
Generating Structured Music
Using Artificial Intelligence

Final Report of Bachelor Thesis

Submitted by Tim Wedde

In fulfillment of the requirements for the degree
Bachelor of Information and Communication Technology

To be awarded by
Fontys Hogeschool Techniek en Logistiek

Venlo, NL - June 11, 2018

Information Page

Fontys Hogeschool Techniek en Logistiek
Postbus 141, 5900 AC Venlo, NL
Bachelor Thesis

word count: 13.400

name of student: Tim Wedde
student number: 2628023

course: Informatics - Software Engineering
period: February - June 2018

company name: Genzai B.V.
address: Kazernestraat 17

postcode / city: 5928, Venlo
state: NL

company coach: Roy Lenders
email: r.lenders@fontys.nl
university coach: Jan Jacobs
email: jan.jacobs@fontys.nl
examinator: Christiane Holz
email: c.holz@fontys.nl

non-disclosure agreement: No

Generating Structured Music Using Artificial Intelligence: Final Report of Bachelor
Thesis, © Tim Wedde, June 11, 2018

ii

mailto:r.lenders@fontys.nl
mailto:jan.jacobs@fontys.nl
mailto:c.holz@fontys.nl

S U M M A RY

This thesis is concerned with the computational generation of musical pieces,
utilising concepts from the area of Artificial Intelligence. The main focus lies
on the finding of a solution to the problem of bringing long-term, high-level
structure to high-dimensional, sequential streams of data, into which music
can be encoded, while also replicating stylistic information of a specific genre
of music, in this case classical carnival music.
To achieve this, feasible approaches are selected from the current state-of-the-
art within the field and combined into a software package that allows for the
generation of structured musical pieces containing multiple instruments and
distinct sections within the generated output approximating common song
structures. The completed solution is able to generate structured songs condi-
tioned on an underlying chord progression while replicating multiple instru-
ments.

All code artifacts and samples are available under the following URL
https://github.com/timwedde/ai-music-generation

iii

https://github.com/timwedde/ai-music-generation

S TAT E M E N T O F A U T H E N T I C I T Y

I, the undersigned, hereby certify that I have compiled and written this docu-
ment and the underlying work / pieces of work without assistance from any-
one except the specifically assigned academic supervisor. This work is solely
my own, and I am solely responsible for the content, organization, and making
of this document and the underlying work / pieces of work.

I hereby acknowledge that I have read the instructions for preparation and sub-
mission of documents / pieces of work provided by my course / my academic
institution, and I understand that this document and the underlying pieces of
work will not be accepted for evaluation or for the award of academic credits
if it is determined that they have not been prepared in compliance with those
instructions and this statement of authenticity.

I further certify that I did not commit plagiarism, did neither take over nor
paraphrase (digital or printed, translated or original) material (e.g. ideas, data,
pieces of text, figures, diagrams, tables, recordings, videos, code, ...) produced
by others without correct and complete citation and correct and complete ref-
erence of the source(s). I understand that this document and the underlying
work / pieces of work will not be accepted for evaluation or for the award of
academic credits if it is determined that they embody plagiarism.

Venlo, NL - June 11, 2018

TIM WEDDE (2628023)

C O N T E N T S

Summary iii

List of Figures vii

List of Tables viii

Listings ix

Acronyms x

Glossary xi

1 introduction 1

1.1 Background . 1

1.2 The Company - Genzai B.V. 1

1.3 The Task - Music Generation . 2

1.4 Context . 2

1.5 Structure of the Thesis . 3

2 the project 4

2.1 Requirements . 4

2.2 Approach . 5

2.3 Planning . 6

3 exploring the problem space 7

3.1 Methodology . 7

3.2 Constraints . 8

3.3 Generating Melodies . 9

3.4 Replicating Stylistic Cues in Melodies 13

3.5 Controlling the Generation Process 14

3.6 Generating a “Song” . 15

3.7 Integrating Multiple Instruments 16

3.8 Putting It Together . 17

4 architecture & implementation 19

4.1 Setup & Environment . 19

4.2 Chosen Approach . 20

4.3 Software Architecture . 20

4.4 Program Flow . 22

4.5 Training Plan . 24

4.6 Implementation Details . 27

4.7 Additional Software . 33

5 results 35

5.1 Acquisition of Output and Evaluation Methodology 35

v

5.2 Examination of the Results . 35

5.3 Other Software . 37

6 conclusion 38

6.1 Project Reflection . 38

6.2 Output . 38

6.3 Future Opportunities . 39

references 40

a a primer on artificial intelligence 45

b data representation & processing 50

c additional information 54

vi

L I S T O F F I G U R E S

Figure 1 Logo of the company Genzai B.V. 1

Figure 2 Keyword-Cloud for gathering research information . . . 8

Figure 3 Noise in a generated Musical Instrument Digital Inter-
face (MIDI) file . 12

Figure 4 Adherence to the C-Major scale in a generated MIDI file . 12

Figure 5 Repetition of a Motif (highlighted in green) in a gener-
ated MIDI file . 13

Figure 6 Concept map for an automatic music generation system
(graphic created by [HCC17]) 16

Figure 7 Class diagram detailing the application architecture . . . 21

Figure 8 Schematic detailing the routing of MIDI signals through
the application . 21

Figure 9 Application flow of the main thread 23

Figure 10 Application flow of the SongStructureMidiInteraction

class . 24

Figure 11 Text-based User Interface (TUI) of the software package . 32

Figure 12 Excerpt of a MIDI file converted to intermediary CSV for-
mat . 34

Figure 13 Visualisation of generated output 36

Figure 14 Comparison of the same segment in the same song tem-
plate, two different generation runs 36

Figure 15 Example of a more complex drum pattern 37

Figure 16 Example of a melody line following the singer (top) and
a descending pattern (bottom), from the original dataset 37

Figure 17 Biological vs Artificial Neuron (biological neuron graphic
created by Freepik, https://freepik.com; Online, accessed
2018-05-12) . 47

Figure 18 A simple Feed-Forward Neural Network (image created
by Wikipedia Contributors, https://commons.wikimedia.org/
wiki/File:Artificial_neural_network.svg; Online, ac-
cessed 2018-05-03) . 48

Figure 19 Key Signature Distribution 51

Figure 20 Time Signature Distribution 51

Figure 21 Tempo Distribution . 52

Figure 22 Tempo in Relation to Time Signature 52

Figure 23 Project Plan . 55

vii

https://freepik.com
https://commons.wikimedia.org/wiki/File:Artificial_neural_network.svg
https://commons.wikimedia.org/wiki/File:Artificial_neural_network.svg

L I S T O F TA B L E S

Table 1 Comparison of different music generation systems 11

Table 2 Overview of stylistic factors within music compositions . 13

Table 3 List of planned tasks . 54

viii

C O D E S N I P P E T S

Figure 1 Command for converting MIDI files into a tfrecord con-
tainer . 25

Figure 2 Command for converting a tfrecord container into the
required sub-format for the DrumsRNN model 25

Figure 3 Commands for training and evaluating the DrumsRNN

model . 26

Figure 4 Structure of the .sng file format 28

Figure 5 Generation of the set of transposed chords 29

Figure 6 Splitting of safe notes into positive and negative move-
ment sub-sets . 30

Figure 7 Difference calculation, clamping and note harmonisa-
tion of a MIDI event . 30

Figure 8 Restoration of the time attribute of incoming MIDI mes-
sages . 31

Figure 9 Conversion and flushing of in-memory tracks of MIDI

events . 32

Figure 10 Commands used for converting MIDI files to tfrecord

containers . 57

Figure 11 Commands used for training, evaluating and exporting
the DrumsRNN model . 58

Figure 12 Commands used for training, evaluating and exporting
the MelodyRNN models. 58

ix

A C R O N Y M S

AI Artificial Intelligence

ANN Artificial Neural Network

ASF Apache Software Foundation

AWS Amazon Web Services

BPM Beats Per Minute

CC Control Change

CI Computational Intelligence

CPU Central Processing Unit

CSV Comma-separated value

DAW Digital Audio Workstation

DNN Deep Neural Network

FSF Free Software Foundation

GCP Google Cloud Platform

GPU Graphics Processing Unit

GUI Graphical User Interface

LSTM Long Short-Term Memory

LVK Limburgs Vastelaovesleedjes Konkoer

MIDI Musical Instrument Digital Interface

MIR Music Information Retrieval

ML Machine Learning

PoC Proof of Concept

PPQ Pulses Per Quarter Note

RBM Restricted Boltzmann Machine

RNN Recurrent Neural Network

TUI Text-based User Interface

UI User Interface

VM Virtual Machine

x

G L O S S A RY

musical terminology

Bar A segment of time consisting of a number of beats, as de-
termined by the meter.

Beat The fundamental unit of time used to measure progres-
sion of time within a musical piece.

Chorus, Verse Commonly used to denote repeating, alternating sections
within a musical piece.

Chord The sounding of multiple notes at the same time.

Corpus A collection of musical pieces.

Harmony The vertical aspect of music, in contrast to the horizontal
melodic line progression. The composition of sounds at
the same timestep to form chords and intervals.

Key The group of pitches, or scale, that forms the basis of a
musical piece.

Lick A stock pattern or phrase consisting of a short series of
notes used in solos and melodic lines or accompaniment.

Meter Synonymous to the time signature of a piece, defines re-
curring patterns, e.g. beats and bars.

Mode A type of musical scale coupled with a set of characteristic
melodic behaviors.

Monophony A simple line of individual notes.

Motif A pattern in a melody that repeats multiple times.

Musical Piece An original composition, either a song or instrumental seg-
ment, specifically the structure thereof.

Note A specific pitch or frequency emitted by any instrument.

Polyphony Two or more simultaneous lines of independent melody.

Scale Any set of musical notes ordered by fundamental fre-
quency or pitch.

Voice A single strand or melody of music within a larger ensem-
ble or a polyphonic musical piece.

Voice Leading The linear progression of melodic lines (voices) through
time and their interaction with one another to create har-
monies, according to the principles of common-practice
harmony and counterpoint.

xi

xii

1
I N T R O D U C T I O N

This thesis, in the following sections, will describe the process and the results
of the graduation project executed at Genzai B.V., a company specialized on
delivering solutions incorporating Artificial Intelligence (AI) to deliver insights
into clients’ data, as well as creating additional business value by implement-
ing custom solutions for extended data analytics.
The below will describe the basic context of the project, its motivation as well
as giving a quick overview of the problem domain and the content of the
chapters following it.

1.1 background

This thesis documents the process of the creation of the final software product,
as well the various decisions that have been made during the execution of the
project. It serves as an overview of this project and as a repository of additional
information about the research area the project is situated in in general.
In addition, it can be used to recreate or continue the project, either by inde-
pendent researchers or by Genzai, after this thesis has concluded.

1.2 the company - genzai b .v.

Genzai is a relatively new consulting company founded in 2016 providing
services in the realm of AI to solve various problems within the business en-
vironment of other companies. Sectors include supply chain management as
well as retail, public and agrofood, among others. It consists of four employees,
including the CEO Roy Lenders, and is based within the Manufactuur, a space
where multiple other innovative startups are also housed.

Figure 1: Logo of the company Genzai B.V.

Current projects include stock market analysis and prediction of mid- to long-
term trends within it, supply chain management for various clients as well as
root-cause analysis to determine inefficiencies within the internal processes of
a client’s large helpdesk office.

1

1.3 the task - music generation 2

1.3 the task - music generation

To make itself more well-known in the realm of AI, Genzai wants to execute
a high-profile project involving artificial music generation, with the overall
goal being to participate in and possibly win the Limburgs Vastelaovesleedjes
Konkoer (LVK) 2019 (a competition for carnival songs within the region of Lim-
burg) with such a generated piece. Additionally, Genzai hopes that research
into the area of time-series data prediction, pattern recognition and reconstruc-
tion can serve as a supplement to another currently active project concerned
with long-term stock-market trend prediction.
To achieve this goal, a project is to be executed that should determine the fea-
sibility of and possibly find a solution to the problem of generating pleasant-
sounding music (mainly carnival music) in order to enable the artificially gen-
erated songs to be performed by actual musicians of the field. The main prob-
lem lies in the finding of a fitting approach to achieve this idea using tech-
niques from the realm of Artificial Intelligence, and subsequently the imple-
mentation of a Proof of Concept (PoC) application.
Thus, the overall focus of this thesis in specific is not directed at the generation
of individual melodies with short- to mid-term structure but rather towards
the combination of various research areas and disciplines to eventually form a
complete musical piece, a “song”.

1.4 context

This project follows in the footsteps of a multitude of similar ventures, a large
amount of which have sprung up within the last decade with the advent of
easily accessible Machine Learning (ML) frameworks such as TensorFlow1 or
Theano2, but the origins and predecessors of which date back almost 30 years,
coming close to the advent of computing itself, with even one of the first com-
puters, the ILLIAC I being used for this purpose [HI92].
A multitude of approaches ranging from algorithmic, rule-bound composition
to autodidactic neural networks have been tried with varying degrees of suc-
cess, but up to this point, no solution has been found that would enable the
generation of believably authentic and complete musical pieces indistinguish-
able to human assessors without additional post-processing and human inter-
vention.
Music generation has become a focus of researchers in the past decades due
to its relatively complete and vastly expansive documentation across a large
timespan, with records of musical pieces reaching back as far 100 AD with the
first recorded piece of music, “Seikilos epitaph” (first described in [Win29]), as
well as the digital availability of transcribed pieces in a multitude of formats.
Additionally, in contrast to other artistic areas (e.g. painting, writing, acting),
music exposes the most rigid and well-defined ruleset of any of the disciplines,
from rules codifying the relationship between individual notes up to regulat-
ing the compositional structure of entire pieces.

