

0
 0

Virtual Listen Room
Surround Room Set, inside Your Android

Durio Etgar 2190198
Eindhoven 2012

Virtual Listen Room

Title Page

1

GRADUATION PROJECT REPORT

FONTYS UNIVERSITY OF APPLIED SCIENCES

HBO-ICT: English Stream

Data student:

Durio Etgar

Student number: 2190198

Graduation project period: from 6 February 2012 till 29 June 2012

Data company:

Name company/institution: Philips Research

Department: Applied Sensor Technologies

Location: High Tech Campus 36, 5656 AE Eindhoven, The Netherlands

Family name + first names + position of company tutor: Yuan, Zhaorui. Software Designer.

Data university tutor:

Family name + first names company tutor: Zijlmans, Jack.

Data final report:

Title of report: Virtual Listen Room: Surround Room Set, inside Your Android

Date final report has been issued:

Approved and signed by the company tutor:

Date:

Signature Company tutor: Signature University tutor:

University of Applied Sciences

 Virtual Listen Room

2
 2

Foreword

FOREWORD

Study becomes a responsibility for all human being. Since we saw the world at the first time, we

started to learn from everything that exists around us. Everything we’ve got so far, sometimes need

to be truly implemented, wherever it is. I had 3 years of Electrical Engineering Bachelor education on

my country Indonesia, and somehow I took the chance to have a wider perspective about

Information & Communication Technology here in The Netherlands. Fortunately I got a chance to

convert my knowledge into something useful at Philips, one of the biggest, well-known companies in

the world. This could be the most important 90 days on my career, and I realized I can’t expect more

than this as the first step.

The wise said, “Bind your knowledge by writing it down”. I arranged this thesis to keep this priceless

experience eternal, bound forever. It completely covered how I start this project, what goal should I

accomplished, what problems I faced, and what method did I use to make this research more

meaningful.

I try to guide myself into the next generation of technology, which is called Mobile Development, or

specifically, Android Development. Since I got my first Android device, there is a big desire to do

more and more, reveal all the possibilities and stretch the system into the edge. Thankfully I’m

involved to their world of Open Source. It’s leaving a big space for development in many aspects. My

enthusiasm was followed by a golden opportunity from Philips and especially from my Company

Mentor Mr. Werner Oomen and Mrs. Zhaorui Yuan. They offered me an assignment about building a

3D room visualization coupled with sensor movement, and guess what, on Android. To be honest,

who would reject a wonderful company with a project that you desired most? My deepest gratitude

goes to them for giving me a chance and conducting me in whole internship process.

I’m not really good on writing report, thesis, or such a kind of writing stuff. I would like to express my

biggest thanks to Mr. Jack Ziljmans for the guidance during my documentation process. He led me on

writing my thesis with his preferable method. It was very useful and I will safe it in my backpack to

face the real world.

Last but not least, I’m beholden to all my colleagues in Philips for a warm and comfortable working

environment, my family and my friends for continuous support, and for all technology founders

around the world. Kudos to you all.

There’s no Ivory without crack. I apologize if there’s any writing error contained. Moreover,

I dedicate this thesis to the advancement of technology, which I believe will bring us a better life.

Kindly open the following pages and I hope you’ll be impressed.

Date,

Durio Etgar

 Virtual Listen Room

3
 3

Table of
Content

TABLE OF CONTENTS
TITLE PAGE .. 1

FOREWORD ... 2

TABLE OF CONTENTS ... 3

TABLE OF FIGURES .. 5

SUMMARY ... 7

GLOSSARY.. 8

CHAPTER 1: INTRODUCTION ... 9

CHAPTER 2: THE COMPANY .. 10

2.1 PHILIPS HISTORY ... 10

2.2 PHILIPS TODAY .. 10

2.3 BRANDING ... 11

2.4 MISSION .. 11

2.5 VISION ... 11

2.6 PHILIPS RESEARCH .. 11

2.7 PHILIPS APPLIED SENSOR TECHNOLOGIES .. 12

2.7.1 Mission .. 12

2.7.2 Vision ... 12

2.7.3 Departement Competence ... 12

CHAPTER 3: ASSIGNMENT OVERVIEW .. 13

3.1 INITIAL SITUATION .. 13

3.2 OBJECTIVES ... 13

3.2.1 Command Description .. 13

3.2.2 Additional Commands ... 14

3.3 TOOLS .. 14

CHAPTER 4: METHODOLOGY .. 15

4.1 DEVELOPING SOFTWARE WITH WATERFALL METHODOLOGY ... 15

4.2 RESEARCH PARADIGMS AND METHODS ... 15

CHAPTER 5: RESEARCH .. 17

5.1 VIRTUAL SURROUND ROOM DEMONSTRATION ... 17

5.2 DEFINE THE FIRST PROJECT REQUIREMENT.. 17

5.3 FIRST RESEARCH: OPENGL AND START MAKING THE PROTOTYPE ... 17

5.4 NEXT RESEARCH: OPENGL ES (ANDROID) ... 18

Virtual Listen Room

 4

Table of
Content

5.4.1 Build a 3D View ... 18

5.4.2 Rendering a Speaker Box .. 19

5.5 DESIGNING SENSOR NAVIGATION .. 20

5.6 DISCOVERING GRAPHIC ENGINE ... 21

5.7 MIN3D SETUP AND IMPLEMENTATION .. 22

5.8 RENDERING PARTICULAR 3D OBJECT .. 25

5.8.1 How to Add Premade 3D Object (.3DS) .. 25

5.9 DEFINING NEW REQUIREMENT: ADD SOUNDTRACK .. 26

5.9.1 Generating Menu Items .. 27

5.10 PHILIPS MPEG SURROUND DECODER ... 29

5.10.1 Filtering and Listing .WAV and .MP4 files ... 29

5.11 GO NATIVE WITH THE SOUND DECODER .. 30

5.11.1 Java Native Interface ... 31

5.11.2 Android NDK.. 31

5.11.3 When to Develop in Native Code .. 32

5.11.4 What to be prepared Before Porting C/C++ Code into Android ... 32

5.11.5 Building MPEG Surround Library ... 34

5.12 PROPER ROOM SETUP .. 37

5.13 REVISING ROOM SETUP .. 39

5.13.1 Subwoofer Arrangement .. 39

5.13.2 Standing Rear Speakers ... 40

5.14 TESTING ... 41

5.14.1 Problem Assesment .. 42

5.14.2 Profiling Activity .. 42

5.14.3 Memory Analysis Activity .. 50

5.15 PROBLEM SOLVING ... 73

5.15.1 Profiling Follow Up: Reducing Texture Quality ... 74

5.15.2 Memory Analyzing Follow Up: Memory Booster .. 75

CHAPTER 6: CONCLUSION & RECOMMENDATION ... 76

EVALUATION ... 77

REFERENCE LIST .. 78

APPENDIX .. 79

 Virtual Listen Room

5
 5

Table of
Figures

TABLE OF FIGURES
FIGURE 1. Very First Desktop Prototype .. 18

FIGURE 2. A Lair-like 3D room using OpenGL ES ... 19

FIGURE 3. First Android Prototype .. 19

FIGURE 4. Various Types of Android Sensor .. 20

FIGURE 5. Min3D Object Example ... 22

FIGURE 6. Skybox ... 23

FIGURE 7. Speaker Texture .. 23

FIGURE 8. Skybox with Speakers Attached .. 24

FIGURE 9. Camera Exploitation within Sensor ... 24

FIGURE 10. 3D Object Example ... 25

FIGURE 11. Texture Example ... 25

FIGURE 12. First Scenery Design .. 26

FIGURE 13. Android Option Menu Example .. 27

FIGURE 14. Menu Items .. 28

FIGURE 15. Philips’ MPEG Surround Decoder.. 29

FIGURE 16. Simple File List Design .. 30

FIGURE 17. Successful Cygwin Command ... 35

FIGURE 18. Where the Library File Was Generated .. 35

FIGURE 19. Implemented Philips MPEG Surround Decoder .. 36

FIGURE 20. Recommended Front Speaker Placement .. 37

FIGURE 21. Front Left and Right Speaker Placement .. 38

FIGURE 22. Rear Speakers Placement ... 38

FIGURE 23. Subwoofer Speaker Placement ... 39

FIGURE 24. New Front speakers and Subwoofer Arrangement .. 40

FIGURE 25. Standing Speakers Texture ... 40

FIGURE 26. Rear Standing Speakers .. 41

FIGURE 27. The Traceview Timeline Panel .. 43

FIGURE 28. Profile Panel ... 44

FIGURE 29. First Profile Panel .. 45

FIGURE 30. Second Profile Panel ... 46

FIGURE 31. Third Profile Panel .. 47

FIGURE 32. Fourth Profile Panel .. 48

FIGURE 33. Fifth Profile Panel ... 49

FIGURE 34. Problem Suspect Pie Chart 1 ... 51

FIGURE 35. Biggest Objects and Dominator Classes Overview 1 .. 54

FIGURE 36. Top Component Overview 1 ... 54

FIGURE 37. Dominator Tree 1 ... 56

Virtual Listen Room

 6

Table of
Figures

FIGURE 38. Problem Suspect Pie Chart 2 ... 57

FIGURE 39. Biggest Objects and Dominator Classes Overview 2 .. 60

FIGURE 40. Dominator Tree 2 ... 61

FIGURE 41. Problem Suspect Pie Chart 3 ... 62

FIGURE 42. Biggest Objects and Dominator Classes Overview 3 .. 65

FIGURE 43. Dominator Tree 3 ... 66

FIGURE 44. Problem Suspect Pie Chart 4 ... 67

FIGURE 45. Biggest Objects and Dominator Classes Overview 4 .. 70

FIGURE 46. Top Component Overview 4 ... 70

FIGURE 47. Dominator Tree 4 ... 72

FIGURE 48. Texture Quality Comparison ... 74

FIGURE 49. Detailed Texture Quality Comparison .. 74

FIGURE 50. Memory Booster Lite .. 75

 Virtual Listen Room

7
 7

Summary

SUMMARY

Huge technology improvements on the recent years are boosting the market demand. Complicated

stuffs in life seem to be simplified due to invention of many automation and simulation systems,

including sound playback set. For instance, people desires to have cinema-like surround sound

without messing up with speakers and wires. Meanwhile, Android is currently hyped as one of the

best IT contrivance in recent years. Android is an open platform so many vendors can easily deploy

this operating system on their own devices. Both of those breakthrough developments can lead into

some groundbreaking imaginations, e.g. how if we want to have a virtual 3D room inside our

Android device? Is that possible? Fortunately I had a chance to inspect this possibility by doing

research on Philips, one of the biggest electronic companies whose products are spread all over the

world. They gave me an assignment about implementing surround sound coupled with 3D room

visualization and sensor movement. With the help of embedded Android graphic machine and

various libraries, 3D room can be simply realized. Android also has an accelerometer sensor, a sensor

which is detecting how you tilt your phone. Combined with Philips’ prebuilt MPEG surround decoder,

it is possible to develop an Android application with virtual surround effect while moving the phones.

Problems appeared when the heavy-load of 3D, playback, and sensor were affecting the

performance. Android provides several tools for testing and it gave useful information in order to fix

the issues. Compatibility problem was also spotted because of native library, which makes the

application can’t be installed into different Android version. This time it is still unsolved. Despite of

compatibility problem, my app has met all of requirements stated. From this research I can conclude

that it’s likely to have a 3D graphic application on Android but then we have to also concern with the

performance. Beside, I learnt a lesson that it’s an obligation to decide which platform will be used if

you want to work with native library later. In the whole process I still have to improve especially on

how I apply research and development methodologies as well. Finally, I hope this report will be

useful for anyone.

 Virtual Listen Room

8
 8

Glossary

GLOSSARY

Accelerometer : a device that measures weight per unit of (test) mass

Android : Linux-based operating system for mobile devices such as smartphones and

tablet computers

API : application programming interface, is a specification intended to be used

as an interface by software components to communicate with each other

APK : Android application package file (APK) is the file format used to distribute

and install application software

CPU : central processing unit, is the hardware within a computer system which

carries out the instructions of a computer program

DDMS : Dalvik Debug Monitor Server, a debugging tool for Android

Decoder : a device which undoing the encoding so that the original information can

be retrieved

Eclipse : a multi-language software development environment comprising an

integrated development environment

GPU : graphics processing unit, is a specialized electronic circuit designed to

accelerate the building of images in a frame buffer intended for output to a

display.

GUI : graphical user interface, is a type of user interface that

allows users to interact with electronic devices using images

JNI : Java Native Interface, is a programming framework that enables Java code

to call, and to be called by native applications written in other languages

such as C and C++

Library : a collection of resources used to develop software

MP4 : a multimedia container format standard

MPEG : a standard for the generic coding of moving pictures and associated audio

information.

NDK : a companion tool to the Android SDK that lets you build performance-

critical portions of your apps in native code.

OBJ : a simple data-format that represents 3D geometry

OpenGL ES : a subset of the OpenGL 3D graphics application programming interface

designed for embedded systems such as mobile phones, PDAs, and video

game consoles.

