
A Search Engine for Hours of Fun and Play
Developing a scalable game search engine

Bachelor thesis by Deborah Maaijen

A Search Engine for Hours of Fun and Play
Developing a scalable game search engine

Author: D.C. Maaijen. studentnumber 2082873
Fontys University of Applied Sciences

HBO ICT Software Engineering

Company: GameHouse Europe
Company supervisor: N. Koek

Teacher supervisor and assessor: A. Lak
Assessor: A. Kaspar

Location: Eindhoven, the Netherlands

The prospectus meeting will be held on January 30, 2012
All images in this thesis are copyright GameHouse R©

Document version: 1.8

January 5, 2012

Foreword

In the period of September 19, 2011 until February 3, 2012 I have worked on my thesis project at
the casual games company GameHouse Europe in Eindhoven. I have integrated a search function-
ality into their publicly accessible website that presents the games to their customers. Because
it is an international company, I decided with my supervisor to conduct the thesis and internal
documentation in English. I would like to thank my on-site supervisor Niels Koek for his time
and guidance in the project. I would also like to thank my teacher supervisor Albert Lak for
his feedback on the materials. During the first year of studies I received a lot of encouragement
and help from Robin Leffmann, so a big thanks goes out to him. Lastly I would like to thank
the reviewers Andreas Larsson, David Holz, David Weinehall and Vanessa Ezekowitz for their
feedback on the thesis.

Deborah Maaijen,
December 18, 2011, Eindhoven

2

Contents

1 Introduction 6

2 Company Profile 7

3 Assignment 9

4 Customer Survey 12

4.1 Generic . 12

4.2 Suggestions . 14

4.3 Feedback evaluation . 15

5 Comparing Search Engines 16

5.1 Libraries and full packages . 16

5.2 SAAS . 18

6 Database and Programming Structure 20

6.1 Programming Structure . 20

6.2 The Database . 20

7 Search Engine Implementation 23

7.1 Lucene algorithms . 25

7.2 Indexing . 25

7.3 Searching . 26

7.4 Filtering and Sorting . 26

7.5 Spell checking . 27

7.6 Tags . 27

8 Functional Testing 29

8.1 Indexing and search speed . 30

9 Conclusion 32

A Zylom Zoekmachine Survey NL II

A.1 Survey . II

A.1.1 Voorkeuren . II

A.1.2 Nieuwe zoekoptie . VI

3

A.1.3 Achtergrond . VI

B Search Engine comparison VIII
B.1 Libraries . VIII

B.1.1 The old in-house developed code . VIII
B.1.2 Lucene . IX
B.1.3 Elasticsearch . IX
B.1.4 Solr . X
B.1.5 Hadoop Search, HSearch . XI
B.1.6 Xapian . XI
B.1.7 Sphinx . XII
B.1.8 Regain . XIII

B.2 Search engine services(Software As A Service) . XIII
B.2.1 Google site search . XIII
B.2.2 Yahoo Build your Own Search Service . XIV

C Documentation XV
C.1 Lucene Search package . XV

C.1.1 Document Fields . XV
C.1.2 Managing the Index . XVI
C.1.3 Filtering and Sorting . XVI
C.1.4 Searching . XVI

C.2 Lucene Query Syntax . XVI
C.2.1 Enabled by default . XVII

C.3 Extra libraries . XVIII
C.4 Search Term Rating methods . XVIII
C.5 Lucene Lingua Operandi . XVIII
C.6 Tags . XIX
C.7 Problems to be anticipated . XIX

C.7.1 Duplicate entries . XIX
C.7.2 Updating existing documents . XIX
C.7.3 Multiple entries per field . XX
C.7.4 Irrelevant game results . XX
C.7.5 Discrepancy in the documentation . XX

Abstract

The casual games company GameHouse desired to have a fast search engine implemented on their
website www.zylom.com. GameHouse is a company located in Eindhoven with around sixty-five
employees ranging from game designers to marketeers. They have an international website trans-
lated in eight languages serving over seven hundred games as their main product. Because there
are over five million visitors per month, they needed a fast product implemented, handling mul-
tiple search operations at once. Their software environment was written in the programming
language Java with styling and other web functionality done in other languages and scripts.
They make use of a large Microsoft database to store all of the data. By means of software rely-
ing on this database, statistical reports are generated. Several servers handle web traffic, sharing
the load and enabling faster access. The search engine should also make use of several servers to
divide the load. Other demands were amongst others a spell checking functionality and filtering
by game genre, release date and game type. An earlier attempt was made at a search engine
and the request was to see if it was usable. Any third party search engine component should
preferably be free.
After having been presented with the initial requirements, additional questions arose and they
were answered and integrated in the Project Initiation Document. Beside the company’s require-
ments, there were no requirements known from the players of the games. The first logical step
was setting up a survey. It was available on the website for 3 days. The survey did not yield
results related to specific search functionality, only general remarks.

Research has been done on existing search engines to get familiarized with the concept. Sev-
eral popular complete search engines and separate modules that had to be integrated have been
compared on functionality and the most feasible have been tested. Based on the comparisons,
personal experience with the implementation and likely acceptance among the other programmers
after a discussion, the standalone programming module Lucene was chosen and integrated into
the existing infrastructure. This included separate plug-ins for the extra required functionality.
The functionality of the end product at the time of writing included indexing of a dynamic list
of games, filtering and sorting games, spell checking functionality and a function to add tags to
games in the index. The tags will contain synonyms of game names and relevant words that are
not in the descriptions, for more matching possibilities. The functions were tested for speed and
accuracy of the results and the statistics were presented.

Almost all of the requirements were met. Searching games by means of a question form, was
dropped due to time restrictions. An option to analyze which game players click in the search
results might still be implemented after this thesis was fished.

5

Chapter 1

Introduction

More than 5 million visitors per month turn to www.zylom.com to play games. Over the years
the amount of games available on the site has increased, but the amount of players has slightly
decreased. Game studio and publisher GameHouse would like to attract and retain more players
on the website and adding a search engine is part of this plan. Ease-of-use is more important
than offering complex queries as the players are generally not technically savvy. It also has to
be fast, being able to handle large volumes of queries and preferably open source so that the IT
department can expand the source code in the future. The project also requires the rewriting of
the existing presentation class of games in Java.

The first chapters cover information about GameHouse and the project details for this thesis.
This is followed by a survey conducted to discover the features that the players desire in chapter
4. Chapter 5 concerns the testing of several search engine packages, libraries and services for
suitability to be implemented on the website. The existing database is, due to its vastness, only
partially presented in chapter 6. It also contains a basic introduction to the existing software
infrastructure. The implementation in chapter 7 describes the new classes, the changed classes
and their functionality. Chapter 8 shows the speed and accuracy test results of the product.
The conclusion is presented in chapter 9 followed by the appendices: Search Engine comparison,
customer survey and the documentation posted on the intranet. The documentation is originally
made in Wiki markup language, but is adjusted to the LaTeX typesetting system. TheProject
Initiation Document (PID) is added as a separate document to keep the front page and glossary
separate from the thesis.

6

Chapter 2

Company Profile

GameHouse Europe
Emmasingel 21-23
5611 AZ Eindhoven
www.zylom.com

Founded in 1998, GameHouse started as a small game studio in Seattle, Washington, the
epicenter of casual games, and has expanded over the years with major offices in the Netherlands,
UK, France, Germany and Brazil. Today more than 50 million players around the world enjoy
these games. The games are offered by means of publishing, licensing, distribution, and retail
business. With the largest catalog of 3,000 casual games and counting, they offer many games
and more ways to play them - all across the expansive mix of channels including online, download,
smartphone, tablets, Facebook, and Google+. The aim is to continually provide new social game
experiences that connect players with their friends and families, all on the devices they choose
to use.The game portal Zylom, available in 8 languages, has been awarded the website of the
year award in several countries during several years. Truncated games can be played online,
full versions can be purchased individually, or a subscription named FunPass can be bought to
play all games for a set duration of time. One of the in-house developed game series is named
”Delicious”, which is a casual restaurant simulation game. The familiar icon of the games division
and website Zylom, is the green and orange clad woman Emily, depicted as a child on the cover
page. The game ”Delicious - Emily’s Childhood memories” won the Best Casual Game award
in the 2011 Dutch Game Awards. GameHouse is the new name for the Games division Zylom.
The website continues to be named Zylom.com. The local organization of the global company
consists of about 65 employees and is informal, making communication with all local departments
accessible. The main customer demographics are women of age 25 and older.

Staff

The supervisor assigned is Team Lead System Development: Niels Koek, nkoek@real.com He
is responsible for helping with technical questions, being introduced to the company, forming
the project initiation document and approving the thesis. He is the manager of the System
Development department, responsible for programming the website and maintaining the system

7

8 CHAPTER 2. COMPANY PROFILE

infrastructure among others. This is where the project is done.

Figure 2.1: The hierarchical structure of the company. The GameHouse organization
runs across several countries but almost all support and maintenance personnel work in
Eindhoven. The project will mostly cover the IT department, discussing the physical and
network environment as well as the website.

Other employee contacts that are relevant to this project are also locally present. Tjerk is
the web designer working for the Graphical Design team, who is the contact for the design of the
site. From Conversion & Retention, Irma is the contact for gathering the commercial statistical
demands. She is also in charge of deciding which features should be added to the site. Anouk
is the Search Engine Optimizing specialist, making sure the website will get more visitors and
Janne is the copywriter responsible for the translations and other official texts. The Conversion
& Retention department is responsible for gaining paying customers and keeping the services
attractive for existing customers. It consists of 4 people that have marketing experience, and a
graphical designer. The web developers are several team members from the Development team,
direct colleagues during this project. The organization is represented in figure 2.1

Chapter 3

Assignment

Zylom.com is the portal by the company GameHouse for hundreds of casual games. The amount of
unique visitors to the site seems to be slightly declining over the most recent year.

Figure 3.1: Search design given for the final product.

