
Saurav Aran, Multi-platform mobile app development

Final Report V 2.0 Digital Innovation

Saurav Aran

Intern at Royal Philips

June 10, 2013

Research on Cross-platform mobile app development

GRADUATION REPORT

FONTYS UNIVERSITY OF APPLIED SCIENCES

HBO-ICT: English Stream

Data student:

Family name , initials: Aran, S

Student number: 2154056

project period: (from – till) 1/February/2013 – 31/July/2013

Data company:

Name company/institution: Royal Philips

Department: Research

Address: High Tech Campus 34, Eindhoven, The

Netherlands

Company tutor:

Family name, initials: Bonné, P

Position: Senior Designer

University tutor:

Family name , initials: Dorenbos, M

Final report:

Title: RESEARCH ON CROSS-PLATFORM

MOBILE APPLICATION DEVELOPMENT

Date: 10/June/2013

Approved and signed by the company tutor: Patrick Bonné

Date: 10/June/2013

Signature:

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013

Preface

This thesis report is written as a result of my graduation internship conducted at Philips Research,

Eindhoven. This graduation internship is the final part of the Bachelor study in Information and

Communication Technology (Software) at the Fontys University, Eindhoven. Besides this report, a

project plan, demo iOS and Android applications, a multi-platform application (that runs on Android and

iOS) and a research learning report/recommendation has been created.

Firstly, I want to thank all my teachers and classmates at the Fontys University for the wonderful

environment they created during the 4 years long journey, making it much memorable and special. I

express my gratitude and thanks to my university supervisor Mr. Marco Dorenbos for his continuous

advices and his dual visits to the company during the graduation project.

Secondly, I thank all the Digital Innovation team members inside Philips who were very friendly and

helpful during the graduation project. I thank from the core of my heart to my company supervisor Mr.

Patrick Bonné for his support, guidance, encouragement and goal achieving mentorship. Also, I can’t step

back in thanking especially to Mr. Maurice Hebben for his continuous suggestions, sharing of information

and friendliness throughout the project. My special thanks to Mr. Christiaan Tilman for his time and

instruction regarding the iOS information during the project.

 Finally, I thank my family and relatives for providing me such a wonderful chance to have an

International experience in life. Their love, support and inspirations have all been playing a great role for

the success in every step of my life.

Regards,

Saurav Aran

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013

Table of Contents

Summary ... 5

Version History .. 6

Glossary ... 7

1 Introduction .. 8

2 The Company ... 9

2.1 Philips Research- Eindhoven .. 9

2.2 Digital Innovation (DI) team: .. 9

2.3 Organization chart ... 10

3 Assignment overview ... 11

3.1 Current Situation ... 11

3.2 Bottlenecks .. 11

3.3 Purpose of the assignment ... 12

3.4 Desired end situation ... 12

3.5 Command description .. 12

3.6 Project plan .. 13

4 Methods, Tools and Techniques ... 14

4.1 Methods ... 14

4.2 Tools .. 15

4.3 Techniques ... 16

5 Kickoff .. 17

5.1 Learning Philips architecture .. 17

5.2 Exploring Android and iOS ... 19

6 1
st
 Research question (1

st
 Sprint) .. 21

6.1 Time proposal .. 21

6.2 Information gathering and learning ... 21

6.3 Cross Platform app development using Xamarin.. 23

6.4 Result and recommendation (1
st
 Sprint) .. 27

7 2
nd

 Research question (2
nd

 sprint) .. 28

7.1 Time proposal .. 28

7.2 Information gathering and Learning ... 28

7.3 Result and recommendation (2
nd

 Sprint) ... 35

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013

8 Progress Tracking .. 36

8.1 Mentor meeting ... 36

8.2 Scrum Standup meeting .. 36

8.3 Documented status .. 36

9 Conclusion and recommendation ... 38

Evaluation ... 39

APPENDICES .. I

A. Graduation Project Survey ... I

B. Project Plan (PP).. II

C. Time proposal for Research Questions... IX

D. Research Learning and recommendations .. XVI

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
5 5

Summary

With the advancement in technology, people tend further innovate their products to make it even more

efficient, astonishing and easier to operate. Companies innovate their existing products to make them

more useful by providing additional features to their customers. Mobile devices like Smartphones and

tablets are portable and found in almost 1 billion populations in the world. Different applications are

built in these mobile devices to provide the users entertainment, education, photography etc.

Companies target these smartphones and tablets to provide applications to its customers for getting

control and information to/from the products that are manufactured by the companies.

This project was conducted in DI (Digital Innovation) team inside Philips in Eindhoven that is

engaged in the innovation of Philips products. The team tries to achieve applications on mobile

devices for interacting with the Philips products but the challenging part is the fragmentation in the

operating system (OS) in these mobile devices. The presence of different OSs like Android, iOS,

Windows etc. makes developing application that target maximum numbers of customer costly and

time consuming. Hence, there was a need of cross platform (multi-platform) approach in the app

development that could easily eradicate such bottlenecks. With this approach just building an

application once and using it across different platforms makes the application development time and

cost efficient, and also provides service/access to a whole group of customers using different platform

smartphones and tablets.

There are different existing cross platform mobile frameworks such as Xamarin, PhoneGap,

RhoMobile etc. This project focuses on the use of Xamarin for the cross platform mobile application

development. For the research activity, one of the Philips products called WakeUpLight (WUL) was

used. Research questions like “How is it like to develop a cross platform application for the WUL

using the Xamarin Studio Integrated Development Environment (IDE) that is able to control WUL’s

functionalities using pre-existing ICP Client library?” and “A recommendation on the best

model/approach/patterns for the maximum sharing of codes between the platforms in Xamarin” were

received for the research. The goal of these research questions were to find out the efficiency in cross

platform mobile application development for Philips using Xamarin.

The project planning, time management, Scrum and User Interface Design (UID) were done.

Different tools and techniques like Xamarin Studio, Eclipse, X-code, C#, Java, Objective- C etc. were

employed. Different online resources like Xamarin developer’s guide, YouTube, Stack Overflow,

Philips internal documents etc. were used to conduct the research. The research resulted in

recommendations and a demo cross platform mobile app built using Xamarin. The recommendation

includes the use of MVVMCross (MVX) framework with Xamarin for a cross platform app

development. Xamarin along with MVVMCross framework makes very good cross platform mobile

application development strategies that helps in creating and managing large projects, provides

robustness, app with native look and feel with excessive code sharing. In future, the implementation

of ICP Client, which is the secure communication channel of Philips, can be demonstrated properly on

Xamarin using MVVMCross framework.

It was a very interesting, educational, personal developing and wonderful experience in carrying out

the graduation project at Philips with lots of pleasant people around.

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
6

Version History

Version # Date Comments

V 1.0 19/March/2013 First draft version containing

Chapter 2 and 3. Received

comments from supervisors

V 1.1 12/April/2013 Second draft version containing

chapter 4. Received comments

from supervisors

V 1.2 25/April/2013 Updated with chapter 1.

Received comments from

supervisors

V 1.3 14/May/2013 Updates with Chapter 8 and

Preface.

V 1.3 24/May/2013 Updated with the remaining

parts in the report. Received

comments and suggestions from

the supervisors

V 1.4 3/June/2013 Updated with respect to

suggestions received and

completed the report. Formatted

the report according to the

guidelines for writing report

provided in the Fontys intranet.

Semifinal version of the Report

is ready. Final checkup is

needed to be performed.

Received comments and

suggestions from the

supervisors.

V 2.0 10/June/2013 Updates with respect to the

suggestions/comments received

from the supervisors. This is the

final version of the report.

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
7

Glossary

AM: Agile methodologies; one of the methods in Software development Life Cycle

(SDLC).

Android: Operating system by Google that runs on mobile devices.

App: Application; software that runs on Operating System to carry out different tasks.

CPP: Connected Product Platforms; Philips platform for its internet connected products.

DI group: Digital Innovation group; a team formed from different Philips department for digital

innovation.

ICP Client: Internet Connected Products Client; Philips owned client for secure connection for

CPP.

iOS: iPhone Operating System; mobile Operating System owned by Apple Corp.

JNI: Java Native Interface; a programming framework that enables Java code running in

a JVM to call, and to be called by, native applications and libraries written in C, C++

.

JVM: Java Virtual Machine; a virtual machine that can execute Java bytecode.

MVC: Model View Controller; a pattern used during application development.

MVP: Model View Presenter; a pattern used during application development.

MVVM: Model View View-Model; a pattern used during application development.

MVX: MVVMCross; a framework that implements the MVVM pattern for the application

development.

NDK: Native Development Kit; NDK is a toolset that allows implementing parts of app

using native code languages such as C and C++.

NVM: Non Volatile Memory; a component in ICP Client where different keys for the

communication are stored.

PL: Programming Language; Language particularly used in computers as instructions.

SDLC: Software Development Lifecycle; process in the development of software.

SSIGR: Software Systems Integration Group Research; one of the groups inside Philips

Research.

UI: User Interface; the place where user interaction takes with the machine/computers.

WUL: Wake Up Light; Philips lamp product.

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
8

1 Introduction

At the present context, the use of mobile devices like Smartphones, tablets etc. have skyrocketed.

People seem to be enjoying having a portable device and these devices have pretty much become a

part of their life. Whether it is for communication, entertainment, health or educational etc. mobile

devices facilitates with all these featured applications.

Philips, a multinational electronic company is stepping forward innovating its products. Innovation

here refers in making its products accessible, viewing the product’s information and being able to

control them from mobile devices remotely. For example: Light bulbs when connected can be

controlled (switch On/Off), enables to see the past activities (switched On/Off with time stamps) etc.

via apps (applications) on the mobile devices.

Well, there are products meant to be innovated and there are mobile devices. So, what’s the problem

in here for this project to be initiated? Yes, there are mobile devices but, there exists different

platforms (iOS, Android etc.) over these mobile devices. Hence, due to this fragmentation of

platforms, making an application for a product to provide facilities to its maximum customer would

require developing application for these several platforms individually. For example: It would require

expertise in 4 different platforms, creating an app 4 times for an app of same functionality for iOS,

Android, Windows and Blackberry. This will result to cost high amount of time and money. So,

wouldn’t it be nice if there exist possibility of creating application just once and use it across all the

available platforms (cross platform) by making reuse of code to maximum across different platforms?

Therefore, this project focuses on the research and development for making a cross platform

application that suits Philips architecture. The research is mainly based on the use of Xamarin for the

development of cross platform mobile applications for iOS and Android.

Chapter 2 provides information about the company, chapter 3 gives all the details about the project

assignment and chapter 4 discusses about the methods, tools and techniques used during the project.

Chapter 5 describes the kickoff activities. Thereafter, Chapter 6 and 7 provides information on

Research questions conducted during the project and chapter 8 describes the project progress tracking.

Finally, chapter 9 consists of conclusion(s) and recommendation(s).

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
9

2 The Company

This chapter describes about the company where the project was conducted.

This project is conducted at Royal Philips (Philips). Philips is a Dutch multinational electronics

company established in 1891. It was founded by Gerard Philips and Frederik Philips. The current

headquarter is in Amsterdam, The Netherlands. It has around 122,000 employers in more than 60

countries and Frans Van Houten is the current Chief Executive Officer (CEO) of the company. It is

the largest manufacturer of lighting in the world measured by applicable revenues, as of 2012.