RAM : Random access memory, is a form of computer data storage.

SDK : software development kit, is typically a set of software development tools

that allows for the creation of applications for a certain software package

Sensor : a converter that measures a physical quantity and converts it into a signal

which can be read by an observer or by an (today mostly electronic)

instrument

Surround Sound :Surround sound is a technique for enriching the sound reproduction quality

of an audio source with additional audio channels from speakers that

surround the listener

WAV : Waveform Audio File Format, is a Microsoft and IBM audio file format

standard for storing an audio bitstream on PCs.

http://en.wikipedia.org/wiki/Electronic_circuit
http://en.wikipedia.org/wiki/Frame_buffer
http://en.wikipedia.org/wiki/User_interface
http://en.wikipedia.org/wiki/User_(computing)
http://en.wikipedia.org/wiki/Human-computer_interaction
http://en.wikipedia.org/wiki/Computer_data_storage

Virtual Listen Room

 9

1:
Introduction

CHAPTER 1: INTRODUCTION

Everybody loves movies. Almost every week there is always at least one new movie waiting to be

enjoyed. There’s so many ways to watch it, whether is it sitting comfortably in the Cinema or maybe

just facing computer screen with loneliness. But there are 2 kinds of experiences which could only be

found at the Cinema (except you have a set of home cinema): high definition wide screen, coupled

by thunderous sound which could stop your heartbeat. We will discuss much about sound, so let’s

put the things into perspective.

Have you ever watch action or war-based movie on the Cinema? Rhetorically should be yes. You can

feel bullets sling inside your head, the explosion bang around and chopper sound above you. It can

be accomplished through the SURROUND SOUND technology. The technique enhances

the perception of sound spatialization by exploiting sound localization; a listener's ability to identify

the location or origin of a detected sound in direction and distance. Typically this is achieved by

using multiple discrete audio channels routed to an array of loudspeakers. Talking about

simplification, the surround sound let you hear mixed sound from different sources and direction

to make you as if you are in the middle of the scene.

The main idea of this project is generating a 3D surround sound room scenery coupled with surround

sound in a handier package, namely, a “Virtual Listen Room”. The skill scope is around mid-level

programming to mid-level designing room arrangement. Android device had been chosen as the

implementation target, since it leaves massive development spaces and mostly contains essential

components needed on this project, including graphic processor unit (GPU). Graphic manipulation

can be done using an embedded programming interface called OpenGL ES, which is planted in all

Android devices generally. If is it too hard to swallow you can grab any 3D game as an example,

which is basically rendered using OpenGL ES. Android is using Linux environment and Java as a

programming language.

The problem is all kind of android devices only have maximum 2 speakers recognized. Yes, and to

deal with it, Philips Research - Information and Cognition - Applied Sensor Technologies division has

their own Virtual surround sound decoder called “MPEG Decoder TM “ which has been developed for

months. Virtual surround is an audio system which attempts to create the perception that there are

many more sources of sound than are actually present. In order to achieve the goal it is necessary to

devise some means of tricking the human auditory system into thinking that a sound is coming from

somewhere that it is not. Later this application will be coupled with the 3D scene, and while listening

to the playback music we can tilt our scene camera view and even simulate sound changing based on

head movement on the further development, thanks to Android Accelerometer Sensor.

Android graphic and sound processing are barely touched by the developers, and it might be you as

well. So, this thesis could be interesting. This project covers the basic aspect of graphic processing

combined with the knowledge of surround room setup, and everything was wrapped neatly into this

thesis. Chapter 2 in the thesis provides information about the company, Chapter 3 describes about

the project assignment in detail, Chapter 4 explain about methodology, Chapter 5 discusses the

whole research process to reach the goal, and ended with Conclusion and Evaluation on Chapter 6. Is

it possible to create such kind of surround room? Sit back, relax, and discover the answer on the

following pages.

http://en.wikipedia.org/wiki/Psychoacoustics
http://en.wikipedia.org/wiki/Sound_localization
http://en.wikipedia.org/wiki/Audio_channel
http://en.wikipedia.org/wiki/Speaker_(electronics)

 Virtual Listen Room

 10

2: The
Company

CHAPTER 2: THE COMPANY

2.1 Philips History

The foundations of Philips were laid in 1891 when Anton and Gerard Philips established

Philips & Co. in Eindhoven, the Netherlands. The company begun manufacturing carbon-filament

lamps and by the turn of the century, had become one of the largest producers in Europe. By 1910,

with 2,000 employees, Philips was the largest single employer in The Netherlands.

Stimulated by the industrial revolution in Europe, Philips’ first research laboratory was

established in 1914 and the company started introducing its first innovations in the x-ray and radio

technology. Over the years, the list of inventions has only been growing to include many

breakthroughs that have continued to enrich people’s everyday lives.

2.2 Philips Today

 Moving into the 21st century, Philips has continued to change and grow. Long aware that
for many people it is no more than a consumer electronics producer, it has dedicated itself to
projecting a new and more representative image that reflects the products it offers in the areas of
Healthcare, Lifestyle and Technology. By following this up in 2004 with a massive advertising
campaign to unveil its new brand promise of 'sense and simplicity', the company confirmed its
dedication to offering consumers around the world products that are advanced, easy to use and,
above all, designed to meet their needs.

 In September 2006, Philips sold 80.1% of its Semiconductors business to a consortium of
private equity partners. This laid the foundation for a strong and independent new semiconductors
company, named NXP, which was founded on the heritage of over 50 years of innovation at the
heart of Philips. The sale marks a further milestone in our shift from cyclical activities to the building
of an even stronger company, focused on Healthcare, Lifestyle and Technology, and centered
around our brand promise of ‘sense and simplicity’.

 In September 2007, Philips communicated its Vision 2010 strategic plan to further grow the
company with increased profitability targets. As part of Vision 2010, the organizational structure
was simplified per January 1, 2008 by forming three sectors: Healthcare, Lighting and Consumer
Lifestyle. These steps further position Philips as a market-driven, people-centric company with a
strategy and a structure that fully reflect the needs of its customer base. Through Vision 2010,
Philips expects to more than double EBITA per share by 2010 (compared to 2007 expected
performance)

 Virtual Listen Room

 11

2: The
Company

2.3 Branding
Whilst the logo of the company has been consistent since the1930s the way

in which Philips has advertised and communicated to the outside world has

varied. In general, until the mid-1990s all advertising and marketing

campaigns were carried out at product level on a local market basis. This led

to many different campaigns running simultaneously, not giving a global

representation of Philips as a global company.

To establish consistent global presence, in 1995 Philips introduced the first global campaign in 1995

under the tagline “Let’s make things better”. This theme encapsulated the “One Philips” thinking and

was rolled out globally in all markets and on all Philips products. This was also the first campaign that

bought the whole company together, giving the employees a sense of belonging and providing a

unified company look for an external audience.

In September 2004, Philips launched its “sense and simplicity” brand promise, which marked a new

way forward for the company. “Sense and simplicity” reflects Philips’ commitment to be a market-

driven company that provides products and services that fulfill the promise of being “designed

around you, easy to experience and advanced”.

In 2008, the total estimated value of Philips brand increased by 8% to USD 8.3 billion and was ranked

the 43rd most valuable brand in Interbrand’s 2008 ranking of best global brands.

2.4 Mission

Improving people’s lives through meaningful innovation

2.5 Vision

At Philips, we strive to make the world healthier and more sustainable through innovation.
Our goal is to improve the lives of 3 billion people a year by 2025. We will be the best place to work
for people who share our passion. Together we will deliver superior value for our customers and
shareholders.

2.6 Philips Research

Philips Research as a global organization grew out of the renowned “Natuurkundig

Laboratorium” or NatLab which was established in 1914 in downtown Eindhoven. The NatLab

pioneered a number of breakthrough inventions, which contributed to the successful expansion of

Philips into a multinational company. These included the pentode radio tube, the rotary shaver, and

the compact disc. In the early 1960s, Philips Research moved to its current site in Waalre, where it

expanded into IC technology, software, andsystems.

 In 2000, Philips decided on a new destiny for the Research labs' site. The barriers were

removed and the High Tech Campus Eindhoven was established, which has since become the largest

Dutch high tech campus. It is a truly vibrant community and ecosystem for innovation. Philips

Research in Eindhoven is well positioned as a cornerstone of the campus.

The former Philips Applied Technologies group was created by a merger of several Philips

departments in 2005, including the Center for Manufacturing Technology and the Philips Digital

Systems Lab of Philips Consumer Electronics. It moved to the High Tech Campus in 2006.

 Virtual Listen Room

 12

2: The
Company

In January 2011, a large part of the Applied Technologies organization merged with Philips

Research, thereby enhancing its technical competency base, and its ability to bring technology-

enabled innovation closer to the market. At this time, first of a kind product development skills and

advanced engineering competencies were added to Philips Research.

2.7 Philips Applied Sensor Technologies

This department has it's roots in Philips Apptech, and was formed in June 2010 through the

combination of teams with background in Industrial Vision, Sensor Technology, and A/V Signal

Processing.

As the department name indicates, our current focus is on the development and integration

of technologies for smart sensor solutions and related applications. To this end, we unite our

expertise in sensor and camera system architecture, signal and image processing and HW/SW

integration to create robust solutions, prototypes and (pre)products for our business partners.

Examples are smart lighting solutions, such as Lumimotion system for Philips Lighting, and

integrated sensor solutions for vital signs monitoring. Next to that, we have considerable expertise in

the area of standardization and IP value creation, activities that we carry out with and for our Philips

colleagues in IP&S.

2.7.1 Mission

Enabling Solutions in the area of Responsive Environments and Smart Sensor Systems,

through the combination of sensing technology, signal processing, and system architecture &

integration.

2.7.2 Vision

We develop technologies and solutions to sense and process sensory signals in the area of

vital body signs, activity, posture & motion, vision, audio & video. Our solutions contribute to the

quality of daily life, health & well-being, and safety & security, and help our partners to successfully

innovate and develop profitable business.

2.7.3 Department Competence

Key Enablers (Core Competences):

 Sensor and Vision Technology & Architecture

 Signal processing: signal understanding and algorithms

 Efficient and robust implementation of SP solutions

 Application know-how & system integration

 Virtual Listen Room

13
 13

3:
Assignment
Overview

CHAPTER 3: ASSIGNMENT OVERVIEW

3.1 Initial Situation

Philips Research - Information and Cognition - Applied Sensor Technologies division is a

group of experts who entirely focusing on sound and sensor processing. Alongside with Android’s

hype, they start to design and implement several software such as TTS (Text-to-Speech, a smart

application which able to spell the words that user has written) and MPEG Surround decoder (Sound

processor application which simulate surround sound virtually on user’s speaker device). Further on

MPEG Surround decoder, they have a certain room near the office in purpose of demonstrating their

decoder application. What they want to build next in order to extend their project is a visualization

based on it; a 3D room that represents similar demonstration on Android device.

Philips also interested in exploiting Android devices as they’re developer friendly and also

built in open source environment. There are several Philips’ applications which already published to

Android Market with two main intentions; to promote and to extend the functionality of their

products. For instance, we can find Philips TV Buying Guide app on the Android Market which

virtually render their TV product on your gadget’s camera so you can estimate which TV to buy and

how to place it properly inside your house. There also an application called Philips My Remote that

could help you to simulate a TV remote via mobile devices.

3.2 Objectives

 Philips Research - Information and Cognition - Applied Sensor Technologies division consider

this opportunity to develop a new application based on their existing MPEG surround application.

The main idea is to give a mini simulation on how virtual surround works without having a real

demonstration, simply to make a portable one. The goals would be a 3D room application coupled

with surround sound behind it.

3.2.1 Command description

The very first requirements declared the boundaries:

 An OpenGL-based desktop application, then port into an Android Application.

 I have to work only on the graphic processing (3D room) maximize the capability of Open GL

ES.

 The visualization must be represented a room with 6 speaker (a pair of front, center, and

rear speakers)

 Camera position has to be moved using the accelerometer sensor embedded in almost every

Android device.

 Built on Android 2.2 version environment.

 Testing on LG Optimus 2X device, and also Acer Iconia A500 tablet if needed.

 Virtual Listen Room

 14

3:
Assignment
Overview

3.2.2 Additional Commands

After several weeks of working, I had some additional requirements to do. Here’s the list:

 Checking the source code into subversion and filling Philip’s Wiki page.

 Managing a presentation for the first application build.

 Importing Native Code.

 Attaching soundtrack behind the visualization.

 Providing the angle value of camera scene for further development.

 Doing performance testing and profiling.

 Optimizing the source code.

3.3 Tools

1. JDK (Java Development Kit)

Providing Java Environment inside Operation System.

2. Eclipse IDE (Integrated Development Environment)

One of the compilers integrated with Android Development.

3. OpenGL and OpenGL ES

Graphic Library.

4. Android Environment

Android SDK (Software Development Kit) and Android NDK (Native Developing Kit).

5. Min3D

Framework for building 3D object.