1 https://tensorflow.org

2 https://github.com/Theano/Theano

https://tensorflow.org
https://github.com/Theano/Theano

1.5 structure of the thesis 3

These rules and conventions contribute to the reduction of the solution space
for musical pieces, since only a small subset of all possible combinations of
notes and compositions thereof achieve “musicality”, this referring to the pleas-
antness of the music to the human ear.
Because music consists of a large amount of parameters, including pitch, ry-
thm, melody, harmony, composition, time and key signatures, used instru-
ments and much more, possibilities for creating novel musical pieces are virtu-
ally endless and thus make it necessary for projects attempting an algorithmic
approximation of human compositions to restrict the search space to a subset
of these parameters, leading to a fractured scientific landscape, with projects
focusing on small individual parts of the whole (e.g. chord prediction, mono-
phonic melody or drum pattern generation).
The aim of this project thusly is to combine results within these different ar-
eas into a larger whole, which is eventually able to create structured musical
pieces.

1.5 structure of the thesis

The thesis following this introductory section is split into five subsequent chap-
ters approximating the development process of the software solution and the
research preceding it. A more detailed description of the project can be found
in Chapter 2. Following this is a look at and deeper research into possible
approaches to solving the formulated problem (Chapter 3), with a selection
and further description of the final course of action that was taken following
suit in Chapter 4, which explains the final architecture and design decisions
while detailing interesting aspects of the eventual implementation. This is sup-
plemented by Appendix B, which details how the acquired data was pre- and
post processed.
The project is concluded in the last two chapters, within which the final output
of the project is presented, analyzed according to several quality criteria and
compared to results of similar projects (Chapter 5) and finally the project as a
whole reflected upon (Chapter 6).
An introductory overview of useful domain knowledge concerning Artificial
Intelligence and its inner workings can be found in Appendix A. Subsequently,
Appendix B elaborates on how data was prepared for use in this project and
analyses how it is made up, to provide a baseline of information about the
foundation of the trained models. Appendix C contains additional information,
figures and images used within this thesis, as well as two sections expanding
in more detail on basic concepts of music theory and the MIDI standard re-
spectively, to enable deeper understanding of them in relation to this research
objective.

2
T H E P R O J E C T

Since little knowledge related to artifical music composition exists within the
company, the main purpose of this project is to assess the feasibility of achiev-
ing the set goal and subsequently finding a way to achieve it as far as it has
been determined to be possible, providing a PoC implementation along the
way which can then be used by the company to expand upon utilising the
knowledge generated in this project.
For this purpose, the thesis should provide introductory information on gener-
ative AI, especially when concerned with structure and patterns in time-series
data and an architecture should be proposed that attains the end goal of gen-
erating structured, musical pieces in a specific style.

2.1 requirements

After consultation with the CEO and initiator of the project, Roy Lenders, and
a detailed look at the situation, the below requirements were determined.
The project should...

• use MIDI files, to enable the easier collection of data and provide a com-
mon input and output format that can be used for and by a variety of
applications

• generate music in a specific style (genre of music), to fit the intended use-
case of producing songs that could possibly be utilised for participating
in the LVK

• generate music in a structure similar to common song structures (e.g.
make a distinction between Verse and Chorus)

• generate music that makes use of multiple instruments

However it is not required to...

• surpass the current state of the art in the area of music generation sys-
tems

• find or create a new approach to generating music

• emulate all facets of a complete musical piece (only the most important
features should be emulated)

• conform to all theoretical aspects of a style or genre from a music theory
point of view

4

2.2 approach 5

2.1.1 Stakeholder & Risk Analysis

Given that this project is relatively free-form, due to its nature being that of a
feasibility study, no outside dependencies exist as the project is entirely self-
contained. Thus, there are no risks outside of the ordinary that need to be
factored in besides the usual risks of the project being delayed because of
unforeseeable changes in schedule or delays during implementation. Similarly,
the roster of stakeholders is very small:

1. Roy Lenders as the project initiator

2. Frans Pollux as an artist who would possibly perform a generated song
live, as well as domain expert on carnival music

3. External personnel from other companies as interested spectators with
possible specialised knowledge in related technical fields

The list of stakeholders is ordered in descending order of influence over and
interest in the project.

2.2 approach

The area of artificial music composition utilising AI in its current form is a
relatively niche field of study as a whole when compared to other areas such
as image recognition and processing. Under the additional consideration that
little knowledge about it exists at Genzai, the first step towards the end goal
is the creation of a knowledge resource detailing the important concepts in-
volved in it as well as a general overview of this area of scientific inquiry. This
is intended to provide a baseline of knowledge and thusly aid in the under-
standing of the final product when the handover occurs.
In addition, two other topics will be covered on a high level as they are impor-
tant to the execution of this project: Music Theory and the MIDI file format. The
former is especially important in determining what a “style” of music (some-
times referred to as “genre”) encompasses, which is valuable to know to be
able to emulate its likeness in the final output and check the resulting samples
for during the analysis phase. Given that the project is set to use MIDI files as
its primary source of data as well as its output format, they will have to be
understood to be able to process them into a format admissible for training.
This is especially important in order to be able to allow for the recreation and
continuation of this project in the future, especially with different or modified
training data.
Following this, a survey of available and subsequently an evaluation and com-
parison of possible approaches to solving this problem will be executed to
determine the best approach to take within the context of the goal of generat-
ing a structured and musical song.
Based on the selected approach, an architecture for the software will be de-
vised and implemented, the process of which will be documented and impor-
tant parts of it highlighted. For the parts of the project involving ML, a training

2.3 planning 6

plan will be created that describes the data used as well as how it was pro-
cessed to produce the final result, to enable the recreation and modification of
the models as well as the training data at a later stage.
Once the PoC is completed, the final output will be assessed and compared to
similar software in this area to determine the overall quality and success of the
project.

The final output of this project encompassess:

• A PoC application that is able to generate structured music approximat-
ing common song structures in a specific style

• All datasets that were used for the training of involved ML parts

• All trained models used within the final application

• Scripts and documentation describing the pre- and post-processing of
the datasets to allow for recreation and ajdustment of the experiment
and the datasets themselves

• A small selection of generated songs from the PoC application for demon-
stration purposes

2.3 planning

Table 3 details, in chronological order, the individual tasks that have been
identified and have to be successfully executed to achieve the goal of this
project. A Gantt chart mapping of these tasks over the timespan of this project
can be found in Figure 23. Both figures are available in Appendix C.
This project combines two approaches to managing project time that are com-
monly found in the area of software engineering: The Waterfall model for
sequential tasks and the Agile methodology for rapidly adapting parts of the
project. On a high level, the project is structured using the Waterfall model,
since the overall time alotted is fixed and thus all high-level tasks have to be
fitted into this timeframe.
For parts involving research (which runs in parallell with the reporting tasks
D2 and D3), an adapted version of the Agile methodology will be applied, mean-
ing that within the planned timeframe, multiple smaller sprints (less than one
week in length) will be executed. This approach was taken as the research parts
will be focused on the selection of an overall approach to take and thus may
stray wildly between possible solutions before converging on the final chosen
approach.

3
E X P L O R I N G T H E P R O B L E M S PA C E

Finding a workable approach to the formulated problem is quite difficult in
an area within which development is rapidly ongoing and no optimal solution
has yet been discovered. As such, this chapter will consist of research into
different approaches to similar problems that are currently state-of-the-art. It
will do this by posing a hierarchical list of research-objectives related to sub-
problems at a lower level of abstraction, which will build upon each other
to eventually determine the best approach to each subdomain. The results
will then be combined to solve the overarching problem of structured music
generation in the context of this project.

3.1 methodology

The main acquisition procedure for information regarding this topic will be
literature research, in combination with the empirical evaluation of existing
projects that provide code which can be run and the output tested.
Literature will mostly be acquired digitally, as little physical publications exist
on this topic and are hard to come by. As the area of artificial music genera-
tion is still quite new and research is continuously ongoing, most information
reviewed here will be primary literature in the form of research papers and
similar publications, with publications of a secondary nature used to supple-
ment the main part of the research and provide further directions to look into.
There will also be a small amount of grey literature included due to the fact
that new information and approaches are constantly being released, such that
some papers are recent enough to not have undergone peer-review and pub-
lishing yet, even though they may contain relevant information.
The sources of information will mainly consist of commonly known scientific
platforms, such as Google Scholar1, ResearchGate2, arXiv3 and the Fontys-
provided search engine4 as well as private repositories of individual researchers
if their information can not be found on any of the aforementioned platforms.
To acquire fitting literature, these platforms will be searched with combina-
tions of the keywords and phrases shown in Figure 2, primarily within the
areas of Artificial Intelligence and Machine Learning. The keywords were de-
termined by a preliminary look into the mentioned areas and a subsequent
gathering of common keywords from abstracts of papers roughly fitting the
premise of the project.

1 https://scholar.google.com

2 https://www.researchgate.net

3 https://arxiv.org

4 http://biep.nu

7

https://scholar.google.com
https://www.researchgate.net
https://arxiv.org
http://biep.nu

3.2 constraints 8

Music Generation, LSTM, Time-Series, Conditional Generation, Drums,

Melody, Harmony, Algorithmic Composition, Generative Model of Music,

Machine Learning, Deep Learning, (Deep) Recurrent Neural Networks,

Feed-Forward Neural Networks, Autoencoder, Backpropagation, Grammar

Figure 2: Keyword-Cloud for gathering research information

To answer the research questions defined below, the following process will be
applied:

1. Gather information (e.g. papers)

2. Apply constraints to reduce the search space

3. Create a short summary of each individual piece of information selected

4. Relate the information pieces to research questions

5. Answer the research questions by providing an overview of the found
approaches and relate them to each other

The constraints that apply to this research are defined in Section 3.2 below.
Once all research questions are answered, an approach will be synthesized that
combines parts of these results to form an approach to solving the overarching
problem within the specified requirements.

3.2 constraints

To restrict the search space of this research and thus the amount of information
having to be evaluated, as well as ensuring only relevant information is more
closely researched, requirements for the solution were instated that researched
approaches will have to fit at least in parts to be considered for this project:

• Trainable on data that can be obtained from MIDI files

• Produces output that can be transformed into MIDI files

• Adaptable to different styles of music

• Can be used to generate either drum or melody tracks

• Necessary training data can be created from the data available to this
project

The goal is to produce, for every sub-problem, a short list of available ap-
proaches that solve the given problem. In a second step, they are then evalu-
ated in combination with each other to determine which path to take for the
next chapter. The sub-problems will build upon each other, starting with base
assumptions and growing in abstraction.

3.3 generating melodies 9

3.3 generating melodies

A melody forms one of the most foundational compositional components of a
musical piece, at its most basic simply consisting of a sequence of notes. In the
context of composition, a higher-level structure is added, meaning a recurring
arrangement of notes (a “Motif”), which is effectively a pattern in a sequence
that repeats over time. This is especially important in music as the human
brain has evolved to be tuned for pattern recognition of many kinds, which
helps the brain infer structure and meaning from the sounds it perceives.
Thus, to emulate and eventually generate a melody, the generating compo-
nent needs to possess knowledge of previous events, it has to know about
time in the context of notes following after each other. During the advent of
computer-generated music, this was often times achieved algorithmically, by
encoding rules and structures of music theory into the program in the form of
grammars (a more recent example of this being [QH13]). The concept of a mu-
sical grammar was in large parts inspired by the field of language processing,
within which grammar governs how words are composed to form sentences,
a concept similar to the composition of a musical piece in that smaller mod-
ules are composited into a larger whole based on specific rules. However this
approach is tedious and inflexible, as a large number of constraints have to
manually be encoded into a format understandable to a computer and are
quite rigid in their application and the output they produce.
In the area of ML, Recurrent Neural Networks (RNNs) are an architectural
model that integrates time as a feature the network can take into account. The
most common form of such a network is the Long Short-Term Memory (LSTM)
network (first proposed by [HS97]), which supplements the neurons that make
up the network with an additional small bit of memory, enabling the network
to recall previous events, even over longer periods of time. The focus here
lies on the assumption that, given enough sample data, an LSTM network will,
with sufficient training, take on similar properties as to what musical gram-
mars would look like, saved in the state of the trained network and able to be
replicated in slight variation from that state.
While earlier work in this area has focused on statistical models such as Markov
Chains [DE10] and their combination with various optimisation algorithms
and extended strategies [Her+15], over the past years approaches utilising
methods of ML have started seeing success.
Most often encountered are methods utilising RNNs, often times in the form of
LSTMs [Col+16] but also using Restricted Boltzmann Machines (RBMs) [BBV12],
which take inspiration from Markov Models. Research in this area has found
LSTMs to be a good fit for melody generation (e.g. in the evaluation done by
[ES02]), as such networks are able to more successfully reproduce structure
and style of their training data when compared to other approaches.
The representation of the training data varies wildly, even within the singular
category of LSTMs, however the most common approach is to model sequences
of notes as “words”, inspired by natural language processing, which LSTM

networks are known for performing well at [CFS16]. This produces approaches
such as [Shi+17], which compare favorably with most other data designs. They

3.3 generating melodies 10

represent a note as a word expressing its four main features: position, pitch,
length and velocity.
In a recently executed taxonomy of a multitude of music generation systems
[HCC17] a general trend towards methods of ML is shown, especially when
concerned with using LSTMs and MIDI data, which are the most common net-
work structures and data types respectively.
Surveying the most successful approaches to date (based on comparisons con-
tained within the initial paper proposing each architecture) which come with a
reference implementation, a short-list of feasible approaches can be generated:

• Biaxial RNN [Joh17]

• JamBot [Bru+17]

• MidiRNN5 (created by Brannon Dorsey)

• MelodyRNN (Google Magenta Project6)

• PerformanceRNN (Google Magenta Project)

• PolyphonyRNN (Google Magenta Project)

• MusicVAE (Google Magenta Project, see [REE17])

The best performing approaches appear to all be based on LSTMs using a word-
wise representation for individual notes and perform best when generating
melodies in the range of several bars (4 - 16), as stated in their respective
papers as well as based on an evaluation of provided sample output.
To assess generation quality, the reference implementation of each approach
was trained on the aggregated dataset for this thesis using the default values
for configuration, and the output compared. Quality factors that were assessed
are:

• Adherence to Scale / Key

• Strength of Motif (repeating patterns in the generated sequence)

• Simplicity of Setup (time needed to setup and configure before training)

• Training Time (shorter is better)

• Little Repetition outside of Motif (excessive repetition of singular notes)

• Little Noise (dissonant, doubled, misplaced, open-ended or too many
notes)

• Few stretches of Silence (long periods without any notes being played)

Each criterion operates on a scale of points ranging from zero to ten, multiplied
by the given weight to assign different importance to several features. The
sum of all criteria per model forms the final score. All criteria are expressed
as positives, meaning that only addition is required and higher point scores

5 https://github.com/brannondorsey/midi-rnn

6 https://github.com/tensorflow/magenta

https://github.com/brannondorsey/midi-rnn
https://github.com/tensorflow/magenta

3.3 generating melodies 11

are generally better. Adherence to scale and motif are weighted the highest
because stylistic replication is wanted and they form the largest contributors to
generating “pleasant sounding” melodies, as will be discussed in more detail
in a subsequent section.
The score for the time criterion is calculated inversely, starting out with ten
points and deducting points if the time taken exceeds a certain threshold. The
maximum runtime is set to 120 minutes, after which a run will be aborted
if it did not finish. A model finishes early either by completing within its
specific configuration parameters or by starting to achieve worse results (e.g.
overfitting). The following formula is used to calculate the time score:

score = 10− ((minutes/120) ∗ 10)

All models were configured to run on the Graphics Processing Unit (GPU) of
the testing machine (see Section 4.5.1 for its technical specifications) to achieve
a significant overall speedup (in comparison to local execution) and emulate
conditions similar to what the model would be expected to run under should
it be chosen to be utilised for this project.