The company is mainly divided into three divisions: Philips Lighting, Philips Healthcare and Philips

Consumer Lifestyle. Beside these divisions, Philips has a Corporate Sector that includes Philips

Research. [1]

This project is carried under the DI (Digital Innovation) team of Philips, located at the High Tech

Campus (HTC) in Eindhoven, The Netherlands.

2.1 Philips Research- Eindhoven

Philips Research Eindhoven is a corporate research organization of Philips that works for all

innovation areas that includes development of future products and businesses for the support and

maintaining the competitiveness of all the three main sectors of Philips in the current market.

It is located at the HTC area (Figure 2.1.1) where more than 100 other companies are established for

the exchange of ideas between the companies, forming a Research and Development ecosystem.

Figure 2.1.1: Green region showing the aerial view of HTC area [2]

2.2 Digital Innovation (DI) team:

DI team consists of people gathered together from Software Systems Integration (SSI) group (one of

the departments inside Philips Research), Philips Consumer Lifestyle and some other guest company

like TASS (Total Specific Solutions) etc. The team is formed for the innovation of the Philips

http://en.wikipedia.org/wiki/Gerard_Philips

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
10

products in the market with a slogan “Putting brains into our products, so consumers take them to

heart”. The team is engaged in connecting all the Philips products together so that, the operational

information by its users can be collected and used by the Philips for better maintainability and

improvement of Philips products to provide a greater user experience. For assisting this team with the

research, a student is appointed.

2.3 Organization chart

Figure 2.3.1: Organization chart

Figure 2.3.1shows the organization chart for the project. The chart shows only the divisions of Philips

that have a connection with this project.

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
11

3 Assignment overview

This chapter gives information on the project assignment. The information consists of the analysis of

the current situation, bottlenecks, purpose of the assignment, desired end situation, the precise

command description and about the project plan.

The DI team is on the path of innovation for the company’s existing products like Coffee machine,

Home Cooker, Wake up Lights (WUL) etc. on the market. For the innovation of the products, they are

trying to connect these Philips products. The platform for making these entire devices connected is

called as Connected Product Platform (CPP). This CPP enables bidirectional data/information

exchange ability to all the products from the Philips server.

Making the devices connected empowers the company to study the data received from these

connected devices and help in analyzing the way its clients are using the products. This can help the

company in taking proper steps for the further development of products, assisting its clients in case of

any problems that arise in the products and preventing premature defects on the machine. For

example: If a Coffee machine is connected, then the company is capable to see the statistics of all the

data such as the operation history (time when the product was switched ON, OFF, refilled etc.) and

hence can study the way/frequency of product usage on the basis of residential or geographical region.

These statistics can also help in providing a better assistance to the customers in case the product

copes with some defect. How about the coffee machine sending a notification to its owner when it’s

time for decalcifying
1
 the machine? This helps in preventing the machine from early defects and

overheating due to the accumulation of the calcium leftovers from water used on the machine

providing the customers a greater satisfaction on the products. These products being connected allows

them to be controlled and see its statistical data via different mobile devices (smartphones, tablets

etc.) the customers own. This shows a very good example of Digital Innovation on a product. The

customers get the power to control all its Philips devices under a single click of their finger on their

mobile devices. The team also focuses on providing a simple, easy to learn mobile application with

almost similar user experience (the way application interacts with the user such as notifications) and

native look across different mobile platforms.

3.1 Current Situation

Some of the Philips products (for testing) are made connected. These devices are possible to control

via mobile devices using the Philips secure client for connection called ICP Client. Multiple mobile

applications with basic functionalities are built according to the number of target platforms. For

example: WUL application for Android and iOS that is able to switch the WUL On or Off, increase or

decrease the intensity of WUL etc.

There are different development platforms (Xamarin, Phone gap, service2media etc.) that are under

research, distributed among different researchers inside Philips. This project focuses on Xamarin to

check whether it fits the Philips architecture in providing a better option for cross platform application

development.

3.2 Bottlenecks

Due to the existence of numerous mobile platforms (iOS, Android etc.) on the market, it is a tedious,

time consuming and costly task for developing different applications with the same functionality

feature on all these target platforms repeatedly.

1
 In coffee machines, a chemical process of removing the calcium leftovers from the water on the machine is

called as decalcifying.

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
12

Also, the company’s requirement for providing its customers, an application across different

platforms for controlling the products with almost similar user experience and native look and feel is

one of the most challenging tasks to fulfill.

3.3 Purpose of the assignment

This assignment’s purpose is to help eliminate or reduce the bottlenecks that exist in the DI of the

Philips. The help includes assisting the DI team by conducting investigation on the research questions

that are defined by the DI team and providing recommendation on these research questions. These

research questions focus particularly on the investigation on cross platform application development

with native and similar user experience. The target platforms to research in this project are iOS and

Android. Xamarin is the development environment used in this project. Research on Xamarin will be

carried to find its use in the cross platform application development.

The research questions received are:

1
st
 research question: How is it like to develop a cross platform application for the WUL using the

“Xamarin Studio” Integrated Development Environment (IDE) that is able to control WUL’s

functionalities using pre-existing ICP Client library?
2

2
nd

 research question: A recommendation on the best model/approach/patterns for the maximum

sharing of codes between the platforms in Xamarin.
3

3.4 Desired end situation

Deliver of investigated information and results that consist of recommendations on the research

questions defined by the DI team. It should contain brief useful information that meets the purpose of

the assignment in developing cross platform application with native look and feel and similar user

experience with a supporting proof of concept.

3.5 Command description

The usage of programming language (PL) and Integrated Development Environment (IDE) can vary

with respect to the research questions received, which is suitable to accomplish the investigation.

There are no special constraints set on methods, tools and techniques like Data Flow Diagrams

(DFDs), Unified Modeling Language (UML), Prince 2 etc. to accomplish the project task.

Usage of ICP Client should be taken into account while carrying out the research and should meet the

desired end situation. There is no need of comparing Xamarin with other tools for cross platform

application development like PhoneGap, Titanium etc.

2
 Refer Chapter 5.1 (Kickoff) for ICP Client and Chapter 6.2 (1

st
 Research question) for Xamarin

3
 Refer Chapter 7 (2

nd
 Research question) for more information

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
13

3.6 Project plan

The first step in a project is preparing a project plan. Project plan is made in order to plot the activities

to be performed and track those activities during the project to complete the project on time. (See

Appendix B for more details on Project plan)

Different activities were planned to be performed during the project. The activities consisted of

writing weekly notes to view the performed operations during the week, communication plan with the

university tutor, creating and updating the Project plan, learning and developing demo applications for

Android and iOS, executing research questions to investigate and provide recommendations,

preparing the final report and feedbacks on it from the supervisors and finally preparing for the final

presentation as seen in Figure 3.6.1. The project plan is updated after receiving each new research

question, since Scrum was the adapted method for Software Development lifecycle (SDLC, detailed

in Chapter 4.1.1). The time duration to execute the acquired research question is fixed by a proposal,

which is calculated using different methods (see Appendix C to view the methods and calculation).

The total duration (contract) for the whole project is 25 weeks that is planned to consist of 3-4

research questions. But, the final report consists of 2 research questions because the final delivery

time of the report is at the end of week 18 of the project i.e. graduation takes place before the end of

the whole project. All the activities during the project were started and ended successfully as planned

in the Project plan.

Figure 3.6.1:Activities to be performed during the project

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
14

4 Methods, Tools and Techniques

Different methods, tools and techniques were applied and used during the project. This chapter

summarizes each of these in short.

4.1 Methods

4.1.1 Scrum in Software Development Life Cycle (SDLC)

The project being carried out in a research organization, the developmental activities carried during

the project are in fact research oriented.

There are different existing models/methodologies for the SDLC like waterfall model, spiral model,

agile method etc. In the traditional waterfall model, the phases (Analysis, Design, implementation,

testing and maintenance) are planned and each of these phases occurs only after the previous phase to

it completes. In this project, the Agile Methodologies (AM) of SDLC is applied. Unlike, waterfall

model, AM uses feedbacks instead of planning. The feedback is driven by regular tests and releases of

the evolving software/ research outputs. [3]

Among the different variations of AM, Scrum is the chosen method for the software development

management in this project. Figure 4.1.1 shows the scrum SDLC framework. It is an incremental,

iterative, flexible, holistic product development strategy where a development team works as a unit to

reach a common goal". [4]

Scrum consists of Product Backlog, Sprint Backlog, Sprint and the Sprint result. The description of

the product written in the form of a story is called as the Product Backlog. The product Backlog

consists of rough estimates of both business and developmental values. This story in Product

Backlogs when made into requirements to be implemented in the software is called as Sprint Backlog.

For receiving the product that fulfills requirements in the Sprint Backlog, a time range of 1-30 days is

assigned. This time boxed duration is called as the Sprint. After the completion of the sprint, it results

in software that fulfills the requirement.

Figure 4.1.1:Scrum method in SDLC

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
15

After discussion and feedback on this version of result, next requirement will be carried out by

iterating the sprint. The key benefit in this method is that, the customer can make a change in their

minds (after a sprint) about their needs and wants. In this project, the time duration for each research

question can be considered as the sprint in the scrum methodology.

4.1.2 User Interface Design (UID)

UID is the method in the software development that focuses particularly on the human machine

interaction. It tries to increase the efficiency and simplicity in user experience with the machine.

There are different phases in UID among which the phase of prototyping was particularly

performed. Other phases like user analysis, usability testing etc. weren’t executed. Figure 4.1.2

shows a prototype for sthe cross platform application that was made before starting the actual

application development.

Figure 4.1.2: GUI-Prototype for the cross platform application

4.2 Tools

4.2.1 Microsoft Visio:

This tool was used for creating the UML diagrams (class diagram).

4.2.2 SmartBear SoapUI

SmartBear SoapUI allows easily and rapidly creating and executing automated functional,

regression, compliance, and load tests. This tool was used to find out the XML format for sending

the commands to the Philips CPP products via local Web services. [5]

4.2.3 Android Developer Tools (ADT) Bundle

ADT Bundle is a set of other tools that helps in the development of Android application. The ADT

Bundle includes

a) Eclipse, which is an IDE helpful in the Android application development.

b) Android Software Development Kit (SDK) tools, which consists of other tools

required for compiling, debugging, virtual Android device (emulator) etc.

c) Android Platform-tools.

d) Android system image for the emulator.

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
16

4.2.4 X-Code

X-Code is an IDE that is used in the application development for mac, iPhone and iPad.

4.2.5 Xamarin IDE Visual Studio

Xamarin is an IDE that uses C# as a primary language in the development of a cross platform

mobile application. It consists of commercial products, namely Xamarin.Android (formerly: Mono

for Android) and Xamarin.iOS (formerly: Monotouch). Xamarin.Android integrates with the

Android to create Android applications. Xamarin.iOS integrates with the Cocoa and Cocoatouch

framework to create iOS applications. The Xamarin compiler bundles the .NET runtime and outputs

a native ARM executable, packaged as an iOS or Android applications. Using this IDE, both the

Android and iOS applications can be built using C# PL and even lets share the codes across

Android, iOS and Windows platforms. [6]

Visual Studio is and IDE for development of software applications from Microsoft. In this project it

was used for Android and iOS mobile application development after the installation of Xamarin.iOS

and Xamarin.Android plugins for Visual Studio.

4.2.6 Subversion (SVN)

While working in a project, to provide each member the latest version of the source

codes/documents related to the project, SVN is used.