6. Cygwin

Simulate Unix commands on Windows.

7. Adobe Photoshop

Manipulating picture as texture.

 Virtual Listen Room

 15

4: Method

CHAPTER 4: METHODOLOGY

Behind every success there’s always a flawless plan. In terms of football or war it’s called

strategy, but here we will discuss about the strategy of researching. Methodology is generally a

guideline system for solving a problem, with specific components such as phases, tasks, methods,

techniques and tools. It must be understood and be prepared well before we take any step of doing

research, or otherwise we will play like a clueless footballer or fight like a brainless soldier.

In this project I have to deal with 2 methodologies: developing software and doing research.

In following sections I will give brief explanations about methodologies to be used in this project.

4.1 Developing Software with Waterfall Methodology

 A classically linear and sequential approach to software design and systems development,

each waterfall stage is assigned to a separate team to ensure greater project and deadline control,

important for on-time project delivery. A linear approach means a stage by stage approach for

product building, for example:

1. The project team first analyses, then determining and prioritizing requirements / needs.

2. Next, in the design phase requirements are translated into IT solutions, and a decision taken

about which underlying technology i.e. COBOL, Java or Visual Basic, etc. etc. is to be used.

3. Once processes are defined and online layouts built, code implementation takes place.

4. The next stage of data conversion evolves into a fully tested solution for implementation

and testing for evaluation by the end-user.

The last and final stage involves evaluation and maintenance, with the latter ensuring everything

runs smoothly.

4.2 Research Paradigms and Methods

Before deciding what method will be used we have to examine our research paradigm first;

is it experimental or analytical. The experimental paradigm is an inductive approach; it uses

empirical evidence to formulate generalized knowledge from the observations made. On the other

hand the analytical paradigm is deductive; it takes known theories and provides new evidence for

special cases.

The experimental paradigm includes the scientific method with engineering method and

empirical method as subsets, while the analytical paradigm includes the mathematical method:

1. Scientific method: Observe the world, propose a model or a theory of behavior, measure

and analyze, validate hypotheses of the model and theory, and if possible repeat the

procedure.

 Engineering method: Observe existing solutions, propose better solutions, build or

develop, measure and analyze, and repeat the process until no more improvements

appear possible.

 Virtual Listen Room

 16

4: Method

 Empirical method: Propose a model develop statistical/qualitative methods, apply to

case studies, measure and analyze, validate model and repeat the procedure.

2. Mathematical method: Propose a formal theory or set of axioms, develop a theory, derive

result and if possible compare with empirical observations.

 My research mainly discusses about developing new software. Hence, It’s very likely to use

Engineering method. It is suitable and usually works well along with waterfall methodology. For

gathering data I used Unobtrusive methods by observing, analyzing documents, screens, web site etc,

because with the wideness of information available on internet we can dig many advantageous

sources for our research.

 Virtual Listen Room

 17

5: Research

CHAPTER 5: RESEARCH

5.1 Virtual Surround Room demonstration.

Virtual surround is an audio system which attempts to create the perception that there are

many more sources of sound than which are actually present. In order to achieve this it is necessary

to devise some means of tricking the human auditory system into thinking that a sound is coming

from somewhere that it is not. Most recent examples of such systems are designed to simulate the

true (physical) surround sound experience using one or two loudspeakers. Such systems are popular

among consumers who want to enjoy the experience of surround sound without the large number

of speakers that are traditionally required to do so.

At the first day here, I got a unique demonstration about virtual surround from my colleague

Jeroen. In a room wrapped by wood texture, there is a big set of approximately 12 speakers around.

I had to sit in the center on the room and tilt my head to the proper direction. Jeroen started to play

the sound. The first source of the sound is the speakers. I can clearly feel that the sound came from

several directions: front left, front right, center, back left, and back right. Then the second simulation

began. I wore a big headset which made me hardly catch any sound that come from outside. Jeroen

played a sound through the headset; with particular surround decoder, and I got the same feeling

compared to the first simulation; same direction, and the same assumption that the sound was

coming from the speakers. What a brilliant simulation. Very simple, understandable, and gave me

enough provision on my backpack to step on the next phase.

5.2 Define the first project requirement

a. An openGL 3d scene with 3 standing speakers on the right and left sides of the walls

b. Desktop version (with basic OpenGL)

c. Port it to mobile app (android)

d. Add free movement feature

5.3 First Research: OpenGL and start making the prototype

My mentor already gave me some references about OpenGL, long before the project

started. That helped me enough to absorb some ideas in graphic processing. For the initial

prototype, my mentor didn’t want me to start nowhere from the scratch. She gave me a package of

a running OpenGL application with code. I always love to start something in this kind of way because

I realized that I will learn quickly from a valid example, rather than reading a bunch of basic

literatures. The example application itself represents a plain room with moveable light source.

 Virtual Listen Room

 18

5: Research

Figure 1. Very First Desktop Prototype

Somehow I had to manipulate it according to requirement. Before I went deeper into the

code, I tried to do some research first and discovered several fundamental functions of OpenGL.

Instead of adding standing speakers, I made 6 hanging speakerboxes using GLUT library. It’s a

common OpenGL library which contains several primitive objects like cube, cone, etc.

5.4 Next Research: OpenGL ES (Android)

After creating a raw prototype of 3D room (texture-less wall and speakers), I was struggling

to find the best way for porting it into android application. Hence, I collected some similar examples

that represent a 3D room generally.

5.4.1 Build a 3D view

 It is a lair-like 3D room, with weird textures on the wall. I turned the wall into woody one,

just for adding some aesthetic values. We can navigate freely with direction pad and also tilting the

view around with some tidy touches. Exactly not a bad example to start since it contains several

features which matching my requirements.

 Virtual Listen Room

 19

5: Research

Figure 2. A Lair-like 3D room using OpenGL ES

5.4.2 Rendering a Speaker Box

I tried to gather common basic shape for my speaker. In order to get wider scenery, I

swapped the screen orientation into landscape and set it as default. With a little modification and

proper set up, this is my first prototype ever.

Figure 3. First Android Prototype

It’s actually has 3 speakers each on both left and right side. I’m using glTranslate() function

to determine the exact position of each object. I also attached speaker textures on each box in order

to make it look like a real speaker. This application consists of 4 classes:

1. App : manage the whole visualization.

2. Cube : object representation of a cube containing vertex information, texture

coordinates, vertex indices and drawing functionality, which is called by the renderer.

 Virtual Listen Room

 20

5: Research

3. World : textual properties of the main 3D room.

4. Run : Initiation of Android Activity, setting and openGL ES Renderer class.

onTouchListener() method from Android API has been implemented so we can take a look

around inside the scene via screen touch. Forward and backward movement had been set using

Directional Pad by default, but nowadays almost all of Android devices don’t have physical direction

button. To deal with it, I ported movement function into menu button, search button, and also

volume keys.

5.5 Designing Sensor Navigation

After reaching all of the first requirements, I had to assign a completely new navigation

system. The view had to be changed based on the phone movement to bring more experience on

the visualization. Basically Android device has some sensor to be exploited:

Figure 4. Various Types of Android Sensor

Considering that we had to have a head-tilt like movement, and because it is the most

popular sensor around (with a lot of example on the Internet), I tried to exploit accelerometer first.

Here’s a short brief about it:

Sensor.TYPE_ACCELEROMETER:

All values are in SI units (m/s^2)

values[0]: Acceleration minus Gx on the x-axis

values[1]: Acceleration minus Gy on the y-axis

values[2]: Acceleration minus Gz on the z-axis

http://developer.android.com/reference/android/hardware/Sensor.html#TYPE_ACCELEROMETER

 Virtual Listen Room

 21

5: Research

A sensor of this type measures the acceleration applied to the device (Ad). Conceptually, it does so

by measuring forces applied to the sensor itself (Fs) using the relation:

Ad = - ∑Fs / mass

In particular, the force of gravity is always influencing the measured acceleration:

Ad = -g - ∑F / mass

For this reason, when the device is sitting on a table (and obviously not accelerating), the

accelerometer reads a magnitude of g = 9.81 m/s^2

Similarly, when the device is in free-fall and therefore dangerously accelerating towards to ground at

9.81 m/s^2, its accelerometer reads a magnitude of 0 m/s^2.

It should be apparent that in order to measure the real acceleration of the device, the contribution

of the force of gravity must be eliminated. This can be achieved by applying a high-pass filter.

Conversely, a low-pass filter can be used to isolate the force of gravity.

Examples:

 When the device lies flat on a table and is pushed on its left side toward the right, the x

acceleration value is positive.

 When the device lies flat on a table, the acceleration value is +9.81, which correspond

to the acceleration of the device (0 m/s^2) minus the force of gravity (-9.81 m/s^2).

 When the device lies flat on a table and is pushed toward the sky with an acceleration

of A m/s^2, the acceleration value is equal to A+9.81 which correspond to the

acceleration of the device (+A m/s^2) minus the force of gravity (-9.81 m/s^2).

5.6 Discovering Graphic Engine

To get some insights on the sensor I looked for few tutorials out there. It wasn’t that hard to

find an example which coupled 3D scene with sensor navigation. Like catching two fishes in a swipe,

I also got a quite comprehensive OpenGL ES Library called Min3D.

Min3D is a lightweight 3d library/framework for Android using Java with OpenGL ES

targeting compatibility with Android v1.5/OpenGL ES 1.0 and higher. It tracks closely with the

OpenGL ES API, which makes it ideal for gaining an understanding of the OpenGL ES API while

providing the convenience of an object-oriented class library. It's very easy to render various of

primitive objects like box,sphere,pyramid etc.

Min3D is able to import 3 different filetypes:

 Wavefront OBJ (text)

 3DS (binary)

 MD2 (binary, animation)

http://code.google.com/p/min3d/
http://en.wikipedia.org/wiki/Obj
http://en.wikipedia.org/wiki/.3ds
http://en.wikipedia.org/wiki/MD2_%28file_format%29

 Virtual Listen Room

 22

5: Research

Figure 5. Min3D Object Example

5.7 Min3D Setup and Implementation

1. Download and extract Min3D library file inside your project folder.

2. Open your project on Eclipse

3. Refresh your workspace. You will find a folder named min3d

4. Right click on the folder, choose Build path > Use as source folder.

5. Now you can call any method from min3d library

There are 3 related stuffs that could be easily implemented with this library:

1. A 3D room. In the world of 3D graphic processing we usually call it “Skybox”

First we have to declare a Skybox with (float size, int quality) parameter. Afterwards

we can add textures on each side of the Skybox in to get real room experience. Method

scale() determines the proportion of each axis. Then we can attach any texture on every side

of the room with 1:1 width and length proportion.

http://www.mediafire.com/?f2bcr4679d47ycd

 Virtual Listen Room

 23

5: Research

Figure 6. Skybox

2. Primitive objects (Box, Hollow Cylinder, Rectangle, Sphere, Torus) also can be rendered

using this library. Simply instantiate any primitive object we want and assign several

parameter on it. For example, in this case I need 6 3D cubes for later being rendered as a

hanging speakerbox.

We have to also attach texture into a plain 3D object to bring a real impression.

Texture image must be placed inside res/drawable directory and later will be called using,

for example in my case I named my texture as speaker1, R.drawable.speaker1 ID.

Figure 7. Speaker Texture

Every images and texture which been loaded into the scene need to be recycled, just

in case the environment get sort of memory. recycle() will free up some memories as soon

as possible.

 Virtual Listen Room

 24

5: Research

Figure 8. Skybox with Speakers Attached

3. Camera exploitation. Min3D also provides ease of camera management. With sensor
integration we can tilt the whole scene camera along with the device’s movement. First
thing to do is we need to override built-in onSensorChanged() method, then pass the
event value into the camera object.

Notice that I only use y and z axis, because the scene was set on landscape by
default to gain wider scenery.

Min3D assembled a class called Number 3D which being instantiated as mAccVals.
It contains arrays of numbers which useful for building a dynamic 3D view.

Figure 9. Camera Exploitation within Sensor

 Virtual Listen Room

 25

5: Research

5.8 Rendering Particular 3D Object

There is a feature in Min3D which is too decent not to be implemented; we can bring our

own 3D object into the screen. It is possible for almost all 3D models with .OBJ, .MD2 and .3DS

extension.

To give life for the surround room, I decided to add 2 3D objects; an acoustic guitar and a set

of home theater equipment as furnishes. You can find a lot of well-made 3D object at 3divia.com .

It’s better to go with .3DS object since it’s easier to be rendered.

5.8.1 How to Add Premade 3D Object (.3DS)

1. Try to find any suitable 3D object with .3DS extension along with texture, or if you

have any knowledge on 3D rendering you can also create it by yourself. This home

theatre set is just perfect as an example.

Figure 10. 3D Object Example

Figure 11. Texture Example

2. Make sure that the .3DS file name meets the requirement. It must contain only [a-

z0-9_.] . Let’s give it a name stereo.3ds . You can leave the texture name as it is;

stereo.jpg.