To attract more
visitors, a bet-
ter search engine
position is desir-
able.Conversion &
Retention employee
Anouk helps out
by taking care
Search Engine Op-
timization and im-
plementing a search
engine is a sec-
ond method.. A
search engine is
needed in order
to make it eas-
ier for customers
to find a certain
game or a cer-
tain type of game
they are inter-
ested in. Cur-
rently players cannot search directly. They make use of a menu structure to browse categories.
By means of a search engine, players need less time browsing and therefore can spend more time
playing and downloading games, resulting in more sales. The search engine should be able to
provide reports as to which search patterns are popular. The company can then use the statistics
to create more revenue by meeting the demands. Since most of the other game sites have a search
engine, GameHouse needs one to offer the best user experience. There was an earlier attempt
at a search engine, but that was aborted. They wanted to know if it is usable in the project.
A list of search functionality that they would like to see implemented was given, including the

9

10 CHAPTER 3. ASSIGNMENT

Figure 3.2: Results page and filter design given for the final product.

images in 3.2 and 3.1. Implementing the graphical interface is not part of the task, but is good
to see which functionality and which formatting has to be provided. The needed filtering options
were eventually decided to be release date ranges of a year, all categories and game type. The
categories given to games are puzzle, card, word, action, 3-in-a-row, hidden object, and time
management. Hidden object games are point and click games, where a player searches for items
hidden between others on her screen. Time management games are simulation games, like the
popular restaurant management series ’Delicious’. The rest of the genres are straightforward.
Based on the requirements on the following page the project initiation document was designed.
Some of the requirements like ’natural language processing’ have been dropped after a discussion.
It would cost a lot of time to analyze sentences to come up with a game as an answer and it
seems more suitable for a FAQ search feature. The project initiation document was added as a
separate document.

11

The demands from GameHouse in short:

• Each country should show a limited number of games, as not every game should be available
in every language.

• Natural language processing, so that users can write queries like ”I am looking for X”.
(Requirement dropped).

• Fast performance, as there are thousands of visitors per day.

• It should search intelligently for the most important word in a query string, thus be typo-
and word-order tolerant.

• It should be able to handle Unicode text. International characters should be displayed
correctly and queries in other languages should be possible.

• It should learn from the queries and store them, so that popular searches can be displayed
and auto-corrected.

• Word stemming can provide the feature of having users search for words, and getting the
pluralistic forms as a result: ”big” can find ”bigger” and ”biggest” too.

• Synonyms should also give hits. Manual adding of these synonyms should be possible.

• The result pages should be able to achieve high ranking for large, third-party search engine
crawler usage, so that the page will attract more visitors.

• Search filters: popularity sort (top sold games for downloads, top clicked for online games),
alphabetic sort, filter on release date, genre, online or downloadable games. Optional:
search title only, search title and description.

• It would be a merit if the search could have the option to result in an Extensible Markup
Language (XML) feed.

• Should be able to boost games manually, so they appear higher in the result list.

• Programmed in Java, because the rest of the system works in Java. (Linux server)

• Database type: Microsoft SQL server for the input and output, because the rest of the
data is also stored there. Also because the statistics need to be shown in Microsoft Cubes,
which depends on MSSQL.

• The search feature should be able to handle a large volume queries without creating per-
formance issues on the platform. The amount of visitors is over 5 million a month.

• Preferably modular, so that some unneeded resource intensive features can be turned off

Chapter 4

Customer Survey

From Friday October 14 until Monday October 17 an anonymous survey (appendix A) was
available on the website for players to fill in. This survey was created in a period of approximately
a week. 10 percent of all customers were presented this questionnaire in a pop-up during this
time. The number of completed responses were 810 and the uncompleted surveys were 1159 at
the time of ceasing the information gathering. The survey was created in a web application that
also generated statistics automatically. All of the planned options were presented, so that players
would not suggest them again and to see which they would appreciate most. Familiarity with
the possibilities of their browsers was inquired after, to find out if players were circumventing
the features a search engine would offer. In short, the aim of the survey was to see what players
wanted and what their behavior indicates they would need.

4.1 Generic

86% of the respondents were female, which makes 14% male. The majority were aged between
41 and 60 years old (55%), followed by those older than 60 (27%). The majority visited the site
several times a day (48%) where the second group biggest group visited a few times per week
(37%). 67% never bought a game or had a subscription and 25% bought at least one game (4.1).

Games Only 3.5% did not take into account which game categories they mostly play on Zylom,
and 2% didn’t mind the subcategories. The overwhelming majority thus picked categories from
the list. This is related to a prognosis on the games category filter. It will be used intensively by
the majority of customers. The amount of people never browsing on game title, via the alphabetic
ordering, is 7%. Regardless of the long list of games, this sorting order looks well used and thus
like a good search method for the search engine.
49% of people say that they can find a previous game they played again, followed by 21% who
say that sometimes they find the downloadable version instead of the online version or vice versa.
Only 3% cannot find the type of game they’d like to play at that moment. 20 people (2%) gave a
suggestion, but with the exception of someone complaining about games going missing altogether
from the site, they were suggestions that corresponded to the options given. They just saw things
like bookmarks as something named differently.

12

4.1. GENERIC 13

Figure 4.1: The frequency of visits given by players.

Navigational Interestingly, only 20% say they make use of the favorites option of Zylom when
logged in. A bigger group of 22% does not know of this possibility. This could be a good item

Figure 4.2: Information on bookmark usage given by players.

for the FAQ. This result also comes back in the next section about the suggestions that shows
that people don’t know how to add games to their favorites list.
Of the respondents, 64% never uses bookmarks of a browser to find games (4.2). 9% indicated
interest in learning how to use browser bookmarks for this purpose. 28% already occasionally

14 CHAPTER 4. CUSTOMER SURVEY

make use of bookmarks.
At times 19% of the respondents uses the browser’s history to find games, 7% would like to know
how to do that. 10.5% frequently use their browser history.
18% make use of their browser’s tabs to keep a game page open, to play again. 5% would like to
know how to use their tabs.
It takes the majority of respondents between 10 seconds and a minute to find a game they want to
play. The remaining 11% take 5 minutes or more to find a game by browsing. 47% say that their
search times by browsing are acceptable and the second biggest group (17%) like taking their time
to find games. 22% would like a faster browsing experience, 14% don’t care about the duration.
When given the options of the already planned features for the search engine, only 5% had sugges-
tions. Unfortunately the suggestions of these 55 people did not show up in the survey results page.

4.2 Suggestions

Over the weekend the survey was online, there were many responses that GameHouse could make
use of. The vast majority however did not respond to the open questions, which could be a good
sign that there are not many complaints on usability of the site. This notion is strengthened by
the fact that 31 responses out of 78 on the question ”Is there information you are lacking on the
website, that you would like to see added? For example help page and game information?”, say
they are content already or have nothing to suggest. A few responses (figure 4.1) were about
wanting to see favorites and recent or most played games on the homepage when logging in. Set-
ting favorites is already possible on the profile page, after which they appear on the homepage,
so this seems like a candidate for the FAQ. A few of the responses on this question were aimed
at the helpdesk, related to technical problems. A lot of the comments however were constructive
feedback.

Count Suggestion
31 Nothing to add or is satisfied with how things are.
9 How to set favorites or see history?
5 How to solve this technical problem?
5 Give information on how long the duration of games is, before they

are finished.
3 Want to play the demos for a longer time.
2 Show related games to a certain game.
2 The games don’t work sometimes
2 Too many commercials

Table 4.1: Grouped suggestions.

4.3. FEEDBACK EVALUATION 15

4.3 Feedback evaluation

All of the open questions basically were feedback on issues that were not part of the search
engine project, but for general purpose there are some conclusions to make. Based on this survey
it is recommended to add information regarding the favorites into the help section and show the
favorites and previously played games prominently on the homepage when logged in. The amount
of time it approximately takes to finish a game, or a category like ”long” ”medium” or ”short”
could be added to a game page, as well as an ”add to favorites” option, next to the Facebook
”like” button. Also recommended is to have the search engine span the FAQ pages, which is not
part of the scope of this project. The outcome of this survey has been given to the Conversion
& Retention department, who decides what should go into the search engine and what should
change on the website. The full data including the Dutch comments is available as an attachment.

Chapter 5

Comparing Search Engines

This section contains the engines that were referenced the most when searching the web using
Google.nl and DuckDuckGo.com starting from September 20, 2011. The search excluding testing
went on for about 2 weeks. These references are gathered from recommendations on forums, lists
made by others on the web and top results from the search engines. For the full details of the
comparison, see the appendix section B.

5.1 Libraries and full packages

Some of the packages are full search engines that will crawl a given website for data and offer a
textbox to conduct searches in. Others are libraries that need programming or a separate crawler
to obtain and view results in.

The old in-house developed code A JSP page for the Search already existed. It is
standardised to use the doAction() function with a lot of parameters like the gamesetID, coun-
tryID, playerID and the customary HttpServletRequest request, HttpServletResponse re-
sponse. Search.java extends GeneralServlet so that Search.doAction() is called by
GeneralServlet.doPost(), which is in its turn called by GeneralServlet.doGet(). The de-
fault method called in a servlet is the doGet() or doPost() function, instead of a constructor. The
class responsible for designating tasks to the other search related classes, SearchManager, used a
cache to store the games. This was updated by a thread and seemed to be rather fast. A Game
Comparator, used for sorting games was also still present. The other classes were FuzzyString,
SearchComparator, SearchUtils, CacheKeyword and SearchCache. This solution used fuzzy word
matching to generate hits. The games found by the existing search class did have some correct
hits, displaying them neatly in the Java Server Pages (JSP) dedicated to displaying results, but
continued with several irrelevant games. The code’s sorting functions, a Comparator class for
games, assumed only one type of game per given comparable list: online or download. However,
the search should be for any game, after which the results page shows filter options for game
types. The functionality of sorting by release date was completely obsolete.

Lucene Lucene from the Apache Foundation is the package that was eventually chosen to
fully integrate in the environment. It was the first one that was clear in its usage and met all

16

5.1. LIBRARIES AND FULL PACKAGES 17

demands. It is a free library that has been active since 2001 and has a large user base, links to
implementations shown on their website. It is advertised as high performance and fully written
in Java and several of the other popular complete search engine packages were based on this. The
external Java package Luke proved to be a helpful tool to test repeated searches in bulk, to view
the stored data per document (comparable to a row of data in a database). The progress with
integrating the current programming environment with Lucene was fast, so there was no reason
to try other libraries.

