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Samenvatting

Inleiding:

Radiomic tools kunnen grote aantallen kwantitatieve kenmerken (features) van tumoren uit medische
beelden (bijvoorbeeld CT / MRI / PET) extraheren die, in tegenstelling tot biopten, de gehele tumor
kunnen karaktiseren op een niet-invasieve manier. Om interoperabiliteit van Radiomics te waarborgen,

is het belangrijk om verschillende instrumenten te vergelijken.

Doelstelling:
Onderzoeken (1) of er een verschil is tussen de implementatie en numerieke output van de Maastro
en Moffitt Radiomic algoritmen en (2) het vinden van een specifieke instelling in de Maastro tool om

numerieke waarden van textuur kermerken vergelijkbaar te maken tussen de tools.

Methode:

Een kwantitatieve retrospectieve vergelijkingsstudie werd uitgevoerd op een cohort van NSCLC-
patiénten (N=42). De features van beide tools werden gematched met behulp van namen en
algoritmes. RT-STRUCTS en CT-scans van de patiénten werden in beide tools geladen om numerieke
waarden te verkrijgen. Om de gelijkenis van de numerieke waarden tussen de tools te evalueren, zijn
de Pearson correlatiecoéfficiént en de concordantie correlatiecoéfficiént (CCC) gebruikt. Vervolgens
werden de waarden van textuur features van Moffitt vergeleken met de verschillende berekende

intensiteit resampling instellingen van de Maastro tool.

Resultaten:

Vierendertig features zijn gematched. De Pearson correlatiecoéfficiént toonde een sterke lineaire
overeenkomst aan voor 20 features, een matige overeenkomst voor 5 features, een zwakke
overeenkomst voor 1 feature, een zeer zwakke overeenkomst voor 1 feature en er was geen correlatie
voor 7 features. De CCC van 9 features was bijna perfect, de CCC van 1 feature was matig en de
CCC van 24 features was slecht. Alle resampling instellingen gaven slechte CCC’s en geen

vergelijkbare output voor textuur features.

Conclusie:

Deze studie laat zien dat het niet eenvoudig is om Radiomics resultaten met verschillende
softwareimplementaties te vergelijken. Om vergelijkingen in een multicentrische setting te maken en
om te zorgen voor optimale beslissingsondersteunende systemen voor longkanker in de toekomst, is

standaardisatie van Radiomics nodig.
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Introduction

Current cancer treatments are often inadequate, with 75% being ineffective in the clinic. This is
thought to be due to the strong intra- and inter patient heterogeneity."? Therefore, over the past
decade, investment into new diagnostic and treatment modalities has been carried out. This has led to
an increased amount of patient specific information, including identification of novel disease
biomarkers using genomics, proteomics and non-invasive imaging approaches, in order to classify
subgroups of patients to more adequately refer patients to the right treatment.> Genomics and
proteomic approaches are successfully used in the clinic currently to obtain the molecular
characteristics of diseased tissues, but come with high associated risks and costs for the patient,

because of biopsies. Therefore there is much room for improvement within clinical practice.*

In the last ten years the use of medical imaging technologies (e.g. Computed Tomography (CT)/
Magnetic Resonance Imaging (MRI)/ Positron Emission Tomography (PET)) has greatly expanded.
Primarily these technologies are used as a diagnostic tool however they play an increasingly crucial
role in individualized patient care. Compared to other variables such as demographics, blood
biomarkers, pathology and genomics, it is expected that imaging gives valuable complementary
information, which can for instance be used to predict outcome for a specific patient.5 This new use of
imaging is a major step towards personalized medicine and provides valuable diagnostic, prognostic

and predictive information.®

Current imaging technology makes it possible to extract large numbers of quantitative features from
tumors using medical images (e.g. CT/ MRI/ PET) that, in contrast to biopsies, are able to characterize
the whole tumor in a non-invasive way.5 This field of research is referred to as Radiomics. Radiomic
features can for instance, provide information about tumor image intensity, shape and texture. In order
to extract these variables from medical images, software tools are being developed which implement
Radiomic algorithms. The combination of specific variables as mentioned above (demographics, blood
biomarkers, pathology and genomics) in combination with Radiomics has the potential to improve a
patient’s prognostic information and make a step towards personalized medicine. However, combining
these data is overly complex for clinicians. Therefore the use of decision support systems will be able
to strive towards the right treatment for a specific patient in order to improve outcomes and Quality of
Life (QoL) as well as efficiency of care for different cancer sites, e.g. lung cancer, the leading cause of
cancer related deaths amongst males and accounts for 13% of all cancer diagnosis.” In 2012 there
were 1.8 million new cases reported and it is projected that by 2030 the number of lung cancer deaths

will have surpassed 10 million.®

Radiomics is a rapidly expanding field of research that could have large clinical impact, providing an
unprecedented opportunity to improve decision-support for physicians at low cost. Knowledge on
Radiomic features of patients with non small cell lung carcinoma (NSCLC) is already available from

5,8,9,10

earlier studies. Because Radiomics is a relative new study, there is still much to explore in this
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research field. In particular it has become apparent that there is a need for standardization of

Radiomics.™

Most of the research concerning Radiomics was undertaken in specific centers in the U.S., The
Netherlands and Canada. Two of these centers, Moffitt Cancer Center (Tampa, FL, U.S.) and Maastro
Clinic (Maastricht, The Netherlands), participate in the Quantitative Imaging Network (QIN) of the
National Cancer Institute (NCI) of the u.s.*

Moffitt has a vast database of patient samples including tissues and gene expression profiling.
Maastro is a known world leader in radiation oncology.8 Gillies et al.® describe the vision of both
institutions as follows: “Moffitt and MAASTRO have shared a vision that quantitative features extracted

from standard of care images have the potential to provide higher prognostic and predictive value.”

Both institutes developed their own Radiomic tools and it is important to compare Radiomic results
from different institutes. The algorithms implemented in the tools provide numerical values. In the
Maastro tool it is possible to change certain parameters of feature calculations. Before calculating
textural features, the image intensities are typically resampled into a reduced number of discrete bins.
To achieve this, two methods can be applied: (1) dividing the Houndsfield Units (HU) range into a fixed
number of equally spaced bins, where the bin size (i.e. intensity resolution) depends on the range of
HU values in each image; and (2) maintaining a constant bin size for each image. The choice of
resampling methodology was shown to have a crucial effect on textural features and their
interpretation in a study on PET images of NSCLC patients.13 The number of bins can be set to, e.g.,
8, 16 or 32 discrete values (this means that the HU values of every image will be “resampled” to the
same range of values). The bin size (bin width) can be set to any value (in HU). The Maastro and
Moffitt implementations both use a different resampling scheme. The default for the Maastro tool is a
bin width of 25 HU, whereas the default for the Moffitt tool is to use 256 number of bins. In contrast to

the Maastro tool, the resampling scheme cannot be altered in the Moffitt tool.

Since this is a relatively new research area in lung cancer, it is valuable to compare the tools
developed by different institutes, e.g., between Maastro and Moffitt, in order to potentially standardize
Radiomics and to facilitate multi-institutional studies to optimize decision support systems for lung

cancer globally in the future.

Therefore, this project focused on the comparison of the implementation and numerical output of the
Radiomic features algorithms of two research groups, Maastro and Moffitt. In conjunction with the
differences observed between the two tools, parameters of texture features will be changed in the

Maastro tool, to see if this affects numerical values obtained.

The aim of this project is to assess (1) if there is a difference between the implementation and
numerical output of the Maastro and Moffitt Radiomic algorithms in an identical dataset and
(2) if specific settings in the Maastro tool have to be applied to make numerical values of texture

features between two tools comparable. This effort will lead to the following research question:
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What is the difference in numerical values for Radiomic features obtained by the Maastro and
Moffitt software tool in a cohort of NSCLC patients and can certain settings be applied to make

the output in textural features comparable?
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Method

Design
This research is a retrospective quantitative comparison study. In this study we investigated the

difference between the numerical values for Radiomic features of NSCLC patients between Maastro
and Moffitt and determined if changing the resampling scheme for textural features affects this

difference.

Population
In this study data from a cohort of 52 NSCLC patients, treated between July 2015 and March 2016,

have been included for analysis. Patients were randomly chosen from all patients treated with curative
intent; all stages of NSCLC were included and there were no restrictions for age or gender. Patients
with lung metastasis from a non-lung primary tumor were excluded from this study. For all included
patients the treatment CT-scans and the corresponding structure sets (RTSTRUCTS) have been
retrieved from the database of Maastro. In this process all data were anonymized by the IT department

of Maastro, removing all privacy sensitive information.

Measuring instruments
All CT-scans were performed before radiation therapy at Maastro, according to standard clinical

scanning protocols. In this population, patients were scanned on one of the following three scanners: a
Sensation 10 CT scanner RT (Siemens, 2004), a Sensation Open CT scanner RT (Siemens, 2006), or
a Biograph TruePoint 40 (PET)-CT RT (Siemens, 2006). A spiral CT was performed covering the
complete thoracic region. Images were reconstructed with an in plane pixel spacing of 0.977 mm x
0.977 mm, with a slice thickness of 3 mm. The primary lung tumor was delineated manually for
treatment planning purposes on Eclipse (Varian Medical System, Palo Alto, CA, USA). There was no

contrast used.

Data collection
The CT-images and RTSTRUCTS were used for this comparison study. On the CT-images, the

tumors can be defined with an ROI (Region Of Interest). These ROIs were defined by a physician.
From the RTSTRUCTS, all Gross Tumor Volumes (GTVs) have been used in the Radiomic tools to

extract the Radiomic features (Appendix | and I1).