Criterion Bi
ax

ia
l

Ja
m

Bo
t

M
id

iR
N

N

M
el

od
yR

N
N

Pe
rf

.R
N

N

Po
ly

.R
N

N

M
us

ic
VA

E
Weight

Setup 2 8 8 7 8 8 8 2

Time - 8.3 - 5.8 - 4.2 3.3 3

Scale/Key - 0 - 8 - 2 8 5

Motif - 0 - 6 - 1 0 4

Repetition - 10 - 6 - 10 10 1

Noise - 0 - 10 - 3 7 3

Silence - 10 - 10 - 8 5 2

4 70.9 16 151.4 16 77.6 106.9 200

Table 1: Comparison of different music generation systems

Table 1 details the results of the model evaluation. It is important to note that
several models did not finish the evaluation. Specifically, the Biaxial model
turned out to be using the Theano ML framework, which is a currently un-
maintained library and incompatible with the current versions of the CUDA and
cuDNN libraries required to access the GPU, thus failing to start the training pro-
cess. MidiRNN implements an extremely inefficient preprocessing step, which
failed to complete in the allotted timeframe before even starting the training
process, leading to its disqualification. Also failing within the preprocessing
step, PerformanceRNN started ballooning the dataset to over 20GB in size,
filling up the available space of the test machine and forcing the premature

3.3 generating melodies 12

abortion of the evaluation process. The other models completed the evaluation
successfully, though they vary quite significantly in their score.
The best-performing model was determined to be MelodyRNN, based on the
grounds that it excelled in the musical aspects of scale and motif-adherence
with little repetition outside of the motif while exposing no additional noise
or prolonged periods of silence. In contrast, the JamBot model generated ex-
cessive amounts of noise, as shown in Figure 3, with many notes layering atop
each other. Such output leads to a very chaotic and unstructured sound, which
in fact was quite difficult to even extract a melody from during listening runs.

Figure 3: Noise in a generated MIDI file

PolyphonyRNN espoused noise in the same vein as the JamBot model, albeit in
lesser quantities. It also showd slightly more structure, leading to a negligibly
better score.
MusicVAE and MelodyRNN generated better results than the other models,
especially in regards to scale adherence. Figure 4 shows the notes of the major
scale in the leftmost part of the pianoroll over the two octaves C2 and C3. All
keys were highlighted that were played at least once within this segment. As is
clearly visible, they all conform to notes on the shown scale scale, showing that
the model was able to successfully learn some harmonic relationships between
different note pitches.

Figure 4: Adherence to the C-Major scale in a generated MIDI file

However, only MelodyRNN managed to also generate notes approximating
a motif, and then repeating it more than once. As can be seen in Figure 5, a
similar arrangement of notes is repeated twice, with slight variations and a
different transition after each repetition, approximating some of the structures
also found in songs composed by humans.

3.4 replicating stylistic cues in melodies 13

Based on the quality of the generated output and its ability to generate the
most prominent motifs in particular, MelodyRNN was thus chosen as the
model to base the generation of melodies on.

Figure 5: Repetition of a Motif (highlighted in green) in a generated MIDI file

3.4 replicating stylistic cues in melodies

A “style” of music generally refers to various features within a musical piece
that commonly appear within one subset of music but are significantly less
common within others. Pieces that exhibit similar features are grouped into
a “style” of of music, and generally exhibit a similar overall sound. Common
features that determine a style of music are:

Tempo Chords Instrument

Key Scale Pacing

Mode Motif Rythm

Table 2: Overview of stylistic factors within music compositions

In an attempt to automatically classify musical style [WS94], motif was de-
termined to be an important factor, which may be closely connected to how
humans distinguish different musical styles as well, given that we have a ten-
dency to classify things based on patterns we encounter. [DZX18] meanwhile
identify multiple levels of style within music, in contrast to the more exten-
sively researched area of artistic style replication and transfer in images, and
note that many different interpretations of style exist within the field of music
generation due to its breadth and complexity.
Given that this thesis relies on MIDI data, which is inherently more malleable
than audio data, tempo, key and instrumentation will be excluded from the
defintion of “style” used in this thesis as they can be changed after the fact
without affecting the other features (see Section C.3 for more detailed infor-
mation about the MIDI standard). Focus will mainly be laid upon repeating
motifs within generated segments as well as overall pacing and rythm, which
generally have the largest impact on how music is perceived.

3.5 controlling the generation process 14

Approaches utilising ML have been shown to be able to replicate musical style
simply by being trained on a sufficiently large corpus of stylistically consis-
tent data [TZG17], taking on the correct features for rythm, scale and motif.
Because of the way neural networks operate, a slightly more faithful represen-
tation can be achieved by slightly overfitting the network to the training data,
however care has to be taken to not make the trained network plagiarise when
overfit by a larger margin.
As such, if the proposed network architecture for a specfic model was not
designed explicitly with enhanced style replication in mind, one has to rely on
the models innate ability to learn such cues from the data it is provided with
during training.

3.5 controlling the generation process

When making use of a neural network, control can be exerted at two stages
in the process, once at the training stage, by modifying the hypermarameters
and the training data and at the generation stage, by supplying different start-
ing data and by tweaking the previously encoded parameters. To this end,
several models implement conditional generation, which either refers to the
implementation of some additional network architecture that is used to con-
dition the main network during training or the supplementing of the input
vector with additional features, which can then be used to steer the generation
process later on (e.g. [Shi+17], who condition on song segments).
Common data used for conditional generation of musical sequences is higher-
level, abstract information such as song segmentation (e.g. delimiting verse
and chorus) or chord progressions, which can enable the model to generate
specific motifs for some parts or chord progressions but not others, as dictated
by the training data (as seen in [TZG17]). The drawback with this method is
that to exert more control over the generated output, more feature-data has to
be provided during training, which in some cases might be difficult to come
by, depending on the source of the data.
In the case of this thesis, the available dataset was scraped from the internet
and thus does not provide any additional metadata that could be used for such
conditioning, save for heuristically extracting it from the available MIDI files, if
at all possible.
The only other way to affect the output of a model is to utilise post-processing
methods which can operate on any kind of MIDI sequence. Most of these meth-
ods are independent from the method used to generate the initial sequence
and are mostly algorithmic in nature. For MIDI sequences especially, a large
amount of audio plugins exist that provide a multitude of transformations of
such sequences (e.g. transposition, channel splitting or merging).
However there also exist some specialised solutions, e.g. [Jaq+17], who pro-
pose an adversarial network that can be used to improve the originally trained
network after the initial training has completed, using refinement methods
incorporating aspects of encoded music theory.
As such, the only way achieve more control over the generated melodies is to
either make use of algorithmic post-processing or to utilise a model that was

3.6 generating a “song” 15

designed with a specific condition from the start. Feasible models that exist at
the current moment are:

• MusicVAE

• JamBot

Because MusicVAE has to be trained on lead sheets for chord conditioning, it
is not possible to use it in this project, since only MIDI data is available, which
does not contain the required information. JamBot heuristically extracts these
features from MIDI files, which is not very accurate and would need more
training data to produce good results. As such, the aforementioned features
will have to be added during the post-processing phase.

3.6 generating a “song”

Within music, several layers of abstraction exist on which structure can be
found. This was highlighted quite fittingly in [HCC17], who describe three lay-
ers of abstraction within the compositional process (see Figure 6 for a graphical
representation):

• Physical: The actual physical frequency of a note that is emitted by an
instrument.

• Local Composition: The rythm, melody and motifs contained within sev-
eral bars of music.

• Full Composition: The composition of multiple distinct parts from the
previous layer into a bigger whole. This is often referred to as “song-
structure”.

In its most simplistic form, a composition is often described by denoting parts
by letters of the alphabet, creating a structure such as AABA, with distinct letters
denoting different parts of the song. The previous example is a commonly used
structure found in many songs of american pop culture.
Figure 6 highlights two important areas where structure has to be created,
once on the bar-to-bar level (within melodies) and overarchingly within the
composition of the melodies into an entire piece. Given that LSTM networks in
their current capacity excel at generating structure within melodies, but fall
short over longer periods of time if not provided with manual hints of the
intended structure (producing meandering melodies without direction), long-
term structure generation will have to be supplemented by another approach.
To this end, both algorithmic and AI-inspired approaches are possible. As dis-
cussed in Section 3.5, some models are built to factor in features like segmen-
tation data, enabling them to replicate melodies that were found to be more
common for one part in a song than another, however such options are severely
limited and require such data to be available in the first place. Especially the
task of extracting segmentation data is a hard problem a lot of time has been
dedicated to in the Music Information Retrieval (MIR) area of research, and ex-
isting approaches fall short of human-provided segmentation data by a large

3.7 integrating multiple instruments 16

Figure 6: Concept map for an automatic music generation system (graphic created by
[HCC17])

margin (as shown in an evaluation of human vs. algorithmic performance by
[Ehm+11]).
Another option would be to introduce a second layer of abstraction, similar
to Figure 6, which is simply concerned with the generation and composition
of multiple melodies that are provided by the layer below. The way in which
melodies are composited could be determined either by a secondary model
that is able to generate song structures, or via an algorithmic solution simi-
lar to a Markov Model. However the combinations of song structures that are
commonly used are a rather small subset of all possible permutations, so man-
ually inputting a specific song structure to base generation on could also be a
viable avenue.

3.7 integrating multiple instruments

If multiple instruments are to play together at the same time, they have to
share a common baseline of information that enables them to sound pleasing
to the human ear when played at once (see Section C.2 for more detailed
information). To achieve a harmonic sound, several key pieces of information
are required:

• Mode

• Key Signature

• Time Signature

• Scale (dependent on Key and Mode)

The way in which to integrate multiple instruments with each other differs
depending on the solution used to generate the melodies. Since most models

3.8 putting it together 17

only predict one line of melody per run, generating multiple lines and merg-
ing them together will only result in a pleasant sounding mix if the generating
model has learned to conform to the aforementioned properties and can faith-
fully replicate them in a similar manner in repeated runs.
Should this not be the case, another option is to post-process the output after
the tracks for all required instruments have been generated, transposing all
emitted notes to the same key to ensure harmonic integrity.
In a second step, instruments playing at the same time may interact with each
other. For example, a drum track might accentuate at all timesteps where an-
other instrument plays a certain note. This kind of integration between instru-
ments closely mirrors what might appear in a “Jam-Session” between multiple
musicians, but also what is intentionally brought about by a composer when
arranging multiple pieces for a song.
The only model with a refernece implementation currently able to generate
multiple lines of instruments at the same time is MusicVAE [REE17], which
can generate melody, bass and drum lines in conjunction with each other. This
method allows the model to learn dependencies between different instruments,
which not only enables it to create a pleasant-sounding mix but further allows
for the interaction between different instruments (e.g. coordinated pauses and
accented drums or melody). [Mak+17] propose a similar approach, with a
stronger focus on bass and drum interaction.

3.8 putting it together

Due to the fact that no approach exists that fulfills all the requirements of
this project at once, the eventual solution will have to be composited from
several parts. As such, the previously found architectures will have to be
cross-evaluated and compared with one another to find an arrangement of
approaches that works well together and achieves the overall goal. The even-
tual aim of this solution is to generate a “song”, referring to a musical piece
with several high-level segments that repeat while incorporating multiple in-
struments.
As shown in Section 3.3 and Section 3.4, it is possible to generate pleasant
sounding melodies for individual instruments for medium length timespans
in the 4 - 16 bar range. However utilising the same approach for generating
melodies with clearly distinguishable segments for a song of several minutes
will likely not produce good results (see Section 3.6). Thus the high-level struc-
ture has to come from a different source.
Given that the scraped dataset does not make available data on high-level struc-
ture, and it is exceedingly difficult and error-prone to extract it heuristically
(see Section 3.5), it can not be generated via a ML model. If manually-annotated
data would be available (e.g. at a later point in time or from a different dataset),
such a model could be trained and this part of the input replaced by automatic
generation from said model. Given that the variations would be limited to a
small set, a simple markov model or RBM would suffice.

3.8 putting it together 18

At this point in the generation process, multiple melodies can be generated and
arranged together, however they have a high chance of sounding displeasing
because of harmonic interference (dissonance).
This problem can be addressed by a few models that are able to generate
multiple instruments at the same time, which then fit together naturally be-
cause they were generated from the same probability distribution at the same
timestep. However the results vary wildly, and thus such models will not be
used for this project as they produce inferior results when compared on the
level of individual instruments (see Section 3.7). Because this problem can not
be solved at the generation level, it has to be addressed in a post processing
step, which should shift all occuring notes onto a valid subset of possible notes
determined by the chord progression.
Similar to the high-level structure, no data on chord progressions is available
from the scraped dataset, meaning that they will have to be manually inputted
as long as such data is lacking. Should data for this become available, a similar
solution as was proposed for the structural problem can be applied, in that
such progressions could be generated by a markov model or RBM trained on
the chord data.
Under consideration of the above, the MelodyRNN model was chosen for gen-
erating the melodies of the lead and bass lines. Since an equivalent model
exists for drum lines (DrumsRNN), which slightly changes the data represen-
tation for training but otherwise functions in the same way as MelodyRNN, it
was selected for the drums line. A beneficial factor to choosing these models
is the fact that they are provided by the Magenta project, which provides an
ecosystem of supporting libraries and individual classes around the selected
as well as several additional models, making them easier to work with.