 Virtual Listen Room

 26

5: Research

3. Put the file on the proper directory inside your workspace. Moreover, both of the

must be placed inside res folder.

 For future easier access, .3ds file should be in directory res/raw. Sometimes

this folder already generated automatically after starting a new workspace

and sometimes you have to create it manually.

 There is a lot of drawable folders inside res. You just have to put the

texture file inside any of them, because later the code will automatically

find it.

4. Import the Object3dContainer and Parser libraries.

5. Declare a new object from Object3dContainer. Assume that the name is mTv.

6. Now we can import the .3ds file

7. Moreover we can also set several properties of skybox i.e. :

 managing object’s scale

 managing object’s position

 managing object’s rotation

 x, y, z axis can be managed depends on which axis you want to use.

8. Finally, we can add the mTv object to the scene.

Figure 12.First Scenery Design

5.9 Defining New Requirement: Add Soundtrack

After finishing the first part of the application, I was obligated to add sounds behind the

scene. The sound itself must be in .WAV or .MP4 extension. After spent a day of research, I found a

way to deal with the sound:

1. Adding menu items.
2. Create a simple list that display all file inside the SD Card (file explorer).
3. Filtering .WAV and .MP4 file.
4. Play the sounds directly from the explorer.

 Virtual Listen Room

 27

5: Research

Previous step, to make the app more “User-Friendly” and accessible, I managed to assign 3 menu
items for better navigation. It would consist of:

1. Exit : completely close the application’s process.
2. About : Application’s properties.
3. Select Sound : later will be used to jump into the file explorer.

Later menu can be activated via device’s menu button.

5.9.1 Generating Menu items

Android phones have the menu button which displays a menu with several items that
provide navigation or more functionality or settings to your applications.
Android has three types of menus

1. Options menu.
2. Context menu.
3. Alternative menus.

Menu items can be grouped and each menu item can have submenu items. Options menu will be
implemented since it is particularly needed at the moment.

Figure 13. Android Option Menu Example

To generate option menus properly there are two parts of separated code:

1. Java code inside the main class

Android API provides onCreateOptionsMenu(Menu menu) which is can be overrided

anytime.

2. The whole method has to be added to the main class. Meanwhile, there’s also some code

that need to be implemented as xml file to trigger the menu items. This code located inside

 Virtual Listen Room

 28

5: Research

the res/layout directory. Assume that we call it menu.xml. Then we should call the layout

and pass it to menu inflater as R.layout.menu.

Figure 14. Menu Items

 This menu item feature is declared as the most effective way of navigation. Almost all of
android applications around are optimizing this feature. Later, menu item can be furnished by
adding image into each item.

 Virtual Listen Room

 29

5: Research

5.10 Philips MPEG Surround Decoder

Building a simple file explorer will be the next step afterward. I was thinking to make it from

scratch, but after further discussion with my mentor, she agreed to handle the source code of her

Philips’ MPEG Surround Decoder Android application.

Figure 15. Philips’ MPEG Surround Decoder

This is a kind of media player app which simulates surround effect on particular media file

(.mp4 and .wav). It is covered almost all my plans before; simple file list explorer, filtering .wav and

.mp4 files. MPEG Surround application has 2 usable button; Song repeat (on the top right corner)

and MPEG switcher (on bottom side). In order to produce unique and original sound output, the

application uses certain decoder formed by native sound libraries in C/C++.

5.10.1 Filtering and Listing .WAV and .MP4 File

The application will only play .WAV and .MP4 file extensions, which means that files with any

other formats won’t be recognized. It is possible to create an explorer that displaying all the files

inside the external mobile phone storage but of course it is not effective because we have to find

needed files manually through directories. One of the shortest ways is filtering the file inside certain

directory. Thus, appropriate files will be gathered in a list at once.

Based on http://docs.oracle.com:, Java has a FilenameFilter Interface. Instances of classes

that implement this interface are used to filter filenames. These instances are used to filter directory

listings in the list method of class File. It must be coupled with accept() method.

http://docs.oracle.com/

 Virtual Listen Room

 30

5: Research

 Moreover, to collect filtered class into a list, Mp4Filter class implemented further in

updateSongList() method.

updateSongList() method will put the files into an array. Furthermore, if there’s a new file

inserted to /sdcard the method will recheck and the updating the list. Hence, updateSongList() is

essential to be repeated so we have to put it inside the public void onCreate(Bundle icicle)

which means updateSongList() will be executed on every application startup.

Figure 16. Simple File List Design

5.11 Go Native with the Sound Decoder

MPEG Surround Decoder still use Java Android media playback as the music player. In the

context of producing virtual surround sound, media playback must be supported by specific decoder.

The decoder had been written as a native code (C/C++). Thus, native library need to be imported

into Android SDK so it can be ported to Android. The Android framework provides two ways to use

native code:

1. One it’s to write your application using the Android framework and use JNI (JavaTM Native

Interface (JNI)) to access the APIs provided by the Android NDK. This technique allows you to

take advantage of the convenience of the Android framework, but still allows you to write

native code when necessary. You can install applications that use native code through the

JNI on devices that run Android 1.5 or later.

2. You can also write a native activity, which allows you to implement the lifecycle callbacks in

native code. The Android SDK provides the NativeActivity class, which is a convenience class

that notifies your native code of any activity lifecycle callbacks (onCreate(), onPause(),

onResume(), etc). You can implement the callbacks in your native code to handle these

 Virtual Listen Room

 31

5: Research

events when they occur. Applications that use native activities must be run on Android 2.3

(API Level 9) or later.

Because I only have a test device running Android 2.2, inevitably I had to take the first

option, since it’s compatible with devices that run Android 1.5 or later.

5.11.1 Java Native Interface

The Java Native Interface (JNI) is a programming framework that enables Java code running

in a Java Virtual Machine (JVM) to call and to be called by native applications (programs specific to

a hardware and operating system platform) and libraries written in other languages such

as C, C++ and assembly. JNI enables one to write native methods to handle situations when an

application cannot be written entirely in the Java programming language, e.g. when the standard

Java class library does not support the platform-specific features or program library. It is also used to

modify an existing application—written in another programming language—to be accessible to Java

applications. Many of the standard library classes depend on JNI to provide functionality to the

developer and the user, e.g. file I/O and sound capabilities. Including performance- and platform-

sensitive API implementations in the standard library allows all Java applications to access this

functionality in a safe and platform-independent manner.

The JNI framework lets a native method use Java objects in the same way that Java code

uses these objects. A native method can create Java objects and then inspect and use these objects

to perform its tasks. A native method can also inspect and use objects created by Java application

code.

JNI is sometimes referred to as the "escape hatch" for Java developers because it enables

them to add functionality to their Java application that the standard Java APIs cannot otherwise

provide. It can be used to interface with code written in other languages, such as C and C++. It is also

used for time-critical calculations or operations like solving complicated mathematical equations,

because native code may be faster than JVM code.

5.11.2 Android NDK

The Android NDK is a toolset that lets you embed components that make use of native code

in your Android applications.

Android applications run in the Dalvik virtual machine. The NDK allows you to implement

parts of your applications using native-code languages such as C and C++. This can provide benefits

to certain classes of applications, in the form of reuse of existing code and in some cases increased

speed.

The NDK provides:

 A set of tools and build files used to generate native code libraries from C and C++ sources

 A way to embed the corresponding native libraries into an application package file (.apk)

that can be deployed on Android devices

http://en.wikipedia.org/wiki/Software_framework
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Java_Virtual_Machine
http://en.wikipedia.org/wiki/Hardware
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Assembly_language
http://en.wikipedia.org/wiki/Class_(computer_science)
http://en.wikipedia.org/wiki/Library_(computer_science)
http://en.wikipedia.org/wiki/Object_(computer_science)

 Virtual Listen Room

 32

5: Research

 A set of native system headers and libraries that will be supported in all future versions of

the Android platform, starting from Android 1.5. Applications that use native activities must

be run on Android 2.3 or later.

 Documentation, samples, and tutorials

5.11.3 When to Develop in Native Code

The NDK will not benefit most applications. As a developer, you need to balance its benefits

against its disadvantages; notably, using native code does not result in an automatic performance

increase, but always increases application complexity. In general, you should only use native code if

it is essential to your application, not just because you prefer to program in C/C++.

Typical good candidates for the NDK are self-contained, CPU-intensive operations that don't

allocate much memory, such as signal processing, physics simulation (both of this categories meet

the virtual surround decoder), and so on. Simply re-coding a method to run in C usually does not

result in a large performance increase. When examining whether or not you should develop in native

code, think about your requirements and see if the Android framework APIs provide the

functionality that you need. The NDK can be an effective way to reuse a large corpus of existing

C/C++ code.

 JNI also contains pitfalls as well as Android NDK. According to Wikipedia, these are several

points to be concerned:

 Subtle errors in the use of JNI can destabilize the entire JVM in ways that are very difficult to

reproduce and debug.

 Only applications and signed applets can invoke JNI.

 An application that relies on JNI loses the platform portability Java offers (a partial

workaround is to write a separate implementation of JNI code for each platform and have

Java detect the operating system and load the correct one at runtime).

 The JNI framework does not provide any automatic garbage collection for non-JVM memory

resources allocated by code executing on the native side. Consequently, native side code

(such as assembly language) must assume the responsibility for explicitly releasing any such

memory resources that it itself acquires.

 Error checking is a must or it has the potential to crash the JNI side and the JVM.

5.11.4 What to Prepare Before Porting C/C++ code into Android

5.11.4.1 C/C++ Eclipse Support Installation

The Eclipse installation does not support either C or C++ right now. We don’t really need the

full support, including building etc. But we would like to have syntax coloring and basic syntax

checking. Thus we have to add some Eclipse features via the update mechanism, almost like when

we added Android support. Steps:

http://en.wikipedia.org/wiki/Assembly_language
http://en.wikipedia.org/wiki/JVM

 Virtual Listen Room

 33

5: Research

1. Go to “Help > Install New Software” menu item.

2. Choose the Eclipse version you have (Galileo, Indigo etc.) as the update site (“Work with”).

3. Check “Eclipse C/C++ Development Tools” in the Programming Languages branch, when the

item tree loads.

4. Then press “Next”.

5. Say “Yes” to everything, accept the licenses and let Eclipse finish the update.

6. Once it is done, you will see the prompt to restart Eclipse. Say “Yes” and wait for Eclipse to

restart.

7. You have C/C++ support in your Eclipse IDE now.

5.11.4.2 Cygwin

Android is Linux based, and thus it is no surprise that when you build native code for it, you

need some Unix tools. On Windows, NDK supports Cygwin 1.7.x and above. If you don’t know what

Cygwin is, it’s just a set of software that emulates Unix environment on Windows which is necessary

in some cases, including ours. In order to get Cygwin, go to http://www.cygwin.com/.

Cygwin Installation Steps:

1. Download or/and run Cygwin’s setup.exe.

2. Choose “Install from Internet”, then click “Next”, then choose the installation directory.

Note: The whole thing is going to require up to few of space. Choose the local package

directory – just use some temporary directory, you’re not likely to need it afterwards.

3. At this point Cygwin will connect to its central site and “download” the list of mirror sites.

Choosing a mirror site that looks geographically close to you may save you some download

time and click “Next”.

4. We need the development packages. Click (once) on the word “Default” next to the root

Devel node and wait few seconds while the setup hangs. When it is back, you will see that

“Default” changes to “Install” for the Devel node.

5. Now click “Next”.

Extra steps to confirm the correct installation:

1. Launch the Cygwin console

2. Click it once, let the Cygwin console start up and initialize.

3. To check that we have the tool that is important for Android NDK, type make -v in the

console.

4. You should see a response that tells us that GNU Make is present in our Unix environment

that is emulated by Cygwin.

5. You have now installed Cygwin.

http://www.cygwin.com/

 Virtual Listen Room

 34

5: Research

5.11.4.3 Android NDK Installation

Installation of NDK:

1. From the table at the top of this page http://developer.android.com/sdk/ndk/index.html,

select the NDK package that is appropriate for your development computer and download

the package.

2. Uncompress the NDK download package using tools available on your computer. When

uncompressed, the NDK files are contained in a directory called android-ndk-<version>. You

can rename the NDK directory if necessary and you can move it to any location on your

computer, but it is recommended to move it to where you installed your Android SDK so

that the ndk will be easy to found again. Make sure that the path name does not contain any

spaces, this might prevent errors in the future. This documentation refers to the NDK

directory as <ndk>.

3. You are now ready to start working with the NDK.

5.11.5 Building MPEG Surround Library

Make sure all of the preparation have completed (JNI, NDK, Cygwin), then we can go to the

toughest part of the research. This step-by-step explanation need to be done in chronological order:

1. We need all the files that related to the library. In my case, I got a fully loaded

“MPEGDecoder” folder consists of 3 subfolders with various decoder files inside. Put our

workspace folder inside the MPEGDecoder directory so it will be easier to compile.

2. Create the Java class inside the project representing the native code. I embedded the native

code inside the AudioControl.java.

This is just a Java file that lives in standard src directory in your Eclipse project. It serves as

the glue to the native code that we'll write later.