Solr Solr seemed like a good candidate, praised a lot in the search engine related articles and
forums. Solr is based on the Lucene library and also maintained by the Apache Foundation. It
advertised its extra features like a comprehensive administrative interface, missing from Lucene,
which seems a major asset to getting the other staff to easily manage it. The package came with
example data to use with the official tutorial. This worked splendidly. Then an attempt was
made to use the crawler Nutch, to see how exactly it will handle the data on the Zylom website.
After some effort a post of game data was done via the curl command, a command available in
Unix-like systems for posting and retrieving data on a network. This was after installing a virtual
machine with the operating system CentOS Linux. The full tutorial on the official website was
unfortunately outdated, costing unnecessary time to resolve problems via searching the web. The
managing tool was very clear and helpful. It offered options to chose several versions of Solr to
run, starting and stopping the installation without having to restart an application manager like
Tomcat. It shows an overview of defined fields, gives an interface to test queries, show logging and
see the Solr XML configuration page. There were a lot of problems trying to connect the database
to the program, via the XML configuration options. It continued displaying errors. Defining the
fields was difficult because it was very difficult to set the example data apart from the mandatory
data in the configuration files. Since it was taking weeks, without any real progress, the attempt
to make it work was ceased.

Regain The full search engine package including crawler named Regain is based on the Lucene
library. The desktop search and server version were installed for testing. The difference was that
in the server version, no graphical user interface was presented to add paths to search in and for
changing settings. The installation was easy in both cases and maintenance seemed easy as well.
Indexing the site zylom.com/nl was rather fast. However, the most essential thing, the search
results, was disappointing. The only available search algorithm type is relevance, which is the
matching accuracy. No sorting of the results is implemented. The top results displayed have a
relevance rate of up to 168% and they are followed by 15 pages of results that consist of one web
page. That page has relevance rate 0% despite that the entered word is actually mentioned and
is thus genuinely most relevant. Since the search function itself is so broken, the main thing this
is good for is an interface to create another search engine behind.

Elasticsearch In a list of Java search engines, another Lucene based package named Elastic-
search was mentioned.
http://www.elasticsearch.org Despite the relatively few companies listed on the site that uses
this engine, namely 8, the website looked well maintained enough to investigate the product. It
offers tagging, logging, highlighting and outputs its data in the JSON format. A Java Application
programming interface (API) was available, so there was a means to integrate it into the back

http://www.elasticsearch.org

18 CHAPTER 5. COMPARING SEARCH ENGINES

end. At first, setting up a demo would be a good way to see how this package acts. However,
the manual was confusing, even if abundantly documented. The curl program was used in every
example. At the time, there was no virtual machine with Linux running. As an alternative, using
curl in the Windows command line via the ’Unix on Windows’ program Cygwin was attempted.
However the documentation on the homepage was too vague on how exactly to start. Where and
which jar files should be extracted where, how to start entering data, how to set up a simple
setup etcetera was not mentioned. Instead it jumped in on demonstrating what it does. All of
it was done on the command line, like it was meant to be for text browsers. No preview of what
was posted in a normal HTML page. There was no explanation of how these JavaScript Object
Notation (JSON) formatted indexes were stored to be modified afterwards, and the commands
were given in runtime. Nor how normally queries should work, so that for instance filtering out
special characters would work. Besides this, the demands were not fully met, as it is a NoSQL
schema free program. There was no clue on how to address the database directly. The documen-
tation on the Java API only included defining nodes, to have a distributed environment for the
search engine. All in all since it lacked a clear first set-up explanation, especially how to address
the database via the Java API nor directly, this package was dropped.

Other search engines There were other search engines that were implemented on websites
with high user or data volumes, namely Xapian, HSearch and Sphinx. They seemed eligible
as they have already proven their stability and performance on these websites. However they
either are built on C or C++ as the programming language or they are designed to be used
with another database. Converting data from and to another database generates unnecessary
overhead. If the package or library is written in C, even in combination with an API for Java it
seems less convenient for the pure Java environment. Considering the aforementioned Java-based
packages and libraries as well as the in house expertise, there is no merit there.

5.2 SAAS

These are services that are available through proprietary software, where one pays an amount for
the usage of a remotely hosted service, instead of having full unlimited control over the software
locally. The database and programming language requirements are thus not relevant in this case.
During the course of comparing search engines, several standalone candidates were soon found
that already suit the needs, making these expensive services not a cost-efficient option. This is
especially the case for the large volume of queries on Zylom.com, as the payment method is based
on the amount of times the service is used. Another issue is that the source of the engines is not
available to integrate existing Java code on the website with the program. Software as a service
(SAAS) is not flexible in that sense.

Google site search Google’s service http://www.google.com/sitesearch/ provides a ser-
vice for a given site, with cached indexed results. Tags can be used by users to filter results,
the scope of the webpages for the search can be defined, newer pages can be prioritized, all 8
languages on Zylom.com are supported and users can search with word synonyms. Other features
are labeling the search results and using XML for formatting the results to match the style of the
website. Support is available by email, as well as advanced developer documentation and online
training. What it does not provide is data on which terms were sought after and how often, and

http://www.google.com/sitesearch/

5.2. SAAS 19

this is a very important part of the wishes of the sales department. Considering the amount of
traffic that comes to the site, the pricing will be at least 2000 Euro annually (price for 500.000
queries). Since this amount would be breached since there are a million visits every month, the
specific prices would be higher.

Yahoo BOSS Yahoo! Build your Own Search Service http://developer.yahoo.com/search/
boss/ is another search engine vendor’s SAAS solution. Daily usage statistics are shown through
the dashboard, results can be re-ordered, the presentation of the results is customizable and user
authentication is needed for adjusting the search settings for security reasons. Support is given by
dedicated forums. There are two possibilities: ’Boss Hosted Search’ and ’Search Boss API’. The
first allows configuring it on the Yahoo! site and making it available through javascript on the
intended website, thus offering no customizable designing of the results. It is free, but provides
its own advertisements between the results. GameHouse already has a business deal with other
parties for advertising between game results, so this is not desirable. The API allows the building
of search products that uses Yahoo! search technology. The API works with query based pricing
for mixed content(text and images) is based per 1000 queries with max 50 results per query. A
conservative estimate for a million visitors or queries per month with 200 results or games per
query amounts to $3200 per month.

http://developer.yahoo.com/search/boss/
http://developer.yahoo.com/search/boss/

Chapter 6

Database and Programming
Structure

6.1 Programming Structure

The classes in the back end of the system are categorized in neat packages per related object
groups, for instance: game (figure 6.1), session, page, data gathering and the new project’s
packages tag and search. The classes inside these packages are many, there are for instance 29
classes in the game package alone. Since visualizing these packages can easily fill up the whole
thesis and describing all contains much irrelevant information, this chapter only shows a small
selection of the game package classes mentioned. There are two types of games, downloadable
games and online games. The online games are mostly limited versions of the downloadable
games, with commercials between levels. The games are obtained from the database and stored
in cache by the DownloadableGameManager instance, for the objects of type DownloadableGame

or for the online Game objects: the GameManager. The DownloadableGame and Game classes are
oriented on the executable side of the games. The classes that handle the representation of the
games, with their names, descriptions and help texts displayed are DownloadableSkinnedGame

and SkinnedGame. All games are translated and then assigned a ’game set’. The Game Set class
can retrieve games separated per language and country. For example: the attribute gameSetID
with value 2 represents English for the United States. Each game has a category, represented in
the ZylomCategory class, which is managed by the ZylomCategoryManager class. This pattern
of (Name of object) Manager continues throughout the code. The managers are static instances
to retrieve the objects from a cache. The game developers are represented in their own class:
GameDeveloper, with again a GameDeveloperManager. These are used to programmatically
determine which developer created a game or if a developer is still active. Other classes are
amongst others related to localization, locations, logging and the help pages.

6.2 The Database

The database will be based on existing tables of a Microsoft SQL database (figure 6.2). Since the
website already exists with a database attached, only limited aspects of the plan were modeled.
For the search process a diagram has been made in table (7.1). A sequence diagram for the

20

6.2. THE DATABASE 21

Figure 6.1: Class diagram of some of the games related classes
The partial representation of the game related class structure of the Zylom website.

search process and the filters seemed appropriate, as well as a class diagram representing relations
between the tables. The tables TAG and TAGLINK are added for new functionality. TAGLINK
consists of foreign key attributes: identifying keys from other tables. TAG contains the primary,
unique key TAGID, the text like ”Dice game” is stored in NAME. The query data is stored in
the LOG SEARCHQUERY table as soon as the user presses enter after entering it in a textfield.
The words in the query that do not exist in the index are stored in the TAG table for reviewing.
Some of these might be eligible as a tag to games. VISIBLE can be set to TRUE if the tag name
is a suitable word for display on the game’s page, in contrast to only being used as a match to
a game. The LANGUAGEID value is important as the site works with several countries and
languages.

22 CHAPTER 6. DATABASE AND PROGRAMMING STRUCTURE

Figure 6.2: A partial representation of relevant tables of the existing database.
.

Chapter 7

Search Engine Implementation

As mentioned in the chapter ’Comparing Search Engines’, the final choice was to use Lucene
3.4.0 as the base of the search engine implementation. The graphical user interface has been

Name Searching for a game
Summary A query is entered and a result is given
Actors Player
Assumptions Player is looking for a specific game or game.
Description (1) Player enters text in the search field.

(2)Player hits the search button.
(3)A list of matching HTML pages of games will be displayed
and the query is stored in the database. (3a)If no text is
entered, all games will be shown.
(3b)Player wants to filter these results further and marks one
of the search filters or uses sort mechanisms.
(4)User clicks on one of the links in the results.

Exceptions (2b)Player enters invalid characters; the player will be re-
quested to not use a list of specific characters and try again.
(2c)Match is not found, because the game is not available in
that language or does not exist. Then either a word is sug-
gested that is similar to the one given in the form of ”Did you
mean YYY?”, or there is no match at all and the search pro-
cess ends. If there are suggestions, user can click the words
to start a new search with those terms

Result Player gets search results, in the form of click-able links, query
is stored in the database.