4.3 Techniques

4.3.1 Android & iPhone Operating System (iOS)

Android is the Operating System (OS) owned by Google. Android runs on mobile devices. iOS is

the OS owned by Apple Inc. that runs on iPhone. The project research on multiplatform application

development can be performed only by knowing these two OS.

4.3.2 Java & Objective-C Programming Language

Java and Objective-C are high level object-oriented programming language (PL). These are the

primary PL that are needed to build an Android and iOS application respectively.

4.3.3 C & C#

C is a low-level
4
 PL. Since the existing libraries of company are in native C/C++ language, to

understand and use these libraries, the knowledge of C/C++ is needed.
C# is a high level object-oriented PL. This PL is used while working with Xamarin Integrated

Development Environment (IDE).

4.3.4 Unified Modeling Language (UML)

UML is a standard way of visualizing the ideas, class diagrams, sequence diagrams etc. in software

engineering.

4.3.5 Simple Object Access Protocol (SOAP)

SOAP is a protocol specification for exchanging structured information in the implementation of

Web Services in computer networks. It relies on Extensible Markup Language (XML) for its

message format, and usually relies on other Application Layer protocols, most notably Hypertext

Transfer Protocol (HTTP) or Simple Mail Transfer Protocol (SMTP), for message negotiation and

transmission. [7] To send the commands to the Philips devices in a CPP, SOAP protocol can be

used as one of the method.

4
 The low level language are the instructions that can be understood by the machine without the need of

additional interpreter whereas high level language instructions need some type of interpreter to be understood by

machines.

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
17

5 Kickoff

This chapter elaborates the processes followed before beginning to perform the research questions.

This includes learning the architecture and creating two separate demo applications (native app
5
) for

controlling WUL on iOS and Android target platforms.

5.1 Learning Philips architecture

To make the products connected, Philips has adapted an architecture called CPP (Connected

Product Platforms) that consists of different elements that includes Data collection Portal, Data

Receiver, control logic, Device Control Service (Figure 5.1.1) etc. These elements are

responsible for the communication with the products remotely. These elements combine to form

the CPP, also called Philips backend server. The learning for the architecture was done with

respect to the information from the supervisor and the documents available on the DI team’s SVN

repository.

For this particular project, WUL was used as an item of Philips CPP product. WUL is a lamp that

has basically the following functionalities:

- On: Switch the light on

- Off: Switch the light off

- Increase: Increase the intensity of light

- Decrease: Decrease the intensity of light

- Wake: Switching the light on by slowly

increasing the intensity of light like a

sunrise

- Dusk: Switching the light off by slowly

decreasing the intensity of light like a

sunset
Two WUL were placed in this CPP for research

testing purpose, so that these functionalities can be

executed remotely without physically touching the

WUL. Currently, there are three ways for

communication with this product. The ways are using

webpage (yellow box), using Soap Interface (brown

box) and using ICP Client (red box), as seen in Figure

5.1.1.

5.1.1 Using Webpage

A webpage is currently available which enables to send the commands to the WUL to switch it ON,

OFF, Wake, Dusk, increase the intensity of light and decrease the intensity of light as seen in Figure

5.1.2.

5.1.2 Using SOAP message

The webserver also accepts SOAP requests over the internet to send the commands to the device

specified in the request message (Figure 5.1.3).

5
 Application designed specifically to one target platform, built using the language that the target platform

supports originally. Native apps have full access to their targeted platform and have high performance.

Figure 5.1.1: Possible ways to communicate to WUL

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
18

5.1.3 ICP Client

ICP Client is the Philips secure communication protocol which can be used to send and receive data

to/from the CPP products remotely. The conceptual view of ICP Client can be seen in Figure 5.1.4

[8]. It realizes the functions and provides functional interfaces that allow a product or mobile device

to access the DI back-end services.

ICAPI

Service handler

Platform Abstraction layer

Non Volatile

memory

OS

Threads

Semapho

re/ Mutex

Timer

Networking

TLS stack

Communication layer

JSON

AES-128

SHA-1

HTTP

Authentication

TLS PAK Light

Services

Data

Collection

Component

download

Remote

Control

Service

Configuratio

n

Custom

service
Events Polling

Device Portal

Sign

On

Servce

portals

Date and

time

zones

Reset

Figure 5.1.4: ICP Client Conceptual view [8]

Figure 5.1.2: Webpage for

controlling WUL

Figure 5.1.3: Soap Envelope to send commands to WUL

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
19

5.2 Exploring Android and iOS

Before beginning to carry out research activities on cross platform application development for

Android and iOS, the knowledge of developing app on these two specific platforms is essential. After

gaining familiar with these two platforms, it will be a great relief in executing the research. Hence,

firstly, it was assigned to develop a native iOS and a native Android alarm app that could send user

selected commands to the WUL at the user specified date and time.

5.2.1 Creating Android and iOS alarm app to control WakeUpLight (WUL)

Being familiar with the Android development (Java and Eclipse) from the previous internship at

Philips, it was quite an easy task to create an Android app. After gathering required information on

Android development from the internet (developer.android.com, youtube.com, stackoverflow.com

etc.), a simple paper prototype was firstly created on how the app will look like. Then the User

Interface (UI) was designed and finally the Android application was built. The method used to send

the command to the WUL is using SOAP. The application is able to let the user select the date and

time and also, the user can select the command to be sent to the WUL (Figure 5.2.1). The application

is able to trigger the user chosen function at user specified date and time. It also facilitates to view all

the alarms that are set, with their details (date, time and function of alarm to be triggered). It displays

a message in case the selected date and time is less than the current date and time.

With no previous experience with iOS at all, it started with the learning of Objective C language,

using the X-Code IDE and building iOS application. After gathering the information required for iOS

development from the internet (developer.apple.com, youtube.com, stackoverflow.com etc.), a paper

prototype for the application was drawn, then the UI was designed and finally the iOS application was

built. The method used to send the command to the WUL here is SOAP. It is able to trigger the

selected function at user specified date and time by allowing the user to choose the date, time and

function (Figure 5.2.2). It triggers the selected function instantly, in case, the date and time is less than

the current date and time

Figure 5.2.2: WUL alarm

app for iOS
Figure 5.2.1: WUL alarm

app for Android

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
20

5.2.2 Android-iOS comparison

After creating the two demo applications for controlling the WUL, some basic differences were to be

noted on the basis of these two applications developed. The findings are as follows:

- The WUL alarm app on Android contains number of activities (with multiple xml layouts)

and is an extended version of existing WUL app whereas the WUL alarm app on iOS is a

completely new app built on a single View Controller (VC) which is similar to xml layout on

Android. A story board can be used to see the overall VCs present in the application. The VC

contains header files and a main file (where implementation is done). This VC can either be

the default UIViewController class or a user created custom class.

- To start a new activity on Android apps, Intent can be used to load a new activity after which

the Xml layout is loaded to the view. In iOS, a push or modal Segue can be used to open a

new layout (basically a VC in iOS) within the application. Information between applications

on Android can be passed using Intent whereas; IOS restricts this by limiting only through

registered URL handlers. [9] No passing of information between apps was required while

building the WUL alarm app on iOS and Android.

- In Android, starting a new activity from a different activity using Intent keeps all these

activities in stack. Whereas, in iOS there are different types of VC and only if there is use of

“Navigation controller” as the base VC, the screens/views are kept in stack using a Push

Segue. Here, keeping in stack refers to the pause of the current screen and on top of that, a

new screen is placed on, where both the activities are alive. If we return back from the stacked

screen, the previous screen/VC which was paused will resume back closing the new screen

that was opened. Using Modal Segue in iOS considers the new VC as a child VC of the

current VC and the new activities cannot be kept in stack list. Hence, stacking is only possible

using Navigation Controller VC as the base view where a Push Segue is used. Further VC can

be a simple VC where a Push Segue is used to open a new VC and all these VC can be kept in

stack. [10]

- For inserting a drop-down list in Android, Spinner was used to choose the list of functions.

Whereas, in iOS, there is no availability of standard UI items for the dropdown list. However,

as an alternative “Picker View” can be used that allows to select an item from list of available

items. This UI item in WUL app is placed to let the user choose different functions like “ON”,

“OFF”, “Wake” and “Dusk”.

- For letting the user choose the date and time there is availability of “DatePicker” and

“TimePicker” respectively on Android. In iOS, “DatePicker” can be used for the similar

function. In the android DatePicker, the user was able to select the Year, but in the iOS Date

Picker, there is no option for choosing the Year, if it shows both the Date and Time. However,

it is possible to show the year, only if the date is shown. For WUL control, the Year isn’t

really needed because none of the user will really try to set their WUL light function for years

ahead.

- The Android and iOS platforms both support working with multiple Threads (multithreading).

During the development on Android, the started Thread ran even on the background but on

iOS the Thread was suspended after entering the background mode. This can probably due to

the reason of missing implementation for handling the background threads.

Hence, UI related similarities and differences on the two platforms (iOS and Android) were the

most of the knowledge learnt in the development of this demo version of the WUL alarm app..

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
21

6 1
st
 Research question (1

st
 Sprint)

This chapter describes the steps performed with learning, development, problems and

recommendations for the first research question received.

During the project, different question arise and recommendations on those questions should be

provided on the basis of research conducted. Each research question is regarded as a sprint in the

project. The first research question states: “How is it like to develop a cross platform application for

the WUL using the Xamarin that is able to control WUL’s functionalities using pre-existing ICP

Client library? “Appendix D provides detailed information for the 1
st
 Research question.

6.1 Time proposal

When a task is given to be performed, it consumes certain time. This time duration needs to be

estimated before starting the task. For the first research question, instead of just assigning a time

period blindly for performing the research question, different methods were applied in calculating the

time span for performing the task. The methods might not be efficient but was still chosen to

determine the time span which might be nearly same to a random time span proposal. The proposal of

6 weeks was made and was accepted. (See Appendix C for the methods and proposal calculation).

After the proposal acceptance, learning and gathering information on Xamarin Studio was performed.

6.2 Information gathering and learning

6.2.1 Information sources:

The first research question related to the Xamarin needed to be investigated. There are number of

sources for collecting information and learning on Xamarin, among which three sources are the most

helpful ones. Firstly, the official developer’s guide for Xamarin [11] provides almost all the necessary

documentation for the application development on Xamarin. Secondly, YouTube provides numerous

tutorials and seminars in the learning/development on Xamarin [12]. Finally, Stack Overflow

network consists of number of questions and answers that are very helpful in learning and solving

problem while developing using Xamarin. [13]

6.2.2 Learning on Xamarin:

Xamarin is a software developer company that provides tools for mobile application development.

One of their products is Xamarin Studio. It is a commercial IDE from Xamarin that is used to build

native/cross platform mobile applications across Android, iOS and Windows platforms with C#. Only

the iOS and Android platforms will be discussed. This IDE is supported on both Windows and Mac

OS. The company’s main product is Xamarin.Android (formerly Mono for Android) and

Xamarin.iOS (formerly MonoTouch), combined called Xamarin twins. They are required for

developing Android and iOS applications, built on top of Mono (an open-source version of the .NET

Framework based on the published .NET ECMA standard), as seen in Figure 6.2.1, including memory

management, reflection, and the .NET base class libraries. Saying just Xamarin, Implicitly represent

its two products Xamarin.Android and Xamarin.iOS.