3. Create the native code header file for AudioControl

a. Using Cygwin navigate to the bin directory of your project. Then run the javah tool. The

javah tool should be located under “Program Files/Java/jdk- <version>/bin/javah.exe” so

run it from there if necessary. The javah tool takes two command line arguments the

first will be “-jni” for us, the second is the Java native file for which you wish to generate

a header. Since you are in the bin directory you only need to type the package name for

the second parameter. Once run, the JNI header file should appear in your project bin

directory (in my case, <EclipseWorkspace>/ dpc_android_virtual_jni/bin).

PS: If you willing to use directories which contain space, separate it with *

Program Files  Program*Files

b. Next, create a “jni” directory in your project directory

c. And then, copy the JNI header to jni folder

d. You now have a header file inside your JNI folder. Rename the file into MPSDecoderJNI.h

 Virtual Listen Room

 35

5: Research

4. Implement the native code by writing your C code

a. In your <EclipseWorkspace>/NDKDemo/jni/ folder, create a .c or .cpp file with the

similar name as the header. This is where we'll implement the native code. To start,

copy the function signatures from the header file, and provide the implementation for

those functions. We also have to include any header that related too, in this case it was

decoder_agent.h (I got both decoder_agent.h and decoder_agent.cpp from Philips

MPEG Surround Application)

b. Notice that the name of the C function is not just random – it matches the Java class

name. In addition, what the function does is it uses the JNIEnv object to create a Java

string from a literal, and returns the string to the caller.

c. It is also possible to call Java methods from native code, create custom objects and so

on.

5. Compile everything and build you Shared Library

a. To build the library, first we need to create an Android.mk file. This is a file containing

how to compile the C and also what C files included on compilation.

b. From your project folder, issue a command that will invoke the NDK build tool. For

example here, since NDK is installed in C:\ it looks like this: /cygdrive/c/<path to the

NDK>/android-ndk-r4/ndk-build

Caution: Be careful not to leave any space at the end of each line in the Android.mk, because

when you are going to try to do ndk-build, an error is going to show up: “No rule to make

target ‘/ndk_demo.c’ …”

c. A successful run of the ndk-build tool will create a .so file in a new folder called libs that

will be created in your project root. This is what it is displayed in the cygwin command

line:

Figure 17. Successful Cygwin Command

d. The .so file is the binary library that will be included into the application .apk package

and will be available for the Java code of the app to link to.

Figure 18. Where the Library File Was Generated

 Virtual Listen Room

 36

5: Research

e. Make sure to hit F5 (Refresh) in Eclipse after selecting the project root to update the

Eclipse project with the changes you did in the Cygwin console. If you run the project

before refreshing none of the changes will take effect.

f. You have to repeat the ndk-build command every time you modify the C/C++ source of

your NDK code. Eclipse ADT does not support NDK so you need to do it from the Cygwin

console. Don’t forget to refresh your project in Eclipse every time!

6. Use your native code inside Android activity

a. So now that we have the native C library implemented, compiled, and placed in the

right place, let's see how we can call it from our Activity. It's actually rather simple - you

just have to instantiate the instance of your NativeLib class and from there on, it's just a

regular Java object.

b. After working with the native library, I set a menu items which will bring the user

directly to MPS activity.

c. Last but not least, I had to make the sounds played behind the visualization

room. To get rid of this problem, I added an ”Intent” to bring the visualization

back into the top of the stack immediately after choosing a song.

Figure 19. Implemented Philips MPEG Surround Decoder

 Virtual Listen Room

 37

5: Research

5.12 Proper Room Setup

I worked with another several students, also on Android subject. We had an agreement that

in every beginning of the month we have to present our project, no matter how the progress is. I

encouraged myself to take the first presentation, since I felt my project was quite feasible to be

presented.

I prepared a 10 minutes presentation and the rest will be an application demo on wide

screen. There was an important remark on the visualization, said that the audio setup was

completely wrong. I argued that I have no knowledge about surround room setup, but then I

realized I have to concern more about it.

I tried to do some research on surround sound setup, and I found this helpful:

http://www.the-home-cinema-guide.com . There are several clauses need to be fulfilled to gain a

proper surround room perspective, for example, on 5.1 surround room:

1. The center speaker needs to be placed just above or below the center of the TV screen. Just

try not to place it too far away from the screen or the sound may appear to be removed

from the picture. This will sound unnatural and spoil the impact of the soundtrack. However,

you can use any type of speaker as your center (such as a normal bookshelf speaker).

Figure 20. Recommended Front Speaker Placement

2. The front left and right speakers are the equivalent of the stereo pair you are probably used

to with your hi-fi system. The front speakers should be an equal distance left and right of the

TV - and both should be an equal distance from your seating position. You should imagine a

triangle with the speakers and yourself on each corner.

http://www.the-home-cinema-guide.com/

 Virtual Listen Room

 38

5: Research

 Figure 21. Front Left and Right Speaker Placement

3. Ideally, the rear surround speakers in a 5.1 surround sound configuration should be placed

at the sides, and just behind, the seating position. In many rooms you may struggle to get

these positioned exactly, but always try to get as close as your space will allow.

Figure 22. Rear Speakers Placement

4. Subwoofer has a very specific job, to reproduce the really low bass in a soundtrack.

Therefore, subwoofer placement in a room is much less critical than with other speakers.

Wherever you have a spare bit of space in your room then you can pretty much stick it

anywhere.

 Virtual Listen Room

 39

5: Research

Figure 23. Subwoofer Speaker Placement

5.13 Revising Room Setup

After finding some references, I decided to revise my room setup so at least it could resemble

a proper surround room. Several points need to be considered:

1. Set of home theatre nearly represent the center, front left and also front right speakers so I

can leave it as it is.

2. Six cube speakers around the room can be reduced into only one, later will be used as

subwoofer.

3. Creating two standing speakers to fulfill rear speaker requirement.

5.13.1 Subwoofer Arrangement

As discussed previously, subwoofer can be stuck anywhere in the room. I precisely adopted

Figure. and I shifted one of the cube speaker near the front left speaker by modifying the position.

 Virtual Listen Room

 40

5: Research

Figure 24. New Front speakers and Subwoofer Arrangement

5.13.2 Standing Rear Speakers

Standing speaker could be created based on basic block shape, which is also can be reached

by manipulating the scale of cube. Hence, I decided to turn 2 of cube speakers into standing one. The

texture also need to be adapted so I got it edited using Photoshop.

Figure 25. Standing Speakers Texture

 Virtual Listen Room

 41

5: Research

 Figure 26. Rear Standing Speakers

5.14 Testing

 Testing is always needed on every software development process. It is one of Software

Development Cycle part that can’t be left, if it’s not the most important. We don’t have a right to put

a “Reliable” stamp on software before it passing several steps of testing. There are too many risks, or

I might say it is harm to launch software without any systematic testing.

 Software testing can be stated as the process of validating and verifying that a software

program/application/product:

1. Meets the requirements that guided its design and development

2. Works as expected

3. Satisfied the Client

 Software testing, depending on the testing method employed, can be implemented at any

time in the development process. However, most of the test effort traditionally occurs after the

requirements have been defined and the coding process has been completed.

 Virtual Listen Room

 42

5: Research

5.14.1 Problem Assessment

 There’s some non-functional issues spotted after Implementation Phase:

1. Compatibility problem. Application will be crashed on startup if we install it on another

version of Android. As mentioned before, an application that relies on JNI sometimes loses

the platform portability Java offers.

2. Performance problem. Soundtrack is sometimes unstable, seems affected by the high load

resource of 3D scene and Accelerometer.

 The first problem seems unsolved. I’ve tried to force-install the application to another

several Android versions, but it made the situation going worse instead of fix the problem. The

application become hard to debug, sometimes the IDE finds unidentified errors without any

explanations.

 To get a deeper insight on the second problem, I did two ways of analysis; Profiling and

Memory Analysis. Profiling covers the memory consumption of application itself, when memory

analysis has a wider scope because it’s also affected by the Android environment.

5.14.2 Profiling Activity

5.14.2.1 About Profiling

 In software engineering, profiling ("program profiling", "software profiling") is a form

of dynamic program analysis that measures, for example, the usage of memory, the usage of

particular instructions, or frequency and duration of function calls. The most common use of

profiling information is to aid program optimization.

5.14.2.2 DDMS Traceview Method

 When you have a trace log file (generated by adding tracing code to your application or by

DDMS), you can have Traceview load the log files and display their data in a window visualizes your

application in two panels:

 A timeline panel -- describes when each thread and method started and stopped

 A profile panel -- provides a summary of what happened inside a method

The sections below provide addition information about the traceview output panes.

http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Dynamic_program_analysis
http://en.wikipedia.org/w/index.php?title=Memory_profiler&action=edit&redlink=1
http://en.wikipedia.org/wiki/Instruction_set_simulator
http://en.wikipedia.org/wiki/Instruction_set_simulator
http://en.wikipedia.org/wiki/Optimization_(computer_science)
http://developer.android.com/guide/developing/debugging/debugging-tracing.html#timelinepanel
http://developer.android.com/guide/developing/debugging/debugging-tracing.html#timelinepanel

 Virtual Listen Room

 43

5: Research

5.14.2.3 Timeline Panel

 The image below shows a close up of the timeline panel. Each thread’s execution is shown in

its own row, with time increasing to the right. Each method is shown in another color (colors are

reused in a round-robin fashion starting with the methods that have the most inclusive time). The

thin lines underneath the first row show the extent (entry to exit) of all the calls to the selected

method. The method in this case isLoadListener.nativeFinished() and it was selected in the profile

view.

Figure 27. The Traceview Timeline Panel

5.14.2.4 Profile Panel

 Figure 2 shows the profile pane, a summary of all the time spent in a method. The table

shows both the inclusive and exclusive times (as well as the percentage of the total time). Exclusive

time is the time spent in the method. Inclusive time is the time spent in the method plus the time

spent in any called functions. We refer to calling methods as "parents" and called methods as

"children." When a method is selected (by clicking on it), it expands to show the parents and

children. Parents are shown with a purple background and children with a yellow background. The

last column in the table shows the number of calls to this method plus the number of recursive calls.

The last column shows the number of calls out of the total number of calls made to that method. In

this view, we can see that there were 14 calls to LoadListener.nativeFinished(); looking at the

timeline panel shows that one of those calls took an unusually long time.

 Virtual Listen Room

 44

5: Research

Figure 28. Profile Panel

 Virtual Listen Room

 45

5: Research

5.14.2.5 CPU Usage per Profile and Screenshot

 This screenshots were taken using DDMS Traceview on Eclipse. I managed to make 5

different profiles based on the existence of additional objects, object textures, MPEG Surround

Features, and also wakelock function. All of this profile using the same Game Sensor Delay.

 Profile with addition objects, textures, full MPEG Surround Features

Figure 29. First Profile Panel

 The highest Inclusive CPU Time % is the method addVertex() for rendering the scene at the

startup, but the highest exclusive CPU Time % comes from several Buffer methods for playing the

mp4 file. In the CPU Time/Call column we also can recognize that the DirectByteBuffer.getShort()

and DirectByteBuffer.isAddresValid() have significant values comparing to the rest although it’s only

been called 2 times . Sound quality becomes worse and delayed meanwhile the visualization isn’t

affected at all.

 Virtual Listen Room

 46

5: Research

 Profile with addition objects, textures, only Repeat Button on MPEG Surround Features

Figure 30. Second Profile Panel

 The highest Inclusive CPU Time % is still the method addVertex() for rendering the scene at

the startup even though it has less value than previous profile, but the highest exclusive CPU Time %

come from several Buffer methods for playing the mp4 file. In the CPU Time/Call column we also can

recognize that the DirectByteBuffer.getShort() and DirectByteBuffer.isAddresValid() have significant

values comparing to the rest although it’s only been called 4 times . The quality of the sound is

getting worse and delayed meanwhile the visualization isn’t affected at all.

 Virtual Listen Room

 47

5: Research

 Profile without addition objects, without textures, only Repeat Button on MPEG

Surround Features

Figure 31. Third Profile Panel

 The highest Inclusive CPU Time % is the method from Renderer class for drawing the scene

at the startup. Now there are 3 openGL methods on top of the list. The highest exclusive CPU Time %

comes from method drawObject(). It could be floated up because there are no texture at all. In the

CPU Time/Call column we also can recognize that the DirectByteBuffer.getShort() and

DirectByteBuffer.isAddresValid() have significant values comparing to the rest although it’s only

been called 6 times . The quality of the sound is better than previous profile and it’s also a bit

delayed meanwhile the visualization isn’t affected at all.

 Virtual Listen Room

 48

5: Research

 Profile without addition objects, with textures, only Repeat Button on MPEG Surround

Features

 Figure 32. Fourth Profile Panel

 The highest Inclusive CPU Time % is the method from Renderer class for drawing the scene

at the startup. Now there are 3 openGL methods on top of the list. The highest exclusive CPU Time %

comes from method drawObject(), but it has less percentage than previous profile. In the CPU

Time/Call column we also can recognize that the DirectByteBuffer.getShort() and

DirectByteBuffer.isAddresValid() have significant values comparing to the rest although it’s only

been called 6 times . The quality of the sound is surprisingly very smooth, and after I bring the

additional object back to the scene the performance of the sound is still stable.