The Radiomic tool of Maastro is designed by Ralph Leijenaar.l?”14 The Maastro tool runs on MATLAB
R2014a (8.3). The software is able to extract a large number of quantitative features, however, for this
study we focused on the features of the following groups: first order statistics (N=15), shape and size
based features (N=12) and gray-level co-occurrence matrix (GLCM) and gray-level run-length matrix
(RLGL) textural features (N=44). Appendix | describes the definitions as follows: “First-order statistics
describe the distribution of voxel intensities within the CT image through commonly used and basic
metrics. In shape and size based features we included descriptors of the three-dimensional size and

shape of the tumor region. Textural features describe patterns or the spatial distribution of voxel
Bachelor thesis | M.E. Pijls | MIRT | Fontys University of Applied Science | 2016

10



intensities.” Textural features have different groups, namely GLCM and RLGL. If these abbreviations
are standing in front of a feature, for example GLCM, this means that they belong to this particular

group. Appendix | also describes corresponding algorithms of the features, used in this tool.***

First, the data was loaded into the Maastro tool. Once loaded, the ROI of interest (in this case the
GTV) was selected for each patient from the list of available ROIs (e.g. the lungs, the heart, etc.). The
GTV was selected automatically whenever possible, but since there is no naming convention for ROIs
(the GTV can be named, for instance, GTV-1, GTVpl, GTV-tumor, tumor, etc.), the software also
allowed manual selection of the GTV for each patient. The features of interest, first order statistics,
shape and size based features and the required textural features have been selected. The tool
extracted these features from the selected GTVs of each patient and the results were exported into

Excel spreadsheets, Microsoft Excel 2010. Most numerical values of the features are unitless.

Moffitt uses MATLAB R2016a to extract Radiomic features. Appendix Il describes the definitions of the

features with corresponding algorithms used in this tool.'0®

Excel spreadsheets derived from the
Maastro tool with the names of the selected GTVs were used. The RTSTRUCTS of the patients were
loaded in MATLAB and the provided GTVs were selected. Moffitt extracted the GTVs of interest
identified in the Maastro tool and converted them from Digital Imaging and Communications in
Medicine (DICOM) format to Portable Network Graphics (PNG) images with a MATLAB script. The
selected GTVs of both tools had to be the same to make a correct comparison. Converting an
RTSTRUCT into a binary pixel mask is different in each tool, which may lead to differences in output.
Then the CT-images and transformed GTVs were loaded in MATLAB so the features could be
extracted with an implemented code. Most features were unitless and were imported into Excel

spreadsheets, Microsoft Excel 2010.

Data analysis
To compare the Radiomic tools, first a list of included features was created. To make this list, the

Radiomic features of Maastro and Moffitt were matched by name and by algorithm. Features that
could not be matched were not included in this research. The included features and their respective
feature groups (i.e. first order statistics, shape and size based features or textural features) are given
in Table 1.

To obtain the numerical values from the tools, the CT-images and RTSTRUCTS of each patient were
processed by both tools. Each feature therefore had two values for each patient; one for the Maastro

tool and one for the Moffitt tool.

To evaluate the similarity of the Moffitt numerical values with the Maastro numerical values, the

Pearson correlation coefficient and Lin’s concordance correlation coefficient (CCC) were used.™
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The Pearson correlation coefficient has been calculated for each matching feature between Maastro
and Moffitt, in order to be implemented in the CCC calculation. This coefficient has been calculated
with the standard formula for correlation (=CORREL) in Excel. Correlation coefficient size is defined
follows; If the correlation range (CR) is 0.81 to 1.00, the strength of linear association (SA) is strong, if
CR is 0.61 to 0.80 the SA is moderate, if CR is 0.41 to 0.60 the SA is weak, if CR is 0.21 to 0.40 the
SA is very weak and if CR is 0.00 to 0.20 there is no SAY

Let x and y be the feature values of the Maastro and Moffitt tool, respectively. The formula of the CCC

2poy0
thenis: CCC = T i >
Ox+0y+(Uxtiy)

Where p is the Pearson correlation, ¢ the standard deviation, o2 the variance, and u the mean.'®

The CCC has four different strength-of-agreements. A CCC >0.99 is almost perfect, a CCC between
0.95 — 0.99 is substantial, a CCC between 0.90 — 0.95 is moderate and a CCC<0.90 is poor." First all
components (o, o2 and u) have been calculated separately from each other and then the formula of
the CCC was made in Excel combining all individual components. Because the manual input of the

formula in Excel is prone to errors, the CCC was verified with an online calculator of the ccec.®

The Pearson correlation coefficient and CCC values from -1 to +1 have been visualized in a column

chart, with features on the x-axis and similarity on the y-axis (Figure 1).

The CCC measures reliability between two variables, based on covariation and correspondence. The
Pearson correlation coefficient measures the linear covariation between two variables, independently
of correspondence. The Pearson correlation coefficient thus evaluates if there is a linear continuity
between the numerical values of Maastro and Moffitt, whereas the CCC also evaluates the degree to

which numerical values of matching features fall on the 45° line through the origin.'%*%##23

To visualize the linearity between features, a scatter plot of the linear fit was made in Excel (Figure 2).
For each feature a linear fit is calculated with formula y = ax + b, where a is the slope and b the
intercept between the Maastro and Moffitt feature. R? is the same as the Pearson correlation
coefficient squared, so the linear correlation between both features expressed as a value between 0
and 1, where 0 is no correlation and 1 is a perfect correlation. A value of +1 is a perfect correlation and

-1 is a perfect negative correlation.

For the second part of this study we determined if changing the intensity resampling scheme for
texture in the Maastro tool would have an impact on the outcome™ and if matching this setting
between both tools would make their outputs comparable. We changed the bin width in the Maastro
tool to 1, 5, 10, 25 and 50 HU and the number of bins to 8, 16, 32, 64, 128 and 256, of which the latter

matches the default setting of the Moffitt tool. The CCC was calculated for each feature, for all different
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intensity resampling settings (i.e., for each setting the feature values were compared to those
determined by the Moffitt software).

Ethics

All patient related data in this study was anonymized. Therefore, ethical approval by the Medical
Committee was not required and it was not necessary to seek consent for its use. Attached is the
signed cooperation contract from Maastro (Appendix Ill). In agreement with signing this contract all

data has been contained within Maastro and remain anonymous (Article 12).
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Results

We matched 34 features from Maastro and Moffitt by name and algorithm; first order statistics (N=14),
shape and size based features (N=3) and GLCM and RLGL textural features (N=17). See Table 1 for

the list of matched features.

Out of the 52 selected patients loaded in the Maastro tool, 10 patients did not have a defined GTV.
Without a GTV the features cannot be extracted from the image, therefore these patients were

excluded. The patients with a defined GTV (n=42) were included in this study.

The Pearson correlation coefficient and CCC were calculated for all features using the default settings
of the Maastro tool (bin width 25 HU) and the Moffitt tool (256 number of bins). The strength of
association (SA) for the Pearson correlation coefficient was found to be strong for 20 features,
moderate for 5 features, weak for 1 feature, very weak for 1 feature and there was no correlation for 7
features. The CCC of 9 features was almost perfect, the CCC of 1 feature is moderate and the CCC of

24 features is poor (Table 1). See Figure 1 for a column chart of these results.

The Pearson correlation coefficient shows that 20 features have a strong SA and of these 20 features,
9 have an almost perfect CCC. Four features have a moderate Pearson correlation coefficient, and

just one of those features has a moderate CCC. All other features have poor agreement (Table 1).

Correlation between Maastro v.s. Moffitt tool

12345672829 1011121 141516171819202 222324252 2728293031323334

15

Similarity
o
o (6]

o
o1

'
[AEY

Features

B CCC (Binwidth = 25 HU) B Pearson cc (Binwidth = 25 HU)

Figure 1: Column chart of the CCC and Pearson correlation coefficient (cc) between the Maastro and Moffitt tool, with the

default setting of the Maastro and Moffitt tool. The feature names of these numbers are shown in Table 1.
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Table 1: Matching features of Maastro and Moffitt with the calculated CCC and Pearson correlation coefficient (cc), with a

default setting for both tools.

Feature number | Feature catagory | Maastro Moffitt Pearson cc
1 First order statistics | Stats_energy Energy
2 First order statistics | Stats_min Min HU
3 First order statistics | Stats_max Max HU
4 First order statistics | Stats_mean Mean HU
5 First order statistics | Stats_var Variance HU 0.99 0.99
6 First order statistics | Stats_skewness Skewness HU 0.99 0.99
7 First order statistics | Stats_kurtosis Kurtosis HU 0.99 0.99
8 First order statistics | Stats_std Standard Deviation HU 0.99 0.99
9 First order statistics | Stats md Mean Absolute Deviation HU 0.99 0.99
10 First order statistics | Stats_median Median HU _ 0.99
11 First order statistics | Stats_range Range HU 0.99 0.99
12 First order statistics | Stats_entropy Entropy 0.99 0.99
13 First order statistics | Stats_rms RMS HU _
14 First order statistics | Stats_uniformity Uniformity HU 0.99
15 Shape & size Shape_volumeNumber Connected 3D components 0.88
16 Shape & size Shape_volume Volume 0.99 0.99
17 Shape & size Shape_maxDiameter3D Longest Diameter - 0.71
18 Textural features RLGL_shortRunEmphasis Short Run Emphasis (SRE) 0.91
19 Textural features RLGL_longRunEmphasis Long Run Emphasis (LRE) - 0.82
20 Textural features RLGL_grayLevelNonuniformity Gray-Level Nonuniformity (GLN) - 0.74
21 Textural features RLGL_runLengthNonuniformity Run-Length Nonuniformity (RLN) _
22 Textural features RLGL_runPercentage Run Percentage (RP) ‘ . | 0.91
23 Textural features RLGL_lowGrayLevelRunEmphasis Low Gray-Level Run Emphasis (LGRE) - 0.96
24 Textural features RLGL_highGrayLevelRunEmphasis | High Gray-Level Run Emphasis (HGRE) _
25 Textural features RLGL_shortRunLowGrayLevEmpha | Short Run Low Gray-Level Emphasis (SRLGE) - .
26 Textural features RLGL_shortRunHighGrayLevEmpha | Short Run High Gray-Level Emphasis (SRHGE) _
27 Textural features RLGL_longRunLowGrayLevEmpha | Long Run Low Gray-Level Emphasis (LRLGE) - 0.73
28 Textural features RLGL_longRunHighGrayLevEmpha | Long Run High Gray-Level Emphasis (LRHGE) - 0.83
29 Textural features GLCM_energy avgCoocurrence-Energy _
30 Textural features GLCM_contrast avgCoocurrence-CONTRAST - 0.64
31 Textural features GLCM_homogeneityl avgCoocurrence-HOMOGENEITY - 0.63
32 Textural features GLCM_maxProb avgCoocurrence-MAXPROB _
33 Textural features GLCM_entrop2 avgCoocurrence-ENTROPY _
34 Textural features GLCM_sumAvg avgCoocurrence-SUMMEAN _