As such what the eventual software package must do is the following:

• Be provided with the high-level structure for a song: chords and seg-
ments

• Per segment, generate the required instrument lines

• Condition generated notes on the chord progression

• Output the generated music to either a synthesizer or a file

• Utilise the “MelodyRNN” and “DrumsRNN” models from the Google
Magenta project

• Generate three instrument lines: Melody, Bass, Drums

These findings will have to be taken into account when moving into the imple-
mentation phase in the following chapter.

4
A R C H I T E C T U R E & I M P L E M E N TAT I O N

Based upon the findings in the previous chapter, an application architecture
will be devised that achieves the previously determined goals within the spec-
ified requirements. Additionally, this chapter will detail the creation of the
software package, elaborating on specific code snippets for complex parts and
highlighting the most important sections within the codebase. It will also de-
tail the training process.

4.1 setup & environment

Due to the fact that all of the models appearing in this thesis are implemented
in Python1 (provided source code was available), it was chosen as the main
language for implementation of the rest of the system for a maximum of in-
teroperability. Python is a flexible, interpreted programming language with
support for many different styles of programming, as well as being easy to
learn and use, which has led to its widespread adoption within the scientific
community. Because of the latter, many packages for scientific computing are
available (e.g. SciPy2), simplifying development in these areas and enabling
rapid development of ML-related programs.
In conjunction with this, since models from the Magenta3 project were chosen
for the generative part of the system, TensorFlow4 is implicitly used as the
backing framework for the implementation of these models.
Given that very little user input or interaction is needed for the basic operation
of the program, a complete Graphical User Interface (GUI) was foregone in
favor of a terminal-based interface utilising the Urwid5 library for providing a
simple TUI instead.
Because ML models require large amounts of computational resources that
could not be provided locally, Google Cloud Platform (GCP) was chosen as a
provider for remote computational capability for training the selected mod-
els. Resources provisioned on GCP are relatively cheap, in addition to Google
providing a 300$ starting credit upon first registration, which made GCP an
attractive and eventually the final choice for this project against its contender
Amazon Web Services (AWS).

1 https://python.org

2 https://scipy.org

3 https://magenta.tensorflow.org

4 https://tensorflow.org

5 http://urwid.org

19

https://python.org
https://scipy.org
https://magenta.tensorflow.org
https://tensorflow.org
http://urwid.org

4.2 chosen approach 20

4.2 chosen approach

Before the implementation of the generative framework begins, the individual
models will be trained to a point of satisfying performance (see Section 4.5 for
detailed information on training and evaluation of the selected models). Once
an acceptable performance is reached, the trained models will be exported as
GeneratorBundle files, a custom TensorFlow format for storing the weights of
a network along with some metadata describing the hyperparameters used
for training and some general information about the network architecture, en-
abling another instance of TensorFlow to load the model back into memory
and provide a programmatic SequenceGenerator interface for it.
Once the bundle files are available, implementation of the generation frame-
work can begin, to enable the loading of all three models and the generation
of MIDI data from them. The basis of the application is built upon another
part of the Magenta project, the midi_interface module, which exposes a
MidiInteraction class with several capabilities that ease implementation of
the requirements. Specifically, it is capable of loading a GeneratorBundle and
generating music from it in an interactive, semi-real-time way. The original
intent of this class was to provide call-and-response interactivity between a
human and a Magenta model. It enables the input of MIDI Control Change (CC)
events and can generate output based on those events, enabling human and
machine to take turns playing to each other. This specific functionality is not
required for this project, however the basic features of this class were used
as a baseline for the implementation. An additional advantage to using this
class as a foundation is the fact that it exposes I/O in the form of virtual MIDI

ports, which make it very easy to integrate this application into an existing
workflow and various professional applications, such as Digital Audio Work-
stations (DAWs), plugins and MIDI-controlled or -emitting hardware, which can
work in real-time via transport over these ports.
As such the final task is to extend the MidiInteraction class to accept mul-
tiple models and integrate high-level structure. Supplementing this, a post-
processing chain for chord conditioning and recording to disk is to be imple-
mented via additional software modules.

4.3 software architecture

The following details the basic architecture of the final application. Figure 7

shows a high-level overview of the packages and classes that exist within
this project, as well as how they are composited. All main functionality was
encapsulated in the ComposerManager class, which is administrated by the
TerminalGUI class which provides the TUI. This design is frontend-agnostic,
meaning that the TUI could be replaced with another GUI framework without
impeding the functionality of the base application.
The ComposerManager class is the central hub of the application that is respon-
sible for compositing various smaller parts together and to administrate their
configuration and lifecycle from start to finish. Specifically, it contains the en-
tire signal chain that determines how the MIDI signal is routed from the gen-

4.3 software architecture 21

Figure 7: Class diagram detailing the application architecture

erator to the output (see Figure 8). The middleware class Harmonizer exposes
a callback which sends MIDI events to a virtual keyboard, which itself is used
in the TUI to display the currently playing notes. At the same time it relays
incoming messages to the Recorder, which saves them to disk in the correct
format while also relaying the messages to an external synthesizer to produce
actual sound.

Figure 8: Schematic detailing the routing of MIDI signals through the application

The aforementioned architecture was chosen because while during generation
time the signal flow is quite static (in that it follows a specific path of op-
erations), during intialisation time several pieces of information have to be
prepared and distributed to the correct objects, most notably the informa-
tion about song structure and chord progressions, as well as dependencies

4.4 program flow 22

for the main objects. Thus the ComposerManager was created to administrate
the already-created signal-flow within the program.
While the classes within the middleware module are standalone, without extra
dependencies, the SongStructureMidiInteraction class inherits from the base-
class MidiInteraction, which is a composite class of several smaller pieces that
enable the functionality initially discussed in Section 4.2.

4.4 program flow

The application is mainly event-driven, as actions occur mostly in response to
MIDI events being emitted. For the sake of modularity and proper seperation
of concerns, the different operations within the signal-chain were split into
threads. These threads do not interact with each other directly save for being
administrated by the ComposerManager, instead they each open a MIDI port for
input and output and react to events on those ports. As such, each thread is
self-contained and stateless, making threading very easy to accomplish.
The program exposes nine threads with differing responsibilities:

1. Main Application Manager, User Interface (UI)

2. SongStructureInteraction

3. Harmonizer

4. Recorder

5. MidiCaptor

6. MidiPlayer x 4 - (Melody, Bass, Drums, Chords)

Since these threads are predominantly stateless and self-contained, their inter-
nal flow will be described independently of each other. For the purpose of
brevity, only the two most important threads will be elaborated on here.

4.4.1 Main Application Manager, User Interface

This thread supplies the entrypoint of the application. It is responsible for
setting up the UI and responding to events emitted by it, to dispatch them
to the correct threads if necessary. Figure 9 shows the general flow of the
application in the style of a sequence diagram.
On startup, during the initialisation step, a ComposerManager instance is cre-
ated, which is the main coordinator for the different threads and the signal
flow. The manager loads the pre-trained models from the models/ directory
on initialisation and makes them accessible as SequenceGenerators which are
then passed to the actual generating interaction as needed to prevent loading
them more than once.
Directly afterwards, the songs/ directory is scanned for available song defi-
nitions (described in more detail in Section 4.6.2) so they can be shown and
selected in the interface.

4.4 program flow 23

Once initialisation completes, the main thread sleeps until an event is emitted
from the UI, which it then dispatches to the ComposerManager. The main events
are start() and stop(), which govern the state of the generative part (whether
notes are emitted or not).
Once the start() signal is given, the manager initialises a SongStructure-
MidiInteraction with a song given by the UI, a MidiHarmonizer and a Midi-
Recorder with proper MIDI I/O port configurations such that signals flow ac-
cording to Figure 8. The manager also registers a callback on the Harmonizer,
which emits an event every time a note is relayed, which in turn is used to
keep track of currently active notes for the purpose of showing them on a vir-
tual keyboard (the resulting graphic can be seen in Figure 11). After this, the
MidiInteraction takes over and starts generating notes.
If the stop() signal is given, either from the user quitting through the UI,
aborting via SIGINT or the application finishing its run to the end of the defined
song, a termination event is sent to all active threads, which terminate as soon
as their current iteration completes. The ComposerManager deletes all stopped
threads and dereferences them for garbage collection, as stopped threads can
not be restarted. Upon receiving a start() signal, the threads always newly
initialised.

Figure 9: Application flow of the main thread

4.5 training plan 24

4.4.2 The MIDI Generator

The class SongStructureMidiInteraction is based on the MidiInteraction

class originally provided by the Magenta project, however it replaces most
of the implementation with custom code tailored for the specific purpose of
generating segmented melodies, each of a few bars in length. Playback of gen-
erated MIDI events is achieved through a MidiHub, a Magenta-provided class
that manages any number of MidiPlayers, which themselves are capable of
emitting such events to a virtual or hardware-provided MIDI port on a specific
channel (to easily separate the events downstream). The hub is instantiated at
initialisation time and persists until the thread terminates.
The thread itself runs in a loop, firing once for each MIDI tick. On every itera-
tion, the current part of the song is calculated (in bars). If a new part is reached,
new instrument lines are generated and sent to the MidiPlayer instances for
the respective instrument. Additionally, all generated lines are cached so they
can be recalled should the same part of a song be encountered again. Should
this be the case, the lines are retrieved from the cache instead of being newly
generated.
This loop continues until the end of the song is reached, at which point the
thread terminates, dereferencing the MidiHub, which automatically stops all
MidiPlayers upon being garbage collected.

Figure 10: Application flow of the SongStructureMidiInteraction class

4.5 training plan

To enable training of the chosen models, the datset (see Appendix B for the
intial creation process) has to be converted into a format the models can un-
derstand using a two-step process. Initially, all MIDI files are converted into

4.5 training plan 25

a special, optimised container format (tfrecord), which is a Magenta-specific
representation of MIDI files that is easier to work with internally (see Snippet 1).

1 convert_dir_to_note_sequences \

2 --input_dir=melody/ \

3 --output_file=melody.tfrecord

Code Snippet 1: Command for converting MIDI files into a tfrecord container

In a second step, this container has to be converted to a special sub-format
precisely tailored for one specific model, meaning that two variants have to be
created, one for the two MelodyRNN instances and one for the DrumsRNN instance.
The models provide a small script for converting a tfrecord container into the
required format, which makes the process very simple and executable in one
command, as can be seen in Snippet 2.

1 drums_rnn_create_dataset \

2 --config=drum_kit \

3 --input=drums.tfrecord \

4 --output_dir=drums/ \

5 --eval_ratio=0.2

Code Snippet 2: Command for converting a tfrecord container into the required sub-
format for the DrumsRNN model

4.5.1 Configuration

To run these models, a Virtual Machine (VM) was provisioned in GCP to pro-
vide a consistent and powerful base for execution. Since both, Magenta and
TensorFlow provide the ability to execute on a GPU, which is much faster than
a typical CPU, a NVIDIA Tesla GPU was provisioned as the main processor. The
specific configuration was set as follows:

• Debian 9

• 4 CPU Cores (Broadwell XEON)

• 16GB RAM

• 1 NVIDIA Tesla P100, 16GB VRAM

Because GPUs are limited via quotas on GCP, they have to be manually re-
quested and the quota increase confirmed by a Google employee. Because of
this only one GPU was available for training, but for larger workloads addi-
tional quota increases could be requested. Additionally, the following software
packages were installed as dependencies for the required software:

• NVIDIA Linux drivers (390.30_x64)

• NVIDIA CUDA (7.5.17)

4.5 training plan 26

• NVIDIA cuDNN (7.1.2.21-1)

• Python (3.5.3)

• magenta-gpu (0.3.5)

• tensorflow-gpu (1.6.0)

4.5.2 Data

Datasets per model were split 80% - 20% for training and evaluation respec-
tively. The raw dataset contains roughly 1000 MIDI tracks of varying lengths,
of instruments found to be playing relevant notes to either melody, drum or
bass parts. Appendix B contains more details on how the collected data was
prepared for training and what data was used for each model.

4.5.3 Training

Models were trained sequentially, one at a time, since they will make use of
as many resources as are available. As such, one training job was executed
in tandem with an evaluation job, which is similar to the former but uses a
held-back dataset for testing and does not modify the weights of the model
(see Snippet 3 for an example of the used commands). A compilation of all
the specific commands used for the different training runs can be found in
Section C.4.

1 drums_rnn_train \

2 --config=drum_kit \

3 --run_dir=run/ \

4 --sequence_example_file=drums.tfrecord \

5 --hparams="batch_size=64,rnn_layer_sizes=[256,256]" \

6 --num_training_steps=2000

7

8 drums_rnn_train

9 --config=drum_kit

10 --run_dir=run/

11 --sequence_example_file=drums.tfrecord

12 --hparams="batch_size=64,rnn_layer_sizes=[256,256]"

13 --num_training_steps=2000

14 --eval

Code Snippet 3: Commands for training and evaluating the DrumsRNN model

Monitoring of the training progress was achieved via TensorBoard, a stan-
dalone supplementary application that works in conjunction with TensorFlow
to provide a web-based GUI for viewing statistics about the current run of the
model (executed via tensorboard -logdir run/).
All models were run for a maximum of 2000 steps, each taking about 40 min-
utes per run at a rate of slightly less than 1 step per second. The runtime of

4.6 implementation details 27

course is dependent on the configuration of the model, e.g. a larger network
size would take a larger amount of time. In this configuration, all models were
run with a two-layer configuration of 256 nodes each, with a batch size of 64

elements per step. The batch size had to be reduced from the default of 256

elements because not enough VRAM was available on the GPU to be able to
stem this amount of data. Models were prematurely stopped if overfitting was
observed (evaluation and training graphs starting to diverge).