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
22

Figure 6.2.1: Xamarin Architecture

 Xamarin’s Ahead of Time (AOT) compiler compiles Xamarin.iOS apps to produce native Arm

binary (.app) suitable for Apple’s app store and Xamarin’s compiler compiles Xamarin.Android apps

down to Intermediate language and finally produces native binary output (.apk) for Android by taking

advantage of Just in Time (JIT) compilation right on the Android device. As Xamarin compiles the

app to a native binary (not cross-compiled/interpreted), it gives users brilliant app performance for

even the most demanding scenarios like high frame rate gaming and complex data visualizations.

Also, Xamarin exposes all the Application Programming Interfaces (APIs) available in iOS and

Android to the developer as C# class libraries. The apps built are still native because, they don’t

abstract away the native platform UI APIs instead provide a bindings to the native APIs and provide

access using C# library. [14] Hence, Xamarin being able to provide development of native featured

(User Interface & performance) application and provide the ability to develop the cross platform

application, it seems to be a good and very efficient IDE to choose regardless of its limitations (most

of which are removed from the 4.1 release) on Xamarin.Android [15] and Xamarin.iOS. [16]

Note: The Xamarin IDE used in this research is Version 4.0.2 with Xamarin.Android (Version: 4.6.0)

and Xamarin.iOS (Version: 6.2.1.201)

The application development using Xamarin studio for both iOS and Android is only possible on Mac

OS, whereas, Xamarin studio on Windows doesn’t support iOS development. However, to develop

both Android and iOS applications, Visual Studio can also be used by installing the Xamarin.iOS and

Xamarin.Android plugins for the Visual Studio. Using the Visual Studio for the iOS app deployment,

a network Mac OS is required.

Simple Android and iOS native applications were built firstly in Xamarin. The apps contained basic

functionality for clicking buttons and showing data information with respect to the click, just to be

familiar with the Xamarin environment. Next step was to learn and create cross platform application

on Xamarin.

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
23

6.3 Cross Platform app development using Xamarin

After being familiar with native app development in Xamarin, cross platform application was needed

to be built to perform the first research question. Hence, the architecture for Xamarin cross platform

development is to be learnt, prototypes and UML designs were to be created and finally the cross

platform app for controlling the WUL is to be built.

6.3.1 Architecture

For building a cross platform app in Xamarin, firstly the strategy needed to be known. The

architecture for the cross platform application can be seen in figure 6.3.1. The architecture clearly

shows two portions separated. First portion is the View of the application that contains the UI (User

Interface) layer and the Application layer. This part is specific to each platform target i.e. separate UIs

need to be made for iOS, Android and Windows if these three platforms are targeted. This provides

the reason for the native look and feel to the cross platform application. The second portion is the

shared code of the application that contains the business layer, data layer, data access layer, service

access layer. These are the layers that can be shared across the different platforms that make the

application a multi-platform application. Hence, a cross platform application targeting Android and

iOS will have one shared project (directory), one Xamarin.Android project and one Xamarin.iOS

project. (See Appendix D for more detail)

Figure 6.3.1: Xamarin Cross platform architecture

6.3.2 Prototyping & UML

After learning the architecture and before the application development, certain shape needed to be

given to application and planned ahead. Hence, the UI prototype design that matches the similarities

in between the platforms prepared can be seen in figure 6.3.2.

Figure 6.3.2: Cross platform UI prototype for iOS and Android

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
24

After designing the View part for the cross platform application,

there was a need for designing the shared part and hence simple

WULCustTimer can be seen in Figure 6.3.3 which consists of

shared code across the platforms.

6.3.3 Cross platform implementation

Following the prototype and UML design, a cross platform

application (Figure 6.3.4) was ready that shared codes between the

two platforms (iOS and Android). Since, being a simple app, it only

shared around 50 percent of codes. However, the shared code can be

increased to greater extent with respect to the type of application

built. This application lets the user select date and time, select a

function and set an alarm. However, till this step the app has the

ability only to trigger the info of the chosen function in the form of

message, at user selected date and time. The next step was to really

make the application to be able to trigger and send the function command remotely to the WUL.

Figure 6.3.4: Cross platform WUL application running on iOS and Android

To send the commands to WUL, there were three methods as described in chapter 5.1. Webpage

allows sending command directly from webpage. Soap was used to build native WUL application in

chapter 5.2.1. For this application, as stated in the first research question, ICP Client needed to be

used for sending the remote commands to the WUL.

Figure 6.3.3: Shared Code UML

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
25

6.3.4 Using ICP Client

The ICP Client library is originally written in native C language. Different versions of ICP

Client library are available, built for Android, iOS and Windows. Java, Objective-C and C#

wrappers are created on the native C ICP client library to be used in Android, iOS and

Windows respectively. (See Appendix D for more details):

Xamarin supports the use of existing Java and iOS libraries. The binding feature in Xamarin

can be used to access the Objective-C library as a C# library. [17]

 To reuse the Java libraries, it can be done in three ways: [18]

a) Create a Java Bindings Library – With this technique, a Xamarin.Android project is used

to create C# wrappers around the Java types. A Xamarin.Android application can then

reference the C# wrappers created by this project, and then use the .jar file.

b) Java Native Interface – The Java Native Interface (JNI) is a framework that allows non-

Java code (such as C++ or C#) to call or be called by Java code running inside a JVM.

c) Port the Code – This method involves taking the Java source code, and then converting it

to C#. This can be done manually, or by using an automated tool such as Sharpen.

Since, the ICP Client library obtained is originally native and wrappers are created around it to run on

different platforms. Hence, instead of creating another C# wrapper using the methods stated above,

instead, the native-C ICP Client can be used, using the Platform/Invoke (P/Invoke) mechanism

supported in C# for gaining access to the native C functions present in the library.

The working mechanism of the ICP Client library to send commands to the WUL is:

a) Initialization must be done firstly. ICP Client Init()

b) Secondly, Sign On is performed. ICP Client SignOn()

c) The callback for the SignOn should be handled.

d) Finally, commands can be sent to the WUL by setting the

data to upload and executing the command. (Data collection

Portal)

As seen in Figure 6.3.5, the ICP Client is further dependent on different

other libraries like libssl, libcrypto etc. The ICP Client, at the initial

phase of its development by the Philips team referenced the NVM,

whose implementations were done implicitly inside the ICP Client

library in native C.

Implementing the ICP Client compiled for Android in the

Xamarin.Android project, it was unable to consume the function.

Ignoring the Java Native Interface (JNI) functions and trying to call the

C library functions failed in this case. It was found out that, there have been

changes in the architecture during the course of time related to the

implementation of NVM in the ICP Client. This inability to consume the ICP Client function was due

to the reason that, NVM interface in linked to the JNI and the NVM calls should be implemented

separately by the application to fit to the new architecture. Implementing the NVM calls were out of

the scope of this project and hence this step was skipped.

Figure 6.3.5: ICP Client architecture

dependencies

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
26

Moving forward to use the ICP Client compiled for iOS in Xamarin.iOS. In the iOS compiled version

of ICP Client library, the same problem occurred which showed the missing implementations for the

NVM functions as seen in Figure 6.3.5.

Figure 6.3.5: Missing NVM implementation

Hence, the change in the architecture in the ICP Client became an unexpected bottleneck to see the

consumption of use of ICP Client in the Cross platform application using Xamarin. Hence, the

implementation of ICP Client library in Xamarin project was unsuccessful and the reason was

identified.

The complicated looking ICP Client library was unsuccessful to be used in the Xamarin project due to

the change in the architecture and the step chosen to implement it using the P/Invoke mechanism. So,

a test was conducted to prove whether a native library can be used in Xamarin project or not. Hence, a

simple native C library consisting of calculation functions like multiply and add was made. Then,

using the Android Native Development Kit (NDK) toolset, the native C library was built for Android.

The ICP Client we use in the project consist the same properties as this test library. Using the C# P-

Invoke mechanism, it was possible to consume the function of this test library and therefore, it was

proved that Xamarin supports the use of native-C library.

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
27

6.4 Result and recommendation (1
st
 Sprint)

The problem in the NVM implementation was detected that lead in the inability to use the ICP Client

library in the Xamarin project for the current moment. The result from the first research question is

the information collected over Xamarin for the cross platform application development and the use of

the ICP Client library in Xamarin.

Despite the inability to use the ICP Client library on Xamarin, the recommendation would be to make

use of Xamarin for the cross platform application development because of the following reasons:

- Native look and feel

Xamarin provides a cross platform application development with a native look and feel. It’s

not only the look but it is in fact native. The cross platform application created in Xamarin

has a fully native look and feel. The UI elements have native look and feel.

- High Performance app

Since, due to the direct full native API possible through the one to one mapping provided by

the Xamarin, the performance capability is high as in the native application. The performance

testing wasn’t carried out but, as a normal user, no performance difference between this cross

application built in Xamarin and the native application built during the kickoff (Chapter 5)

were noticed. The UI response while interacting with the UI was similar.

- Support for existing libraries

The existing C#, native C, Java, Android libraries can be used in Xamarin. This helps in the

application development quite more efficient and faster. A native-C library built for specific

platform (Android) was used in Xamarin to see this.

- Excessive codes sharing

The UI can be separated and the business logic, data layer and network communication codes

can be shared across platforms using the same language (C#) and .NET, including memory

management, reflection, and the .NET base class libraries. Codes were shared during the

development of the cross platform WUL application in Xamarin.
- Cost effective

Though the Xamarin is a commercial product pricing ranging free- $1899 per user per

platform, but in terms of the output received through the use of this product, costs can be

saved in a long term.

- Time efficient

Due to the code sharing ability across the platforms in the cross platform application

development, lot of time can be saved in the development of application for different

platforms.

After achieving the stable version of ICP client library, different possible methods as

described in 6.3.4 can be used to make the library workable to send remote commands to the

Philips Products. Despite the inability to make use of ICP Client caused due to some missing

implementation, creating a cross platform application using Xamarin is really a great tool for

the development. Therefore, a recommendation to use Xamarin for the cross platform

application development is made.

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
28

7 2
nd

 Research question (2
nd

 sprint)

This chapter describes the research learning, experience and recommendations for the second research

question received.

After carrying out the first research question, pretty interesting techniques for developing a cross

platform application was seen. However, a correct template for the development wasn’t clear enough.

Hence, to make the application of a common architecture, a need for an efficient pattern/model was

raised. Hence, the second research question was defined out to make the development more efficient.

The 2
nd

 research question states: “A recommendation on the best model/approach/patterns for the

maximum sharing of codes across the platforms in Xamarin.”

Note: The Xamarin IDE used in this research is Version 4.0.2 with Xamarin.Android (Version: 4.6.7)

and Xamarin.iOS (Version: 6.2.5.2). Appendix D provides detailed information for the 2
nd

 Research

question.

7.1 Time proposal

Like in the first research question, a time proposal for carrying out the task needed to be given. Using

methods for calculating time (see Appendix C), a proposal of 5 weeks was made. After the proposal

acceptance, learning and gathering information on patterns was performed.