Legend:
CccC

Pearson correlation coefficient

Almost perfect (> 0.99)

Substantial (0.95 - 0.99)

Moderate (0.90 - 0.95)

Strong (0.81 - 1.00)

Moderate (0.61 - 0.80)
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The CCC values are generally poor (<0.90), indicating there is a substantial difference in feature
values obtained with both tools. For the Pearson correlation coefficient all first order statistic features

have a strong linear association, except the features Stats_energy and Stats_rms (Table 1).

For two features we observed a substantial negative Pearson correlation. The Pearson correlation
coefficient is -0.88 for matched feature 13 and -0.62 for matched feature 21. This means that these
features have an inverse linear relationship and act in the opposite way. The interpretation of a perfect

negative correlation is that for an increase in X of 1, there is a decrease in Y of 1.

It appears that Maastro has four different ways to calculate the diameter, while Moffitt has just one
feature to calculate the diameter. Moffitt calculates the diameter only full 3D and Maastro calculates
the diameter in full 2D transversal, full 2D coronal and full 2D sagittal, in addition to the calculation of
full 3D. We calculated the CCC for the four different diameters of Maastro and the diameter of Moffitt.
The CCC values were all poor and the CCC of the match Shape_maxDiameter3D (full 3D) of Maastro
and Longest Diameter of Moffitt was 0.65. See Appendix IV for all CCC values of the compared

diameter features of Maastro and Moffitt.

A scaling difference was found in some features. First order statistics Maastro features Stats_min,
Stats_max, Stats_median and Stats_mean have a scaling difference of +1000 HU compared to the
Moffitt features, which is reflected in the intercept of a linear fit between the Maastro and Moffitt values
(Appendix V). In Appendix V the intercept, slope and R’ (which equals the Pearson correlation
coefficient squared) for all first order statistic values are shown. A scatter plot of the maximum HU
(Moffitt: “Max HU” and Maastro “Stats_max”) visualizes the linear fit and the offset in HU (Figure 2). As

illustrated in Appendix V, this also applies to Stats_min, Stats_median and Stats_mean.

Linear fit
2600 —2
(1]
E|
B 10006
CU 11U
n y = 0.9997x + 999.72
R2 = 0.9999
-400 -200 0 200 400 600 800 1000 1200

Max HU

Figure 2: Scatterplot of linear fit of features Stats_max (Maastro) v.s. Max HU (Moffitt).
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For the second part of this study, the resampling scheme was changed several times to assess
whether changing this setting had an impact on the obtained results for the included textural features
and to find out if matching the setting of the Moffitt tool (256 number of bins) and the Maastro tool
results in comparable numerical values for both tools. We also identified the resampling schemes
which produced CCC values closest to one. The results for each resampling scheme are provided in
Appendix VI. In Table 2 the CCC values for the default settings of the Maastro tool (bin width 25 HU),
the resampling scheme of the Moffitt tool (256 number of bins) and the resampling method that
resembles the output of the Moffitt tool most closely, including the respective CCC values, are
presented.

Indicated by low CCC values, there is no resampling method for which the values of all features match
between both tools. When matching the resampling method (256 number of bins), the average for the
CCC values of the RLGL features is 0.22 and 0.09 for GLCM features.
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Table 2: Different resampling methods with CCC values of the default settings of both tools and CCC values which are closest to one.

Resampling method

Feature number | Maastro Moffitt CCC (BW =25) | CCC (NOB =256) |CCCclosestto 1 NOB BW
18 RLGL_shortRunEmphasis Short Run Emphasis (SRE) 0.89 0.16 0.92 64 -
19 RLGL_longRunEmphasis Long Run Emphasis (LRE) 0.81 0.08 0.82 64 -
20 RLGL_grayLevelNonuniformity Gray-Level Nonuniformity (GLN) 0 0 0 - 1
21 RLGL_runLengthNonuniformity Run-Length Nonuniformity (RLN) -6.24E-06 -4.01E-06 -3.38E-06 - 1
22 RLGL_runPercentage Run Percentage (RP) 0.91 0.13 0.89 64 -
23 RLGL_lowGrayLevelRunEmphasis Low Gray-Level Run Emphasis (LGRE) 0.41 0.66 0.75 - 1
24 RLGL_highGrayLevelRunEmphasis High Gray-Level Run Emphasis (HGRE) -0.04 0 0.60 64 -
25 RLGL_shortRunLowGrayLevEmpha Short Run Low Gray-Level Emphasis (SRLGE) 0.46 0.76 0.84 - 1
26 RLGL_shortRunHighGrayLevEmpha Short Run High Gray-Level Emphasis (SRHGE) 0 0.01 0.01 256 -
27 RLGL_longRunLowGrayLevEmpha Long Run Low Gray-Level Emphasis (LRLGE) 0.07 0.58 0.75 - 1
28 RLGL_longRunHighGrayLevEmpha Long Run High Gray-Level Emphasis (LRHGE) 0.69 0.01 0.85 64 -
29 GLCM_energy avgCoocurrence-Energy 0.01 0 0.37 8 -
30 GLCM_contrast avgCoocurrence-CONTRAST 0 0.44 0.44 256 -
31 GLCM_homogeneityl avgCoocurrence-HOMOGENEITY 0.29 0.06 0.70 16 -
32 GLCM_maxProb avgCoocurrence-MAXPROB 0.01 0 0.35 8 -
33 GLCM_entrop2 avgCoocurrence-ENTROPY 0.19 0.02 0.49 32 -
34 GLCM_sumAvg avgCoocurrence-SUMMEAN -0.05 0.01 0.19 64 -

NOB = number of bins and BW = bin width.
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Discussion

The purpose of this study was to investigate if there is a difference between the numerical values for
Radiomic features obtained by the Maastro and Moffitt software tool and whether it is possible to apply
specific settings for the output to be comparable — in this case regarding the intensity resampling for

textural features.

We found substantial differences in numerical output between the Maastro and Moffitt tool. Differences
in first order statistic features are due to the pre-processing. Shape and size features and textural
features have differences likely due to research groups implementing algorithms of features differently.
Alternatively, both tools have different settings for these feature groups which can also result in

differences. There is no gold standard, but it is clear that standardization is necessary.

As mentioned earlier, the feature names of each tool are different and algorithm matching was
necessary to identify similar features. Regardless of the difference in feature definition lists, we were
able to match 34 features by name and algorithm. Name alone was not sufficient to identify matching

features, as the algorithms may be different even if the name is the same.

Preprocessing of the images is different in both tools, but is not the only source of discrepancy. To
prevent negative values, Maastro adds +1000 HU to the intensity values. This affects first order
statistic features Stats_min, Stats_max, Stats_mean, Stats_median, Stats_energy and Stats_rms,
which is reflected in the low CCC values for these features. The Pearson correlation coefficient (and
RZ), however, show that Stats min, Stats_max, Stats_mean and Stats_median have strong linear
relationships (R>0.99). The feature values for these features can be corrected by subtracting 1000 HU
after feature extraction by the Maastro tool, which will then give the same numerical values for both
tools. Hereby these features can be directly compared to each other. Features Stats_energy and
Stats_rms cannot be straightforwardly corrected in a similar fashion due to the quadratic term in the
feature’s mathematical definition. We calculated all features without the preprocessing of +1000 HU
for one patient, to see if it affects other feature groups. We found that the addition of 1000 HU does
not affect shape and size features and textural features, because the numerical values of these

features remained the same.

The Longest Diameter feature in the Moffitt tool was defined as the diameter in full 3D. Maastro
calculates the diameter in four different ways; full 3D, full 2D transversal, full 2D coronal and full 2D
sagittal. The CCC comparing the full 3D feature from Maastro with the Moffitt Longest Diameter

feature was poor (<0.90). Comparing Longest Diameter with the alternative Maastro features did not
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improve the CCC value. Therefore we have to conclude that there is an underlying difference in

calculation.

The numerical values of the features Shape_ volumeNumber (Maastro) and Connected 3D
components (Moffitt) are all similar except the numerical values of one patient. Although the
agreement is good, this is not reflected in the CCC value. Hence, the CCC appears to be not a useful

method to compare these features, due to the distribution of this feature.