 Virtual Listen Room

 49

5: Research

 Profile without addition objects, with textures, only Repeat Button on MPEG Surround

Features, Wakelock added.

 Figure 33. Fifth Profile Panel

 The highest Inclusive CPU Time % is the method from Renderer class at the startup but it is

significantly decreased from the last profile. Now there are 3 openGL methods on top of the list. The

highest exclusive CPU Time % comes from method drawObject(), but it has less percentage than

previous profile. In the CPU Time/Call column we also can recognize that the

DirectByteBuffer.getShort() and DirectByteBuffer.isAddresValid() have significant values comparing

to the rest, but it is also drastically decreased compared to the last profile. Quality of the sound is

very smooth, even after I bring the additional object back to the scene. Conceptually, wakelock keep

the processor at its peak frequency, But eventually after a few moment the sound become delayed

again. This could be the effect of RAM memory which is keep growing time after time.

5.14.2.6 Profiling Conclusion

Profiling using DDMS Traceview is fairly good to track how many resource needed by

particular method. However, the result is sometimes biased even in the same occasion. The sound

works flawlessly at the moment but somehow next time I start the application I got different

performance. I think amount of RAM is also affecting the stability of an application. Despite all of the

biased result, it is fair to use DDMS Traceview to get a raw representation of CPU usage.

 Virtual Listen Room

 50

5: Research

5.14.3 Memory Analysis Activity

5.14.3.1 About Memory Analysis

Memory Analysis is the science of using a memory image to determine information about

running programs, the operating system, and the overall state of a computer.

5.14.3.2 Eclipse’s Memory Analyzer Tool

The Eclipse Memory Analyzer is a fast and feature-rich Java heap analyzer that helps you

find memory leaks and reduce memory consumption.

Use the Memory Analyzer to analyze productive heap dumps with hundreds of millions of

objects, quickly calculate the retained sizes of objects, see who is preventing the Garbage Collector

from collecting objects, run a report to automatically extract leak suspects.

5.14.3.3 Problem Scope

1. Dominator Tree : List the biggest objects and what they keep alive.

2. Top Consumers : Print the most expensive objects grouped by class and by

package.

3. Duplicate Classes : Detect classes loaded by multiple class loaders.

4. Leak Suspects : includes leak suspects and a system overview

5. Top Components : list reports for components bigger than 1 percent of the

total heap.

5.14.5.4 How to Install Memory Analyzer Tool on Eclipse

1. To install a new functionality, select Help → Install New Software

2. Select All Sites on the Work with dropdown.

3. After all lists appear, scroll down and find General Purpose Tools.

4. Tick on Memory Analyzer and Memory Analyzer Charts (Optional).

5. Do the Next-Finish formality and Installation will be started.

6. Restart the Eclipse IDE.

7. Memory Analyzer Tools is now ready to be used.

5.14.5.5 How to Use Memory Analyzer Tool on Eclipse

1. Run your application with debug enabled.

2. Switch to DDMS Perspective.

3. Select your device and click Dump HPROF file.

4. A setup wizard will appear. Click Finish to show the memory leaks overview.

http://www.forensicswiki.org/wiki/Tools:Memory_Imaging
http://www.forensicswiki.org/wiki/Operating_system

 Virtual Listen Room

 51

5: Research

5.14.5.6 Result and Screenshot

 This screenshots were taken using Memory Analyzer Tools on Eclipse. I managed to

make 4 different analysis based on the existence of additional objects, object textures,

texture quality and MPEG Surround Features. Game Sensor Accelerometer Delay has been

used for each condition.

 Memory Analysis with addition objects, textures, full MPEG Surround Features

1. Problem Suspect

Figure 34. Problem Suspect Pie Chart 1

 Problem Suspect 1

2,410 instances of "java.lang.Class", loaded by "<system class loader>" occupy
685,368 (34.76%) bytes.

Biggest instances:

 class com.ibm.icu4jni.util.Resources$DefaultTimeZones @ 0x401fce78 - 165,432

(8.39%) bytes.
 class android.text.Html$HtmlParser @ 0x4018e040 - 126,592 (6.42%) bytes.

 class org.apache.harmony.security.fortress.Services @ 0x4008c340 - 51,456
(2.61%) bytes.

 class android.content.res.Resources @ 0x400538a8 - 38,064 (1.93%) bytes.
 class org.apache.harmony.luni.platform.PlatformAddress @ 0x4000d1d0 - 20,368

(1.03%) bytes.

Keywords

java.lang.Class

 Virtual Listen Room

 52

5: Research

 Problem Suspect 2

7,385 instances of "java.lang.String", loaded by "<system class loader>" occupy
464,192 (23.54%) bytes.

Keywords
java.lang.String

 Problem Suspect 3

61 instances of "org.bouncycastle.jce.provider.X509CertificateObject", loaded by
"<system class loader>" occupy 301,776 (15.31%) bytes. These instances are

referenced from one instance of "java.util.HashMap$HashMapEntry[]", loaded by

"<system class loader>"

Keywords
org.bouncycastle.jce.provider.X509CertificateObject

java.util.HashMap$HashMapEntry[]

 Virtual Listen Room

 53

5: Research

2. Top Consumer

 Virtual Listen Room

 54

5: Research

Figure 35. Biggest Objects and Dominator Classes Overview 1

3. Top Component

Figure 36. Top Component Overview 1

 Virtual Listen Room

 55

5: Research

4. Possible Memory Waste

Duplicate Strings

Found 67 occurrences of char[] with at least 10 instances having identical content. Total

size is 68,872 bytes.

Top elements include:

 51 x Atlantic Standard Time (56 bytes)
 84 x GMT+00:00 (32 bytes)

 35 x Central European Summer Time (72 bytes)
 45 x Greenwich Mean Time (56 bytes)

 42 x Eastern Standard Time (56 bytes)

Empty Collections

No excessive usage of empty collections found.

Collection Fill Ratios

Detected the following collections with fill ratios below 20%:

 378 instances of java.util.ArrayList retain >= 100,760 bytes.

Miscellaneous

Soft Reference Statistics

A total of 6 java.lang.ref.SoftReference objects have been found, which softly reference

no objects.
No objects totalling 0 B are retained (kept alive) only via soft references.

No objects totalling 0 B are softly referenced and also strongly retained (kept alive) via
soft references.

Weak Reference Statistics

A total of 164 java.lang.ref.WeakReference objects have been found, which weakly

reference 76 objects.

No objects totalling 0 B are retained (kept alive) only via weak references.
No objects totalling 0 B are weakly referenced and also strongly retained (kept alive) via

weak references.

Finalizer Statistics

Heap dump contains no java.lang.ref.Finalizer objects.

IBM VMs implement Finalizer differently and are currently not supported by this report.

Map Collision Ratios

Detected the following maps with collision ratios above 80%:

file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report3591313553282506412/pages/_system_class_loader2.html

 Virtual Listen Room

 56

5: Research

 2 instances of java.util.HashMap retain >= 752 bytes.

5. Dominator Tree

Figure 37. Dominator Tree 1

 Virtual Listen Room

 57

5: Research

 Memory Analysis without addition objects, with textures, only Repeat Button on

MPEG Surround Features

1. Problem Suspect

Figure 38. Problem Suspect Pie Chart 2

 Problem Suspect 1

2,396 instances of "java.lang.Class", loaded by "<system class loader>" occupy
677,808 (34.51%) bytes.

Biggest instances:

 class com.ibm.icu4jni.util.Resources$DefaultTimeZones @ 0x401fce78 - 165,432

(8.42%) bytes.
 class android.text.Html$HtmlParser @ 0x4018e040 - 126,592 (6.45%) bytes.

 class org.apache.harmony.security.fortress.Services @ 0x4008c340 - 51,456
(2.62%) bytes.

 class android.content.res.Resources @ 0x400538a8 - 38,064 (1.94%) bytes.

Keywords

java.lang.Class

 Problem Suspect 2

7,374 instances of "java.lang.String", loaded by "<system class loader>" occupy

463,128 (23.58%) bytes.

Keywords

java.lang.String

 Virtual Listen Room

 58

5: Research

 Problem Suspect 3

61 instances of "org.bouncycastle.jce.provider.X509CertificateObject", loaded by
"<system class loader>" occupy 301,776 (15.37%) bytes. These instances are

referenced from one instance of "java.util.HashMap$HashMapEntry[]", loaded by
"<system class loader>"

Keywords
org.bouncycastle.jce.provider.X509CertificateObject

java.util.HashMap$HashMapEntry[]

 Virtual Listen Room

 59

5: Research

2. Top Consumer

 Virtual Listen Room

 60

5: Research

Figure 39. Biggest Objects and Dominator Classes Overview 2

3. Top Component

There’s no components bigger than 1 percent of the total heap.

4. Possible Memory Waste

There’s no components bigger than 1 percent of the total heap.

 Virtual Listen Room

 61

5: Research

5. Dominator Tree

Figure 40. Dominator Tree 2

 Virtual Listen Room

 62

5: Research

 Memory Analysis without addition objects, without textures, only Repeat Button on

MPEG Surround Features

1. Problem Suspect

Figure 41. Problem Suspect Pie Chart 3

 Problem Suspect 1

2,396 instances of "java.lang.Class", loaded by "<system class loader>" occupy

675,904 (34.47%) bytes.

Biggest instances:

 class com.ibm.icu4jni.util.Resources$DefaultTimeZones @ 0x401fce78 - 165,432
(8.44%) bytes.

 class android.text.Html$HtmlParser @ 0x4018e040 - 126,592 (6.46%) bytes.
 class org.apache.harmony.security.fortress.Services @ 0x4008c340 - 51,456

(2.62%) bytes.
 class android.content.res.Resources @ 0x400538a8 - 38,064 (1.94%) bytes.

Keywords

java.lang.Class

 Problem Suspect 2

7,371 instances of "java.lang.String", loaded by "<system class loader>" occupy

462,992 (23.61%) bytes.

Keywords
java.lang.String

 Virtual Listen Room

 63

5: Research

 Problem Suspect 3

61 instances of "org.bouncycastle.jce.provider.X509CertificateObject", loaded by
"<system class loader>" occupy 301,776 (15.39%) bytes. These instances are

referenced from one instance of "java.util.HashMap$HashMapEntry[]", loaded by
"<system class loader>"

Keywords
org.bouncycastle.jce.provider.X509CertificateObject

java.util.HashMap$HashMapEntry[]

 Virtual Listen Room

 64

5: Research

2. Top Consumer

 Virtual Listen Room

 65

5: Research

Figure 42. Biggest Objects and Dominator Classes Overview 3

3. Top Component

There’s no components bigger than 1 percent of the total heap.

4. Possible Memory Waste

There’s no components bigger than 1 percent of the total heap.

 Virtual Listen Room

 66

5: Research

5. Dominator Tree

Figure 43. Dominator Tree 3

 Virtual Listen Room

 67

5: Research

 Memory Analysis with addition objects, reduced textures quality, full MPEG Surround

Features

1. Problem Suspect

Figure 44. Problem Suspect Pie Chart 4

 Problem Suspect 1

2,411 instances of "java.lang.Class", loaded by "<system class loader>" occupy

685,352 (34.73%) bytes.

Biggest instances:

 class com.ibm.icu4jni.util.Resources$DefaultTimeZones @ 0x401fce78 - 165,432
(8.38%) bytes.

 class android.text.Html$HtmlParser @ 0x4018e040 - 126,592 (6.42%) bytes.
 class org.apache.harmony.security.fortress.Services @ 0x4008c340 - 51,456

(2.61%) bytes.
 class android.content.res.Resources @ 0x400538a8 - 37,792 (1.92%) bytes.

 class org.apache.harmony.luni.platform.PlatformAddress @ 0x4000d1d0 - 20,488

(1.04%) bytes.

Keywords

java.lang.ClasS

 Virtual Listen Room

 68

5: Research

 Problem Suspect 2

7,385 instances of "java.lang.String", loaded by "<system class loader>" occupy
464,032 (23.51%) bytes.

Keywords

java.lang.String

Details »

 Problem Suspect 3

61 instances of "org.bouncycastle.jce.provider.X509CertificateObject", loaded by

"<system class loader>" occupy 301,776 (15.29%) bytes. These instances are
referenced from one instance of "java.util.HashMap$HashMapEntry[]", loaded by

"<system class loader>"

Keywords
org.bouncycastle.jce.provider.X509CertificateObject

java.util.HashMap$HashMapEntry[]

file:///C:/Users/310060451/AppData/Local/Temp/report6469267352519110356/pages/22.html

 Virtual Listen Room

 69

5: Research

2. Top Consumer

 Virtual Listen Room

 70

5: Research

Figure 45. Biggest Objects and Dominator Classes Overview 4

3. Top Component

Figure 46. Top Component Overview 4

 Virtual Listen Room

 71

5: Research

4. Possible Memory Waste

Duplicate Strings

Found 67 occurrences of char[] with at least 10 instances having identical content. Total

size is 68,480 bytes.