4.6 implementation details

The models used in this project are custom implementations based on an un-
derlying basic LSTM created in TensorFlow. The Magenta project has expanded
upon the basic architecture by introducing tweaks specific to music reproduc-
tion, specifically “lookback” functionality. This method augments the input
data of the network with events not immediately preceding the current one,
but from one or two bars ago. Additionally, the position within the bar is
passed. This enables the model to more easily recall events from within a range
of 2 bars before the current note, allowing it to more easily repeat structures it
has generated before.

4.6.1 Licensing

Because two parts of the created software package are supporting libraries
created by someone else, under different licensing conditions, it was necessary
to take precautionary steps in order to comply with the license requirements
of these packages.
Mingus6, a Python-package specialising on programmatic access to chord- and
music-theory, was chosen to provide support for parsing and modifying chord
symbols, specifically for the chord progressions that have to be provided by the
user. Unfortunately it is not being maintained since 2015 and does not provide
support for Python 3, the target platform of the main application. Thus, some
changes in the source code were necessary to port the package to the new
version of Python. Since Mingus is GPL-licensed, it requires the distribution
of the original source code as well as the documentation of any changes made
to said code.
In a similar vein, the midi_interface module of the Magenta project, which
supplies the base class for MIDI-emitting generators of trained TensorFlow
models, is distributed under the Apache license, which, similar to GPL, re-
quires the documentation of changes to the original source code. The Apache
Software Foundation (ASF) and the Free Software Foundation (FSF) state that
the Apache v2 and GPLv3 licenses are compatible7, provided the packages
that use them in combination are redistributed under the GPL v3 license8.
Thus, to comply with the license requirements, the original files of each pack-
age were committed first and then the changes were applied in separate com-

6 https://github.com/bspaans/python-mingus

7 https://www.gnu.org/licenses/license-list.html#apache2

8 http://www.apache.org/licenses/GPL-compatibility.html

https://github.com/bspaans/python-mingus
https://www.gnu.org/licenses/license-list.html#apache2
http://www.apache.org/licenses/GPL-compatibility.html

4.6 implementation details 28

mits so that they can be seen clearly. Additionally, each package was put into a
distinct folder with their own license included, to correctly delimit the proper
licensing areas. The project itself is distributed under the GPLv3 license, as
required by the usage of the Mingus package.

4.6.2 Song Structure File Format

Since song-level structure has to be provided from an external source, the ap-
plication needs a way of ingesting such information in a format that is both
easy to parse as well as easy to generate and read. The format has to be able to
convey two pieces of information, namely information about song segmenta-
tion and information about chord progressions. As such, a simple CSV-inspired
format was chosen. Snippet 4 shows a simple example of the final structure.

1 INTRO, I, I, V, IV

2 CHORUS, I, V, IV, V

3 VERSE, I, IV, V, IV

4 CHORUS

5 VERSE

6 OUTRO, V, V, IV, I

Code Snippet 4: Structure of the .sng file format

In this format, each line defines one segment of a song. The first value is
an identifier which denotes distinct parts of a song. This is used for caching
previously generated instrument lines, which are recalled when this identifier
is encountered again. The values after this identifier are chords in the roman
numeral format (I - VII). Each chord is played for one bar before switching to
the next one. If the list of chords for a segment is exhausted, the next segment
is played. The amount of chords is not limited. If a segment does not have any
chords listed, they will be inferred from an earlier definition with the same
identifier. This reduces redundancy in the notation, but because of this, the
first identifier encountered always has to list a chord progression.

4.6.3 Harmonising Multiple Instruments

As determined in Section 3.7, since harmonisation can not occur at generation
time, it has to be added at a later stage. The MidiHarmonizer class fulfills this
purpose. It is entirely event-driven, as it responds to individual MIDI messages
that are received via a set of MIDI ports. Events are filtered by channel and type,
relaying all events that do not have to be modified directly to the output. All
events that arrive on the melody or bass channels (1 and 2 by default) and are
of the type note_on or note_off will have reharmonisation applied to them.
For this reharmonisation to take place, a chord is required to harmonise the
other notes on. Because the SongStructureMidiInteraction emits chords per
bar, the Harmonizer can listen on an additional channel (3 by default) for those
chords and utilise them for the reharmonisation process.

4.6 implementation details 29

The basic premise of harmonisation in this context is that there exist two types
of notes that can be played: safe notes and unsafe notes. The former is a subset
of all possible notes that sound pleasant with the current chord, while the
latter is the inverse of that. Once a set of safe notes has been determined,
any possible note can be transposed into this set to enable harmonic interplay
between multiple instrument lines.
Music theory as well as logic dictate that every note within a chord is harmoni-
cally safe to play, given that it is already part of the chord. Hence, to determine
a rudimentary set of safe notes, the current chord is normalised to the lowest
possible position, which is the chord being played in octave zero. From there,
it is transposed up to all possible octaves. All the individual notes of the chord
in each octave are then aggregated into a sorted set and form the most basic
set of safe notes (see Snippet 5).

1 octaves = list(range(0, 127, 12))

2

3 lowest, count = min(chord), -1

4 while lowest >= 0:

5 count += 1

6 lowest -= 12

7

8 mpd_ovr_rng = [[e - (12 * count) + octave for e in chord]

9 for octave in octaves]

Code Snippet 5: Generation of the set of transposed chords

At this point, a secondary problem surfaces, since it may be the case that mul-
tiple half-steps lie between one safe note and the next. Simply transposing in-
coming events to the next note would result in several different keys mapping
to the same note, destroying the melodic movement in the original instrument
line. Because of this, it is preferable that every possible movement of any size
results in a movement within the set of safe notes.
To achieve this, the set of safe notes is split at the center octave where chords
normally take place, which is the fourth octave in the case of this project. This
creates two subset of safe notes. The set with the safe notes of the lower half
is destined for movement in a negative direction, while the other set is set
for positive movement. Any movement (given as an integer denoting a half-
step, either positive or negative in the valid note range -127 - 126), can now be
used as an index into either of these sets, depending on whether it is positive
or negative. As such, any movement now results in a movement within the
set of safe notes. In addition to the chord notes, the notes of the major scale
are also added to these sub-sets. Snippet 6 shows the slicing and addition of
major-scale notes of the note sets.
To calculate the movement of the instrument line, a center octave is set where
melodic lines normally take place, which is the eighth octave. The C of that
octave is used as the centerpoint for the instrument line. The difference is cal-
culated by subtracting the key value of that note from the actual key value
of the incoming event, resulting in a positive or negative difference from the

4.6 implementation details 30

1 middle_octave_chords = 4

2 middle_octave_melody = 8

3

4 negative = SortedSet([e for l in mpd_ovr_rng[:middle_octave_chords]

5 for e in l])

6 negative.update([e for l in major_notes[:middle_octave_chords]

7 for e in l])

8 positive = SortedSet([e for l in mpd_ovr_rng[middle_octave_chords:]

9 for e in l])

10 positive.update([e for l in major_notes[middle_octave_chords:]

11 for e in l])

Code Snippet 6: Splitting of safe notes into positive and negative movement sub-sets

centerpoint. Snippet 7 shows the process of calculating the difference and de-
termining the new key value for the event. The value is clamped twice, as it
can over- or undershoot the valid range at two points in this process.

1 diff = note - octaves[middle_octave_melody]

2 diff = max(-len(negative), min(diff, len(positive) - 1))

3

4 if diff < 0:

5 note = negative[len(negative) + diff]

6 else:

7 note = positive[diff]

8

9 note = max(0, min(note, 127))

Code Snippet 7: Difference calculation, clamping and note harmonisation of a MIDI

event

4.6.4 Recording to Disk

Due to the structure of the application, MIDI events are simply relayed through
a chain of objects that apply different processing steps to them if applicable,
ending in the sending of the event to the last output port, which by default is a
synthesizer. In this project specifically, fluidsynth9 was chosen as it is the most
well-known synthesizer, has cross-platform support and allows for the use of
different sound-fonts (sound libraries with different sound samples). In this
case, the “General User” font by Christian Collins10 was used for synthesizing
the real-time output. To persist the generated songs to disk, a middleware
plugin is required that is able to save MIDI events that pass through to disk.
This functionality is provided by the MidiRecorder class.

9 http://fluidsynth.org

10 http://schristiancollins.com/generaluser.php

http://fluidsynth.org
http://schristiancollins.com/generaluser.php

4.6 implementation details 31

The Recorder uses the mido11 package to transform MIDI events into their bi-
nary representation. Similar to the Harmonizer, it listens for events on an input
port. Once an event arrives, a copy of it is sorted into one of four tracks (a list
of MIDI events), corresponding to the channels emitted by the generator at the
beginning of the chain. The original event is relayed to the output port without
any modification. Once the application terminates, the thread shuts down and
- upon stopping - writes the saved tracks out to disk in their binary format,
adding some metadata to the start of the file to form a proper MIDI file.
During development of the application, a problem was discovered related to
the timing of relayed MIDI events. As it turns out, sending such an event
through a virtual MIDI port (either input or output), removes the timing in-
formation, which is vital in being able to properly place the events in a MIDI

file, as otherwise all events end up at the same timestep. To resolve this, the
Recorder re-times incoming events itself, with a resolution of at most 1/100th
of second. Since absolute time is not needed, the first run of the time() method
is cached and all following measurements are interpreted as relative to the first
measurement.
Because MIDI files represent time as ticks instead of seconds or a similar unit,
the relative time has to be appropriately converted. Timing in MIDI files is
dependent on the tempo of the song (Beats Per Minute (BPM)) and the Pulses
Per Quarter Note (PPQ). The latter defines the resolution of the file, similar to
the sample rate in raw audio files like the MP3 format, which in combination
with the BPM results in the actual time value. The conversion is handled by a
mido-provided function for converting seconds to ticks.

1 with localcontext() as ctx:

2 ctx.rounding = ROUND_DOWN

3 tm = float(Decimal(time()).quantize(Decimal("0.001")))

4 if not self.first_time:

5 self.first_time = tm

6 tm = 0

7 else:

8 tm -= self.first_time

9 tk = int(second2tick(tm, 480, bpm2tempo(120)))

10 msg.time = tk

Code Snippet 8: Restoration of the time attribute of incoming MIDI messages

During the actual saving of the file, all times are converted to delta-timings,
which refers to translating the absolute timings (relative to the start of the
recording) that were initially saved in Snippet 8 into relative timings between
individual notes. This allows for easier modification of the MIDI file as tempo
changes can simply add or remove specific amounts of time to or from the
deltas of each note (see Snippet 9) instead of having to recalculate the time for
each note individually.

11 https://github.com/olemb/mido

https://github.com/olemb/mido

4.6 implementation details 32

1 midi_file = MidiFile()

2 for track in self.tracks:

3 t = MidiTrack(_to_reltime(track))

4 midi_file.tracks.append(t)

5 midi_file.save("recording.mid")

Code Snippet 9: Conversion and flushing of in-memory tracks of MIDI events

4.6.5 User Interface

The user interface is a relatively simplistic frontend since very little user inter-
action is required. However it does contain several convenience functions that
will be explained below.
Due to the GUI being a low priority feature, it was decided that a simple TUI

would suffice. A terminal-centric, text-based interface is very portable, uses
little screenspace and is efficient. Additionally, it is simple to construct and
use. Figure 11 shows the main (and only) screen of the application, which
contains all the elements required for controlling the application.

Figure 11: TUI of the software package

The application window is split into two panes. The left two-thirds of the
screen are split horizontally and provide a view of two virtual keyboards
which update in real-time to display the notes currently being played by the
melody and bass lines.
The right-hand third of the screen contains the control elements stacked verti-
cally on top of each other. The top-down design follows the steps required to
configure the application in that initially, a song must be chosen to be played,
after which MIDI in- and output ports can be selected if available. It is required
that at least one MIDI output port is available. After that, the generation can be
started, stopped and reset via the buttons below the I/O section. A progress
bar is provided to show the estimated percentage of the song that is completed
at any given time.

4.7 additional software 33

Below the progress bar a checkbox controls whether unicode graphics should
be used. This setting takes effect for the progress bar and supplements the
ASCII rendering of moving elements in the main window with characters of
the UTF-8 character set, e.g. half- and quarter-bars for the progress bar, pro-
vided the current terminal supports this extended character set.
The application can be quit via the “Quit” button, or alternatively by hitting
“Q”. It also responds to SIGINT signals (as emitted by e.g. Ctrl+C) with a grace-
ful shutdown.

4.6.6 Documentation & Code Quality

To ensure a baseline consistency of the codebase, all code adheres to the PEP8

styleguide for Python12. For this purpose, the utility program pylint13 was
used to detect violations of this styleguide. Pylint is a linting program that
analyses source code for adherence to specific stylistic guidelines as well as
analysing program flow for obvious errors or possible bugs. As an exception
to the styleguide, the maximum line length was increased from 80 to 120 char-
acters, since this makes some specific parts of this project more readable.
Documentation was provided via Docstrings14 at the module, class and func-
tion/method level. Such docstrings can be read by several documentation gen-
erators as well as providing a simple documentation right in the source code.
To supplement the development experience, all relevant parts of the project
log information on various levels of severity (from INFO to FATAL), which is
intended to help with debugging as well as development of new features. Dur-
ing normal operation, the application logs data to the file output.log.

4.7 additional software

In addition to the main application, two other software packages were devel-
oped, specifically intended for use in the the precursory data-processing step:
pydicsv15 and banana-split16. These modules are concerned with the pro-
cessing of MIDI and CSV files, which were the formats chosen for processing
the scraped dataset.
Because MIDI files are a binary format, they are hard to work with if no ab-
straction is provided. Since the dataset had to be analysed and files modified
before they would eventually be used for training, an intermediary format was
chosen that was easier to work with. The choice fell on CSV due to the fact that
only simple modifications and tasks of data-extraction would be required and
thus larger Python libraries providing higher levels of abstraction would be too
large and unwieldy to work with, in terms of performance and the amount of
upfront learning involved in learning to work with them. The most prominent
library in this regard is music21

17, a collection of music-theory related classes

12 https://python.org/dev/peps/pep-0008

13 https://pylint.org

14 https://python.org/dev/peps/pep-0257

15 https://github.com/timwedde/pydicsv

16 https://github.com/timwedde/banana-split

17 http://web.mit.edu/music21

https://python.org/dev/peps/pep-0008
https://pylint.org
https://python.org/dev/peps/pep-0257
https://github.com/timwedde/pydicsv
https://github.com/timwedde/banana-split
http://web.mit.edu/music21

4.7 additional software 34

and functions that mostly operates on MIDI files but can also work with other
formats. Appendix B provides more detailed information about how data was
processed with these tools.