There is no resampling possible in the Moffitt software, unlike in the Maastro tool. Moffitt uses 256
number of bins to generate textural features. Multiple resampling methods were calculated in the
Maastro tool, to find out which setting of the Maastro tool matched with the default setting of the Moffitt
tool. We changed the number of bins in the Maastro tool multiple times in 8, 16, 32, 64, 128 and 256.
We also changed the bin width in the Maastro tool to 1, 5, 10, 25 and 50 HU. Above a certain bin width
it will not be meaningful to calculate the features, however a maximum of 50 HU was chosen as a
reasonable upper limit for this study. Only two features had reasonable agreement in numerical values
for both tools using 256 number of bins, namely RLGL_shortRunHighGrayLevEmpha and
GCLM_contrast. All resampling methods gave different results for textural features in this study, thus
the change of intensity is an important factor. Leijenaar et al.”® carried out a similar study which
examined if SUV discretization in FDG-PET images affects textural features. This study showed that

different discretization methods affect textural features.*®

CCC values with the default setting of Maastro (bin width = 25 HU) were found to be poor (<0.90).
However, even when matching the resampling scheme using 256 number of bins, the overall
agreement in numerical values of the textural did not significantly approve, with an average for the
CCC values of 0.22 for gray-level run-length features (RLGL) and 0.09 for gray-level co-occurrence
features (GLCM).

This study is one of the first studies comparing Radiomic software tools of two institutes. A recent
conference contribution, Berthon et al.**, about texture analysis for Positiron Emission Tomography in
oesophageal cancer shows that comparison between Radiomic methods is important to help

standardize Radiomics.?*

The usability of the Moffitt tool was less than the Maastro tool. The Moffitt software consists of several
different programs and there was no resampling possible. This has an influence on the outcome of this

study because we cannot compare multiple resampling settings.

In this study we chose to focus on a select group of features. There are more feature groups available
in both tools. Although tools worldwide have similar features, each institution may apply them in a
different way resulting in disparate results from the same sample analysis. We observed that Maastro

5,10,13,16

and Moffitt investigated different features. It is possible that other features correspond better.

Therefore we recommend to do further research in matching features.
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To make a Radiomic tool that can be used in the clinic, more research has to be performed. Firstly,
standardization of terminology of similar features used in different tools is required. Therefore, further
research in the details of the differences in implementation for features that have the same name and
definition should be done. Next, it is also required to explore all different kind of features used in both
tools, in order to define a standard set of features that should be minimal integrated in each tool.
Finally, for future comparison and validation, it is necessary that the software used in both tools is
compatible. We therefore recommend further research to investigate the differences between the tools

and to ensure interoperability.

This comparative study has clearly pointed to the need of standardization of Radiomic algorithms,
methods and tools before integration in decision support systems for lung cancer, and most important,

validated in a multi-centric setting.
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Conclusion:

A substantial difference between the Maastro and Moffitt tool in terms of feature values was observed.
Some first order statistic features have a scaling difference of +1000 HU compared to the Moffitt
features, but can be corrected afterwards to make them comparable between both tools. However, in

general there is a poor agreement between both tools.

When applying the same 256 number of bins intensity resampling for texture calculation in the Maastro
tool as is used by the Moffitt tool, the agreement between both tools was still poor. Even though
changing the intensity resampling scheme does affect numerical values for textural features, we have

shown that there are more underlying differences that have to be investigated.

This study has shown that comparing Radiomic results using different software implementations is not
straightforward. To make comparisons in multicentre settings, and to ensure optimal decision support

systems for lung cancer in the future, standardization of Radiomics is needed.
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Appendices

Appendix |: Definition of imaging features Maastro Clinic

Supplement |: Radiomics Features

In this study we explore a feature-based approach to extract and quantify meaningful and reliable
information from CT images. In this section we describe in detail the different groups of imaging traits
assessed in our study, that were used to derive a prognostic model in non-small cell lung carcinoma.

We evaluated a total number of 440 CT imaging features, which are divided in four groups as follows:

Group 1.  First order statistics
Group 2.  Shape and size based features
Group 3.  Textural features

Group 4. Wavelet features
Group 1. First order statistics
First-order statistics describe the distribution of voxel intensities within the CT image through

commonly used and basic metrics. Let X denote the three dimensional image matrix with N voxels and

P the first order histogram with N; discrete intensity levels. The following first order statistics were

extracted:
1.1 Energy:
N
energy = Z X(i)?
i
1.2. Entropy:
Ny
entropy = z P(i)log, P(i)
i=1
1.3. Kurtosis:

1 . =
Y e (OED %
kurtosis = >

<\/%2?=1(X(i) —X)Z)

where X is the mean of X.
1.4. Maximum:

The maximum intensity value of X.
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1.5. Mean:

1N
=—EX'
mean NZ )
i

1.6. Mean absolute deviation:

The mean of the absolute deviations of all voxel intensities around the mean intensity value.
1.7. Median:

The median intensity value of X.
1.8. Minimum:

The minimum intensity value of X.

1.9. Range:
The range of intensity values of X.
1.10. Root mean square (RMS):
VX2
RMS = |———
N
1.11. Skewness:
1 , =
I (X (@) - X)?
skewness =

3

1 , =
<\/NZ§V=1(X(1) - X)Z)
where X is the mean of X.
1.12. Standard deviation:

1/2

N
1 _
standard deviation = (mz:(X(i) - X)Z)
i=1

where X is the mean of X.
1.13. Uniformity:

Ny

uniformity = Z P(i)?
i=1

1.14. Variance:

N
1 _
. _ N o2
variance = +— Z(X(l) X)
i=1
where X is the mean of X.

The standard deviation, variance and mean absolute deviation are measures of the histogram
dispersion, that is, a measure of how much the gray levels differ from the mean. The variance,
skewness and kurtosis are the most frequently used central moments. The skewness measures the
degree of histogram asymmetry around the mean, and kurtosis is a measure of the histogram
sharpness. As measures of histogram randomness we computed the uniformity and entropy of the
image histogram.
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Group 2. Shape and size based features

In this group of features we included descriptors of the three-dimensional size and shape of the tumor
region. Let in the following definitions V denote the volume and A the surface area of the volume of

interest. We determined the following shape and size based features:

2.1. Compactness 1:
%4
compactness 1 = >
VrA3
2.2. Compactness 2:
VZ

compactness 2 = 367IA—3

2.3. Maximum 3D diameter:

The maximum three-dimensional tumor diameter is measured as the largest pairwise

Euclidean distance, between voxels on the surface of the tumor volume.

2.4, Spherical disproportion:
. . . A
spherical disproportion = -
Where R is the radius of a sphere with the same volume as the tumor.
2.5. Sphericity:
1 2
- m3(6V)3
sphericity = ————
A
2.6. Surface area:

The surface area is calculated by triangulation (i.e. dividing the surface into connected
triangles) and is defined as:

Where N is the total number of triangles covering the surface and a, b and ¢ are edge vectors
of the triangles.
2.7. Surface to volume ratio:
surface to volume ratio = g
2.8. Volume:
The volume (V) of the tumor is determined by counting the number of pixels in the tumor

region and multiplying this value by the voxel size.

The maximum 3D diameter, surface area and volume provide information on the size of the lesion.
Measures of compactness, spherical disproportion, sphericity and the surface to volume ratio describe

how spherical, rounded, or elongated the shape of the tumor is.
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Group 3. Textural features

The features shown above that resulted from group 1 (first-order statistics) provide information related
to the gray-level distribution of the image; however they do not provide any information regarding the
relative position of the various gray levels over the image. In this group we therefore included textural
features describing patterns or the spatial distribution of voxel intensities, which were calculated from
respectively gray level co-occurrence (GLCM), gray level run-length (GLRLM) and gray level size-zone
(GLSZM) texture matrices. Determining texture matrix representations requires the voxel intensity
values within the VOI to be discretized. Voxel intensities were therefore resampled into equally spaced
bins using a bin-width of 25 Hounsfield Units. This discretization step not only reduces image noise,
but also normalizes intensities across all patients, allowing for a direct comparison of all calculated
textural features between patients. Texture matrices were determined considering 26-connected

voxels (i.e. voxels were considered to be neighbors in all 13 directions in three dimensions).

Gray-Level Co-Occurrence Matrix based features

A GLCM is defined as P(i,j;6,a), a matrix with size N, x N, describing the second-order joint
probability function of an image, where the (i,j)th element represents the number of times the
combination of intensity levels i and j occur in two pixels in the image, that are separated by a
distance of & pixels in direction a, and N, is the number of discrete gray level intensities. As a two

dimensional example, let the following matrix represent a 5x5 image, having 5 discrete gray levels:
1 2 5 2 3

3 2 1 3 1
I=1 3 5 5 2
1 1 1 1 2
1 2 4 3 5

For distance § =1 (considering pixels with a distance of 1 pixel from each other) in direction a = 0,

where 0 degrees is the horizontal direction, the following GLCM is obtained:

3 3 2 0 0
1 0 1 1 1
PLO)=1 1 0 0 2
0 0 1 0 0
0 2 0 0 1

In this study, distance § was set to 1 and direction « to each of the 13 directions in three dimensions,
yielding a total of 13 gray level co-occurrence matrices for each 3D image. From these gray-level co-
occurrence matrices, several textural features are derived. Each 3D gray level co-occurrence based

feature was then calculated as the mean of the feature calculations for each of the 13 directions.
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Let:
P(i, ) be the co-occurrence matrix for an arbitrary § and «,
N, be the number of discrete intensity levels in the image,

u be the mean of P(i, j),
p() = nylP(i,j) be the marginal row probabilities,

py(D) = Zf’flP(i,j) be the marginal column probabilities,
i, be the mean of p,,

u, be the mean of p,,,

o, be the standard deviation of p,,

g, be the standard deviation of p,,,

Pasy () = 508, 208 P(LJ), i+ =k, k =23,...,2N,,

Pacy () = 502, 208 PG, 1= jl =k, k=01, Ny — 1,
HX = —Z?’fl p, (D) log,[p, ()] be the entropy of p,,

HY = — Zlivfl py (i) logz [py ()] be the entropy of p,

H= -3 5" P(i)log,[P(i )] be the entropy of P(i, ),
HXY1 = =3 579, P(i, )log (p()p, (D).