Top elements include:

 51 x Atlantic Standard Time (56 bytes)
 84 x GMT+00:00 (32 bytes)

 35 x Central European Summer Time (72 bytes)

 45 x Greenwich Mean Time (56 bytes)
 42 x Eastern Standard Time (56 bytes)

Empty Collections

No excessive usage of empty collections found.

Collection Fill Ratios

No serious amount of collections with low fill ratios found.

Miscellaneous

Soft Reference Statistics

A total of 6 java.lang.ref.SoftReference objects have been found, which softly reference

no objects.

No objects totalling 0 B are retained (kept alive) only via soft references.
No objects totalling 0 B are softly referenced and also strongly retained (kept alive) via

soft references.

Weak Reference Statistics

A total of 163 java.lang.ref.WeakReference objects have been found, which weakly

reference 75 objects.
54 objects totalling 2.1 KB are retained (kept alive) only via weak references.

No objects totalling 0 B are weakly referenced and also strongly retained (kept alive) via

weak references.

Finalizer Statistics

Heap dump contains no java.lang.ref.Finalizer objects.
IBM VMs implement Finalizer differently and are currently not supported by this report.

Map Collision Ratios

Detected the following maps with collision ratios above 80%:

 2 instances of java.util.HashMap retain >= 752 bytes.

file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html
file:///C:/Users/310060451/AppData/Local/Temp/report1643559933313326283/pages/_system_class_loader2.html

 Virtual Listen Room

 72

5: Research

5. Dominator Tree

Figure 47. Dominator Tree 4

 Virtual Listen Room

 73

5: Research

5.14.5.7 Memory Analysis Conclusion

1. Result for every parameter nearly the same, unless there are two which have

components bigger than 1 percent of the total heap.

2. Two parameters which have problems with memory waste contains parsed .obj 3D object

(Home Theater set). Problems that exist mostly about referencing.

3. After reducing the resolution of textures, android.content.res.Resources memory

allocation also slightly decreased.

4. System Classes from Android API are dominating the percentage of heap.

5. If parsed 3D object is added into the scene, recognized User Class with the higher

consumption is min3D Object3Dcontainer, followed by StringBlock,

android.widget.listView, AudioControl PlaySoundTask, and then SkyBox.

6. Without 3D object added into the scene, recognized User Class with the higher

consumption is StringBlock, android.widget.listView, AudioControl PlaySoundTask, and

then SkyBox.

7. Unfortunately, sound’s performance is still unstable despite of manipulations on the

visualization, but the delay seems slightly disappeared with reduced textures’ resolutions

and without additional object.

8. Since it is a memory analyzing, another activity outside that affect the application will

also be displayed. With so many System Classes consume huge amount of memories, it

echoes Froyo’s bad memory management issues.

5.15 Problem Solving

 Existing problem mostly caused by memory leak, badly affected the application

performance. From memory analysis we also get the amount of memory which allocated into the

application. Since it is only 1.9 MB, it shouldn’t be a problem because inside the test device there is

512 MB amount of RAM. Indeed it is shared with the graphic processor unit for about 128 MB but

still with 384 MB remains the application should work flawlessly.

Based on both previous analysis activities I prepared 2 possible solutions for each result:

1. On the profiling analysis I discovered that OpenGL classes always be the biggest CPU

consumer. There are two options to minimize CPU consumption: reduce the amount of

3D object loaded and reduce the quality of the texture. First option definitely out of

consideration because the objects itself are a part of requirements. Second option would

make sense, because reducing texture quality wouldn’t be much notable.

2. Android has many “memory management” applications out there, which would be useful

to free some RAM so it will give more space to this heavy-loaded application.

 Virtual Listen Room

 74

5: Research

5.15.1 Profiling Follow Up: Reducing Texture Quality

 It would be nice to have high definition textures on this 3D visualization, but then I have to

think twice if it’s sacrificing the whole performance. Some object texture’s quality can be reduced a

bit to raise the sound quality. Home theatre set texture is attached into the object, so I can’t

manipulate it. Rests are possible. I use Paint application to resize the texture into 50% of actual size,

whilst still maintaining the aspect ratio.

Figure 48. Texture Quality Comparison

Figure 49. Detailed Texture Quality Comparison

 The 3D scene after quality reduction definitely becomes worse than before. We can examine

figure. where the frame hanging on the wall becomes pixelated. Also the wall color becomes paler.

It’s not a big deal because at least the sound quality improved significantly. Playback delay was

getting shorter and the crack noises were slightly gone. I also got faster application start-up time,

from about 5 seconds to less than 3 seconds.

 Virtual Listen Room

 75

5: Research

5.15.2 Memory Analyzing Follow Up : Memory Booster

 Android has a bunch of task killer applications on their market. Mainly, task killer is used to

free some memory spaces by killing background applications, so it will create a space for another

applications coming. Simple application like clock or messaging of course won’t be bothered by

amount of RAM remaining, but 3D scene + Native Decoder + Accelerometer Sensor of course could

causing a havoc.

 Randomly I found (and tried) Memory Booster Lite application just to figure out whether it is

helpful or not. This application has 2 main functions; Monitoring how the Memory goes and also

killing certain selected apps in order to release some free memory.

Figure 50. Memory Booster Lite

 Memory monitor gives you detailed calculation of free memory alongside with used

memory. Task Killer is on the second tab, gives you a list of running apps. This list is sorted based on

amount of memory allocated for relevant application. As we can see Google Maps absorb almost 10

MB of memory, and as long we don’t use it in our application we can kill it. It gives notable

improvement on the sound quality, sweeps almost all delays and cracks on the playback. Boost Log

tab displays what activities that we’ve been done since the first time we installed this application.

 Virtual Listen Room

 76

6:Conclusion
&
Recommend

CHAPTER 6: CONCLUSION & RECOMMENDATION

People are getting smarter time after time. One that indicated previous statement is how they

virtually simulate a system which is usually done physically. Surround sound simulation decreases

general difficulty of setting traditional multichannel audio, with less of hardware and less of wire.

Which means it’s possible for anyone who wants to feel a surround sound experience despite of lack

of space. Meanwhile, massive expansion also occurs on Mobile Phone development. Android OS has

been begun to rule the world of smart phones with its open source community. And once a

groundbreaking idea to have virtual surround room on Android appeared, could it be truly

implemented?

After approximately 6 months of research I found it possible to create a mini 3D surround room

inside Android environment, so the recent answer is “yes”. Android has a graphic machine called

OpenGL ES, and the observation had brought me to a simple yet useful library which could help a lot

in building 3D scene without draw it line-per-line. Sensor movement also can be realized thanks to

Android accelerometer. Scene camera can be moved around depend on how you tilt the phone.

Within the accelerometer gravitation concept it’s also possible to zoom in and out the room. I also

imitated a 5.1 surround sound room setup from internet to fix my wrong room setup before, which

is very likely to happen if you have almost zero of audio knowledge like me.

Surround Sound “MPEG Decoder TM “ is a reliable Android surround sound simulation application

provided by my company. Although it’s using low-level native programming language decoder, I can

import it and it is well coupled with mine. But here’s the problems rise. Native library diminished

compatibility feature that Java has, so the application will be defected or even corrupted when I try

to run it on another operating system. The compatibility problem is followed by performance issue

where some noises and cracks are distracting sound playback. Heavy loaded 3D graphic + native

decoder + accelerometer combination seem enough to produce major performance issue.

Unfortunately, compatibility problem seems unlikely to be solved, as it is sourced from the

environment. From this case we can learn something that if we want to develop application with

native library we have to decide what operation system exactly will be used at the very first time.

Otherwise all performance problems completely spotted after some testing and analysis. 3D scene

indeed consumes most of the phone capabilities and resources. Hence, possible solution could be

decreasing the quality of the scene to boost performance and thankfully it works like a charm. Finally

playback sound and 3D scene are coped well without any faults, so then I can conclude that my

application has met all the requirements apart from compatibility problem. To finish this application,

further development phase will try to implement different sound effects for different head positions.

Overall it was fun to develop an Android application. Moreover, now I can say agree when someone

said there’re so many spaces on Android development. With various features available to be

explored and big community ready to give you a hand anytime, you can bring your wildest

imagination into a mobile app, no matter how hard it is, because as a programmer we have to find

any possible and impossible ways to solve every single problems and errors. Don’t only imagine you

have a virtual surround room inside your phone, but give your best effort to make it true.

 Virtual Listen Room

 77

Evaluation

EVALUATION

Actually this is my first experience of developing a real Android application. What I created before

were just mini applications with very limited function. Overall I enjoyed this research very much

because I have big passion on this mobile phone field. Hence, I can learn new things easily because

I’ve already known about Android device ins and outs. The development went smoothly. After only

several weeks I’ve generated a working application, but then I met performance problem which is

never occurred before on my previous application. This took a long time to be resolved and causing

desperation. But then I spotted the problem after optimizing analysis tools on Eclipse IDE and fixed it

to finish my research. After about 3 months of intensive documentation work finally I’ve done this

report. It was a bit out of methodology because on the first 3 months I only focused on the software

without writing any documentation. I only made a little footage about my work and it’s very general

so maybe I missed some detailed parts of this project. In the end It’s became a huge problem when I

need to review some parts of experiment because there’s no records about it. Thanks to Mr.

Zijlmans for reminding me this essence of writing a report. For me this could be a valuable lesson.

On the next research I won’t forget to write every single step and every single change I’ve made. I

found it very important to track our research by writing it because it’s too naïve if I just rely on my

own memory. Last but not least, I got priceless experiences here, especially on how to deal with real

software development environment. I couldn’t ask for more, this was the biggest first step I possibly

take and now I can look forward for my career further.

 Virtual Listen Room

 78

Reference
List

REFERENCE LIST

[1] http://en.wikipedia.org/

[2] http://developer.android.com/index.html

[3] http://www.mat-d.com/site/tutorial-load-a-3d-obj-model-with-min3d-for-android/

[4] http://code.google.com/p/min3d/

[5] http://www.rozengain.com/blog/

[6] http://insanitydesign.com/wp/projects/nehe-android-ports/

[7] http://stackoverflow.com/

[8] http://www.srombauts.fr/android-ndk-r5b/docs/ANDROID-MK.html

[9] https://plato.natlab.research.philips.com/svnroot/android/trunk/docs/Android%20guide-

17November-Philip-Final.pdf

[10] http://www.eclipse.org/mat/

[11] http://www.the-home-cinema-guide.com

http://en.wikipedia.org/wiki/Java_Native_Interface
http://developer.android.com/index.html
http://www.mat-d.com/site/tutorial-load-a-3d-obj-model-with-min3d-for-android/
http://code.google.com/p/min3d/
http://www.rozengain.com/blog/
http://insanitydesign.com/wp/projects/nehe-android-ports/
http://stackoverflow.com/
http://www.srombauts.fr/android-ndk-r5b/docs/ANDROID-MK.html
https://plato.natlab.research.philips.com/svnroot/android/trunk/docs/Android%20guide-17November-Philip-Final.pdf
https://plato.natlab.research.philips.com/svnroot/android/trunk/docs/Android%20guide-17November-Philip-Final.pdf
http://www.eclipse.org/mat/
http://www.the-home-cinema-guide.com/

 Virtual Listen Room

 79

Appendix:
Project Plan

Project Plan
Virtual Surround Room on Mobile Phone

 Mentor : Yuan Zhaorui

 Developer : Durio Etgar

 Virtual Listen Room

 80

Appendix:
Project Plan

Contents

1. Project Introduction

2. Project Statement

2.1 Formal client

2.2 Project Leader

2.3 Current Situation

2.4 Project Justification

2.5 Project Product

2.6 Project Deliverables and non-Deliverables

2.7 Project Constrains

2.8 Project Risks

3. Project Phasing

3.1 Project Plan and Schedule

4. Project Management Plan

4.1 Skills

4.2 Quality

4.3 Information

4.4 Time

4.5 Organization

4.6 Communication Plan

 Virtual Listen Room

 81

Appendix:
Project Plan

1. Project Introduction

 Android phones and tablets are being widely used nowadays. In order to simulate a

virtual surround room on an handy stuff, Philips Applied Sensor Technologies wants to

develop android user interface that can show us how the virtual surround room works. In

this application we can navigate around a room with several speakers in it and also hear the

sound changing when we make a move to another direction. The angle of our head

movement will determine how loud the sound that we hear. It will also be very useful when

we want to do a demonstration, because nowadays Android phones have a HDMI port so

we can connect it into a big screen. We will maximize the OpenGL graphic engine which

already embedded in every Android phones. Based on the contract, the project starts in

February 6th, 2012 and terminates in June 29th, 2012. Duration of the project will be

approximately 5 months.