7.2 Information gathering and Learning

7.2.1 Information sources

The investigation on the second research question was related to the recommendation of patterns. Lots

of internet sources were referred for learning and the most helpful were:

- Joel.inpointform patterns differences: http://joel.inpointform.net/software-development/mvvm-vs-mvp-

vs-mvc-the-differences-explained/

- Codeproject article on MVC and MVP: http://www.codeproject.com/Articles/288928/Differences-

between-MVC-and-MVP-for-Beginners

- Msdn MVVM info: http://msdn.microsoft.com/en-us/library/gg405484(v=pandp.40).aspx

- Slodge blog on MVVMCross: http://slodge.blogspot.co.uk/search?updated-min=2013-01-

01T00:00:00Z&updated-max=2014-01-01T00:00:00Z&max-results=50

- Github MVVMCross repo: https://github.com/slodge/

7.2.2 Learning Patterns and framework

During this sprint, lots on information on patterns and its different types were collected. Patterns are

the design, to make the application development efficient by the separation of Views or User

Interfaces (UI) and the actual business logics of the application. This enables to freely make changes

in the user interface design without the change in the business logic implemented. It also increases

testability, maintainability and extensibility of the software application built.

There are different types of patterns among which, most used patterns are Model View Controller

(MVC), Model View Presenter (MVP) and Model View ViewModel (MVVM). In general, the View

and the Model are the same across these different patterns. The view consists of the codes for the UI

rendering and the Model consists of all the business logic/data. The different MVC, MVP and MVVM

patterns concerns on the interaction of the Controller, Presenter and the ViewModel (VM)

respectively with the View and the Model (See Appendix D for detailed information).

 After the patterns learning process, there was a need to choose the model to be used in the Xamarin

that could help in increasing the efficiency of code sharing strategy. After a lot of information

http://joel.inpointform.net/software-development/mvvm-vs-mvp-vs-mvc-the-differences-explained/
http://joel.inpointform.net/software-development/mvvm-vs-mvp-vs-mvc-the-differences-explained/
http://www.codeproject.com/Articles/288928/Differences-between-MVC-and-MVP-for-Beginners
http://www.codeproject.com/Articles/288928/Differences-between-MVC-and-MVP-for-Beginners
http://msdn.microsoft.com/en-us/library/gg405484(v=pandp.40).aspx
http://slodge.blogspot.co.uk/search?updated-min=2013-01-01T00:00:00Z&updated-max=2014-01-01T00:00:00Z&max-results=50
http://slodge.blogspot.co.uk/search?updated-min=2013-01-01T00:00:00Z&updated-max=2014-01-01T00:00:00Z&max-results=50
https://github.com/slodge/

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
29

collection, MVC and MVVM patterns were seen to be applied in Xamarin by MonoCross and

MVVMCross frameworks respectively. MVVMCross is built from the experience of MonoCross (a

long ago Monocross fork
6
 transformed from MVC to MVVM) and it is the most active framework at

the current moment. Hence, further investigation on MVVMCross framework was decided to be

carried out, that implements MVVM pattern.

7.2.3 MVVMCross (MVX) framework

MVX is an Open source cross platform framework for MonoTouch (Xmarin.iOS), MonoDroid

(Xamarin.Android), WP7 and WinRT. It utilizes the MVVM C# pattern for the cross platform native

application development. It was started by Stuart Lodge in November 2011. This framework makes

extensive use of Portable Class library (PCL). [19] [20]

Figure 7.2.1: MVX implementation

MVX consists of three components: View (V), View-Model (VM) and the Model (M). View consists

of all the UI rendering codes and the implementation of platform specific codes like push notifications

in iOS or File I/O access across platforms. Model consists of all the business logic and services like

database, web services. The VM acts as a mediator between the View and the model and consists of

public properties that bind
7
 with the View using the Binder provided by MVX framework. The use of

MVX framework can be done after certain setup by adding classes and references (see Appendix D)

needed for the framework to perform some automatic tasks like binding. Here, the View and the VM

bind that makes instant update of the view when there is change in the public properties in the VM.

The main part of the MVVMCross framework is ICommand and INotifyProperty changed. Whenever

there is certain action in the View (UI interaction), the action binds with the ICommand in the VM

which then performs some defined manipulation. This manipulation in turn might make changes in

the Model. Finally, after the manipulation, INotifyPropertyChanged is triggered. Finally, this will

update/render the View accordingly. In this way, it can be seen that there is a decoupling of View and

the Business logic, which are connected with a very thin layer using the MVX framework. (Figure

7.2.1)

Using the MVX framework helps to make an extensive sharing of codes between the platforms. The

Views are implemented individually with the number of targeted platforms and shared codes can be

reused using the PCL across the platforms. Like a simple Xamarin cross platform application solution,

for an MVX application solution in Xamarin targeting Android and iOS would contain three projects:

6
 Copying the original open-source project in GitHub to make reuse or extension of it.

7
 Connected; changes with respect to the change in the other source it is connected to.

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
30

One Android project with Android View (View.Android), one iOS project with iOS View (View.iOS)

and the one PCL (PCL.Core) project. This PCL.Core contains all the shared codes enclosing the

Model and the VM.

The PCL used in MVX is of Profile 104. This consists of only the portable codes and cannot be used

to implement the platform specific
8
 implementations. This profile defines a small subset of .Net (.Net

4.5) that contains parts of the assemblies for:

 mscorlib

 System.Core

 System.Net

 System.Runtime.Serialization

 System.ServiceModel

 System.Windows

 System.Xml

 System.Xml.Linq

 System.Xml.Serialization

This profile of PCL consists of APIs available on all platforms. Hence, the cross-compatibility will be

supported to maximum and the PCL can be reused easily again without the fear of containing any

unsupported APIs (accidently used codes) in the shared code across platforms. Simple .Net libraries

can’t be referenced across different platforms (other than its compiled platform) but, the PCL works

across different platforms easily. Hence, it looks reasonable for using PCL in MVX framework for the

development of cross platform applications.

7.2.4 Different cases during MVX development:

During the MVX application development, different things related to the idea of implementing certain

cases occur. Some of the cases learnt are as follows:

a) Multiple screens

Cross platform applications with multiple screens can be too created using the MVX framework.

Since, the Views and the VM bind together using the MVX framework, VM is responsible for which

screen to load. So, when there is a need of certain screen, the VM binded with its view can be

activated. For example: When the application starts, the first VM activates which loads its binded

view (first screen). So, to open a different screen when a button-click on this first screen, the click

event of the first screen (button) is binded to the first VM. From this first VM, the SecondViewModel

(VM) that is binded with the second Screen can be activated (as shown below). Hence, activating the

SecondViewModel (VM) from the first VM will enable the app to show the second screen. This way,

multiscreen applications can be built from MVX through VM transitions rather than from views.

public void GoToSecondVM ()
 {
 Base.ShowViwModel<SecondViewModel>(); //base class method
 }

Sequentially, adding ICommand's to ViewModel's, binding ICommand's to Views (Buttons), adding

multiple VM, adding multiple Screens (View), finally navigating between the screens (View) using

VM make a multiscreen MVX application.

8
 Related to specific platforms like the UI and device APIs (Bluetooth, Camera etc.)

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
31

b) Passing information between the screens

At certain point during the application development, there arises the need of passing information

(data) between the screens. This can be accomplished simply by passing the required data using the

VM (binded with the active screen) that activates the other VM (binded to the next screen) while

loading next screen as below:.

//Method to go to the second VM
public void GoToSecondVM ()
 {
 Base.ShowViwModel<SecondViewModel>(new{passData=“Hello“});
//base class method
 }

The reserved Init() function in VM (second) as seen below can be used to pass the information from

the VM (first) above.

//VM reserved Init() method implemented in the second VM to pass data
Public void Init (string passData)
{
SetProperties= passData;
}

c) Gestures

As gestures relate to the platform specific implementation, they reside on the View project of the

MVX application and they are implemented in each platform separately. There are various ways to

implement gesture recognizer. For example, in iOS a tap gesture recognizer implementation would

look something like this:

Var gesture= nwe UITapGestureRecognizer(()=>
{
//The operation to be performed on the tap gesture
})
View.AddGestureRecognizer(gesture);

Where, View is the main view where the gesture is to be implemented

d) NuGet/Plugin (Native abstraction)

MVVMCross NuGets are the packages available for an easy development. They contain a template

(default Classes and assemblies) for the MVVMcross application development. These also contain the

implementations of the Native APIs that can be shared across platforms. These NuGet packages

(Plugin) can be added and used in the Xamarin projects. The MVX framework adapts the PCL project

but the PCL doesn’t support the platform specific implementations like accessing Cameras, Bluetooth

etc. For this reason to implement the non-supporting codes in PCL the existing plugins can be used in

the MVVMCross or a custom plugin can be created to be used to access the native APIs in PCL.

However, for a custom plugin the implementation needs to be done on each number of targets. The

following steps can be followed for creating a custom plugin:

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
32

1. Declaring common functionality (an interface
9
)

An interface can be declared in the PCL Core project that consists of the functionalities to

be used which should be registered as a MVX plugin.

2. Writing platform specific implementations

The platform specific implementations for the specific platforms can be done in the view

project (iOS and Android) which implements the interface declared in the PCL Core

project.

3. Using the interface and not the implementation

The interface is declared and the implementation is done in the platform specific view

project. Now, for consuming the platform specific functions can

e) Xamarin.Mobile

Xamarin.Mobile is a library that exposes a single set of APIs for accessing common mobile device

functionality across iOS, Android, and Windows platforms. This increases the amount of code

developers can share across mobile platforms, making mobile app development easier and faster.

Xamarin.Mobile currently abstracts the contacts, camera, and geo-location APIs across iOS, Android

and Windows platforms. Future plans include notifications and accelerometer services. [21] It maps

to native implementation on each platform.

Figure 7.2.2: Xamarin.mobile

For Example, to use contacts on Android and iOS, we can use:

Var book= new AddressBook(){PreferContactAggregation=true};

Foreach(Contact c in book.Where(c=>LastName== “search keyword”)){

Console.WriteLine(C.DisplayName);

Foreach(Phone p in c.Phones)

Console.WriteLine(“Phone: ”+p.Number);

Foreach (Email e in c.Emails)

Console.WriteLine(“Email: “+e.Address);}

9
 Interface is a type that exposes the behavior of the services that needs to be provided. It doesn’t contain any

data but it contains only the behaviors.

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
33

Xamarin.Mobile can be a boon in the cross platform development using Xamarin and was planned to

be used in the cross platform development. But, when adapting the MVVMCross framework, even

Xamarin.Mobile seems less important. MVVMCross provides plugin features containing lots of single

API access (functions) that Xamarin.Mobile includes (except for Contacts) and many other functions

that Xamarin.Mobile doesn’t include, like Accelerometer, Bluetooth etc. Hence, MVVMCross plugins

are superior to the Xamarin.Mobile. Therefore, looking at the existing plugins and ability to create a

custom plugin in MVVMCross, the use of Xamarin.mobile can be skipped and MVVMCross plugins

can be used instead.

f) Native libraries

Getting the Platform/Invoke (P/Invoke
10

) mechanism work (Appendix D. Research Question 1.

II.D2), to use the functions in the native libraries in the PCL, then the same procedure can be followed

as mentioned above in using Plugin (7.2.4.d).

g) Features

The advantages of MVVMCross include: [22]

 Binding support on iOS (XIB) and Android (XML).

 A lot of app behavior gets put into VM and is reusable across platforms.

 Since VM are platform-agnostic unit tests can be written that covers most of the app's

behavior.

 View models are shared, but views remain totally native.

 The framework itself is very extensible, allowing for a lot of customization when needed.

 Lots of most demanding scenarios, like high frame rate gaming and complex data

visualizations have been built using the Xamarin and MVVMCross framework. For

example: Kinect Star Wars, Aviva Drive, The CrossBox DropBox Client etc.