4.7.1 pydicsv

This tool is direct Python-port of the midicsv and csvmidi tools18 courtesy of
John Walker, which serve the purpose of converting MIDI files into their respec-
tive CSV representation and vice versa. It was used at the beginning and end of
the data processing step. Figure 12 shows the structure of the produced files.
Each line describes exactly one complete event, with the first three fields (track
number, timestep and event name) fixed and the rest of the values dependent
on the type of event being described. The format itself was created specifi-
cally for this program, but is easy to implement as it effectively translates the
already existing bytes of information into a more human-readable form with-
out changing the makeup of the file or its contents. These properties enable
seamless and lossless conversion from and to the MIDI file format.

0, 0, Header, 1, 8, 240

1, 0, Start_track

1, 0, Time_signature, 4, 2, 24, 8

1, 0, Tempo, 705882

2, 0, Start_track

2, 0, Title_t, "zang"

2, 0, Program_c, 0, 3

2, 0, Control_c, 0, 7, 100

2, 9840, Note_on_c, 0, 63, 80

2, 10032, Note_off_c, 0, 63, 64

8, 95616, End_track

0, 0, End_of_file

Figure 12: Excerpt of a MIDI file converted to intermediary CSV format

4.7.2 banana-split

This custom script is able to extract MIDI events from CSV-MIDI files, split by
channel and track, and was used to create the base dataset which was then
modified further by a custom cleanup script (see Section B.3). It works by
first extracting channels, which correspond to instruments, and subsequently
tracks, which each denote a singular instrument of a specific type, but might
be aggregated in one channel. This makes is easier to access individual instru-
ments such that they can be easily modified, searched for and individual in-
strument lines extracted, as well as allowing the assembly of custom, reduced
or enhanced MIDI files for training

18 https://fourmilab.ch/webtools/midicsv

https://fourmilab.ch/webtools/midicsv

5
R E S U LT S

This chapter will showcase the generated output and compare it to other, sim-
ilar software, as well as analyzing it on an individual basis for the adherence
to the initial requirements.

5.1 acquisition of output and evaluation methodology

The application was tested in version 0.4.31, which is the latest version at the
time of this writing and also contains the generated samples analysed later in
this chapter.
To acquire a set of samples for analysis, six musical pieces were generated. For
this, three song templates were created with differing chord progressions and
two samples were generated for each template.
The generated samples will be examined for three criteria:

structure : Repetition of whole sections according to the given structure.

motif : Repetition of small sections common in carnival music.

scale/key : Adherence to one scale and key.

Analysis of the samples will be achieved audiovisually, via listening to the
pieces as well as by visual analysis of the MIDI events. The software used for
visualisation of the files is Logic Pro X2 (version 10.4.1).

5.2 examination of the results

Each generated MIDI file consists of four tracks in the order defined below. A
visualisation of one of the generated samples with the tracks organised in the
same order can be found in Figure 13.

1. Drums

2. Melody (Program No.57 - Trumpet)

3. Bass (Program No.68 - Baritone Sax)

4. Chords (Program No.01 - Acoustic Grand Piano)

Figure 14 shows a side-by-side view of the same segment generated by two
different runs of the same song template. While the chord progression remains
the same (lowest instrument line), the other instruments vary, showing that
varying melodies are being generated even when all parameters remain the

1 https://github.com/timwedde/composer/releases/tag/0.4.3

2 https://www.apple.com/logic-pro

35

https://github.com/timwedde/composer/releases/tag/0.4.3
https://www.apple.com/logic-pro

5.2 examination of the results 36

Figure 13: Visualisation of generated output

same between runs. It is noteworthy that the bass line (second from the bottom)
exhibits a pattern that is commonly found in carnival music (as well as several
other more simplistic genres), in that it simply alternates between two notes.
This is especially visible in the left-hand-side, while the right-hand-side shows
a slightly more complex pattern with the same basis.

Figure 14: Comparison of the same segment in the same song template, two different
generation runs

On the other hand, the drum lines indicate a pattern of minimalism, in that
most generated samples contain large timespans of only the hi-hat being used.
However the model appears to be able to generate more complex patterns as
well (see Figure 15) which are rythmically consistent, evident by the equal
amounts of space between the MIDI events. In general, the model seems to
favor the hi-hat and the bass drum, which is in accordance with the general
simplistic makeup of carnival music.
The melody lines consistently exhibit typical patterns of rising and falling
melody (by playing scale notes up or down), which can also be found in the
source data (see Figure 16). Additionally, the melody lines contain repeating
notes with different durations, mimicking what in the original song would be

5.3 other software 37

Figure 15: Example of a more complex drum pattern

the voice line of the singer, creating a sing-along line of melody. The duration
of inidvidual notes is more varied than with the bass, adding to the dynamic
nature of the melody line.

Figure 16: Example of a melody line following the singer (top) and a descending pat-
tern (bottom), from the original dataset

Overall, the software package fulfills the initially given requirements in that it
is capable of producing harmonically consistent music containing multiple in-
struments. However, due to the lack of information about high-level structure
during the training step, it was not possible to infuse a sense of purposeful
composition into the generated pieces. So even though they technically adhere
to the requirement of generating music containing different segments, there is
no musical variance between these segments, making them hard to tell apart.
So while the output comes in the form of a basic song, it is still very easy to
tell it apart from a human-composed piece. Because of this, acceptance testing
with multiple test-subjects was foregone, seeing as the output is very obviously
distinct from human-composed songs.

5.3 other software

It was discovered that within approximately the same timeframe as this project,
a very similar attempt (in purpose rather than execution) at generating mu-
sic comprised of several instruments was made in the form of MuseGAN3

[Don+18], although their project focuses more on multiple instruments and
less on long-term structure, as their output only consists of four bars per gen-
eration. No singular project, as far as is known at the point of writing this
thesis, is aiming at music generation in the realm of songs possibly several
minutes long, with the closest thing released being [Sim+18], which allows for
automatic chord conditioning and thus extends the approach utilised here by
integrating this conditioning into a ML model.

3 https://salu133445.github.io/musegan

https://salu133445.github.io/musegan

6
C O N C L U S I O N

This thesis has examined the feasibility of and the various possible approaches
to generating musical pieces that consist of multiple instruments and several
high-level segments (e.g. Chorus or Verse). Along the way, it was proven that
such a thing is indeed possible within a limited scope and a PoC implemen-
tation was provided demonstrating as much. This chapter will reflect on the
obtained results, assess the success of the project in general and present oppor-
tunities for future work.

6.1 project reflection

Over the course of the previous chapters (specifically Chapter 3), it was shown
that the compound problem of generating full musical pieces is very new and
seldomly researched. Since the area of applying ML to artistic disciplines is
quite new (in its current form), most work in this area is foundational in nature,
meaning that the focus lies heavily on small sub-problems such as isolated
melody generation or chord prediction, with little time expended to combine
these different efforts. In fact, the only other projects in this area that could
be found at the time of this writing are MusicVAE [REE17] and MuseGAN
[Don+18], although even these projects focus more on integrating different in-
struments at generation time rather than generating longer sequences of music.
Just a few days before the finalisation of this thesis, a modification of Music-
VAE was released [Sim+18] that was focused in a very similar direction as this
project and appears to be the first published research on the topic of generat-
ing multi-instrument music of considerable length, proving that this problem
is indeed on the cutting edge of this area of scientific inquiry.
The quality of the output of this project was also heavily affacted by the lack
of data that could have been used to enhance the generated output, most no-
tably information about different segments within a song, which would have
enabled conditional generation for the segments given during generation time.
Due to this research area being relatively new, few pre-aggregated datasets
exists, which means that a large part of any project executed within this area
is data collection and pre-processing. Given a larger timeframe, it could have
been possible to acquire or produce more featureful datasets to enhance the
generated output.

6.2 output

As described in Section 2.2, this project has several outputs defined, all of
which were produced successfully. The main result is the PoC implementation
(named composer), which is responsible for automatically generating new mu-
sical pieces. To provide an easier starting point for subsequent (or possibly

38

6.3 future opportunities 39

even unrelated) research, the dataset used for training the different models is
also published in the aggregate repository1, which centralizes all outputs in
one place. The trained models are included in the PoC implementation and are
explicitly linked to in Section C.5.
In addition to this, the execution of this project saw the creation of two sup-
plementary tools with broader applicability (described in more detail in Sec-
tion 4.7), which were also made publicly available.
Additionally, the songs generated for analysis in this thesis are shipped with
the latest version of composer at the time of this writing (version 0.4.32).

6.3 future opportunities

Given that this project has been executed in an area where little to no research
effort has yet been invested, there are quite a few opportunities to improve this
project as well as topcis to investigate more closely, possibly in a derivative
work.
To improve the quality of the models currently in use, one could utilise transfer
learning to build on top of existing models that were trained on larger datasets,
as is the case with the Google-provided example models. However, since these
are incompatible with recent versions of TensorFlow and Magenta, a larger
and more general model could be trained and then retrained with smaller,
style-specific datasets to achieve a better end-result.
Generally, a larger set of training data would be beneficial to this project, to
allow for longer training and more diverse evaluation datasets, which is likely
to increase performance of the models. In combination, provided more com-
putational capability could be acquired, larger model sizes could be used to
allow the model more room for learning.
From the perspective of the software package, it would be possible to replace
the models currently in use by something else, should it provide superior
output (e.g. the aforementioned MuseGAN by [Don+18]). Alternatively, effort
could be focused on enabling segment-conditioned generation of melodies in
the current model, provided a fittingly-annotated dataset were available. The
creation of such a dataset would be beneficial to a multitude of projects within
this area.

1 https://github.com/timwedde/ai-music-generation

2 https://github.com/timwedde/composer/releases/tag/0.4.3

https://github.com/timwedde/ai-music-generation
https://github.com/timwedde/composer/releases/tag/0.4.3

R E F E R E N C E S

[BBV12] Nicolas Boulanger-Lewandowski, Yoshua Bengio, and Pascal Vin-
cent.
“Modeling Temporal Dependencies in High-Dimensional Sequences:
Application to Polyphonic Music Generation and Transcription.”
In: Proceedings of the 29th International Conference on Machine Learn-
ing, ICML 2012.
Vol. 2.
June 2012.

[Bru+17] Gino Brunner et al.
“JamBot: Music Theory Aware Chord Based Generation of Poly-
phonic Music with LSTMs.”
In: Computing Research Repository abs/1711.07682 (2017).
arXiv: 1711.07682.
url: http://arxiv.org/abs/1711.07682.

[CFS16] Keunwoo Choi, George Fazekas, and Mark Sandler.
“Text-based LSTM networks for Automatic Music Composition.”
In: Proceedings of the 1st Conference on Computer Simulation of Musical
Creativity.
Apr. 2016.
arXiv: 1604.05358.
url: http://arxiv.org/abs/1604.05358.

[Col+16] Florian Colombo et al.
Algorithmic Composition of Melodies with Deep Recurrent Neural Net-
works.
June 2016.
doi: 10.13140/RG.2.1.2436.5683.
url: http://dx.doi.org/10.13140/RG.2.1.2436.5683.

[DE10] Stephen Davismoon and John Eccles.
“Combining Musical Constraints with Markov Transition Probabil-
ities to Improve the Generation of Creative Musical Structures.”
In: Proceedings of the 2010 International Conference on Applications of
Evolutionary Computation - Volume Part II.
EvoCOMNET’10.
Berlin, Heidelberg: Springer-Verlag, 2010,
Pp. 361–370.
isbn: 3-642-12241-8.
doi: 10.1007/978-3-642-12242-2_37.
url: http://dx.doi.org/10.1007/978-3-642-12242-2_37.

[Don+18] Hao-Wen Dong et al.
“MuseGAN: Multi-track Sequential Generative Adversarial Net-
works for Symbolic Music Generation and Accompaniment.”

40

http://arxiv.org/abs/1711.07682
http://arxiv.org/abs/1711.07682
http://arxiv.org/abs/1604.05358
http://arxiv.org/abs/1604.05358
http://dx.doi.org/10.13140/RG.2.1.2436.5683
http://dx.doi.org/10.13140/RG.2.1.2436.5683
http://dx.doi.org/10.1007/978-3-642-12242-2_37
http://dx.doi.org/10.1007/978-3-642-12242-2_37

References 41

In: Proceedings of the 32nd Association for the Advancement of Artificial
Intelligence Conference.
Vol. 32.
Feb. 2018.
arXiv: 1709.06298.
url: http://arxiv.org/abs/1709.06298.

[DZX18] Shuqi Dai, Zheng Zhang, and Gus Xia.
“Music Style Transfer Issues: A Position Paper.”
In: arXiv Computing Research Repository.
Mar. 2018.
arXiv: 1803.06841.
url: http://arxiv.org/abs/1803.06841.

[Ehm+11] Andreas F. Ehmann et al.
“Music structure segmentation algorithm evaluation: Expanding
on MIREX 2010 analyses and datasets.”
In: Proceedings of the 12th International Society for Music Information
Retrieval Conference.
Oct. 2011,
Pp. 561–566.
isbn: 0-615-54865-2.

[ES02] Douglas Eck and Jürgen Schmidhuber.
“Finding temporal structure in Music: Blues improvisation with
LSTM Recurrent Networks.”
In: Proceedings of the 12th IEEE Workshop on Neural Networks for Sig-
nal Processing.
Feb. 2002,
Pp. 747–756.
isbn: 0-7803-7616-1.
doi: 10.1109/NNSP.2002.1030094.
url: http://dx.doi.org/10.1109/NNSP.2002.1030094.

[HCC17] Dorien Herremans, Ching-Hua Chuan, and Elaine Chew.
“A Functional Taxonomy of Music Generation Systems.”
In: ACM Computing Survey 50.5 (Sept. 2017), 69:1–69:30.
issn: 0360-0300.
doi: 10.1145/3108242.
url: http://doi.acm.org/10.1145/3108242.