HXY2 = = 5,8, 219, p(D)py (Dlog (px(Dpy (D).

3.1. Autocorrelation:
Ng Ng
autocorrelation = Z Z ijP(i, j)
i=1 j=1
3.2 Cluster Prominence:
Ng Ng
cluster prominence = z Z[l +j— (D) — uy(j)]4P(i,j)
i=1 j=1
3.3. Cluster Shade:
Ng Ng
cluster shade = Z Z[t +j—p (@) - uy(j)]3P(i,j)
i=1j=1
3.4. Cluster Tendency:
Ng Ng
cluster tendency = Z Z[t +j—pu () - uy(]')]zP(i,j)
i=1j=1
3.5. Contrast:
Ng Ng
contrast = ZZIL’ —JjI1?P(i, )
i=1j=1
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3.6. Correlation:

Z Z,llJP(lJ) i @D ()

correlation =
ax(D)ay ()
3.7. Difference entropy:
Ng—l
dif ference entropy = Z Py (D) logZ[Px_y(i)]
i=0
3.8. Dissimilarity:
Ng Ng
dissimilarity = Z Zli —JjIP(,))
i=1 j=1
3.9. Energy:
Ng Ng
energy = > Y [P(i )
i=1 j=1
3.10. Entropy (H):
Ng Ng
entropy == ) > P(i,)10ga[P(. )]
i=1 j=1
3.11. Homogeneity 1:
Ng Ng
P(i,
homogeneity 1 = ZZ 1 +(|l]_)]|
3.12. Homogeneity 2:
Ng Ng
P(i,
homogeneity 2 = Z 2 T |(l i)jlz
i=1j=
3.13. Informational measure of correlation 1 (IMC1):
IMCL = HXY — HXY1
" max{HX,HY}
3.14. Informational measure of correlation 2 (IMC2):
IMC2 = \/1 — e—2(HXY2—HXY)
3.15. Inverse Difference Moment Normalized (IDMN):
Ng Ng
P(i,
IDMN = Z Z #)2
1+ (Il —J )
i=1j=1
3.16. Inverse Difference Normalized (IDN):
Ng Ng
P(i
IDN = z z @)
i=1j=11+ ( )
3.17. Inverse variance:
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Ng Ng

) . _ESESPGJ) .
lmverse variance = ,L# ]

—

i=1 j=1 li=Jl
3.18. Maximum Probability:

maximum probability = max{P (i, )}
3.19. Sum average:
2Ng
sum average = Z[iPx+y(i)]
i=2
3.20. Sum entropy:
2Ng
sum entropy = — Z Py (@) logz[Px+y(i)]
i=2

3.21. Sum variance:

2Ng

sum variance = Z(i — SE)?Pyyy (D)

i=2

3.22. Variance:
Ng Ng
variance = Z Z(i —wW?2P3,))
i=1j=1

Gray-Level Run-Length matrix based features

Run length metrics quantify gray level runs in an image. A gray level run is defined as the length in
number of pixels, of consecutive pixels that have the same gray level value. In a gray level run length
matrix p(i,j|6), the (i,j)th element describes the number of times j a gray level i appears
consecutively in the direction specified by 6, and N, is the number of discrete gray level intensities. As
a two dimensional example, consider the following 5x5 image, with 5 discrete gray levels:
5 2 5 4 4
3 3 3 1 3
I=2 1 1 1 3
4 2 2 2 3

3 5 3 3 2
The GLRL matrix for 8 = 0, where 0 degrees is the horizontal direction, then becomes:
1 0 1 0 O

p(0) =

[JCT SN NN
o R, R, O

1 0 O
1 0 O
0 0 O
0 0 O
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In this study, a GLRL matrix was computed for every of the 13 directions in three dimensions, from
which the below textural features were derived. Each 3D GLRL feature was then calculated as the

mean of the feature values for each of the 13 directions.

Let:

p(i,j|6) be the (i, j)th entry in the given run-length matrix p for a direction 6,
N, the number of discrete intensity values in the image,

N,. the number of different run lengths,

N, the number of voxels in the image.

3.28. Short Run Emphasis (SRE)
Ng sy [PCLJ16
st 335 44
SRE = — 3
IR WNICHI)
3.24. Long Run Emphasis (LRE)
N . ..
Lpp = Zima 2 P 110)

N, .
Y X p(i,j16)
3.25. Gray Level Non-Uniformity (GLN)

N o 0a12
22T P j16)]
N o
22 20T, p(i.j16)

3.26. Run Length Non-Uniformity (RLN)

i (2 p e jio)]

GLN =

RLN = TS

i1 221 P(6,/16)
3.27. Run Percentage (RP)

Ng Ny .

RP = Z ZP(LN]W)

i=1 j=1 p
3.28. Low Gray Level Run Emphasis (LGLRE)

52, 5y, [PAD)

LGLRE =

N .o
2 2, p(i,j16)
3.29. High Gray Level Run Emphasis (HGLRE)

N . ..
X T ip(i,j16)

HGLRE = ——— —
2525, p(j10)
3.30. Short Run Low Gray Level Emphasis (SRLGLE)
N, - i,jl@
5, 2, [EGA2
SRLGLE = ———
3 2 p(ij16)
3.31. Short Run High Gray Level Emphasis (SRHGLE)
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e, 3, [PCA0C]

SRHGLE = ——p S
i1 221 P(E,J16)
3.32. Long Run Low Gray Level Emphasis (LRLGLE)
A
O S S o)
i=14j=10"
3.33. Long Run High Gray Level Emphasis (LRHGLE)

N .. .
¥l X p(i, j10)i%)2

LRHGLE = =32
X2 20 (0, j16)

Gray-Level size-zone matrix based features

A gray level size-zone matrix describes the amount of homogeneous connected areas within the tumor
volume of a certain size and intensity. In a gray level size-zone matrix p(i,j), the (i,j)th element
describes the number of times a homogeneous connected region with of size j, with intensity i

appears. As a two dimensional example, consider the following 5x5 image, with 5 discrete gray levels:

5 5 1 4 4
5 5 2 5 3
I=2 5 1 1 2
3 2 2 3 3
1 2 3 3 3
The gray level size-zone matrix p(i, j) then becomes:
2 1 0 0 o0
3 1 0 O
p=2 0 0 0 1
0 1 0 0 O
1 0 0 0 1

Let:

p(i, ) be the (i, j)th entry in the given size-zone matrix p,

N, the number of discrete intensity values in the image,

N, the size of the largest,homogeneous region in the volume of interest,

N, the number homogeneous areas in the image.
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3.34.

3.35.

3.36.

3.37.

3.38.

3.39.

3.40.

3.41.

3.42.

Small area Emphasis (SAE)

NZ p(,j)
R i

e z] D))

Large area Emphasis (LAE)

N . ..
WA L I(H)

LAE = -
WD NNIH)
Intensity variability (IV)
N Ny . 12
v = 2191[2- p( )]
PN 2 0@ ))
Size-zone variability (SZV)
2
), 2 ()
SZV = —x——x —
22 ZZp@))
Zone Percentage (ZP)
Ng Nz
7p = Zzp(l 2D
i=1j=
Low intensity Emphasis (LIE)
Z 3 [p(l J)

LIE =

S BN PG )
High intensity Emphasis (HIE)

zﬁ”ﬂ 2 ()
D NIH)

HIE =

Low intensity small area Emphasis (LISAE)

[p(l J)

LISAE =
zizlz,-zlp(a,n

High intensity small area Emphasis (HISAE)

Ng ZNZ [P(i'g)iz]
— =1 -
HISAE = J

Sl IV p(i))
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3.43. Low intensity large area Emphasis (LILAE)

i2

ZNg ZNZ [p(i,j)jz
i= =1
LILAE =

N .
DD NN ()
3.44. High intensity large area Emphasis (HILAE)

N, e oD
¥ T ()i

HILAE = —
AR I(H)

Group 4. Wavelet features: first order statistics and texture of wavelet decompositions

Wavelet transform effectively decouples textural information by decomposing the original image, in a
similar manner as Fourier analysis, in low —and high-frequencies. In this study a discrete, one-level
and undecimated three dimensional wavelet transform was applied to each CT image, which
decomposes the original image X into 8 decompositions. Consider L and H to be a low-pass (i.e. a
scaling) and, respectively, a high-pass (i.e. a wavelet) function, and the wavelet decompositions of X
to be labeled as X;;;, Xiim» Xomn Xomws Xuip, Xgry, Xgp, and Xygy. For example, X;,, is then
interpreted as the high-pass sub band, resulting from directional filtering of X with a low-pass filter
along x-direction, a low pas filter along y-direction and a high-pass filter along z-direction and is

constructed as:

Ny Ni Ny

Xun (@) = D7) S LOL@HOX+p,] + .k +7)

p=1q=1r=1
Where N, is the length of filter L and Ny is the length of filter H. The other decompositions are
constructed in a similar manner, applying their respective ordering of low or high-pass filtering in x, y
and z-direction. Wavelet decomposition of the image X is schematically depicted in Figure 1. Since
the applied wavelet decomposition is undecimated, the size of each decomposition is equal to the
original image and each decomposition is shift invariant. Because of these properties, the original
tumor delineation of the gross tumor volume (GTV) can be applied directly to the decompositions after
wavelet transform. In this study “Coiflet 1” wavelet was applied on the original CT images. For each
decomposition we computed the first order statistics as described in Group 1 and the textural features

as described in Group 3.
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Filter direction: X y z

Supplement | Figure 1: Schematic of the undecimated three dimensional wavelet transform applied
to each CT image. The original image X is decomposed into 8 decompositions, by directional low-pass
(i.e. a scaling) and high-pass (i.e. a wavelet) filtering: X;;;, Xiiw, Xiwe Xowns Xoirs Xaiws Xuwe

and Xyyy.
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Appendix II: Definition of imaging features Moffitt Cancer Center

Image Feature List — Version 1.0

No.