7.2.5 Experience with MVX development

After learning and gathering information about the MVX, it was turn to use the framework to be

applied in the same application that was built in the 1
st
 sprint i.e. An alarm application that could send

commands to WUL at user selected date and time. To begin with the implementation, architecture for

this MVX WUL alarm application was made as seen in Figure 7.2.3. The UI remains the same for this

application but there adds different things like binding, ICommand etc.

10

 A mechanism in C# to access functions written in native (C) languages from C#

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
34

Figure 7.2.3: MVX architecture for the WUL Alarm app

After designing the architecture for the app, implementation was carried out and several things were

experienced. The biggest problem is the setting up the MVVMCross framework. To utilize the MVX

framework, NuGet packages are used officially in VisualStudio IDE using the Xamarin.iOS and

Xamarin.Android plugin. Using the Visualstudio for the development, the PCL support for the

Xamarin.iOS and Xamarin.Android frameworks doesn’t exist by default. Hence, tweaks must be done

in order to make use of them [22]. Even following the tweaks didn’t work out in this project. The

NuGet package for using the MVVMCross requires NuGet 2.5 which isn't yet finished/ released for

Xamarin Studio on Mac. Hence, unable to use the NuGet, all the references, required classes should

be done manually on Mac [23]. Even after the modeling of the application, due to these problems at

the present context, while trying to manually work with the assemblies for the MVVMCross

framework couldn’t be set properly and consumed more time than estimated. Therefore, the straight

forward getting started with the MVVMCross isn’t yet perfect. Hence, though MVVMCross being

powerful, the initial setup is really the main bottleneck during the development.

The main advantage of using MVX can be clearly seen in bigger projects while managing, sharing

and testing. In smaller projects it only makes things complicated rather than making life easier. The

previously built WUL application in the 1
st
 research question architecture (using only Xamarin) to

adapt the MVX is quite a small project. Hence, MVX isn’t that efficient in in this case that showed

only significant improvements while sharing codes but adding much more complications of binding

stuffs.

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
35

7.3 Result and recommendation (2
nd

 Sprint)

From the 2
nd

 sprint research activity, MVVMCross framework that implements MVVM pattern was

discovered to be used in Xamarin for increasing the shared code between the platforms. Xamarin

with MVVMCross framework is a very powerful combination for the cross platform mobile

application development. These two combined boosts up the cross platform application development

process by giving a single language of C# for the development across different platforms. They enable

shared codes across different platforms, provide native look and feel to the cross app, support native

and existing libraries, high performance apps and large applications have a common architecture.

However, for the cross platform support, the use of different IDEs (Xamarin, MonoDevelop,

VisualStudio) for the development using Xamarin components and MVVMCross framework make a

tiresome work to find the correct path. But once, the correct path is known and setup, it makes the

whole life easier for the cross platform application development. Hence, using this framework is

efficient in larger projects rather than in smaller ones. To conclude, a native-cross platform

application can be built with excessive sharing of codes across platforms and a clear decoupling of UI

and the business logics can be done using Xamarin and MVVMCross framework combined.

Therefore, the recommendation would be to make use of MVVMCross framework (MVVM pattern)

for the development of cross platform mobile application. Despite of the disability to set up the

framework for use, based on the research information on the features and supports of Xamarin and

MVVMCross, they should be applied in the cross platform mobile application development.

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
36

8 Progress Tracking

There are different activities planned to be performed during a project. This chapter describes the

different ways of tracking of these activities during this project.

8.1 Mentor meeting

Whenever any suggestion was required, when there was need of knowing the status of the project,

definition of a new research needed to be done, result on the research question is to be given, a

meeting was planned with the company mentor. This meeting was really helpful and educational too

due to the suggestions received during the meetings.

8.2 Scrum Standup meeting

Each Tuesday and Thursday at 11:45 AM, a scrum standup meeting takes place. During this meeting,

each member in the team gives a short description on what the member did previously, is doing

currently and has planned next. This meeting, though being short, is fruitful and gives a proper idea in

exchanging information between the team members.

8.3 Documented status

The position of the project was viewed every week in the Project phasing diagram (Figure 3.6.1 or see

Appendix B: Project Plan). Since, there were different sub-activities defined while carrying out the

research questions. These were tracked using a different table.

The first research question was planned to be performed started week 6 and ending week 11 of the

project. The second research was planned to be performed started week 13 and ending week17 of the

project. At the end of each activity during the research, a status was assigned to the activity, some

comments on the activity and a decision whether to step the next activity or not was taken. Changes

could be made in the plan if any findings during an activity need any change. (For more details, see

Appendix C. Time proposal for Research Questions). The sub-activities planned within the research

questions were successfully adapted and completed (Table 1 and Table 2). However, in research

sometimes we meet some unexpected things as in week 17 (see Table 2), where the planned activity

was changed due to the unfit with the context.

8.3.1 Tracking the first research question

Weeks Activities Status & comments at the end

Week 6 Learning Xamarin studio to

develop a simple Native iOS

(HelloXamiOS) and Android

(HelloXamDroid) apps in C# for

the first 1 week that consists of

simple UI buttons and shows

some text messages on the

display.

Done. Gained basic knowledge on Android and iOS

app development on Xamarin that uses C#. Next

activity can be stepped as planned.

Week 7 Learning and gathering

information to be able to develop

a simple cross platform

application on Xamarin Studio.

Simple cross platform app refers

in making use of shared codes

between the different platform

projects.

Done. The techniques for developing a simple cross

platform application is acquired and hence next

activity can be adapted

Week 8 Develop a cross platform Done. A simple cross platform application is created

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
37

XamWULCal app that can

trigger a method (that shows an

alarm message on the display) at

user chosen date and time.

that fulfills the activity for Week8. Hence, Week 9 can

be stepped further.

Week 9 Investigation on the use of native

iOS and Android libraries on

Xamarin.

Done. The methods and techniques for the usage of

native iOS and Android libraries on Xamarin were

known. However, to successfully complete the week

10 activity, additional support is needed to perform the

activity due to no previous experience in usage of

library written in different language than the platform

to be used in.

Week

10

Importing the ICP Client library

on the XamWULCal built in

week 8.

Done. The C# version of ICP Client library (C#

wrapper around C) was provided and hence simply

added the ICP Client library to the project. Next,

activity can be stepped and the C# wrapper class can

be used in Xamarin to access the function of ICP

Client library.

Week

11

Finish the XamWULCal app that

enables to send commands to the

WUL via ICP Client at user

specified date and time.

Not possible for this moment. The ICP Client

(compiled for Android and iOS) was imported to

Xamarin.Android and Xamarin.iOS project in order to

send commands to WUL. But, due to the uneven

version of libICPClient where the NVM doesn’t

implement all the functions referenced by

libICPClient, it wasn’t possible to send commands to

WUL for this moment. Hence, the task was carried out

as planned but the result didn’t appear as expected, to

be able to send commands to WUL via ICPClient.
Table 1: Tracking Research question 1

8.3.2 Tracking the second research question

Weeks Activities Status & comments at the end

Week 13 Learning about Windows

Presentation Foundation (WPF)

patterns/model.

Done. Gathered information on WPF and shall

proceed to next step.

Week 14 Learning different types of WPF

models and their uses in creating

different types of applications.

Viewing the models adapted on

existing Xamarin example

applications.

Done. Learnt about MVC, MVP and MVVM.

Frameworks like MonoCross (uses MVC) and

MVVMCross (uses MVVM) are popular for the cross

platform application development in Xamarin. Next,

step can be taken.

Week 15 Learning about Xamarin.mobile Done. It was learnt that Xamarin.mobile provides

single set of API access. But, this library cannot be

used directly while adapting the MVVMcross

framework. Hence, instead the available plugin in the

Nuget can be used that provides many more API

accesses besides GPS and accelerometer. Next step

can be taken.

Week 16 Choosing the most effective

model for Xamarin Cross

platform application

development that makes high

reuse/sharing of codes and

designing a prototype cross

platform app (with respect to the

Done. MVVMCross framework chosen. The design

of the app is designed as the same app created before.

i.e. WULCalendar app but using the MVVMCross

framework. Since, the WULCalendar app doesn’t

make use of any APIs present in Xamarin.mobile, the

next step can be replaced with the implementation of

the application.

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
38

chosen model).

Week 17 Implementing Xamarin.mobile to

fit the design in Week 16.

Changed. Xamarin.mobile doesn’t fit the design and

also better option (MVVMCross plugin) was found.

Week17 implementation of MVVMCross

framework

Not completed. Due to the unexpected setting up

(tweaks) required for the framework deployment and

fragmentation in IDE for the development support,

the task for implementing the framework couldn’t be

completed successfully.
Table 2: Tracking Research question 2

9 Conclusion and recommendation

This chapter consists of the final conclusion and recommendation summarized from the results and

recommendations from the 1
st
 research question (see Chapter 6.4) and 2

nd
 research question (see

Chapter 7.3).

The goal of the project to research and provide recommendation on the received research questions

and to minimize the problems that rose during the mobile application development across Android

and iOS is successfully met.

Firstly, a proof of concept was delivered by running a cross platform alarm application on Android

and iOS using Xamarin. It positively showed the sharing of codes across the platforms while keeping

the user experience still native. A recommendation to make use of Xamarin for the cross platform

application development is given.

Secondly, MVVMCross is recommended to be the best framework that implements the Model View

ViewModel (MVVM) pattern. The recommendation is based on the research learning (Appendix D)

on the framework.

To recapitulate, Xamarin with MVVMCross framework is a very powerful combination for the cross

platform mobile application development. Hence, the recommendation is to make the use of Xamarin

(Xamarin.Android and Xamarin.iOS) and MVVMCross framework (that implements the MVVM

pattern) for the cross platform application development.

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
39

Evaluation

Here, I describe my personal experiences on how I tried to eliminate the bottlenecks, my weakness

and strength, the learning for future career, the working environment and the memorable things during

the project journey at the company.

During the project period, the problems that arose were firstly tried to tackle using the internet. Then,

secondly I took help from my supervisor when got stuck on that problem. The help provided in the

form of suggestion was really a great relief. I learned a lot during the project and also found out some

of my weaknesses and strength. My greatest weakness was a lack of communication with people due

to my shy nature, but there were friendly people around to make me more comfortable and hence I

tried to improve slowly to increase the communication. My strong point was the ability to give my

best effort on my received task and the creativity skill (methods in Appendix D), though not very

efficient. The everyday blogging about the carried out activities helped a lot in reviewing/refreshing

the past knowledge gained and also in writing the final report.

Related to mobile development before starting the project, I only had the knowledge of Android

development from my previous internship and university. The iOS world was totally new for me.

Moreover, the cross platform development sounded like a magic to me before this project. But now at

the end of this project, I have gained the knowledge of mobile application native and cross platform

application development targeting Android and iOS platforms. I can really make this mobile

application development proficiency as my future career.