Table 7.1: Search process use case diagram.

designed after the figures in chapter 3. All the relevant classes are located in the packages
com.zylom.website.

search and com.zylom.website.search.servlet, see figure 7.1. The GameComparator class is

23

24 CHAPTER 7. SEARCH ENGINE IMPLEMENTATION

Figure 7.1: Class diagram of the search related classes.

used for comparing both online and downloadable games by name and by release date. The class
diagrams in this chapter lack parameters, because there are so many parameters given that it
would not fit the pages nicely. Many of the parameters also mean nothing without an explanation
and this would be a lot of extra information, whilst the volume of this thesis was already exceeding
limit.

7.1. LUCENE ALGORITHMS 25

7.1 Lucene algorithms

In the official scoring article, the following is said about the algorithms: ”Lucene scoring uses
a combination of the Vector Space Model of Information Retrieval and the Boolean model to
determine how relevant a given Document is to a User’s query. In general, the idea behind
the Vector Space Model is the more times a query term appears in a document relative to the
number of times the term appears in all the documents in the collection, the more relevant that
document is to the query. It uses the Boolean model to first narrow down the documents that
need to be scored based on the use of boolean logic in the Query specification. Lucene also adds
some capabilities and refinements onto this model to support boolean and fuzzy searching, but it
essentially remains a Vector Space Model based system at the heart.” http://lucene.apache.

org/java/2_9_1/scoring.html For spell checking functionality the Levenstein, Jaro Wrinkler
and N-Gram algorithms were available. The default algorithm was Levenstein. They all measured
the distance between a given string and one in the spelling index and gave it a floating point
score between 0 and 1. If the result is 1 the string is identical, if it is 0, the distance is maximal.
See section C.2.1

7.2 Indexing

The LuceneIndexManager class indexes the game data from a cache of currently active, published
games. It also created indexes for spell checking functionality, by indexing the game description
texts for each individual language to be used with the external SpellChecker class. The process
of indexing the data needed for parsing a query includes storing the games’ title, description,
Game Set ID, release date, help text, game genre, the type of game (online or downloadable),
and language ID. Before these data are added to the index, they have to fulfill several criteria.
Indexing process

1. The process first limits the amount of game sets that will be iterated, excluding the third
party games. Their gameset ID is above 51, or have ”Affiliate” in their names.

2. It filters out games that are exclusively promotional. Those games contain the word promo
in their name,

3. Checks if they are not obsolete by calling an existing method,

4. Replaces the help text with the name of the game, to boost the words and avoid an empty
field in the index

5. Gets and formats the Date object to a normal string of text like 20091231 and strips the
dash from the date. This format is obligatory for Lucene’s filter function.

6. Any colon in the name of a game is removed

7. The game is added to the index

8. The description of the game is added to a spelling index, stored by language identifier. For
example ’enspellchecker’ for English.

http://lucene.apache.org/java/2_9_1/scoring.html
http://lucene.apache.org/java/2_9_1/scoring.html

26 CHAPTER 7. SEARCH ENGINE IMPLEMENTATION

Adding data to the index is done through the LuceneManager.addEntry() method. First a
writer class for the index Directory object is used. This IndexWriter uses an Analyzer instance,
that is a localized external library for instance org.apache.lucene.

analysis.en.EnglishAnalyzer. The analyzers tokenize the indexed strings. It also takes care
of matching words by recognizing the stem of the words (word stemming), hence every language
has its own analyzer. The rows of the index also have the function setBoost(), which could be
used to boost a row (Lucene’s Document instance containing information about one game).

7.3 Searching

The class LuceneSearch as its name implies, handles all of the searching. It starts in the
Search.java servlet, where first the LuceneSearch.formatQuery() method is called. This re-
moves excess spaces around the query and filters out any special characters except quotes. It also
adds ’AND’ or ’OR’ between words. Then the journey continues to LuceneSearch.findGames()

that retrieves the data from the index and retrieves the corresponding games, storing them in an
ArrayList. After storing the query in the database via an existing cached function, the data is sent
by search.java to searchresults.jsp. It is the refurbished version of the JSP that normally
displays games. It has a changed layout and it shows both types of games, while the normal version
only displays either downloadable games or online games as individual entries. If the first game
in the list is an online game, the downloadable version is automatically retrieved from the list of
games by game ID, and vice versa. To avoid duplicate entries, the other version of a game gets re-
moved from the array list. So for instance with a list containing games (game1online, game2online,
game1download), game1online would group together with game1download. Game2online would
group with game2download and as a duplicate game1download would retrieve game1online. This
is best illustrated in figure 3.2.

7.4 Filtering and Sorting

Filtering starts in searchfilter.jsp which displays the filter options seen in figure 3.2 in
chapter 3. Then the data gets posted to the servlet (figure 7.2) Filter.java which reads
the players chosen options stores these in an ArrayList. Filter.java includes this ArrayList
as a parameter LuceneSearch.filterGames() for filtering. The filtering happens by translat-

Figure 7.2: Class diagram of the Search Servlet package.

7.5. SPELL CHECKING 27

ing every option to something for the search string. For example gamename:Emily gameset:4
becomes gamename:Emily gameset:4 launchdate:20101231-20111231 category:4. Then it calls
LuceneSearch.findGames() like any other query to get the ArrayList of resulting games.

Sorting is done in LuceneSearch.sort‘sorttype‘(). In the case of the launch date and alphabeti-
cally, a given ArrayList is sorted via the GameComparator class. The sorting methods on the game
displaying page have been recreated, as it used to get all games and sort those in the same method.
Now the list of matched games are displayed. The old comparator class has been adjusted from
its previous state to work with both downloadable and online games. sortRelevance() simply
does a new query.sortPopularity() first divides the games into a Downloadable and Online
games list. Then each uses the relevant version of getGamesList() and applies gamesList.

retainAll(’earlierGameSearchResults’) and concatenates the two sorted games lists into
one.

7.5 Spell checking

As mentioned before, the class SpellChecker handles spell checking in Lucene. First a separate
index per language for all of the descriptions of the games was created. This data was stored
in LuceneIndexManager while iterating individual game descriptions for the main game index.
The individual words were used as a LucenDictionary to compare a player-entered string of
text with. The SpellChecker instances per language were stored in an ArrayList by language ID
and were retrievable by the getSpellChecker() method. Each SpellChecker instance could give a
corrected word by calling suggestSimilar(search term, number of results). The result was shown
as a ’Did you mean’ suggestion to the players, when the search generated no results.

7.6 Tags

The new package com.zylom.website.tag (figure 7.3) has been added that contains the classes
Tag and TagManager. The format works after example of the other base classes and Managers:
implementing the PersistentStoreable interfaces, getting data from the database, equivalent
getters and setters like getTag() and getTagsbyGameID(). These tags will be used to give extra
keywords to games, that can be used via the search index. They can either be visually displayed
on the game page or just indexed. Since games of a certain category can get the same tags, a
getTagsByZylomCategoryID() method has been added. Descriptive and tag meta data is added
to the search page, making direct hits via third party search engines more likely. This should
attract more visitors.

28 CHAPTER 7. SEARCH ENGINE IMPLEMENTATION

Figure 7.3: Class diagram of the Tag package.

Chapter 8

Functional Testing

The final product was tested on several points for functionality and speed. The test was conducted
on a desktop computer running Windows XP Professional with 2 gigabytes of memory and a
2.13 gigahertz processor. The final implementation will be on a virtual server running Ubuntu
Linux with 8 gigabytes of memory. Important was that the behavior of the code would work
in an environment where there is no use of sessions on a single server, but merely individual
requests and response which could be distributed across different servers. It had to process the
requests quickly, and be fault tolerant in that operations will continue when exceptions would be
encountered. For testing the quality of the results, certain known games have be searched for. If
they are all found, it is a positive result. Testing for false positives was done as well.

Logging Each query is logged in the database through an existing class that handles all logs
of a player’s data. That class is also used to log errors, so that was used for logging events like
new languages and their missing specific libraries. The stored data has been checked.

Data integrity The outcome of the search has been tested, by means of taking a few popular
games, seeing how many versions there are and then checking if all versions if any show up.
Initially only existing terms were used to test the game finding and filtering capabilities. By
conducting a more comprehensive test in December, several games seemed to be missing versions
or missing altogether. The games’ data was more accurately checked before adding it to the
index. Other games were found that lacked a description and they were ignored. If it lacked
this information it would skip the game, assuming it was obsolete. The problem of incomplete
game information was due to using a test database that was incomplete. The searches were also
inaccurate if the first word did not occur in the index at all, like ’Dilbert’. By adding boolean
statements like AND and OR between words and adding braces around the statements this was
solved. For example, Lucene parsed the statement ’gamename:Dilbert farm game ’ for a game-
title-only search as
gamename:Dilbert AND description:farm OR game
instead of
gamename:(Dilbert OR farm OR game)

Since the description is ignored in the game-title-only search, no results were given. After solv-
ing these issues, a second round of tests were done. Searching for the Delicious, Mortimer and

29

30 CHAPTER 8. FUNCTIONAL TESTING

Farm Frenzy series of games, all were found. Searching for games that were only available as
a download or online were also correctly displayed. When testing for false positives, none were
found. Every hit had at least one of the keywords in the game’s name or description. The spell
checker used the Levenstein distance as the default string compare algorithm. This was rather
inaccurate during the time of writing, suggesting words that were not remotely alike. Since there
was a month left to make this work, it was still work in progress. Other algorithms were still an
option.

8.1 Indexing and search speed

Another factor of importance is the speed of building the index. Even if building it from scratch
isn’t done very frequently for updates (at most around 6 times a day), the environment dictates
that it has to happen fast. All of the updated data on for instance a new game will be up-
dated sequentially and the other processes should not be significantly slowed down because of
the rebuilding of the index. When creating the index on hard disk, the average duration was 38
minutes. This while the index on RAM was an average of 5 minutes. The when stored on hard
disk, the size of the game index was 13.5 megabytes and the size of the index with Dutch game
descriptions was 1.37 megabytes. A speed test was done on several functions (figure 8.1).