Feature

Description

Calculation

Range

3D features

1

Border Length

The border length of an image object is defined as the
sum of edges of the image object that are shared with
other image objects or are situated on the edge of the
entire scene.

The border length of a 3D image object is the sum of
border lengths of all image object slices multiplied by the
spatial distance between the slices.

For torus and image objects with holes the border length
sums the inner and outer border

#(slices)

by={ D by(Slice) | tgices +by(®)
n=1

Parameters

b,: border length of image object v

by(slice): border length of image object slice

b,(z): border length of image object in z-direction

Usiices: Spatial distance between slices in the coordinate
system unit

[0, =]

Length

The length of an image object is the largest of three
eigenvalues of a rectangular 3D space that is defined by
the same volume as the image object and the same
proportions of eigenvalues as the image object.

The length of an image object can be < the largest of
dimensions of the smallest rectangular 3D space
enclosing the image object.

[0, =]

Thickness

The thickness of an image object is the smallest of three
eigenvalues of a rectangular 3D space that is defined by
the same volume as the image object and the same
proportions of eigenvalues as the image object

The thickness of an image object can be < than the
smallest of dimensions of the smallest rectangular 3D
space enclosing the image object

[0, =]
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4. Width The width of an image object is the middle of three [0, =]
eigenvalues of a rectangular 3D space that is defined by
the same volume as the image object and the same
proportions of eigenvalues as the image object.
The width of an image object can be smaller or equal
than the middle of dimensions of the smallest rectangular
3D space enclosing the image object.
5. Length/Thickness The length-to-thickness ratio of an image object. Length/Thickness [0, =]
6. Length/Width The length-to-width ratio of an image object. Length/Width [0, «]
7. Number of Pixels Number of pixels forming an image object. [0, scene
size]
8. Volume The number of voxels forming an image object rescaled | Vv=#Pv*u2*Ug)ces [0, scene
by using unit information for x size]
and y coordinates and distance information between | Vv: volume of image object v
slices. #Pv: total number of voxels contained in Pv
u: size of a slice pixel in the coordinate system unit
Ugiices. Spatial distance between slices in the coordinate
system unit
9. Asymmetry The more longish an image object, the more asymmetric Amin [0, 1]
it is. The feature value increases 1-
with the asymmetry. Mmax
The asymmetry is calculated from the ratio between the . . .
smallest and largest Amin: m|n|n_1al e|g_envalue
eigenvalues of the image object. Amax: maximal eigenvalue
10. | Border Index The more rough or [1, ]
jagged an image object is, the higher its border index. bv/2(lv+Wv) 1 =ideal.
Similar to Shape index feature, but border index uses a
rectangular approximation bv: image object border length
instead of a square. The smallest rectangle enclosing the | Iv: length of an image object v
image object is created. The wv : width of an image object v
border index is then calculated as the ratio of the Border
length feature of the image object to the border length of
this smallest enclosing rectangle.
Expression:
11. | Compactness A figure for the compactness of a 3D image object is | 2 A1*2 A2*2 A3/Vv [0, =]
calculated by a scaled product of its three eigenvalues 1 = ideal.
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2xA1, 2xA2, 2+A3 divided by the number of its pixel/voxel.
We include a factor of 2 with each eigenvalue, since
Aixeigenvectors represent otherwise half axes of an
ellipsoid defined by its covariance matrix. The chosen
approach thus provides an

estimate of a cuboid occupied by the object.

Al: eigenvalue 1 of a 3D image object v
A2: eigenvalue 2 of a 3D image object v
A3: eigenvalue 3 of a 3D image object v
Vv: volume of image object v

12. | Density The Density feature describes the spatial distribution of 3\/71; [0,
the pixels of an image object. depended
The ideal compact shape on a pixel raster is the cube. VVar(X) +Var(Y) + Var(Z) on shape of
The more the shape of an image ) ) image
object is like a cube, the higher its density. The more the | YV: volume of image object v object]
shape of an image object is like 31V: edge of the volume fitted gube .
a filament, the lower its density. \War(X) + Var(Y) + Var (Z): radius of the fitted sphere
It is calculated by the edge of the volume fitted cube
divided by the fitted sphere radius.

13. | Elliptic Fit It describes how well an image object fits into an ellipsoid | ¢ = 2.#{x,y,z)ePv : ev(X,Y,Z)<1}/#Pv-1 0, 1, 1 =
of similar size and proportions. complete
While 0 indicates no fit, 1 indicates for a complete fitting | ev(x,y,z): elliptic distance at a pixel (x,y,z) fitting,
image object. Pv: set of pixels of an image object v whereas 0 =
The calculation is based on an ellipsoid with the same | #Pv: total number of pixels contained in Pv only 50% or
volume as the considered image less voxels
object. The proportions of the ellipsoid are equal to the fit inside the
proportions of the length to ellipsoid
width to thickness of the image object. The volume of the
image object outside the
ellipsoid is compared with the volume inside the ellipsoid
that is not filled out with the
image object.

14. Main direction Main direction feature of a three-dimensional image

object is computed as follows:

1. For each image object slice (a 2D pieces of the image
object in a slice) the centers of

gravities are calculated.

2. The coordinates of all centers of gravities are used to
calculate a line of best fit

according to the Weighted Least Square method.

3. The angle a between the resulting line of best fit and
the z-axis is returned as

[0, 90]
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feature value

15.

Radius  of
Enclosed Ellips

Largest
e

It describes how much the shape of an image object is
similar to an ellipsoid. The calculation is based on an
ellipsoid with the same volume as the object and based
on the covariance matrix. This ellipsoid is scaled down
until it is totally enclosed by the

image object. The ratio of the radius of this largest
enclosed ellipsoid to the radius of the

original ellipsoid is returned as feature value.

€v(x0,y0,z0)
with (x0,y0,z0) = min ev(x,y,z), (X,y,z)¢Pv
ev(x,y,z): elliptic distance at a pixel (x,y,z)
Expression:

[0, =]

16.

Radius of

Smallest

Enclosing Ellipse

The calculation is based on an ellipsoid with the same
volume as the image object and

based on the covariance matrix. This ellipsoid is enlarged
until it encloses the image

object in total. The ratio of the radius of this smallest
enclosing ellipsoid to the radius of

the original ellipsoid is returned as feature value.

€v(x0,y0,z0)
with (x0,y0,z0) = max &v(x,y,z), (X,y,z)EcPv

ev(x,y,z): elliptic distance at a pixel (x,y,z)

[0, =]

17.

Rectangular Fit

It describes how well an image obiject fits into a cuboid of
similar size and proportions.

While 0 indicates no fit, 1 indicates for a complete fitting
image object. The calculation is based on a cuboid with
the same volume as the considered image object. The
proportions of the cuboid are equal to the proportions of
the length to width to thickness of the image object. The
volume of the image object outside the rectangle is
compared with the volume inside the cuboid that is not
filled out with the image object.

#H(X,Y,Z)ePv: pv(X,Y,Z) < 1}

#Pv

pv(x,y,z): rectangular distance at a pixel (x,y)
#Pv: total number of pixels contained in Pv

[0, 1]; 1 =
complete
fitting,
whereas 0 =
0% fits
inside  the
rectangular
approximati
on

18.

Roundness

Describes how much the shape of an image object is
similar to an ellipsoid. The more the shape of an image
object is similar to an ellipsoid, the lower its roundness. It
is calculated by the difference of the enclosing ellipsoid
and the enclosed ellipsoid. The radius of the largest
enclosed ellipsoid is subtracted from the radius of the
smallest

enclosing ellipsoid.

max __
&y

S;nin

ev

max: radius of smallest enclosing ellipsoid
ev

min: radius of largest enclosed ellipsoid

[0, =], O
ideal.

19.

Shape Index

The smoother the surface of an image object is, the lower
its shape index. It is calculated from the Border length
feature of the image object divided by four times the
square root of its area.

Bv/Vv
bv: image object border length
Vv: volume of image object v

[1, =], 1
ideal.
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20. | Histogram features The intensity histogram h(a) is the number of pixels
occurred for brightness level “a” plotted against their range. .
brightness level. The probability distribution of the 1. mean= Z i+ prob(i)
brightness P(a) can be calculated as well. Six features: range ) .
mean, standard deviation, skewness, kurtosis, energy, 2. sd=[¥,2;° (i —mean)? = prob(i)
entropy were incorporated.
Y i 3. skewness= Lizy " (izmean)’«prob(D)
' (Zmnge(l mean)2+prob(i))1-5
_ ernge(l mean)*+prob(i)
4. kurtosis= (219 (i-mean)?«prob(i))2
5. energy= Zm"ge prob(i) * prob(i)
6. entropy=—X:279¢ prob(i) * Log(prob(i))
Where intensity range is [0,range] (normalized)
prob(i):;’lfigl()i) , hist(i) is the frequency of intensity i
appears.
21. | Run length  matrix | Run-length texture features examine runs of similar gray | p(i,j) is the element of run-length matrix, let M be the
features values in an image. Runs may be labeled according to | number of gray levels, N be the maximum run length. n,

their length, gray value, and direction (either horizontal or
vertical). Long runs of the same gray value correspond to
coarser textures, whereas shorter runs correspond to
finer textures. Texture content was quantified by
computing 11 features derived from the run-length
distribution matrix. They are

1: Short Run Emphasis (SRE).