Working with the DI team at Philips is really one of the greatest opportunities I had in my life. The

way of working and the characteristics of people around in the DI team is really a pleasant entity to

have at work. The soothing working environment really makes the work a fun rather than a tedious

job, where everyone is ready to help you with their best effort. The first memorable moment working

at Philips is the project and sport interactivity with my company supervisor that I never experienced

before and it was the best. The second remarkable moment was the saying from my company

supervisor “I try to push you from your limit, but don’t get demotivated”. This saying when

understanding deeply really encouraged me to perform my task. Sometimes during the project, I dived

deep inside and completely lost in search of the result. At that moment, my company supervisor

helped me pull out from there and placed back in a comfortable situation. The most important lesson I

learnt from him is “Don’t focus on the result. Plan and follow the process, result is the end of the

process.” The final remarkable moment at the company was the continuous helpful suggestion and

inspiration from Mr. Maurice Hebben (DI team member). Hence, working at Philips was educational,

fun, social, motivational, future career developing and a wonderful experience.

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
40

References/Literatures

[1] "Wikipedia info on Philips," [Online]. Available: https://en.wikipedia.org/wiki/Philips.

[2] "Eindhoven.nl info on the HTC planning," [Online]. Available:

http://www.eindhoven.nl/ruimtelijkeplannen/plannen/NL.IMRO.0772.80022-

/NL.IMRO.0772.80022-0104/t_NL.IMRO.0772.80022-0104_1.2.html.

[3] "Wiki info on SDLC," [Online]. Available:

https://en.wikipedia.org/wiki/Software_development_process.

[4] "Wiki Info in Scrrum method in SDLC," [Online]. Available:

https://en.wikipedia.org/wiki/Scrum_(development).

[5] "SmartBear SoapUI official site," [Online]. Available: http://www.soapui.org/About-

SoapUI/what-is-soapui.html.

[6] "Xamarin Official website," [Online]. Available: http://xamarin.com/.

[7] "Wiki Info on SOAP," [Online]. Available: https://en.wikipedia.org/wiki/SOAP.

[8] A. GJ, "ICP Client API.docx (Philips Internal Document)".

[9] "passing data between ios apps," [Online]. Available:

http://kotikan.com/blog/posts/2011/03/passing-data-between-ios-apps.

[10] "VC Push Segue and Modal segue," [Online]. Available:

https://www.youtube.com/watch?feature=endscreen&NR=1&v=Ab5jyXihwRM.

[11] "Xamarin Guides documentation," [Online]. Available: http://docs.xamarin.com/guides.

[12] "Youtube with Xamarin search," [Online]. Available:

http://www.youtube.com/results?search_query=xamarin&oq=xamarin&gs_l=youtube.3..35i39l

2j0l8.1064.1924.0.2358.7.7.0.0.0.0.76.377.7.7.0...0.0...1ac.1.11.youtube.LBBmLud0S4U.

[13] "StackOverflow with Xamarin tag," [Online]. Available:

http://stackoverflow.com/questions/tagged/xamarin.

[14] "Xamarin Seminar by Greg Shakles," [Online]. Available:

https://www.youtube.com/watch?v=WkNbRUqnSSc.

[15] "Xamarin.Android limitations," [Online]. Available:

http://docs.xamarin.com/guides/android/advanced_topics/limitations.

[16] "xamarin.iOS Limitations," [Online]. Available:

http://docs.xamarin.com/guides/ios/advanced_topics/limitations.

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
41

[17] "Xamarin Doc on Objective C library integration," [Online]. Available:

http://docs.xamarin.com/guides/ios/advanced_topics/native_interop.

[18] "Xamarin Doc onJava Integration on Xamarin," [Online]. Available:

http://docs.xamarin.com/guides/android/advanced_topics/java_integration_overview.

[19] "Github repo for MVVMCross," [Online]. Available: https://github.com/slodge/MvvmCross.

[20] S. Lodge, "Blogspot on MVVMCross Tutorial," [Online]. Available:

http://slodge.blogspot.co.uk/search?updated-min=2013-01-01T00:00:00Z&updated-max=2014-

01-01T00:00:00Z&max-results=50.

[21] "Xamarin.Mobile," [Online]. Available: http://xamarin.com/mobileapi.

[22] "Nabble.com forum on MVVMCross experience," [Online]. Available:

http://monotouch.2284126.n4.nabble.com/MonoCross-and-or-MVVMCross-experiences-

td4657938.html.

[23] "PCL setup in visualstudio for Xamarin projects," [Online]. Available:

http://slodge.blogspot.co.uk/2013/04/my-current-pcl-setup-in-visual-studio.html.

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
I I

APPENDICES

A. Graduation Project Survey

1. Describe the problem analysis:

(What is the reason for the internship company to initiate this assignment? What is for the

company the added value of this assignment? Can you describe the starting situation and starting

points: introduction and problem definition?)

- The company wants to investigate on developing multiplatform apps according to the

company’s Digital Innovation (DI) architecture. Documentation and a running multiplatform

application. This will provide information on their current architecture and their customer can

gain a better user experience through multiplatform app.

There are different devices of company and there is need of multiplatform application

which can be used to interact with those devices and learning the DI architecture of the

company is the starting situation. While building the multiplatform application, missing of

architectural information can lead in some problem or it can be that, the multiplatform

application doesn’t support the company’s whole DI architecture.

2. Describe the assignment.

(Especially the objectives results to be delivered and final products to be realized. Also indicate

what you want to achieve for the internship company. Give a clear description of the graduation

assignment.)

- The main goal of the assignment is to investigate and document on developing mobile apps

according to the Philips Digital Innovation architecture with a supporting running example.

From the internship, I want to achieve better knowledge in multiplatform mobile

applications and connecting these applications with lifestyle products.

3. What is the research component of this assignment?

 (What are your research topics? If necessary, draw up a research plan.)

- The research component is to investigate how to develop a (mobile) App, based on the

company’s DI architecture that can be targeted for the different mobile platforms (Android,

iOS, Windows-Mobile, BlackBerry-OS, and maybe more).

4. What are the methods and tools?

(What operating procedure and means can you make use of, during the internship period at the

company? What facilities will be made available by the company?)

- Not yet known about all the methods, tools and facilities.

5. How and by whom will you be guided by the company?

- By Mr. Patrick Bonné, providing information and requirements, those are needed to carry

out the assignment successfully.

6. What fields of Study play an important factor in realizing the assignment?

 (For example, information analysis, design, realization, monitoring and security.)

- Project planning, feasibility study. - Digital Innovation

- Analysis, Requirements definition. - Consumer lifestyle

- Mobile computing. - Information & Software development

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
II

B. Project Plan (PP)

B.1. Introduction

Connectivity for consumer lifestyle is a project that is carried under the Digital Innovation (DI)

development program of Philips to connect life style products. This enables to control the devices

remotely to provide better user experience by combining the functionalities of different devices in an

intelligent way. For example: Switching the lights ON and OFF or increase and decrease the intensity

of light through smartphones or automatically with respect to the time settings.

The project assignment includes investigating on how to develop a mobile application based on the

Philip’s DI architecture, targeted for different mobile platforms such as Android and iOS (iPhone

OS). It includes providing recommendations on the research questions based on the project using the

investigated information and demo example application.

This Project Plan (PP) contains the project statement, project phasing, project management plan and

the organization chart that will help in understanding the project in detail. This will also help people

engaged in the project (student, supervisors) in future, to keep track of the project path and situation.

B.2. Project Statement

B.2.1. Formal client

Mr. Patrick Bonné will be performing the role of a client (supervisor) and Mr. Rob Knubben

will be asking the research questions needed for the project carried.

B.2.2. Project leader

Mr. Saurav Aran will act as the project leader for carrying out the project and also responsible

for communication between the company and the university.

B.2.3. Current situation

The everyday lifestyle products manufactured by the company such as Coffee machines,

Wake up lights, Home cooker etc. are the Digital Innovation (DI) products. These products

are possible to control or send information via the use of smartphone and have the ability to

get connected to the company’s main server.

The product innovation is assumed to be near to the release phase.

B.2.4. Project justification

This project was started in order to assist the DI team. The assistance includes researching on

the best use of the cross-platform applications for the company according to its DI

architecture. Different research questions will be presented which needs to be investigated

and given recommendations with reasoning and example cross-platform application.

The current challenge for the client is the presence of different mobile platforms (Android,

iOS, Windows, BlackBerry-OS etc.) devices (smartphones, tablets) from where the products

are to be connected. The client wants to achieve the possible best way to make the use of their

products through these different platform smart devices. Also, the cost effectiveness, speed

and maintainability are the major challenges.

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
III

B.2.5. Project product

The main task of the project is to investigate how to develop an app (mobile), provide

recommendation with respect to the research questions and to build/extend existing example

application according to the company’s DI architecture that works at least on Android and

iOS devices. There can be 3-4 research questions during the whole project.

The 1
st
 research question: How is it like to develop a cross platform application for the WUL

using the “Xamarin Studio” Integrated Development Environment (IDE) that is able to

control WUL’s functionalities using pre-existing ICP Client library? The recommendation

consist brief useful information on the approach.

The 2
nd

 research question: A recommendation on the best model/approach/patterns for the

maximum sharing of codes between the platforms in Xamarin. Xamarin.mobile can be used to

support the recommendation.

B.2.6. Project deliverables and non-deliverables

a) Project Plan. Design Document & User Requirement Specification (URS) isn’t required.

However, during the project, some parts will be included in chapter 2.vi.c.

b) The source code of extended demo application (no User’s manual required) and the

weekly notes.

c) The recommendations with respect to the research questions including working

prototypes.

d) A final report (University report format) consisting of detailed description and learning on

the project.

B.2.7. Project constraints

- The use of ICP (Internet Connected Products) client which is used to connect the Philips

products and the smart devices via the Philips back-end server should be taken into

account during the whole project.

- End user experience should be unchanged to maximum extent keeping it similar.

- Fixed time duration of 6 months starting Feb 1
st
 - July 31

st
, 2013.

B.2.8. Project risks

Time, money and quality:

- Risk Level: High and can have a high chance of occurring.

- Condition and result: The project can run out of time and also the money is limited to

provide a certain project quality. This can cause a serious effect on the project.

- Prevention: Following time-boxing and reaching the milestones as planned.

- Alternative: Time and money are constant and hence the quality will decrease.

Deprive of Project materials:

- Risk Level: Low and have a minimum chance of occurring.

- Condition and result: During the project if the materials (e.g. different platform devices)

needed for the project are not provided in time, the project can be affected.

- Prevention: Providing the required project materials on time.

- Alternative: Using simulators in case of unavailability of the devices. The project group

may cope with this risk.

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
IV

B.3. Project Phasing

Basically the project phasing (Tasks) can be divided into the following as below:

Figure B.3: Project phasing

There are different activities to be carried out which can be represented as the phases in the project as

seen in Figure B.3.

Weekly Notes: The weekly notes will be the collection of notes written everyday about the activity

and learning. This will last till the end of the project.

Communication Plan: Since, this is just the documentation describing the method of communication

with the company and university tutors. It will just consume the first week of the project.

PP: As, we aren’t following the waterfall model for the project; the PP will be updated after every 1

month (approx.) i.e. week 1, 5, 12 and 19. The PP reviews by the supervisors will be done a week

after the PP is updated i.e. week 2, 6, 13 and 20.

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
V

Develop Android calendar WUL demo app: This part is basically for learning and refreshing the

knowledge on Android platform. The task will be to develop/extend an Android app that lets the user

to control the WUL at user specified date and time (like an alarm setting). Due to the existing

knowledge on Android platform, the demo app development on the Android is only planned for a

week.

Learn iOS development: Since, the iOS platform being a totally new platform, the learning time for

making a demo application version of calendar app on iOS, one week is assigned.