 Virtual Listen Room

 82

Appendix:
Project Plan

2. Project Statement

This sub defines the problem to be solved so that work can begin on the project. It is

useful for providing an initial understanding on the scope of the project. After getting some

insights through the pre-cases we hope there will be better preparation and less risk during

the project.

2.1 Formal Client

Philips is a well-known worldwide company who works with variety technologies

which are advanced, easy to use, and designed around the needs of all our users.

Another fact about Philips:

 Founded in 1891

 Headquartered in Amsterdam, The Netherlands

 One of the largest global diversified industrial company with sales in 2011 of EUR

22.6 billion

 A multinational workforce of 121,888 employees (January 2012)

 Globally present with manufacturing sites in 100 countries and sales outlets in 100

countries

 An R&D force with expenditures of EUR 1, 6 billion (2012)

The company itself has many divisions spread all around the world. Exactly, I work at:

Philips Research - Information and Cognition - Applied Sensor Technologies

High Tech Campus 36, 5656 AE Eindhoven, The Netherlands

Building HTC36-p.058, High Tech Campus 36, 5656 AE Eindhoven, The Netherlands

 Virtual Listen Room

 83

Appendix:
Project Plan

2.2 Project Organizational

Project Leader : Werner Oomen. Technology specialist

 Tel: +31 40 2740235

Fax: +31 40 2742630

+31649704005

E-mail: werner.oomen@philips.com

Web: www.apptech.philips.com

<http://www.apptech.philips.com/>

Company Mentor : Zhaorui Yuan. Software Designer

 Tel: +31 40 2741756

 Fax: +31 40 2744108

 E-mail: zhaorui.yuan@philips.com

 Web: www.research.philips.com

2.3 Current Situation

Philips Research - Information and Cognition - Applied Sensor Technologies are

currently focusing on virtual surround sound development. They have an exclusive room for

demonstration and also application both for desktop and mobile platform. What they want

to build next in order to extend their project is a visualization based on it; a 3D room that

represents raw demonstration on Android device.

With the surround sound application already provided by the company, the visualization

app can be coupled through imported native interface. Moreover, head movement can also

be simulated thanks to the help of Android device accelerometer sensor. The boundary has

been approved and it said that I will work only on the graphic section without any

involvement on the surround sound decoder. Final product would be a 3D room

visualization with surround sound behind it, and the sound will be changed based on the

device movement.

https://webmail.fontys.nl/OWA/redir.aspx?C=8dc7bd856f2542ab8da964ec392d959a&URL=mailto%3aj.h.de.boer%40philips.com
https://webmail.fontys.nl/OWA/UrlBlockedError.aspx

 Virtual Listen Room

 84

Appendix:
Project Plan

2.4 Project Justification

This project was rising along with the hype of smartphone devices. Philips itself also

interested in exploring further possibility, especially on Android devices as they’re developer

friendly and also built in open source environment. There are several Philips applications

which already published to Android Market with two main intentions; to promote and to

extend the functionality of their products. For instance, we can find Philips TV Buying Guide

app on the Android Market which virtually render their TV product on your gadget’s camera

so you can estimate which TV to buy and how to place it properly inside your house. There

also an application called Philips My Remote that could help you to simulate a TV remote via

mobile devices.

Figure1. Philips MPEG Surround Application

 Philips Research - Information and Cognition - Applied Sensor Technologies division

consider this opportunity to develop a new application based on their existing MPEG

 Virtual Listen Room

 85

Appendix:
Project Plan

surround application. The main idea is to give a little simulation on how virtual surround

works without having a real demonstration, simply to make a portable one. The goals would

be a 3D room application coupled with surround sound behind it.

2.5 Project Product

 User Requirement Document

 Project Plan

 Design Document

 Virtual Listen Room Application on Android Devices

 Final report

2.6 Project deliverables and non-deliverables

 User Requirement Document

Describe all of user requirements that have been defined early. Consist of implemented

functions and features.

 Project Plan

Generally describe how the project being planned with the details required.

 Design Document

Describe the initial design phase represented by various graphs and diagrams.

 Virtual Listen Room Application on Android Devices

A running application that simulates surround sound effect perfectly inside mobile

devices.

 Final Report

A document that covers everything related to the project.

 Virtual Listen Room

 86

Appendix:
Project Plan

2.7 Project Constraints

 Built inside of Android environment

 Using OpenGL ES for graphic rendering

 Using Java and Native Interface (C/C++)

 Implemented on Mobile Phone

 Coupled with MPEG Surround Player

 Accelerometer sensor integration

2.8 Project Risks

Project Risks

Risks Impact Level Occurrence Mitigations

Insufficient

Hours of work.
High Unlikely

Arrange time allocation plan, try

to work based on it.

Lack of OpenGL

knowledge High Likely

Looking for a book or reference

related to the terms. Ask the

expert.

Lack of

Knowledge

about Software

Development

Life Cycle

Medium Likely

Consult with Company mentor

and school tutor and do more

research.

Lack of

Communication

with both

Mentors

Medium Unlikely

Create a communication plan to

arrange it, either frequently or

maybe occasionally.

 Virtual Listen Room

 87

Appendix:
Project Plan

3. Project Phasing

The project consists of the following phases:

Phase Activities Sub-deliverables

Initiative phase - Starting up the project

- Organizing the workspace

- Interview with the mentor

- Make a project plan

- Search information about

OpenGL

- Project Plan (Fixed)

- Documentation about

the knowledge of the

OpenGL

- Weekly report updated

Definition

phase

- Do an investigation for

OpenGL

- Discuss the result with the

mentor

- Make a report

- Project Plan (Fixed)

- Weekly report updated

Design phase - Make an OpenGL desktop

version design

- Discuss it with the Mentor

- Make a report including

Design Document

- Weekly report updated

- C++ OpenGl Prototype

Implementation

phase

- Port the desktop version into

Android Platform

- Add the navigation function

- Add the manipulated sound

- Make a report

- Weekly report updated

- Android Application

Prototype

Transfer phase - Presenting the final product

- Presentation

- Final report

- Final presentation

 Virtual Listen Room

 88

Appendix:
Project Plan

2.8 Project Plan and Schedule

ID Activity Duration Start at Finish at

Initiative Phase 13 days 06-02-12 16-02-12

1 Instalation the workspace 1 day 06-02-12 07-02-12

2 Meeting with mentor to discuss the Project 1 day 07-02-12 08-02-12

3 Self-work - Writing a draft of a Project Plan 2 days 07-02-12 09-02-12

4 Formal meeting - Discussing the Project Plan 1 day 09-02-12 10-02-12

5 Formal meeting - Discussing of the Project Plan 1 day 11-02-12 12-02-12

6

Self study – Search OpenGL code that can be used in

Android 4 days 07-02-12 11-02-12

7 Formal meeting – First version Project Plan 1 day 13-02-12 14-02-12

8 Delivery of the final version of the Project Plan 1 day 14-02-12 15-02-12

9 Meeting with client - Approval of the Project Plan 1 day 15-02-12 16-02-12

Definition Phase 20 days 16-02-12 07-03-12

10 Self –work - summarize the brainstorming 2 days 02-03-11 02-07-11

11 formal meeting - requirement for interview 1 day 08-03-11 09-03-11

12 Self- work for the requirements generated 5 days 10-03-11 17-03-11

13 formal meeting – discuss the functions 1 day 18-03-11 21-03-11

14 Self-work – report updated 2 days 22-03-11 24-03-11

15 Self – work – benchmarking 3 days 25-03-11 07-03-12

Design Phase 20 days 07-03-12 27-03-12

16

Self- work –select and determine the implementable

functions 1 day 30-03-11 31-03-11

17 Self-work - Specifying data and functions in report 5 days 01-04-11 07-04-11

18 Self-work – draft the user interface 5 days 08-04-11 15-04-11

19 formal meeting - Specifications reviewing 1 day 18-04-11 19-04-11

20 Self- work- determine the user interface 2 day 20-04-11 22-04-11

21 formal meeting - Documents reviewing 1 day 25-04-11 26-04-11

22 Delivery of the Process Document and report updated 1 day 27-04-11 27-03-12

Implementation Phase 40 days 27-03-12 06-05-12

23 Specifying the class diagrams and sequence diagrams 10 days 29-04-11 12-05-11

24 Self-work – code designing 25 days 13-05-11 17-06-11

 Virtual Listen Room

 89

Appendix:
Project Plan

25 Formal meeting – discuss the program problem 1 day 20-06-11 21-06-11

26 Self-work –fixing possible problems and errors 2 days 22-06-11 06-05-12

Transfer Phase 2 days 27-06-12 30-06-12

27 Formal meeting –discuss the final product 1 day 27-06-12 28-06-12

28

Self – work –write the final report and prepare the

presentation 1 day 29-06-12 30-06-12

 Virtual Listen Room

 90

Appendix:
Project Plan

4. Project Management Plan

To achieve the project deliverables we have limited resources. To guard these

resources and make sure that we get a high quality, we develop a management plan. In this

plan six elements are discussed:

 MOney

 Skills

 Quality

 Information

 Time

 Organisation

known as MOSQUITO.

Since this is a non-profit project, there’s no need to explain the Money element.

4.1 Skills

Some skills required to have in this project are:

Personal known skill:

 Programming skill in Java on preferable windows environment

 Programming skill in Android Platform (Android Software Developing Kit)

 Programming skill in OpenGL

 Programming skill in native language (C/C++)

 Some experience with requirements engineering and software design

 Communication and Organizational skill

 Virtual Listen Room

 91

Appendix:
Project Plan

Learning skill:

 Working platform: Java in Eclipse 3.7 (Indigo)

 General concepts in Android OpenGL

 Basic knowledge about “UI programming“

 Knowledge of virtual surround concept

 Knowledge of sensor motion event

 Experience with sound and coordinate manipulation

 Get native functions with Java Native Interface

 Android Native Developing Kit

 Knowledge of Cygwin Unix terminal emulator

 Preferably some experience with “UI programming”

 4.2 Quality

There are several parameters to indicate a successful graduation project:

 Fully-implemented and working application

 Well-structured documentation

 Enough knowledge of working environment

 Improvement on socialization

 Improvement on presentation skill

 Improvement on Programming skill

 Discover many innovations based on the research result

 Virtual Listen Room

 92

Appendix:
Project Plan

4.3 Information

 This part will describe how the whole document being managed. It also describes the

flow of information and attaches role for each party whom contributed.

Project

Plan

User
Require
ments

Design
Document

Day
Declaration Final Reports

Trainee

Durio Etgar
Dr, D Dr, D Dr, D Dr Dr, D, Ar

Project Leader

Mr. Werner Oomen
D, A Dr, D, A Dr, D, A A D, A

Company Mentor

Ms. Zhaorui Yuan
D, A D, A Dr, D, A A

D, A

School Tutor

Mr. Jack Zijlmans
D, A, R - - - D, A, R

Fontys Secretariat R, Ar - - R, Ar R, Ar

Internship Office

(Stagebureau)
R, Ar - - R, Ar R, Ar

Terms:

 Dr = Draw up

 D = Discuss

 A = Approve

 R = Receive

 Ar = Archive

 Virtual Listen Room

 93

Appendix:
Project Plan

4.4 Time

 Startdate: 6th February 2012

 End date: 29th June 2012

 Total working hours: approximately 90 days (720 hours of works)

 4.5 Organization

 Project Leader : Mr. Werner Oomen

Job description :

 Set up the initial idea of the Project

 Define general requirements

 Company Mentor : Mrs. Zhaorui Yuan

Job description :

 Guiding and supervising the whole project

 Define specific requirement

 Giving advices on every technical aspects

 School Tutor : Mr. Jack Zijlmans

Job description :

 Guiding and supervising the whole project

 Giving remark on the progress and documentation

 Visiting the company at least twice

 Trainee : Durio Etgar

Job description :

 Work on the project based on the requirements.

 Writing all the documents needed

 Doing research to solve problems

 Managing a communication plan between all parties

 Virtual Listen Room

 94

Appendix:
Project Plan

 4.6 Communication Plan

From To Subject Via Week/Frequency

Student Trainee School Tutor Progress Email
Once Every 2

weeks

Student Trainee School Tutor Project Plan Email Week 1-3

Student Trainee
Company
Mentor

Project
Discussion

Meeting Week 1

Student Trainee
Company
Mentor

Progress and
Technical
Discussion

Meeting Week 2

Student Trainee
Company
Mentor

Project
Information and

Material
Meeting, Email If Necessary

School Tutor Student Trainee
Project Plan

Feedback
Email Week 4

School Tutor Student Trainee Company Visit
Meeting On the
Site (Company)

At least twice

School Tutor
Company
Mentor

Project Iteration Meeting

 Start at
Week 10

 Every 2
weeks

Student Trainee School Tutor
Report and

Documentation
Progress

Email

 Start at
Week 8

 Every 2
weeks

School Tutor Student Trainee
Report and

Documentation
Feedback

Email Occasionally

Student Trainee School Tutor Problems Email/Phone
If problem(s)

occurs

Student Trainee School Tutor
Presentation

Rehearsal
At school Week 17/18