[Her+15] Dorien Herremans et al.
“Generating music with an optimization algorithm using a Markov
based objective function.”
In: ORBEL29, Belgian Conference on Operations Research (2015).

[HI92] Lejaren A. Hiller and Leonard Isaacson.
In: Machine Models of Music.
Ed. by Stephan M. Schwanauer and David A. Levitt.
Cambridge, MA, USA: MIT Press, 1992.
Chap. Musical Composition with a High-speed Digital Computer,
pp. 9–21.

http://arxiv.org/abs/1709.06298
http://arxiv.org/abs/1709.06298
http://arxiv.org/abs/1803.06841
http://arxiv.org/abs/1803.06841
http://dx.doi.org/10.1109/NNSP.2002.1030094
http://dx.doi.org/10.1109/NNSP.2002.1030094
http://dx.doi.org/10.1145/3108242
http://doi.acm.org/10.1145/3108242

References 42

isbn: 0-262-19319-1.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber.
“Long Short-Term Memory.”
In: Neural Computation 9.8 (Nov. 1997), pp. 1735–1780.
issn: 0899-7667.
doi: 10.1162/neco.1997.9.8.1735.
url: http://dx.doi.org/10.1162/neco.1997.9.8.1735.

[Jaq+17] Natasha Jaques et al.
“Tuning Recurrent Neural Networks With Reinforcement Learn-
ing.”
In: Proceedings of the 2017 International Conference on Learning Repre-
sentations.
Apr. 2017.
arXiv: 1611.02796v9.
url: http://arxiv.org/abs/1611.02796v9.

[Joh17] Daniel D. Johnson.
“Generating Polyphonic Music Using Tied Parallel Networks.”
In: Computational Intelligence in Music, Sound, Art and Design.
Ed. by João Orreia, Vic Ciesielski, and Antonios Liapis.
Cham: Springer International Publishing, 2017,
Pp. 128–143.
isbn: 3-319-55750-5.

[Mak+17] Dimos Makris et al.
“Combining LSTM and Feed Forward Neural Networks for Con-
ditional Rhythm Composition.”
In: Engineering Applications of Neural Networks.
Ed. by Giacomo Boracchi et al.
Springer International Publishing, 2017,
Pp. 570–582.
isbn: 978-3-319-65172-9.

[MP43] Warren S. McCulloch and Walter Pitts.
“A logical calculus of the ideas immanent in nervous activity.”
In: The bulletin of mathematical biophysics 5.4 (Dec. 1943), pp. 115–
133.
issn: 1522-9602.
doi: 10.1007/BF02478259.
url: https://doi.org/10.1007/BF02478259.

[QH13] Donya Quick and Paul Hudak.
“A Temporal Generative Graph Grammar for Harmonic and Met-
rical Structure.”
In: Proceedings of the 2013 International Computer Music Conference.
Sept. 2013,
Pp. 177–184.

[Raf16] Colin Raffel.
“Learning-Based Methods for Comparing Sequences, with Appli-
cations to Audio-to-MIDI Alignment and Matching.”

http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1611.02796v9
http://arxiv.org/abs/1611.02796v9
http://dx.doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259

References 43

PhD thesis. Columbia University, 2016.

[REE17] Adam Roberts, Jesse Engel, and Douglas Eck.
“Hierarchical Variational Autoencoders for Music.”
In: Proceedings of the 31st Conference on Neural Information Processing
Systems.
Dec. 2017.

[Shi+17] Andrew Shin et al.
“Melody Generation for Pop Music via Word Representation of
Musical Properties.”
Note: This paper’s submission was withdrawn from the 2018 In-
ternational Conference on Learning Representations. Its purpose
here is simply to showcase a different implementation of a specific
network architecture, not substantiate any claims or portray facts
cited from it.
Oct. 2017.

[Sim+18] Ian Simon et al.
Learning a Latent Space of Multitrack Measures.
June 2018.
arXiv: 1806.00195.
url: http://arxiv.org/abs/1806.00195.

[TZG17] Yifei Teng, An Zhao, and Camille Goudeseune.
“Generating Nontrivial Melodies for Music as a Service.”
In: Proceedings of the 2017 International Society for Music Information
Retrieval Conference.
Vol. 18.
Oct. 2017,
Pp. 657–663.

[Win29] Reginald P. Winnington-Ingram.
“Ancient Greek Music: A Survey.”
In: Music and Letters 10.4 (1929), pp. 326–345.
doi: 10.1093/ml/X.4.326.
url: http://dx.doi.org/10.1093/ml/X.4.326.

[WS94] Martin D. Westhead and Alan Smaill.
“Automatic Characterisation of Musical Style.”
In: Music Education: An Artificial Intelligence Approach.
Ed. by Matt Smith, Alan Smaill, and Geraint A. Wiggins.
London: Springer London, Jan. 1994,
Pp. 157–170.
isbn: 1-4471-3571-7.
doi: 10.1007/978-1-4471-3571-5_10.
url: https://doi.org/10.1007/978-1-4471-3571-5_10.

[Zho15] S. Kevin Zhou.
Medical Image Recognition, Segmentation and Parsing.
Academic Press, 2015.
isbn: 0-12-802581-6.
url: https://www.sciencedirect.com/science/book/9780128025819.

http://arxiv.org/abs/1806.00195
http://arxiv.org/abs/1806.00195
http://dx.doi.org/10.1093/ml/X.4.326
http://dx.doi.org/10.1093/ml/X.4.326
http://dx.doi.org/10.1007/978-1-4471-3571-5_10
https://doi.org/10.1007/978-1-4471-3571-5_10
https://www.sciencedirect.com/science/book/9780128025819

Appendix

44

A
A P R I M E R O N A RT I F I C I A L I N T E L L I G E N C E

To provide a common baseline of knowledge for the main part of the thesis,
this chapter will give a small overview of the general concepts of AI and ex-
plain the basic technicalities required to understand its operating principles.

a.1 what it is

AI in its most general form is a term used to refer to any form of intelligence
exhibited by an object or machine that is not human or generally biologically-
based (e.g. animals), wherein the term “intelligence” means general intelli-
gence and refers to the purposeful taking of actions, the application of logic,
the capability of understanding a concept as well as learning, planning and
problem solving within some capacity.
In the area of computer science specifically, the term Computational Intelli-
gence (CI) exists, which refers to a subset of the scope of AI in that it is con-
cerned with the ability of a computer to learn a specific task or concept from
data, without the goal being explicitly described beforehand. To achieve this it
often mirrors concepts found in nature, which are able to cope with situations
in which a computer would normally be unable to produce correct results. A
current example of tasks that exhibit excessive complexity or uncertainty are
those related to self-driving cars, which have to cope with many variables and
a constantly-changing environment they often times can not perceive entirely
at any given time. CI, in contrast to AI, excludes methods of hard computa-
tion, meaning any task or operation that can be translated into binary logic
and be computed by an algorithm, it instead focuses on stochastics and fuzzy
(many-valued) logic.

a.2 machine learning

ML utilizes concepts from the area of CI to enable computer systems to learn
to execute a task or operation without being explicitly programmed to do so,
but instead based on the “learning” of the task from sample data, leading to
the creation of a stochastic model tuned for a specific task. It is largely based
in the areas of statistics and pattern recognition and is mostly concerned with
the finding of predictive algorithms and patterns in large amounts of data as
well as analysis of such to gain insights into complex structures that would
otherwise be difficult to understand.
Machine Learning, in large parts, relies on the availability of large sample-
sizes, which subsequently have to be processed to enable learning, leading to
massive resource usage and a strong reliance on large amounts of data. As
such performance of these stochastic models is often strongly correlated with
the quality of the input data as well as the computational power expended

45

A.3 types of machine learning 46

during the “training” phase of such a model. These requirements are often
the reason an algorithmic, concrete approach is favored when applicable, if it
produces similar results.
Advantages to this approach lie in its ability to comprehend complex, possi-
bly faulty or incomplete data structures as well as potentially being able to
discover hidden relations between such data and extrapolate the results into
a conceptual understanding of the data which can then be used to deal with
unknown scenarios at a later stage.

a.3 types of machine learning

Many different approaches exist for ML, many of which stem from the statis-
tical science fields, such as modeling probabilities using various forms of tree
structures, cluster analysis or utilising genetic algorithms. The areas mostly
talked about when discussing Machine Learning, as well as the specialisation
of this thesis, are more related to the approaches concerning Artificial Neural
Networks (ANNs) and Deep Learning.
Such systems stem from the concept of “Connectionism”, which represents
a set of approaches with the common goal of trying to emulate and model
mental processes of often times biological inspirations, such as the brains of
animals or even humans, in an attempt to capture similar behavioral patterns
or abilities. This is often accomplished by modeling networks of simple units,
often times referred to as “artificial neurons”, similar to structures as they
would occur in actual brains. With correct training of these models, emergent
behaviour can be observed that can be shaped to a specific task with the ad-
justment of the learning process.
Deep Learning enhances this concept by proposing the integration of multiple
such models, often called “layers” of neurons, which are “stacked” and often
times sequentially connected, the output of one layer feeding into the input of
the next one. Such networks, with sufficient “depth”, are able to emulate more
complex tasks similar to what a biological brain might be able to produce, espe-
cially regarding tasks such as image recognition, the understanding of natural
language or playing games such as Chess or Go, which exhibit extraordinary
complexity, making them unsuitable for algorithmic computation.

a.4 how it works

Neural Networks are based on connecting a large amount of individually sim-
ple parts with each other in different configurations, producing a network of
nodes which, as a whole, is capable of exhibiting emergent behaviour. The ar-
tificial neurons used in such networks are modeled as individual units with
one or multiple inputs and one output, which are connected by one of several
mathematical functions that are applied to transform and reduce the input into
an activation - the level which is eventually emitted at the output of each neu-
ron. Sigmoidal functions are most commonly used, but other functions may be
better suited for specific purposes.

A.4 how it works 47

The function defines which output value to emit, given an input value, and if
the output value lies above a certain threshold the neuron “fires”, activating
the neurons connected to its outputs (thus the function is sometimes called
“activation function”).

Figure 17: Biological vs Artificial Neuron (biological neuron graphic created by Freepik,
https://freepik.com; Online, accessed 2018-05-12)

Figure 17 shows the similarities between the biological inspiration and the ar-
tificial recreation for such a neuron. The Dendrite, Nucleus and Axon translate
into the Inputs, Activation Function and Output respectively.
An individual neuron functions similarly to a logic gate on a regular processor,
only that instead of a value range of two (0 and 1) it possesses an infinite
range of decimal numbers that can be emitted for different inputs. As such it
is theoretically possible to build logic gates from artificial neurons, a concept
which is called “threshold logic”. In fact, the first artificial neuron was labeled
“Threshold Logic Unit” by [MP43].
Overall however, “programming” a neural network is very different from writ-
ing regular code, which can automatically be translated into the correct values
for the low-level logic gates. Instead of manually defining the values for each
neuron while taking into account their interplay with every other (transitively)
connected neuron, the process of programming has been replaced by the con-
cept of “training”.
Training in this case refers to the continual adjustment of the values of indi-
vidual neurons until the network as a whole exhibits the desired behaviour in
some capacity. Training happens by transforming input data into a format the
network can understand (multidmensional matrices of numbers), which are
then “pushed through” the network by inputting the numbers into the first set
of neurons, modifying the subsequently connected neurons as the previous

https://freepik.com

A.5 generative ai 48

ones fire, biasing them in a specific direction. This type of network is called
feed-forward network.
All neurons with the same connection depth to previous neurons are said to
be on a “layer” (see Figure 18). Stacking multiple layers expands the network,
making it more expensive to train but also able to store more information.
Networks with multiple layers are also sometimes referred to as Deep Neural
Networks (DNNs).

Figure 18: A simple Feed-Forward Neural Network (image created by
Wikipedia Contributors, https://commons.wikimedia.org/wiki/File:

Artificial_neural_network.svg; Online, accessed 2018-05-03)

To arrive at the actual value to adjust a neuron by, the output of the last layer of
the network is compared to the expected output, and the difference between
these is used to tweak the values of the neurons in the network to nudge
them closer to being able to replicate the expected output data. This method
of applying the computed difference is called backpropagation. In many models,
a learning rate exists which governs how drastic the change of the applied
difference is, as applying the entire difference can in some cases be too big of a
step towards a particular direction, leading to rapid overfitting (a state within
which a network produces the same outcomes for almost all inputs).
The most common way to train a network is gradient descent, which uses a loss
function to apply backpropagation to the model. Such a function determines,
for every output of the network, how "good" it is, this referring to a custom
implementation of criteria as supplied by the programmer, which are then
factored into the process of calculating the deviation from the expected output.

a.5 generative ai

The output of a neural network comes in the form of a probability distribution
over the range of possible values the network was trained to recognize.
The difference between classification and generation networks stems from the
specific distribution they learn. Classification models learn a conditional prob-

https://commons.wikimedia.org/wiki/File:Artificial_neural_network.svg
https://commons.wikimedia.org/wiki/File:Artificial_neural_network.svg

A.6 application areas 49

ability distribution p(y|x) which allows them to classify a given value x into a
category y. Generative models in comparison learn the multivariate probabil-
ity distribution p(x,y), which gives the probability of a specific combination
of x and y, for every possible permutation.
One of the advantages of generative models is that the multivariate probabil-
ity distribution can be transformed into a conditional probability distribution
later on. The biggest difference however is that the multivariate probability dis-
tribution learns a more abstract concept, in that it makes assumptions about
the nature of how the data is structured, and will assume a shape that will at-
tempt to closely emulate the original structure. To generate values from such a
distribution, several methods can be applied, the most common of which are:

• Gibbs Sampling

• Argmax Function

• Softmax Function

• Random Sampling

• Beam Search

• Greedy Search

These methods detail different ways of how to interpret the resulting probabil-
ity distribution that is generated when a set of inputs is given to the model.

a.6 application areas

AI (and ML in particular) have found a large amount of use cases within vari-
ous fields. Many recommendation systems try to maximize their usefulness by
learning to predict what its users want to see, Netflix, YouTube and Amazon
being on the forefront of this area of research in the corporate space. Com-
monly known examples of the broad applicability of similar technology can
be seen in products such as “Google Home” or “Amazon Echo”.
The medical field is seeing an increasing interest in applying techniques of
image recognition to medical images as produced by X-Ray or Magnetic Reso-
nance Imaging machines to recognize a multitude of diseases and anatomical
issues [Zho15].
Out of all its application areas, the field of self-driving cars is probably the
most prominent, popularized by companies such as Tesla, Google and Uber
and many car manufacturers who are now starting to venture into this area as
well.
Much of the initial mainstream-interest in AI stemmed from the creative fields,
most prominently the artistic ones, as researchers started experimenting with
style transfers between images, as well as the recreation and classification of
objects within an image, providing the foundation for the application of similar
and enhanced concepts in many other fields requiring the actual understand-
ing and conceptualization of images.