Figure 8.1: Chart displaying the difference in speed of functions between the hard disk and
RAM stored indexes.

The results are the average of calling the function 5 times while matching all games. Since the
method sortRelevance() equals the same actions as findGames() when retrieving all games,
the duration is the same. The method setSpellCheckers() is only done on hard disk since
the indexing is conducted separately from linking the index to a SpellChecker instance. The
setSpellCheckers() function looks up the individual language indexes to link earch to its own
SpellChecker. When filtering, the filter chosen was ”display all games from 2011 and newer”

8.1. INDEXING AND SEARCH SPEED 31

resulting in 52 games. The sorting of an existing list of games took 0 milliseconds in both the
hard disk and the RAM stored index. A batch operation was done with the third-party tool Luke
on the indexes directly. Searching for the Dutch word ”en” (Eng:and) in the Dutch spelling index
gave 4047 results. Repeating this 200 times gave an average search time of 893 milliseconds. The
same batch operation in the game index that contains all languages gives 3434 results and took
1201 milliseconds.

Chapter 9

Conclusion

GameHouse wanted to have a fast, scalable search engine fully integrated into the current Java
environment and dynamically updated. This has been achieved by using a separate library and
plug-ins as well as reusing old code and creating the rest from scratch. The result of the project
were two new JSPs, four new plain Java classes and two new servlets. The JSPs, searchresults.java
and searchfilter.java, present the games in a list on the website and the filter options an a separate
box on the side. In the option to filter by release date, the years are dynamically obtained
by using system calls. A plain Java class (LuceneSearch.java) builds the index and another
(LuceneIndexManager) handles search functionality. While indexing, each language uses its own
analyzer that tokenizes the strings into words. This provides the required word stemming. The
index is built using an existing cached list of games to not bring extra load on the database To
optimally use the indexing methods, the spell checking index was built from game descriptions
during the games indexing process. The spell checking functionality was required for correcting
the user entered queries. A servlet (Filter.java) was used to comply to the requirement of filtering
games. Another servlet (Search.java) handles new search requests. The core of the search engine
has become the free Open Source library Lucene since it met all demands of speed, scalability,
price (no purchase was needed in the whole project) and functionality. It works together with the
existing code on their distributed Tomcat Java application server. From an earlier attempt to
write a search engine, only the game comparator class was reused by rewriting it. The company
also liked to associate pages and games themselves with extra words. For instance, associating
a game with a synonym that wasn’t in its description. For handling these tags two Java classes
were built. In the company’s style of object oriented programming the new classes Tag holds the
tag information, like the ID and name (synonym word) and a TagManager class which retrieves
the data from the SQL server database and stores the tags in a cache. It was also important to
have the means to resolve any issues that would occur after leaving the project. The functionality
of every written Java class and method has documentation that will be included in the generated
Javadocs. The documentation on the internal network of GameHouse contains information on
the methods used per search task, information on how Lucene handles data and some scenarios
on what could go wrong when adjusting the program. To keep the risks of undiscovered bugs
at a minimum, the search and extra functionality have been tested for speed and accuracy. The
optional feature that did not make it before finishing this report was analyzing the game a player
chose when presented a list of results. The required method that was not yet fully tested was
setEntry() which should boost the value of a given game or add a tag to it.

32

Evaluation

GameHouse had an interesting environment to work in. The atmosphere had a mix of commercial
and creative roles, where my previous working experience was more service oriented. This was the
first time I worked as a programmer, previous jobs were in system administration and support.
In the first weeks my expectation was that I could write code for the games search functionality
and add the help search functionality too. There was not enough time for that however. I greatly
underestimated the time to finish, document and debug this. I felt like an appreciated participant
in the organization as most of my recommendations about the project’s implementation were
taken seriously. In the end of the project I wrote the test plan for the final product to measure the
speed of the most important functions and to add more research value to the project. Objectively
determining what an acceptable speed or duration is for a function was difficult, so the the most
important decisive factor lay in approval by the other technical staff. The project was a useful
experience that had enough challenges for me to apply creative solutions. Since there was a year
between the previous Java classes and the graduation, some of the knowledge was lost, but extra
studying solved this. New concepts were learning about Java Server Pages and servlets, as well
as getting insights on how search engines work. An extra bonus was that I remained in my own
area of expertise by using open source throughout the project. A few times I made the mistake
of not being precise and sloppily assuming code would work, but I have seen how much time
recovering that mistake took. The search text for example failed when tested with empty spaces
before and after the strings. Testing this outside the Netbeans IDEs debugger by displaying the
values made it harder to discover the cause. It was also a bad practice to not take breaks from
programming to work on the thesis. After a day or two of not looking at the code, I recognized
problems that I missed before. My Java knowledge and skills have greatly improved and holding
on to thorough testing, documenting and meaningful variable names paid off. At the moment of
finishing the thesis there were still three weeks left to program and solve any errors that could
occur during the live implementation. The code is expected to go live later in January.

33

34 CHAPTER 9. CONCLUSION

Glossary

Apache Foundation From the official website: the Apache Software Foundation provides orga-
nizational, legal, and financial support for a broad range of open source software projects.
Through a collaborative and meritocratic development process, Apache projects deliver
enterprise-grade, freely available software products that attract large communities of users.
The pragmatic Apache License makes it easy for all users, commercial and individual, to
deploy Apache products. 15

casual games A genre of games that is noted by its simple controls and a shorter duration to
finish than other genres. Mastering these games usually does not require any training or
much determination, making them accessible to a general audience with little time. 6, 8

Comparator A Java interface which can be implemented in a class, that can compare classes
of the same type by certain attributes. 15

Conversion & Retention The department responsible to keeping customers satisfied and gen-
erating more revenue. 7, 8, 14

crawler Also known as spider. Software that automatically gathers text and links from on or
more web sites, and stores it for searching purposes. XIII, 10, 15, 16

defunct in Java version 7 Several bugs were included in Java 7 that could crash the Java Vir-
tual Machine in which the applications run. They had to do with executing loops in the code
amongst others. See http://bugs.sun.com/bugdatabase/view bug.do?bug id=7044738. VIII

Game Set GameHouse’s data unit that contains games per language. 19, 24

Jaro Wrinkler Lucene’s version of the Jaro Wrinkler distance represents the distance between
two strings by boosting the accuracy of the string if the first part of the word matches
character by character. It divides the string in a given number of segments and sees how
much of a percentage matches. It also does character matching when located elsewhere in
the string. 23

Levenstein The Levenstein distance represents the distance between two strings. It is the
default method of comparison in the SpellChecker.suggestSimilar(string of text) function.
It measures the minimum number of changes needed on characters to match one string to
another. There is a warning in the original documentation that this might not give the
most accurate result, if only one match is retrieved. 23, 29

35

36 Glossary

Linux An operating system based on the Linux kernel, consists of GNU and Linux programs.
GNU is a project to creating open source software, that runs on Unix-like systems. 16, 17

N-Gram The N-Gram distance measures the distance between two strings by means of position
based matching of an ’n’ number of sequential characters. 23

Netbeans A free open source Integrated Development Environment by Sun Microsystems. 32

Search Engine Optimization The process of achieving higher ranking in the results of a search
engine. 8

tokenize Break the string into individual words and remove excess spaces. 25

Tomcat Apache’s open source Java application server. Hosts servlets and Java server pages.
XIII, 16

Unicode An international text encoding standard. Text and symbols are generated by means
of certain standards of interpreting bytes. Where some of these encoding standards can
only display limited characters of western European languages, UTF can display any type
of language. 10

Vector Space Model ”An algebraic model representing textual information as a vector, the
components of this vector could represent the importance of a term (tfidf) or even the
absence or presence (Bag of Words) of it in a document”
http://pyevolve.sourceforge.net/wordpress/?tag=vector-space-model. 23

virtual server A server that is hosted inside another operating system and is accessible like a
normal program. 28

Acronyms

API Application programming interface. 16–18

JSON JavaScript Object Notation. 17

JSP Java Server Pages. 15, 25, 31

PID Project Initiation Document. 5

SAAS Software as a service. 17, 18

XML Extensible Markup Language. 10, 16, 17

I

Appendix A

Zylom Zoekmachine Survey NL

Pop-up

Beste speler,

We zijn bezig met het vernieuwen van onze website, zodat je je favoriete spelletjes nog beter
en sneller kunt vinden. Daarvoor willen we graag weten wat voor spellen je leuk vindt, en hoe
je spellen zoekt en vindt op onze website. Wil je een paar vragen voor ons beantwoorden? Dit
neemt maar enkele minuten van je tijd in beslag.

Alvast bedankt!

Het Zylom-team

Intro Bedankt dat je ons mee wilt helpen om onze website te verbeteren. We gaan je enkele
vragen stellen over je favoriete spellen, en hoe je momenteel je spellen zoekt en vindt op onze
website. Deze enqute neemt maar enkele minuten van je tijd in beslag.