2: Long Run Emphasis (LRE).

3: Gray-Level Nonuniformity (GLN).

4: Run Length Nonuniformity (RLN).

5: Run Percentage (RP).

6: Low Gray-Level Run Emphasis (LGRE).

7: High Gray-Level Run Emphasis (HGRE).

8: Short Run Low Gray-Level Emphasis (SRLGE).

9: Short Run High Gray-Level Emphasis (SRHGE).

10: Long Run Low Gray-Level Emphasis (LRLGE).

is the total number of runs, n, is the number of pixels in
the image. Define 3 new matrices first.

@ P =p@j)*j
(0)  p, =2 1pEN)
©  p()=2Lip0))

1. SRE— ZN pr(])

2. LRE:— j=1pr(]) *j?

3. GLN— M g (D)2
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11: Long Run High Gray-Level Emphasis (LGHGE).

1 .
4. RLN=—FY,p.()

5 RP=C
Np

pg(i)

6. LGRE=— ZM "

7. HGRE— Lipg (D) * i

— N p@D)
8. SRLGE—n—r R
9. SRHGE=—TM,T), p(”)”

10. LRLGE:ni ZN P(llj)*]

LRHGE=L 3 3L, p(i, ) * 12+ 2

22. | Co-occurrence matrix | The Co-occurrence matrix is a matrix that contains the | p(i,j) is the element of the co-occurrence matrix.
features frequency of one gray level intensity appearing in a
specified spatial linear relationship with another gray level 1. Contrast:Zij li —j|2 *p(i, )
intensity within a certain range. Computation of features _ o .
requires first constructing the co-occurrence matrix, then 2. Energy=Y;;p(i,j) *p(Jj)
different measurements can be calculated based on the p(i,))
matrix. The measurements include: contrast, energy, 3. Homogeneity= ZU 1+]i—j|
homogeneity, entropy, mean and max probability. — -
genetty, entropy P Y 4. Entropy=—3;;p(i,j) * log (p(i,/))
5. Sum Mean=0.5*Y; ;(i +j) * p(i,j)
Max probability=max(p(i, j))
23. | Laws features Laws features are constructed from a set of five one- | For each filtered images (125), the energy was calculated

dimensional filters, each designed to reflect to a different
type of structure in the image. These one-dimensional
filters are defined as E5 (edges), S5 (spots), R5 (ripples),
W5 (waves), and L5 (low pass, or average gray value).
By using these 1-D convolution filters, 3D filters are
generated by convolving 3 types of 1D filter, such as
L5L5L5, L5L5ES, L5L5S5, LEL5R5, L5L5WS, etc. The

as following:

1 '=N J-N kN y
Energy = 3 3, 3 01K,
R 1j=N+1k=N+1
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total number of 3-D filters is 125. After the convolution
with the 3D filters for the image, the energy of the texture
feature can be computed.

Where R is a normalizing factor, | and J, K are image
dimensions, h(i,j, k) is derived from the convolution filters
and original image.

24. | Wavelet decomposition | The discrete wavelet transform can iteratively decompose 1 M N L o
an image (3D) into four components. Each iteration splits Energy = —Zzz 12, j,k)
the image both horizontally and vertically into low- MxNXL = j=1 k=1
frequency (low pass) and high-frequency (high pass)
components. Thus, four components are generated: a 1 MmN I2(i i,k) |2(i s
high-pass/high-pass component consisting of mostly Entropy =—ZZZ( =) log( b
diagonal structure, a high-pass/low-pass component MxNXL ' 4=%G norm norm
consisting mostly of vertical structures, a low-pass/high-
pass component consisting mostly of horizontal structure,
and a low-pass/low-pass component that represents a
blurred version of the original image. Subsequent | (j k) shows the subblock elements and M, N, and L are
iterations then repeat the decomposition on the low- | the dimensions of each subblock and
pass/low-pass component from the previous iteration. 2 20
These subsequent iterations highlight broader norm- = Zi Zj Zk 1°(i, . k)
diagonal, Vertical, and horizontal textures. And for each The number of features rea”y depends on the number
component, we calculated the energy feature. of decomposition level selected.
1 level: 2* 8(block) = 16 features
2 level: 2* 15(block) = 30 features
25. Fractional Anisotropy Fractional anisotropy of long vs. short axis \/(L W W-T+ (T—1)2 1
I
VZ+WZ+T? 2
L: Length
W: Width
T: Thickness
26. | Spherecity It describes how spherical is the image object. n% (6Vp)§
Ap
Ap = surface area
Vp = volume
27 Number of | Number countable spiculations of tumor
Macrospiculations
31. | Distance of center of | Measure of distance from center of gravity to border of
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gravity to border of
tumor

the tumor. Reported as average, std dev, minimum and
maximum.

Describes the attachment of the tumor to the other

32. | Attachment of tumor to | anatomical structures. Reported as relative border to
other anatomical | lung, relative border to attached structure, ratio of free to
structures attached surface area.

33. | Intensity value of tumor | Brightness values of tumors measured in Hounsfield units

in HU

(HU). Reported as mean(HU) and Std Dev (HU)
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Appendix IlI: Cooperation contract Maastro Clinic

Ondergetekenden, MAASTRO cunic, te Maastricht, Dr. Tanslaan 12, rechtsgekig
vertegemwoardigd door mevrouw drs M.).G. Jacabs, Rasd van Bestuur, verder te
noamen MAASTRO en

Naam en voornmamen: Pils, Mirthe Evelien

Adres en woonplaats: Haghenstrast 63, 6461 VT te Kerkrade

Geboren op! 14 maart 1994 te Heerlen

Student aan: Fontys Paramedische Hogeschool te; Eindhoven
verder te noemen student, en

Onderwijsinstelling:  Fontys Paramedische Hogeschoal te: Eindhoven
verder te noemen, ondarwljsinsteling.,

verklaren hierbl] aen samenwerkingsovereankomst te zijn aangegaan onder de
volgende voorwaarden:

Artikel 1. Doel van de samenwerkingzoveresankomst
MBRT Afstudesarstage,

Artikel 2. D¢ begeleiding door MAASTRO

MAASTRO wijst Claudia Offarmann aan als contactpersoon, die verantwoordelijk is
voor de opdracht en de begeleiding van de student/werkenda,

Daamaast fungeert de heer R, Letjenaar vanuit PTTeragnositic als extem adviseur.

Artike! 3. Tijdsduur en plaats van de opdracht

De student start met mgang van 15 februart 2016 tot en met 1 jull 2016 {voor
gemiddald 36 wur pfwk). Binnen de insteling wordt een 36-unge werkweek ge-
hanteerd,

Artikel 4. Ondervdisactiviteiten

De cpdracht kan warden cnderbroken voor door de ondernijsinstalling georgani-
seerdge terugkomactiviteiten,

Voor andere anderwifsactiviteiten (b.v. het afleggen van tentamens) kan de op-
dracht na voarafgaand averieg tussen onderwijsinstelling en MAASTRO wordan on-
derbroken,

Artikel 5, De begeleiding door de onderwijsinstalling

De onderwijsinstelling wijst als aan mevrouw Esther Bloemen die zich bezighoudt
met de begelelding van de student blj de integratia van schoal- &n praktifervaring
an de cotwildialing van de beroepsparsocnlijikheld van de student,

Artikel 6, Medizche verldaring

De student dhent, indsen er sprake is van direct patiéntencontact, wobr aanvang
van de apdracht een *verklaring van geen TBC" te averleggen, Deze verilaring
mag niet ouder Zijn dan 6 maanden (peildatum: 6 maanden voor dBanvang van de
werkzaamheden binnen MAASTRO). Indien deze verklaring niet averlegd wordt,
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MAAS

wordt deze oversencaomst cetbondan. De kasten van de vesdaring worden op de-
daratiebasts gedregan door MAASTRO.

Artikal 7. Vergoedingen

Dé vargeeding bed@agt € 335,- bruto per meand op fullime Lasis. De student
antvangt esn reskostenvergosding woon-werkverceer conform art. 12,1.1 van de
a0, behoudens In de stuatie dat de studert over ean ov-jaarkaart beschikt
waarmes de rekkosten resds zijn gedekt en onder de veermaarde dat de stage
tenmvinate 144 vur per studiejsar bedrasgt. Zinkte- an varkfuren worden niet ver-
goed. De gewerkte uren zuben mosndelifics op ean warkstaat ingevuld worden,
waama de maand daaropvoligend de stagevergeading wordt uitgekeerd.

Artikel 8, 10-card

De student ortvangt éen 1D Dadge van Maxstro cinic voor de perfode dat beyzl)
hier werkzsamyasrreezly 5 an vedeant daarbij Maastro dnic eenmalige machti-
ging om het bedrag van € 50,-- af te schrijven van bovengenoemd rekeningum-
mer  inden de 1D Radge aan het einde van de samenwerkng en/of sanwezghakd
nieg, binnen uiterlijk 1 week, geretournserd worde.