B
D ATA R E P R E S E N TAT I O N & P R O C E S S I N G

This appendix will explain how the data used within this project was acquired
and how it was processed for use within the application. Additionally, a closer
look will be taken at the gathered collection of files to determine selection
criteria that will later be used to create the training data.

b.1 gathering the data

Data was obtained from the dutch website “Limburg Zingt”1, which archives
carnival songs from the Limburg region and surrounding places. A site-crawler
was created to extract all songs available as MIDI files from the website. The
crawler was implemented using Scrapy2, a Python framework for quickly cre-
ating web crawlers, and is available in the project’s aggregate repository3.

b.2 data analysis

Execution of the crawling process led to the gathering of a of 892 MIDI files,
with one file failing to download due to file corruption, leading to a total of
891 usable files.
A large portion (roughly 48%) of the collection of files (henceforth “the cor-
pus”) appears to lack key information entirely, as shown by the label “empty”
(which was substituted in case of missing data) in Figure 19, making the results
incorporating key signature less reliable due to the large amount of dark data,
which is missing explicitly tagged pieces of information. As such, correlations
are hard to identify.
The following results will be compared in parts to an analysis done on a larger
set of songs, the “Lakh MIDI Dataset” [Raf16], which will be used as a median
for key and time signatures to provide a frame of reference seeing as it is
based upon a compilation of songs spread over many genres and types of
music, providing a good baseline for further analysis.
Focusing on the songs containing key information, all songs appear to be writ-
ten in a major mode, with the key of C making up the largest share by far. The
next largest share is the key of G major after which the other keys are mostly
neglibile in frequency of occurence. This somewhat coincides with the results
of Raffel’s analysis, with a large majority of all modes being major. Noticable
is the lack of diversity in keys overall, generally being restricted to C, G and D
major.
Roughly 50% of all songs are in standard 4/4 time (see Figure 20), with the
less common signatures 2/4 and 3/4 each making up about 20%, which is

1 http://www.limburgzingt.nl

2 https://scrapy.org

3 https://github.com/timwedde/ai-music-generation

50

http://www.limburgzingt.nl
https://scrapy.org
https://github.com/timwedde/ai-music-generation

B.2 data analysis 51

Figure 19: Key Signature Distribution

similar to Raffel’s analysis, which in turn mirrors common pop music trends.
In contrast to their results however, this dataset appears to contain slightly
more songs in the odd meter 6/8 (about 9%).

Figure 20: Time Signature Distribution

Taking a look at Figure 21, tempos lie largely in the range of 100 to 130 BPM,
as is common for most songs, with a spike at 120 BPM, which is the most
common tempo across any genre. In comparison to Raffel’s analysis however,
where tempos almost assume the shape of the standard deviation, the range
of tempos is much smaller, as most carnival songs appear to favor medium to
quick pacing.
Combining tempo and time signature into a two-dimensional heatmap (see
Figure 21), one can see that most time signatures cluster around the 100 to
130 BPM region, with the 3/4 signature being an outlier, finding its largest

B.3 data preparation 52

Figure 21: Tempo Distribution

accumulation close to the 180 to 200 BPM range. Given that the amount of
samples for this range is the second-largest cluster of tempos, it is reasonable
to assume that a correlation exists between the non-standard 3/4 meter and a
faster pace. This might be due to stylistic cues specific to this genre of music,
the assumption of which will have to be verified by manually auditing several
samples of this data region.

Figure 22: Tempo in Relation to Time Signature

b.3 data preparation

Seeing as the chosen MelodyRNN model generates individual lines of instru-
mentation, the input data has to be prepared fittingly by filtering out any notes

B.3 data preparation 53

not belonging to either melody, drum or bass lines, such that the model does
not have to deal with any “noise” stemming from unfitting instrument lines.
Due to the MIDI file format being hard to read and slow to parse in bulk, it was
decided that an easier to read and modify intermediary format was to be con-
verted to first, based upon which all cleanup actions could then be performed
much more efficiently (see Section 4.7 for more details on the software used
for this process).
As such, the scraped data was intially run through banana-split to obtain
the dataset in CSV format. This script nets an output of the converted files
split by channel and track, making the filtering of these properties very easy.
In a second step, the different instrument lines were extracted. To figure out
which tracks or instruments were most relevant to either of the three categories,
a sample subset of the original dataset was inspected to generate a list of
instrument numbers that were generally most likely to play melody or bass
lines. For the melody part, the selection range lies within the set (0-9, 57-65,

73, 74) while the bass range is mostly present in the set (33-41, 44, 59,

68). Due to a convention of the MIDI standard, channel 9 is always dedicated
to drums, making extraction of the percussive elements very easy. This method
of extracting specific parts works well enough that no complex heuristics are
required for extraction of said features.
After the melody, bass and drum lines were extract from each file, the resulting
cleaned dataset was converted back to the MIDI format and was subsequently
converted to a tfrecord container (a special format Magenta-based models
make use of) by a script provided by the Magenta project (using the commands
shown in Snippet 10). In addition to the initial format conversion, the tfrecord

container file was then converted to a model-specific representation where all
required features for each MIDI event were transformed into one-hot vectors
and concatenated to produce the final represenation of each individual event,
which was then fed into the model.

C
A D D I T I O N A L I N F O R M AT I O N

c.1 project plan

No. Description Duration

T1
Acquisition of suitable MIDI files to use as training and
testing data

10d

T2
Conversion of acquired files into usable format for the
software

15d

T3
Set up of Python project and creation of framework for
individual modules

5d

T4
Implementation of the generator for overall song struc-
ture

10d

T5
Building of ML models and subsequent training on pre-
pared data

15d

T6
Consolidation of output fragments into a complete
song (MIDI file)

10d

T7
Post-Processing of completed MIDI file to increase qual-
ity

10d

D1 Preparation phase for Project Plan (MS1) 6d

D2 Preparation phase for interim project delivery (MS2) 10d

D3 Preparation phase for final project delivery (MS3) 15d

MS1 Project Plan 1d

MS2 Interim Report & Presentation 1d

MS3 Final Report & Presentation 1d

Table 3: List of planned tasks

54

C.1 project plan 55

Figure 23: Project Plan

C.2 music theory 56

c.2 music theory

This section will give a high-level overview of the general concepts used in
music theory as well as lay out some of the terms, relationships and specific
concepts related to this thesis. Different views of music theory exist all over
the world, but for the purpose of this thesis the main focus will be laid upon
its western interpetation and structure.
The foundation of harmony in music lies in the interaction of notes of differing
frequencies. At the most basic level, the frequency spectrum is divided into
octaves. An octave is the range of frequencies between a starting frequency
and another frequency with either half (downwards) or double (upwards) its
starting frequency. All frequencies within one octave are mirrored across all
other octaves, provided they were derived from the same starting point, which
means a note played in one octave is harmonic with the same note played in
any other octave.
A scale is a subset of frequencies per octave, separated by arbitrary intervals.
Most common is the chromatic scale, which samples twelve points from an
octave range and thus extends to all notes nomally found in western music.
Based on this, a chord is formed by a combination of multiple notes from
a scale. Multiple chords played sequentially form a chord progression. Sev-
eral rules exist that govern the harmonic interplay between different chords,
most notably the circle of fifths, which provides a set of harmonically coher-
ent chords for a given key and mode by mapping the three aforementioned
features into a geometrical space within which such relations become visually
obvious.
Chords have an abstract representation called “Roman Numeral Notation”,
which is key agnostic. It describes the position of a note in the scale, given a
key and a mode. Using a key and a roman numeral between I an VII, one can
obtain the actual chord to play. Listing multiple numerals after one another
forms a chord progression, which is the backbone of most songs and provides
a common harmonic ground for multiple instruments to play together, as it
contains information about the key, the mode and the valid notes that can be
played (the scale).

c.3 the midi standard

This section will explain some general information about MIDI as well as the
actual format itself, to enable better understanding of the parsing and usage
of MIDI files in this and other, similar projects.
MIDI, short for Musical Instrument Digital Interface, is a standardised file for-
mat (upheld by the MIDI Association1) that describes several things needed to
enable standardised communication between various instruments and a com-
puter or similar processing device. It exhibits specifications for hardware con-
nectors as well as how communication is handled over these connectors and
how such information can be stored. The latter part is the more relevant to this

1 https://www.midi.org

https://www.midi.org

C.4 commands used 57

project, as it deals with how MIDI data is stored on disk and how it is supposed
to be sent through various devices.
The format is intended for real-time communication, such that live perfor-
mances become possible (most notably keyboards and synthesizers make use
of this technology). It describes an event-driven format in which actions on the
hardware controller (e.g. a keyboard) are encoded into events, which are rep-
resented on the byte-level and then sent to a receiving entity where they can
be suitably processed. Additionally, several meta-events are possible, such as
changing the time signature on the receiving end or changing a preset bank on
a MIDI processor. To make the protocol extensible, custom data can be encoded
as well, to allow instrument- or vendor-specific (possibly ecrypted) events to
be sent for processing by proprietary equipment.
To ensure low-latency communication, all events are encoded as three-byte
tuples with the exception of the aforementioned vendor-specific messages,
which may contain a larger payload. The most common events are note_on

and note_off events, which tell the receiving system when to start or stop
playing a specific note. Their binary representation (displayed as hexadecimal
values) looks like this: 0x90 0x5A 0x64.
In some cases, data is split over the data bytes of a message, for example with
the pitch_bend event (e.g. 0xE0 0x18 0x40). Here, the value is split into two
bytes, ordered with the least-significant bit preceding the most-significant bit.
This is due to the fact that the range of the value extends up to 16384. To
restore the correct value upon reading the message, the first data-byte has to
be bit-shifted left by 7 digits, after which it can be combined with the second
data byte via an OR operation. The specifics of how data is encoded for each
event are defined in the MIDI standard.
The MIDI file format specifies two additional types of information which have
to be included in any file of this format: Header Chunks and Track Chunks.
A file has a single header chunk giving some general information about the
file, as well as how many tracks it contains. It is followed by several track
chunks, which themselves are followed by arbitrarily long lists of MIDI events,
the length of which is specified in the track header. All of this is encoded into
its respective binary representation and forms a standard-compliant MIDI file.

c.4 commands used

The commands listed below show the exact configuration used to convert the
initial dataset as well as run the individual models for training and evaluation.

1 convert_dir_to_note_sequences --input_dir=melody/ \

2 --output_file=melody.tfrecord

3 convert_dir_to_note_sequences --input_dir=bass/ \

4 --output_file=bass.tfrecord

5 convert_dir_to_note_sequences --input_dir=drums/ \

6 --output_file=drums.tfrecord

Code Snippet 10: Commands used for converting MIDI files to tfrecord containers

C.5 trained weights 58

1 drums_rnn_create_dataset --config=drum_kit --eval_ratio=0.2 \

2 --input=drums.tfrecord --output_dir=drums_data/ \

3

4 drums_rnn_train --config=drum_kit \

5 --run_dir=drums_run/ --num_training_steps=2000 \

6 -sequence_example_file=drums_data/train.tfrecord \

7 --hparams="batch_size=64,rnn_layer_sizes=[256,256]" \

8 (--eval) <-- added for evaluation job

9

10 drums_rnn_generate --config=drum_kit --save_generator_bundle \

11 --run_dir=drums_run/ --bundle_file=drums.mag \

12 --hparams="batch_size=64,rnn_layer_sizes=[256,256]" \

Code Snippet 11: Commands used for training, evaluating and exporting the
DrumsRNN model

1 melody_rnn_create_dataset --config=lookback_rnn --eval_ratio=0.2 \

2 --input=melody.tfrecord --output_dir=melody_data/ \

3

4 melody_rnn_train --config=lookback_rnn \

5 --run_dir=melody_run/ --num_training_steps=2000 \

6 --sequence_example_file=melody_data/train.tfrecord \

7 --hparams="batch_size=64,rnn_layer_sizes=[256,256]" \

8 (--eval) <-- added for evaluation job

9

10 melody_rnn_generate --config=lookback_rnn --save_generator_bundle \

11 --run_dir=melody_run/ --bundle_file=melody.mag \

12 --hparams="batch_size=64,rnn_layer_sizes=[256,256]" \

Code Snippet 12: Commands used for training, evaluating and exporting the
MelodyRNN models.

c.5 trained weights

The weights of the trained models are available in the repository of this project,
but are provided here as direct download links for convenience. The weights
were exported with version 1.6.0 of Tensorflow and version 0.3.5 of Magenta.
Compatibility for different versions of these packages is not guaranteed.

Melody Model:
https://github.com/timwedde/composer/raw/master/models/melody.mag

Bass Model:
https://github.com/timwedde/composer/raw/master/models/bass.mag

Drums Model:
https://github.com/timwedde/composer/raw/master/models/drums.mag

https://github.com/timwedde/composer/raw/master/models/melody.mag
https://github.com/timwedde/composer/raw/master/models/bass.mag
https://github.com/timwedde/composer/raw/master/models/drums.mag

	Summary
	Summary
	Statement of Authenticity
	Contents

	List of Figures
	List of Tables
	Listings
	Acronyms
	Glossary
	1 Introduction
	2 The Project
	3 Exploring the Problem Space
	4 Architecture & Implementation
	5 Results
	6 Conclusion
	References
	A A Primer on Artificial Intelligence
	B Data Representation & Processing
	C Additional Information