A.1 Survey

A.1.1 Voorkeuren

1. Wat zijn je favoriete hoofdcategorien op de Zylom website? Dit zijn de genres die je in het
menu ziet staan, bovenaan onze paginas, op dezelfde rij als Alle spellen, boven Mijn gegevens als
je ingelogd bent. Kies alle categorien die je regelmatig speelt.

a. Kaart

b. Puzzel

c. Woord

d. 3-op-een-rij

II

A.1. SURVEY III

e. Zoek en Vind

f. Actie

g. Time management

h. Ik weet niet welke categorien ik regelmatig speel

i. Ik let niet op de categorien die ik speel

2. Wat zijn je favoriete subcategorien op de Zylom website? Dit zijn de genres die je ziet staan
als je op een hoofdcategorie klikt, en er een vakje uitgevouwen wordt. Kies alle subcategorien die
je regelmatig speelt.

a. Solitaire

b. Poker

c. Klassieke kaartspellen

d. Mahjong

e. Sudoku

f. Legpuzzels

g. Andere puzzelspellen

h. Klassieke woordspellen

i. Kruiswoordpuzzels

j. Wisselspellen

k. Bubble shooter

l. Blokken klikken

m. Blokken verbinden

n. Avontuur (Zoek en Vind)

o. Klassiek (Zoek en Vind)

p. Sim/tycoon

q. Arcade

r. Andere actiespellen

s. Boerderij

t. Mode

IV APPENDIX A. ZYLOM ZOEKMACHINE SURVEY NL

3. Hoe vaak zoek je naar een specifieke speltitel?

a. Altijd

b. Vaak

c. Af en toe

d. Zelden

e. Nooit

4. Kun je met onze huidige indeling en categorienamen de categorie of het spel vinden dat je
zoekt?

a. Ja, altijd

b. Ja, vaak wel

c. Soms wel, soms niet

d. Nee, meestal niet

e. Nee, nooit

5. Heb je moeite om eerder gespeelde spellen terug te vinden op onze website?

a. Ja, want ik weet de naam vaak niet meer

b. Ja, door de huidige indeling van de site kost het me veel tijd om het spel weer te vinden

c. Soms lukt het me niet

d. Soms, want ik kom vaak bij de downloadversie uit, terwijl ik op zoek ben naar de online versie
(of andersom)

e. Nee, ik kan mijn eerder gespeelde spellen eenvoudig en snel terug vinden

f. Nee, want ik speel een spel vaak maar n keer

g. Nee, want ik speel alleen spellen van de homepage

h. Ik weet het niet, want ik heb nooit eerder spellen bij jullie gespeeld

i. Anders, namelijk;

6. Gebruik je de optie in Mijn gegevens om vijf favoriete spellen te bewaren wel eens?

a. Ja

b. Nee

c. Deze optie ken ik niet

d. Ik log nooit in, dus kijk niet in Mijn gegevens

A.1. SURVEY V

7. Gebruik je de bladwijzers of favorietenoptie in je browser (Internet Explorer, Firefox, etc.)
om spellen gemakkelijker terug te vinden?

a. Ja

b. Nee

c. Soms

d. Ik zou dat wel willen, maar ik weet niet hoe het werkt

8. Gebruik je de geschiedenis in je browser (Internet Explorer, Firefox, etc.) om spellen
gemakkelijker terug te vinden?

a. Ja

b. Nee

c. Soms

d. Ik zou dat wel willen, maar ik weet niet hoe het werkt

9. Laat je wel eens tabbladen met online spelletjes open in je browser (Internet Explorer,
Firefox, etc.) om ze gemakkelijker terug te kunnen vinden?

a. Ja

b. Nee

c. Soms

d. Ik zou dat wel willen, maar ik weet niet hoe het werkt

10. Hoe lang duurt het gemiddeld voordat je een spel gevonden hebt dat je wilt spelen?

a. Ongeveer 10 seconden

b. Ongeveer 30 seconden

c. Ongeveer 1 minuut

d. Ongeveer 5 minuten

e. Meer dan 5 minuten

11. Vind je het te lang duren voordat je een spel hebt gevonden om te spelen?

a. Ja, het zou sneller moeten kunnen

b. Ja, het zou gemakkelijker moeten zijn, zodat ik niet zoveel verschillende paginas door moet

c. Nee, met de huidige indeling en categorienamen kost het me niet veel tijd

d. Nee, ik neem juist de tijd om een spel uit te zoeken

e. Het maakt me niet uit

VI APPENDIX A. ZYLOM ZOEKMACHINE SURVEY NL

A.1.2 Nieuwe zoekoptie

We hebben het plan om een nieuwe zoekoptie toe te voegen aan onze website, waarbij je bijvoor-
beeld een spelnaam in kunt typen, en je dan de resultaten van je zoekopdracht op een rijtje ziet
staan. Je kunt dan op een spelnaam klikken om meteen naar de infopagina te gaan en het spel
te spelen.

12. Op wat voor manier zou jij willen zoeken in een dergelijke zoekfunctie? Selecteer alle
mogelijkheden die jij zou gebruiken.

a. Mogelijkheid om te zoeken op speltitel of een deel van de titel

b. Mogelijkheid om te zoeken op de naam van een serie (bijv. Delicious, Dream Chronicles)

c. Mogelijkheid om te zoeken binnen een beschrijving op de infopagina van een spel

d. Mogelijkheid om te zoeken op de beschrijving van de omgeving of het onderwerp van een spel
(bijv. de Middeleeuwen, gras, ballen)

e. Mogelijkheid om te zoeken op genre

f. Mogelijkheid om te zoeken op de naam van personages uit het spel (bijv. Emily, Flo)

g. Mogelijkheid om te zoeken op de naam van de ontwikkelaar van het spel (bijv. PopCap,
Alawar)

h. Mogelijkheid om te zoeken op de prijs van het spel, of een aangegeven prijslimiet opgeven

i. Mogelijkheid om te zoeken op verschijningsdatum

j. Anders, namelijk;

13. Is er informatie die je momenteel niet op de website kunt vinden, die je graag zou willen
toevoegen? Denk daarbij aan bepaalde informative over spellen, of bijvoorbeeld onderwerpen die
je niet via de Helppagina hebt kunnen vinden.

A.1.3 Achtergrond

14. Hoe vaak bezoek je gemiddeld de Zylom-website?

a. Een paar keer per dag

b. Een keer per week

c. Een paar keer per week

d. Een keer per week

e. Een keer per 2 weken

f. Een keer per maand

g. Minder dan 1 keer per maand

A.1. SURVEY VII

15. Heb je wel eens een spel gekocht bij Zylom, of een FunPass-abonnement gehad?

a. Ja, ik heb minimaal n spel gekocht

b. Ja, ik heb momenteel FunPass

c. Ja, ik heb in het verleden FunPass gehad, maar nu niet meer

d. Ja, ik heb minstens n spel gekocht, en een FunPass gehad (of momenteel nog steeds FunPass)

e. Nee, ik heb nooit een spel gekocht of een FunPass gehad

16. In welke leeftijdscategorie val je? We gebruiken deze informatie alleen voor onze statistieken.

a. 20 jaar of jonger

b. Tussen 21 en 40 jaar

c. Tussen 41 en 60 jaar

d. Ouder dan 60 jaar

17. Ben je een vrouw of een man? We gebruiken deze informatie alleen voor onze statistieken.

a. Vrouw

b. Man

Dit is het einde van de enqute. Bedankt voor het invullen, en nog veel speelplezier!

Appendix B

Search Engine comparison

This section contains the engines that I found the most references to when searching the web
using Google.nl and DuckDuckGo.com starting from September 20, 2011. These references are
forum questions, recommendations, lists made by others on the web and top results from the
search engines.

B.1 Libraries

B.1.1 The old in-house developed code

1. Homepage:available on the intranet in a branch of the software repository

2. First release date: 2007

3. License + costs: Free, internal developed

4. Status: inactive

5. Support methods: Developer is no longer working at GameHouse

6. Minimum requirements: Java 6, defunct in Java version 7

7. Promoted features: It could be helpful to build upon this code, or reuse parts together with
other packages or libraries. Has fuzzy search matching, sorting and displaying methods.

8. Missing features from demands list: auto-suggest, spell checking, language specific features,
flexible behavior with the game types, provides inaccurate results and is obsolete, see the
’Testing’ section below.

9. Programming Language: Java 6

10. Expandability: Can be expanded with any new code, just none provided by the developer
himself.

11. Manageability: Same as any other internal code, via the internal repository.

VIII

B.1. LIBRARIES IX

B.1.2 Lucene

1. Homepage: http://lucene.apache.org

2. First release date: 2001

3. License + costs: Free, Apache License http://www.apache.org/licenses/LICENSE-2.0/

4. Status: Active

5. Support methods: Supporting companies are listed on the Lucene website

6. Minimum requirements: Java 6, defunct in Java 7

7. Promoted features: Apache Lucene(TM) is a high-performance, full-featured text search
engine library written entirely in Java. It is a technology suitable for nearly any application
that requires full-text search, especially cross-platform.

8. Missing features from demands list: statistical query logs, auto-suggest.

9. Programming Language: Java 6

10. Expandability: Several extensions available, amongst other, the packages listed below.

11. Manageability: Source code

B.1.3 Elasticsearch

1. Homepage: http://www.elasticsearch.org

2. First release date: 2010

3. License + costs: free, Apache License http://www.apache.org/licenses/LICENSE-2.0

4. Status: Active

5. Support methods: mailinglist, IRC channel (100+ visitors on Friday 23 September), bug
tracking, documentation on the site,

6. Minimum requirements: JSON scripting, CURL, Java 6

7. Promoted features: Distributed, RESTful, Search Engine built on top of Lucene. Actual
JSON document used to index the specific data. Fields in documents can have boost
levels that affect scoring, analyzers can be used to control how text gets tokenized into
terms, certain fields should not be analyzed at all, and so on... Elasticsearch allows you
to completely control how a JSON document gets mapped into the search engine on a
per type and per index level. One of the main features of Elastic Search is its distributed
nature. Indexes are broken down into shards, each shard with 0 or more replicas. Each
data node within the cluster hosts one or more shards, and acts as a coordinator to delegate
operations to the correct shard(s). Re-balancing and routing are done automatically and
behind the scenes. Issuing queries is a simple call hiding away the sophisticated distributed
based search support Elasticsearch provides. Search can be executed either using a simple,

http://www.apache.org/licenses/LICENSE-2.0/
http://www.elasticsearch.org
http://www.apache.org/licenses/LICENSE-2.0

X APPENDIX B. SEARCH ENGINE COMPARISON

Lucene based query string or using an extensive JSON based search query DSL. Search
though does not end with just queries, facets, highlighting, custom scripts, and more are
all there to be used when needed. log4j logging, query logging possible.

8. Missing features from demands list: NoSQL instead of SQL

9. Programming Language: Java 6

10. Expandability: modules available on the site.

11. Manageability: Source code

B.1.4 Solr

1. Homepage: http://lucene.apache.org/solr/

2. First release date: 2004

3. License + costs: free, Apache License http://www.apache.org/licenses/LICENSE-2.0

4. Status: Active

5. Support methods: On the Solr website, there are dozens of companies listed that give
support. http://wiki.apache.org/solr/Support

6. Minimum requirements: Java 6, defunct in Java 7, runs in a servlet container like Tomcat.1

Uses Lucene.