Artikel 2. Verzeke ingen
MAASTRO sluit voor de student sen verzekering af tegen het dsco van aansprake-
lijkheid. De student ks tijdens de opdracht versekard voor ZW en ZFW.

Studentfwerkende cient zeif zorg e dragen yoor aanmeiding 2lektekastenverzeke-
ring b een door hern zelf gekozen lektakostenverzekeray voor bovengenoemde
samenwerkingspeniode,

Artikel 10, De becordeling van de epdracht
De bacerdelng van g opdradyt gecchiedt conform de In het werkplan (van de on-
derwisratelling) vin daze opdracht opgenomen becordelingsregeling

Artiked 11, Gedragscode Inteqritelt

Inzados Intame en externe Integritelt s medewerker genoaden aan de “gadrag-
sCoda Integritat’ van MAASTRO Onec en dens onderfggends regelingen en bepal-
ingan, waarander het Informatiebeve lbgingsbedeid,

Het openbaar make van onderzoeksgegevens én anderzossresultaten uit het af-
studesrproject, zoak vermedd In de sariptie, artiked e.d. s Alesn mogekgs na toe-
stemming van de begeleder van MAASTRO amec

s 0o student is verpicht tot gehelmhouding van hetgeen ham tee Kannis
kome, voor 2over de verplichting ult de aard der rask volgt of ham uit-
crukkefijk is opgelepd. Deze verplichting gud® ook ni belindging van de
opdracht,

« De student boudt Zch aan de in MAASTRO galdende voorschriflten crirent
geheimhoud ng &n de voor de desbetreffanda bercepsbecefenaren gelden-
de hercepssthiekregels, Ter verzekanng van de gaheimhouding en met In-
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achineming van de beroepsethiek, beeft MAASTRO het racht zich op de
hacgta te stellen van alle scheiftelijke stukiken of ap andere wijze opgesia-
gen Informatie die door de student in het kader van de opdracht wordt op-
gestedd en nlet wtslutend voor gigen gebruik dient,

= De student houdt zkch aan de In MAASTRO geidende voorschriften op het
gebied van ode, vellighad en gezondheid en volgt de aanwijzingen ge-
rechtiod personesd van MAASTRO,

*  Zekteverzulm diant voor 09.00 vur te worden gemedd bij de werbegele:-
der en de ancerwigsinstelling,

*  Wijziging of sanvulling van deze stageoversenkomst Is slechts mogalijk
waor zovar door de wijziging of aanvulling niet in strijd wordt gehandeld
met de gesioen samenwarkingsovareenkomst en betrokken partijen hier-
mes Instemmen.

*  De overeenkanst eindigt:

@, Na aflcop van de onder artiked 3 bapsalde tigd;
b, na schriftelijke aanzegging door een der partijen Indien:

1. de welerpartij niet of op onvoldoende wijze de verplichtingen na
kamt die voor hem ult deze overeenkomst vooetviosien:

2. zich zodanige omstandigheden vacrdoen, dat van de andere part)
redelikerwifs niet verdangd kan worden, dat hij de avereenkomst
voortat,

* Deze averearkomst = geen arbexsovereenkomst In de zin van artike!
7:610 van het Burgerlijk Wetboek en s 00k niet als zodan bedoedd.

Ouareengekomen an in tweevoud opgemaskt en ondertekend te Maastriche,
22 februari 2016,

Parsoneelszaken Student/werkende Contact Maastro
Maastro (voor gezien)
Mw, ], Boumans Mw. M. Pyls Mw. C. Offarmann

——

b ﬁtf”ﬁ W | o
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Appendix IV: CCC values of the compared diameter features

Maastro features Moffitt feature CCC

Shape_maxDiameter2D1 Longest Diameter 0.68
Shape_maxDiameter2D2 Longest Diameter 0.69
Shape_maxDiameter2D3 Longest Diameter 0.57
Shape_maxDiameter3D Longest Diameter 0.65
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Appendix V: Calculated intercept, slope and R? for all first order statistic

features

Moffitt features Maastro features Intercept Slope R?

Energy Stats_energy 1.00E+10 14.61 0.21
Min HU Stats_min 965.24 0.95 0.99
Max HU Stats_max 999.72 0.99 0.99
Mean HU Stats_mean 999.87 0.99 0.99
Variance HU Stats_var 49.58 0.99 0.99
Skewness HU Stats_skewness 0 0.99 0.99
Kurtosis HU Stats_kurtosis -0.02 1 0.99
Standard Deviation HU Stats_std 0.08 0.99 0.99
Mean Absolute Deviation HU | Stats_md -0.02 1 0.99
Median HU Stats_median 999.95 0.99 0.99
Range HU Stats_range 8.89 0.99 0.99
Entropy Stats_entropy 0 1 0.99
RMS HU Stats_rms 1120.20 -0.86 0.77
Uniformity HU Stats_uniformity 0 0.99 0.99
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Appendix VI: CCC values for each resampling scheme in textural features

Feature catagory [Maastro Moffitt CCC(B¥ -1 [CCC(BW-5) |CCC(BW-1) |[CCC(BW-25) |CCC(BW-50) |CCC(NOB-$8) |CCC(NOE-16) |CCC (NOE-32) |CCC [NOE - 64) |CCC (NOE - 128) [CCC (NOE - 256
Testural features: | RLGL_shartRunEmphasis Shart Fun Emphasis (SFE) 0017121195 0,115923754 0,351698324 0,893933795 0514332262 0,200502606 0372072294 0,680443204 0,32337401 043933677 0,/57146569
Testural features: | FLGL_longRunEmphasis Lang Fun Emphasis [LRE) 000104343 054645545 0161686446 0310803459 0,236320978 0,020843307 005514406 0467234728 0,324569557 0,230305422 0,077138959
Testural features: | RLGL_graylLevelManuniformity Giray-Level Manunifarmity [GLM) 952456E-05 2,06312E-05 11767E-05 £,35926E-06 B.7IT44E-06 4 45955E-06 4, 39045E-06 5,39407E-06 B ETE44E-06 3,17752E-08 154955E-05
Testural features: | FLGL_runLengthMonuniformity Frun-Length Monuniformity [FLA) -3,37555E-06 -3,79779E-06 -4,3576E-0 6,24181E-08 -9,95787E-06 A7ISEE-05 1,34163E-05 -3,106E5E -0 6,36627E-06 -4,30204E-08 -4 D1Z1EE-06
Testural features: | FLGL_runFercentage Fiun Percentage (FF) 0,015002165 0,093505052 0,285133021 0,306083551 0505669753 0,210022385 0,3517921 0,726262771 0,390243671 0,363040215 0132171673
Teutural features: | FLGL_lowGrayLevelFunEmphasis | Low Gray-Lewsl Run Emphasis (LGRE] 0,743926463 0,684645136 0514451467 0,410920769 0171715692 0029219543 0,104959035 0,286468202 0456323445 0,579281205 0,652160618
Testural features: | RLGL_highiGrayl evelunEmphasis | High Gray-Level Fun Emphasis [HGRE) ASPE0GE-05 00004629 0002690474 0042324063 0003636374 0,001626712 0,007187481 0,050505547 060165525 0,026987501 0004515145
Testural features: | RLGL_shartRunLowGraylevEmpha | Short Fun Low Gray-Level Emphasis [SRLGE] 0,335574297 0,790855204 0,720744735 0453605651 0177285054 0,057342256 018538467 0,322925596 0 550554656 0,69326168 0,755326094
Testural features: | RLGL_shortFurHighGraylevEmpha | Shart Fun High Gray-Level Emphasis (SRHGE) | -0.036175133 -0,002075306 -0,000535115 0,000233365 -7, 31063E-05 0000157533 0,000570801 0,000516325 0001712623 0,003546209 0,007531659
Tentural features: | FLGL_longRunLowGraylevEmpha | Long Fun Low Gray-Level Emphasis [LRLGE) 0,750551005 0467635205 0,24702269 0,074756316 0,023583028 0,0042125% 0,01032051 0,043363604 0,4034043 0,323448873 0,5848565183
Testural features: | FLGL_longRunHighGraylevEmpha | Long Run High Gray-Level Emphasis LRHGE) 0,0007 10086 0,023447715 0,165437162 0,585587441 0,53513384 0,235316093 0,394331341 0,42557267 0,347295338 0,113670877 0,013076582
Teutural features: | GLCIM_energy augCoocumenzs-Ensrgy -0,001H6533 -0,0010957 -0,000354235 0,005723905 0040173255 0,266020533 0,687 7021 0046617225 0,010949927 0,001640239 -0,000536235
Teutural features: | GLOM_santrast swgCoaccurmence-CONTRAST 0062307045 0,179099693 0033430612 0004865753 0,001192022 0000295315 0,001139081 0004500826 0,015956893 0084855979 0441530604
Testural features: | GLCM_homageneityl awgCoacurrence-HOMOGEMEITY 0009563847 004716707 008308631 0,285565289 0,B0ES46351 51643744 0,704092671 0565627328 0,270531538 0122780762 0,0595345641
Testural features: | GLCM_masPrab augCoacurrence-MARPROE -0,000353035 -0,000332575 0,0002359245 0003649263 0,077533359 0,354327008 0,122637136 0052651327 0,013873333 0,002765521 0000502652
Testural features: | GLCM_entrop2 augCoacurence-ENTROFY -0,023912711 -0,0036273T1 0,032959632 0134825757 0,357137655 0,220757795 0,367211279 0467244404 0,220043526 0,074709663 0,01634394
Testural features: | GLCM_sumaug augCoccumrence-SUMME AN -0,000345716 0002317276 -0,00632333 0,048626237 -0,014733357 0,012430851 0,03672086E 0173936273 0135147822 0,033669261 0,012928887
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