7. Promoted features: Advanced Full-Text Search Capabilities, Optimized for High Volume
Web Traffic, Standards Based Open Interfaces - XML, JSON and HTTP, Comprehensive
HTML Administration Interfaces, Server statistics exposed over JMX for monitoring, Scal-
ability - Efficient Replication to other Solr Search Servers, Flexible and Adaptable with
XML configuration, Extensible Plugin Architecture,

8. Missing features from demands list: none

9. Programming Language: Java

10. Expandability: Extensions to the Lucene Query Language

11. Manageability: Comprehensive HTML Administration Interfaces, can be used without
programming.

1Tomcat can give problems with internationalized texts. UTF-8 conversion problem. Alternative is
needed.

http://lucene.apache.org/solr/
http://www.apache.org/licenses/LICENSE-2.0

B.1. LIBRARIES XI

B.1.5 Hadoop Search, HSearch

1. Homepage: http://bizosyshsearch.sourceforge.net/

2. First release date: 2010

3. License + costs: Apache License Free http://www.apache.org/licenses/LICENSE-2.0

4. Status: Active

5. Support methods: Website for bug reports, forum (not actively used), documentation is
hidden between the API descriptive files.

6. Minimum requirements: depends on HBase, Java (version not mentioned)

7. Promoted features: Multi-XML formats, Record and document level search access control,
Continuous index updates, Parallel indexing using multi-machines, Embeddable inside ap-
plication, A REST-ful Web service gateway that supports XML, Auto sharding, Auto
replication, log4j logging: query logging possible.

8. Missing features from demands list: It works on HBase, a NoSQL database is a dependency.
Data can be exported from Microsoft SQL Server with the tool sqoop, but then it should be
exported back to the server again. If this does not happen, the demand for statistics from
MSSQL is not met. This importing and exporting, no matter how fast the data transfer
is, will create overhead. With fields from a large, frequently updated database this can be
tedious.

9. Programming Language: Java 1.6

10. Expandability:

11. Manageability: Nothing mentioned outside the promoted features.

B.1.6 Xapian

1. Homepage: http://xapian.org

2. First release date: 1999

3. License + costs: free, GNU GPL v2 licensed. http://www.gnu.org/licenses/gpl-2.0.

html

4. Support methods: paid consultancy at 3 companies , including development on demand.
Free tutorials, documentation, mailing-list.

5. Status: Active

6. Minimum requirements: A ’C’ compiler and Make program on a Unix environment

7. Promoted features: Used by Tweakers.net. BM25 Weighting Scheme Collapsing, Database
Replication, Faceting, Indexing, PostingSource, Query Parser, Remote Backend, Serializ-
ing Queries and Documents, Sorting Results Spelling Correction, Stemming Algorithms,
Synonym Support, Value Ranges,

http://bizosyshsearch.sourceforge.net/
http://www.apache.org/licenses/LICENSE-2.0
http://xapian.org
http://www.gnu.org/licenses/gpl-2.0.html
http://www.gnu.org/licenses/gpl-2.0.html

XII APPENDIX B. SEARCH ENGINE COMPARISON

8. Missing features from demands list: not fully in Java . Auto-suggest previous searches.

9. Programming Language: C++ with bindings to allow use of the Java syntax

10. Expandability: tag library for search results. XML source configuration file. More file for-
mats can be searched (next to text html etcetera) with use of preparators. These prepara-
tors are basically parsers for data formats.

11. Manageability: Source code

B.1.7 Sphinx

1. Homepage: http://sphinxsearch.com

2. First release date: 2001

3. License + costs: free, GNU GPL v2 licensed. http://www.gnu.org/licenses/gpl-2.0.

html Paid support.

4. Support methods: free community support through a Forum, Wiki and IRC. Well docu-
mented. Support ranging from $1500 for a 3 days response to $15000 a year for phone
and Skype support. Also consultant services available for shorter support durations and
developers can be hired to create features.

5. Status: Active

6. Minimum requirements: A ’C’ compiler and Make program. Any database can be used
through ODBC and it is written in C for *nix, Windows and Mac.

7. Promoted features: high indexing and searching performance; advanced indexing and
querying tools (flexible and feature-rich text tokenizer, querying language, several differ-
ent ranking modes, etc); advanced result set post-processing (SELECT with expressions,
WHERE, ORDER BY, GROUP BY etc over text search results); proven scalability up to
billions of documents, terabytes of data, and thousands of queries per second; easy inte-
gration with SQL and XML data sources and SphinxAPI, SphinxQL or SphinxSE search
interfaces; easy scaling with distributed searches. Used by large websites such as Slash-
dot.org.

8. Missing features from demands list: Not written in Java, but the query demands are
natively met. Tag library.

9. Programming Language: C++, however there is a Java library named SphinxAPI that
looks very useful.

10. Expandability: plug-ins available

11. Manageability: Source code

http://sphinxsearch.com
http://www.gnu.org/licenses/gpl-2.0.html
http://www.gnu.org/licenses/gpl-2.0.html

B.2. SEARCH ENGINE SERVICES(SOFTWARE AS A SERVICE) XIII

B.1.8 Regain

1. Homepage: http://regain.sourceforge.net/

2. First release date: 2004

3. License + costs: free LGPL licensed http://www.gnu.org/licenses/lgpl.html

4. Support methods: A forum, well documented help section.

5. Status: Active

6. Minimum requirements: servlet engine like Tomcat.

7. Promoted features: built on Lucene, Tag library: this is the first in the list that mentions
it.

8. Missing features from demands list: query logs

9. Programming Language: Java

10. Expandability: standalone crawler, preparators enable expansion of type of files that can
be searched

11. Manageability: Source code

B.2 Search engine services(Software As A Service)

These are the services that don’t run on a server locally, but that are hosted elsewhere, indexing
the company’s website for a fee. The database and programming language requirements are not
relevant in this case. I started looking at these services, but during the course of comparing
search engines I soon found several candidates that already suit the needs and are free. The
solutions underneath are quite expensive for large data queries and therefor don’t seem like a
good alternative to a regular local search engine implementation. Another issue is that when the
source of the engines is available, it is easier to use existing Java code for the website together
with the program. SAAS is not flexible in that sense.

B.2.1 Google site search

1. Homepage: http://www.google.com/sitesearch/

2. Costs: 2000 Euro annually

3. Support: Support by email, advanced developer documentation and online training.

4. Modifiable behavior: yes, users can sort on tags that appear above results.

5. Manageability: customization via a simple web interface

http://regain.sourceforge.net/
http://www.gnu.org/licenses/lgpl.html
http://www.google.com/sitesearch/

XIV APPENDIX B. SEARCH ENGINE COMPARISON

6. Promoted features: Word synonyms, fast indexed searching and sorting results biased
towards certain categories (if they should be promoted). It also provides statistics on how
many queries were done and it allows category search. Multiple language queries.

7. Missing features: complete data on which terms where sought after. It can show the most
popular searches, and usage statistics. Interoperability with Java code.

B.2.2 Yahoo Build your Own Search Service

1. Homepage: http://developer.yahoo.com/search/boss/

2. Costs: Query based pricing would come down to $1600 per month based on the statistical
minimum of 2 million searches.

3. Support: A forum for general questions, as well as billing and service issues. Documentation
in abundance.

4. Modifiable behavior: results can be re-ranked.

5. Manageability: Customization via a dashboard that also shows daily usage statistics.

6. Promoted features: Unlimited Queries Per Day (See Pricing Chart), No Restrictions on
Presentation, Re-Ordering Allowed, Blending of Proprietary and Yahoo! Search Content
Allowed, Access to a Limited web data set, Limited Yahoo! Brand Attribution, User
Authentication Security, Self-Serve with Credit Card Authentication at Sign-up,- Yahoo!
Search Advertising, Access to Usage data and Billing, Extensive Support and Documenta-
tion.

7. Missing features: A disappointment is the need to add the Yahoo logo and a statement if
implementing the search engine on your website. Very expensive compared to alternatives.

http://developer.yahoo.com/search/boss/

Appendix C

Documentation

This is the literal documentation written for the intranet.

C.1 Lucene Search package

This page is about the Lucene Search package. It is installed along with other related packages in
your external-libs folder. The version this page relates to is 3.4.0 Data is added to the generated
index by documents. A document is comparable to a row in a database. It contains the field
names, the values and things like if it has to be analyzed or stored.

• A document is a sequence of fields.

• A field is a named sequence of terms.

• A term contains a string like a game name.

I created an index in RAM named RAMgameIndex, it is also possible to make an index on the
hard disk for perhaps testing purposes. The indexes are built in the class
com.zylom.website.search.LuceneIndexManager, the searches, filters and sorting are done via
the class Search. To read more about how Lucene works from building the index to parsing a
query, visit http://lucene.apache.org/java/3_4_0/demo2.html
For a simple implementation see: http://www.lucenetutorial.com/lucene-in-5-minutes.

html

C.1.1 Document Fields

These are the defined search fields: private final String

GAME_FIELD_NAMES={"gamename","gamedescription","gamehelp",

"languageID","category","skinnedgameID","gameSetID",

"launchdate","gametype"};

Searching in a certain field is done by means of for example gamename:Plants. This searches
only the game titles for Plants. To search in the gamename and gamedescription fields: game-
name:Plants AND gamedescription:shoot

XV

http://lucene.apache.org/java/3_4_0/demo2.html
http://www.lucenetutorial.com/lucene-in-5-minutes.html
http://www.lucenetutorial.com/lucene-in-5-minutes.html

XVI APPENDIX C. DOCUMENTATION

C.1.2 Managing the Index

Because there is no check for duplicate data in the index, this is taken care of in the
LuceneIndexManager class. To easily test queries on the index the standalone tool Luke can
be used, but then you have to create indexes on the hard disk. Syntax for creating a Directory
(index) on the hard disk: Directory gameIndex = new FSDirectory(new File(path)); Get
the tool Luke from http://code.google.com/p/luke/ . You can also browse every individual
document there, see term statistics and even modify data.

C.1.3 Filtering and Sorting

Filtering starts in searchfilter.JSP, goes through the servlet Filter.java, calls LuceneSearch.

filterGames(), then it is sent to LuceneSearch.findGames() like any other query. The servlet
takes the user’s chosen filters as requestparameters from searchfilter.JSP and sends them to
LuceneSearch.filterGames() for filtering. It takes the previous query and all the chosen options
like categories and a launch date range and formats a String accordingly. Sorting is done in
LuceneSearch.sort‘Nameofsorttype‘(). In the case of the launch date and alphabetically, a given
ArrayList is sorted via the GameComparator class. The old class has been adjusted to work with
downloadable and online games. sortRelevance() simply does a new query. sortPopularity()
first divides the games into a Downloadable and Online games list. Then each uses the relevant
version of getGamesList() and applies gamesList.retainAll(’earlierGameSearchResults’)
and concatenates the two sorted gamesLists into one.

C.1.4 Searching

LuceneSearch as its name implies, handles all of the searching. It starts in the Search servlet,
where first the LuceneSearch.formatQuery() method is called. This removes excess spaces
around the query and filters out any special characters except quotes. It also adds ’AND’ or ’OR’
between words. Then the journey continues to LuceneSearch.filterGames() that retrieves
the data from the index and retrieves the corresponding games, storing them in an ArrayList.
Via the Search servlet the data ends up in searchresults.jsp. Searchresults.jsp is a refurbished
gamecategory.jsp, without the category things, changed layout and it shows both types of games.
If the first game in the list is an online game, the downloadable version is sought, and vice versa.
To avoid duplicate entries (downloadable game of ’Delicious’ found in the ArrayList, after the
online version already fetched and displayed ’Delicious deluxe’) the other version of a game gets
removed from the ArrayList.

C.2 Lucene Query Syntax

Searching is done with terms and phrases. Terms are single words, phrases are word groups in
quotes. Details are at http://lucene.apache.org/java/3_4_0/queryparsersyntax.html

http://code.google.com/p/luke/
http://lucene.apache.org/java/3_4_0/queryparsersyntax.html

C.2. LUCENE QUERY SYNTAX XVII

C.2.1 Enabled by default

Wildcards

? and * are allowed. Queries are not allowed to start with it.

Fuzzy Searches

Are done with ˜ in the end of the word. An additional (optional) parameter can specify the
required similarity. The value is between 0 and 1, with a value closer to 1 only terms with
a higher similarity will be matched. For example: Emil˜0.8 The default that is used if the
parameter is not given is 0.5.

Proximity Searches

Words in a certain distance from each other. The following will search those words within a 20
word distance from each other.

"Chicken throw"~20

Range Searches

Finds documents that fall between a given range and sorts alphabetically. Inclusive range queries
are denoted by square brackets. Exclusive range queries are denoted by curly brackets.

mod_date:[20020101 TO 20030101]

gamename:{Adventure TO Zombies}

Boosting Terms or Phrases

Can be done with the caret ˆ symbol. For example if a game is part of a promotion, the relevance
rate is boosted like this:

"Delicious Emilys true love"^4 or Delicious^4

This makes it four times more relevant. Floating point numbers are also allowed. See the section
’Search Term Rating Methods’ for more boosting methods.

Field Grouping

Uses parentheses to group multiple clauses to a single field. To search for a title that contains
both the word ”return” and the phrase ”pink panther” use the query:

gamename:(+return +"pink panther")

or the format

(Mens OR niet) AND erger

The dash excludes documents that contain the term after the - symbol. bookworm -”word game”

XVIII APPENDIX C. DOCUMENTATION

Boolean Searches

Boolean searches clearly follow the Java logic.

Garden AND farm

gamename:Garden AND gamedescription:pick

The OR operator is available and Plants +Zombies evaluates to ”must contain Zombies, with
optional Plants”. NOT can be used with multiple terms only. Mortimer NOT graveyard. It fails
when using one term. NOT can also be replaced by !, AND by && and OR by ——.

Special Characters

+ - && || ! () { } [] ^ " ~ * ? : \

They can be escaped by a forward slash /, but are already filtered out in the implementation,
when reading the user input from the text field. The only symbol not filtered are quotation
marks.

C.3 Extra libraries

Find the current additional libraries at http://repo1.maven.org/maven2/org/apache/lucene/
Implemented: Analyzers: Every language used on the website(in October 2011) has its own
term analyzer added. It determines which words are most likely relevant to the rating system.
SpellChecker is the class for spell checking. Only one for all languages.

C.4 Search Term Rating methods

For all the details, see http://lucene.apache.org/java/2_9_1/scoring.html

C.5 Lucene Lingua Operandi

1. tf = term frequency in document = measure of how often a term appears in the document

2. idf = inverse document frequency = measure of how often the term appears across the
index

3. coord = number of terms in the query that were found in the document

4. lengthNorm = measure of the importance of a term according to the total number of terms
in the field

5. queryNorm = normalization factor so that queries can be compared

6. boost (index) = boost of the field at index-time

7. boost (query) = boost of the field at query-time

http://repo1.maven.org/maven2/org/apache/lucene/
http://lucene.apache.org/java/2_9_1/scoring.html

C.6. TAGS XIX

Lucene allows influencing search results (for example, promos) by ”boosting” in more than one
level:

• Document() level boosting - while indexing - by calling document.setBoost() before a
document is added to the index.

• Document’s Field level boosting - while indexing - by calling field.setBoost() before
adding a field to the document (and before adding the document to the index).

• Query level boosting - during search, by setting a boost on a query clause, calling
Query.setBoost().

C.6 Tags

The new package com.zylom.website.tag has been added that contains the classes Tag and
TagManager. The format works after example of the other base classes and Managers: imple-
menting the PersistentStoreable interfaces, getting data from the database, equivalent getters
and setters etcetera.

C.7 Problems to be anticipated

Adding a language, (no failure expected)
When implementing a new language and assigning it to a game, it will use a language indepen-
dent analyzer by default. To do this operation more accurately go tohttp://repo1.maven.org/
maven2/org/apache/lucene/lucene-analyzers/ and add the analyzer class to the external li-
braries. Add the analyzer to
com.zylom.website.search.LuceneBuildManager public static final List <Analyzer> analyz-
ers in the correct location. So if the new language is simply highest-id-in-database + 1: add
it to the end of the list. The analyzers tokenize descriptions into individual words and allow
word stemming. This tokenizing should not be done on items that need an exact match like date
strings!

C.7.1 Duplicate entries

When making changes to the indexing process, please be aware that the index does not detect
duplicate entries.

C.7.2 Updating existing documents

The only updating function is indexWriter.updateDocument(Term,Document) It removes and
re-adds the document. Note that Document and Term are object types, not meant to just be
descriptive. The constructor is Term(String fieldname) or Term(String fieldname, String

textToMatch) Because this would match(update) every language and you can’t do the update
with several Terms as parameter, there is an updateEntry() function in LuceneIndexManager.
Thanks to a switch, this can be used for several purposes like adding tags to games. Because

 http://repo1.maven.org/maven2/org/apache/lucene/lucene-analyzers/
 http://repo1.maven.org/maven2/org/apache/lucene/lucene-analyzers/

XX APPENDIX C. DOCUMENTATION

finding a Document to be replaced requires several arguments (language, wordtomatch) a separate
getDocument() function is made in LuceneSearch.

C.7.3 Multiple entries per field

You can have multiple entries per field, by adding the field/value several times, not by using a
comma like tag=”restaurant”,”Emily”. You might for example want several tags per game. In
the index you need to add the following in a loop

GAME_FIELD_NAMES[8]=tag

Or of course add them all in the same String like in

GAME_FIELD_NAMES[8]=all tags

C.7.4 Irrelevant game results

You probably forgot to use the query formatter, which adds braces and boolean operators to the
search term.

C.7.5 Discrepancy in the documentation

The documentation on the official website is on some points obsolete. I for instance read that
there was no update function for Documents at all. Please bear this in mind and read the API
documentation instead.

Bibliography

[1] Basham, Bryan. Sierra, Kathy. and Bert Bates Head First Servlets & JSP [2004]O’Reilly,
First Edition.

[2] Croft, Bruce W., Metzler, Donald. and Trevor Strohman Search Engines, Information re-
trieval in practice [2010] Pearson, international edition.

[3] Grood de, Derk-Jan TestGoal [2008] Sdu Uitgevers, First edition.

[4] Krug, Steve Don’t Make Me Think! [2000] New Riders, First Edition.

XXI

List of Figures

2.1 Company structure . 8

3.1 Search design given for the final product. 9
3.2 Results page and filter design given for the final product. 10

4.1 The frequency of visits given by players. 13
4.2 Information on bookmark usage given by players. 13

6.1 Class diagram of some of the games related classes 21
6.2 Database class diagram . 22

7.1 Class diagram of the search related classes. 24
7.2 Class diagram of the Search Servlet package. 26
7.3 Class diagram of the Tag package. 28

8.1 Function chart, comparing speed of indexes. 30

XXII

List of Tables

4.1 Grouped suggestions. 14

7.1 Search process use case diagram. 23

XXIII

	Introduction
	Company Profile
	Assignment
	Customer Survey
	Generic
	Suggestions
	Feedback evaluation

	Comparing Search Engines
	Libraries and full packages
	SAAS

	Database and Programming Structure
	Programming Structure
	The Database

	Search Engine Implementation
	Lucene algorithms
	Indexing
	Searching
	Filtering and Sorting
	Spell checking
	Tags

	Functional Testing
	Indexing and search speed

	Conclusion
	Zylom Zoekmachine Survey â•ﬁ NL
	Survey
	Voorkeuren
	Nieuwe zoekoptie
	Achtergrond

	Search Engine comparison
	Libraries
	The old in-house developed code
	Lucene
	Elasticsearch
	Solr
	Hadoop Search, HSearch
	Xapian
	Sphinx
	Regain

	Search engine services(Software As A Service)
	Google site search
	Yahoo Build your Own Search Service

	Documentation
	Lucene Search package
	Document Fields
	Managing the Index
	Filtering and Sorting
	Searching

	Lucene Query Syntax
	Enabled by default

	Extra libraries
	Search Term Rating methods
	Lucene Lingua Operandi
	Tags
	Problems to be anticipated
	Duplicate entries
	Updating existing documents
	Multiple entries per field
	Irrelevant game results
	Discrepancy in the documentation