Develop iOS calendar WUL demo app: The demo app will be developed in a week after the

learning is done. The feature of the app is same as developed app in the Android platform in week 2

1
st
 & final company visit of university tutor: The 1

st
 visit of the university tutor to the company for

a detailed info on the graduation internship project information is planned on week 5. The final visit

for the completion of the graduation project is planned on week 19.

Research Learning: Learning is required almost throughout the project so as to be able to work on

the project.

Defining research questions: Research questions will be defined during the project multiple

numbers of times that will last till week 18 starting from week 5. (See Appendix C for the Time

proposal duration calculation/method adapted for the 1
st
 and 2

nd
 research questions and the sub-

activities).

- 1
st
 Research question: The first research question is defined in week 5. The research and

development on the 1
st
 research question will start from week 6 and end in week 11 with

duration of 6 weeks.

- 2
nd

 Research question: The second research question is defined in week 12. The research

and development on the 2
nd

 research question will start from week 13 and end in week 17

with duration of 5 weeks

Investigation and recommendation on research questions: Since, there arises different new

research questions while performing the project, this phase is iterated number of times during the

project.

Final report: The Final report writing is planned to start from week 5 till week 19. The review and

feedback on the report is planned to be done by the supervisors on week 7, 10, 12, 14, 16 and 18. This

is done so as to have a good final report as per the university’s standard. The deadline for handing in

the final report is June 10, 2013.

Final presentation: The final presentation of the graduation project at the university is scheduled to

be held on week 22 (July 3, 2013). Before the final presentation at the university, a preparation

presentation is planned on week 20 to the local members in the team and the final presentation for the

Software System Integration Group (inside company) on week 21.

In the phasing (Figure 1) we can see the final report and the final presentation ending before the

project and some other activities because the project contract is longer than the graduation time.

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
VI

B.4. Project Management Plan

The project management plan on the MOSQUITO (Money, Skills, Quality, Information, Time and

Organization) aspects are as follows:

B.4.1. Money

The materials and resources required for the project will be provided by the company.

The project fine will be in terms of grading (marks) the student at the project end, since it

is a graduation internship carried out for educational purpose.

B.4.2. Skills

Tasks Skills Required

Weekly Notes Active and a good skill of noting the activities carried out.

PP Knowledge of planning the project and foresee the whole project

beforehand that will help in evaluating the project.

Demo

Application

Knowledge of programming for Android and iOS application

development that includes Java, Objective-C & prototyping.

Research

Learning

Ability of learning new skills, self-questioning and acquiring the

new terms is required. Also, ability to learn and implement new

programming functionality according to research questions is

needed.

Investigation and

recommendations

on Research

questions

The skill of comparing different research learning, current

information and a good ability to give proper recommendation that

would best fit the project context. Also, knowledge of Android and

iOS application development is required.

Final report A good skill of elaborating how the project was conducted and what

learning were performed that suits according to the University

report format.

Final Presentation Having a good overview of the whole project and ability to describe

them in a simple way, assuming himself/herself as an audience.

Table B.4.2: Skills required in the project

In B.4.2, we can see the skills required to perform different tasks during the project.

B.4.3. Quality

In the project, quality refers to the level of investigated documentation and information

provided on the research questions of the project. The recommendation includes

descriptions, advantages, disadvantages and brief information on the research questions.

The quality result too refers to the built/extended mobile application supporting the

number of different platforms.

B.4.4. Information

 PP WN URS PSC RR FR

Mr. Patrick

Bonné

R, Di, A, Ar R, Ar R, Di,

A, Ar

R, Di, A,

Ar

R, Di, Ar R, Di, A,

Ar

Mr. Rob

Knubben

 R,Di

DI team IP

SSIGR IP

Mr. Marco R, Di, A, Ar R, Ar R, Di, - R, Di, Ar R, Di, A,

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
VII

Dorenbos Ar Ar

Student S, Di, Ar S, Ar S, Di, Ar S, Di,

Ar

S, Di, Ar S, Di, Ar

Table B.4.4: Information Table

Legend

SSIGR: Software Systems Integration group Research

PP: Project Initiation Document S: Send

WN: Weekly Notes R: Receive

URS: User Requirement Specification Di: Discuss

PSC: Project Source Code A: Approve

RR: Research Recommendation Ar: Archive (conditions may

apply)

FR: Final Report IP: Internal presentation

B.4.5. Time

Tasks Time

Weekly Notes Written during the whole project period

PP 5 weeks

Demo

Application

3 weeks

Research

Learning

25 weeks

1
st
 Research

question

6 weeks

2n Research

question

5 weeks

Investigation and

recommendations

on Research

questions

22 weeks

Final report 15 weeks

Presentation

preparation

4 weeks

Table B.4.5: Time required in the project for different activities

Table B.4.5 shows the time distributed/required for the activities in the project. The total time for the

whole project is 26 weeks and some tasks are performed in parallel to each other as seen in Figure

B.3.

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
VIII

B.4.6. Organization

Figure B.4.6: Organogram of the company

Figure B.4.6 shows the organogram of the company where it indicates the position of the intern

student at the company. It only shows the divisions of the company related to this project.

B.5. Version History

Version No. Date Comments

Ver. 1.0 Feb 5-6 Remarks/comments by Mr. Patrick Bonné

Ver. 1.1 Feb 7 Further remarks by Mr. Patrick Bonné

Ver. 1.1 Feb 19 Comments and suggestions by Mr. Marco Dorenbos

Ver. 1.2 Feb 20-25 Renamed Project Plan to Project Initiation document (PP) and updated with

respect to comments by Mr. Marco Dorenbos.

Ver. 2.0 March 8 Research question 1 information added on Project product, project phasing

and Time

Ver. 2.1 April 24 Updated with Research question 2 information on Project product, project

phasing and time

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
IX

C. Time proposal for Research Questions

C.1. Introduction

This document gives information on four self-created methods that can be used for setting

time duration to multiple tasks to be executed in a project. The time proposal for each

research questions on the basis of the chosen method can be found thereafter. The activity

tracker with comments (if it was finished successfully or not) during the execution of each

research question can also be seen.

The first research question was received in week 5 of the project and the second research

question was received on week 12 of the project.

C.2. Time Proposal calculation methods (self-created methods)

Time distribution for a task in a project can be done in different ways. Some of them are

Average time based, Weight based. Activities time distribution based and Average Hybrid

method.

Task: Research questions to be performed

Activities: The research learning and development to be carried out in each task.

C.2.1. Average time based

The time distribution in this method is done by calculating the average of project time and

number of tasks (work) to perform. The activity time is equal for all the tasks. This method is

suitable for achieving at least some superficial results on all the activities to be carried out in a

project. The Total time for each activity can be calculated as:

TaskTime(Tt)=Total time(T)/Number of tasks(N). (Result rounded to its lower whole number)

(If the numbers of task to be done are unfixed to some range, an average of total tasks can be

taken.)

 Pros:

a) All the activities in a project will get equal priority and hence the final result will at

least contain the output from all the tasks that needs to be performed in a project.

 Cons:

a) If a task consists of tough and harder activities, this method restricts from achieving a

good result causing an unsatisfactory or unfinished output for that particular activity.

b) The level of details on a result might be unsatisfactory.

C.2.2. Weight based

This method is based on the weight (alpha) of the activities to be carried out in a project.

Here, weight refers to the deepness and seriousness of the result to receive that ranges from 0-

1. The weight to all tasks needs to be distributed in such a way that the sum of all the weights

of total tasks results 1. This method is suitable for achieving deeper results on particular

important activities than other tasks in a project. The Total time for each activity can be

calculated as:

Tiwt= weight of Task (alpha)* Total time (T)

Where, TiWt is the Time for the Task on the basis of weight.

(In case, numbers of tasks are unfixed to some range, an average of total tasks can be taken.)

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
X

 Pros:

a) The result obtained on the weighted task will be of greater detail than other tasks.

 Cons:

a) The tasks with lower weight are performed less and can influence to an overall

project result.

b) The weight distribution either done by the project members either by series of

project group talks and discussions or a simpler prediction might not be that effective

and correct. Due to this, some tasks that might carry high weight might be

underweighted and hence the result on that underweighted task can be unsatisfactory.

C.2.3. Activities time distribution based

This method lists all the specific activities that need to be carried out in all the tasks and an

estimated time duration is specified to each activity. The total time for a task is the sum of

time for all the activities in that task. This method provides enough time for all the activities

to be performed and especially suitable to define a project time.

Total number of tasks in a project= n; Total number of activities in a task=m

Task1Time= Task1Activity1Time+ Task1Activity2Time+……+Task1Activity (m-1) Time+ Task1ActivitymTime

Task2Time= Task2Activity1Time+ Task2Activity2Time+……+Task2Activity (m-1) Time+ Task2ActivitymTime

……

Task(n-1)Time= Task(n-1)Activity1Time+ Task(n-1)Activity2Time+……+Task(n-1)Activity(m-1)Time+ Task(

n-1) ActivitymTime

TasknTime= TasknActivity1Time+ TasknActivity2Time+……+TaskmActivity (m-1) Time+

TasknActivitymTime

 Pros:

a) All the activities in a task are well defined and provide sufficient time to all the

activities in the tasks to be carried out.

 Cons:

a) The sum of task duration can be longer than expected and can cross the project

duration estimated.

b) The activities list in a task might not be complete during this planning and hence the

time distribution can go wrong in the middle of the project. These unknown activities that

arise make a pitfall in this method.

c) If the project duration is fixed, the tasks to be carried out at the later phase of project

might not be performed due to the reserved time by the initial tasks.

C.2.4. Average Hybrid method

In this method, an average duration for a Task obtained from all the three methods (Average

time based, Weight based & Activities time distribution based) rounded to its lower whole

number. This method is suitable for getting the time duration for a task when all the tasks

needed to be performed are not specific and not properly defined activities in a project.

 Pros:

a) Since, it uses the average time duration of all the method the chance of failure is

minimum.

b) Gives a relief sensation for planning time duration in case of unspecific future tasks

to be performed in a project.

c) The final output contains average requirements specified in all tasks.

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
XI

 Cons:

a) An unhealthy way of determining the time duration for a task in a project that can

lead to unknown problem of total time distribution. The duration for the final task in a

project can have a chance of getting a time duration which is not available in the project

and hence need to be compromised.

C.3. Time proposal for the 1
st
 research question

First of all, the time duration using each method will be calculated. Finally, a decision

on which method to choose will be decided and the time proposal for carrying out the

1
st
 research question.

C.3.1. Calculation

a) Average time based:

- Number of weeks left (Total Time): 20

- Number of research questions: 3-4

- Average number of research questions: (3+4)/2=3.5

- Number of weeks per research question =20/3.5= 5.7 weeks

Hence, using the Average time based calculation method each research question will get a

total time of 5 weeks. Therefore, research question 1 will get duration of 5 weeks.

b) Weight based:

- Total time (Number of weeks left): 20

- Total number of Tasks (Number of research questions): 3-4

- Average Tasks (Average number of research questions): (3+4)/2=3.5

Since, all the research questions are not yet known and hence cannot be assigned a

weight to all the tasks to sum up 1, a prediction of the weight of Task1 (research question)

should be given which is “0.35”. Therefore, alpha1= 0.35. The prediction consists of the

following reasons:

- The start activity can be the foundation activity in a project and hence, will gain a weight

more than the average weight (average weight =1/ Average tasks=1/3.5=0.28)

 - There consists of many new learning and development like developing a cross platform

application on Xamarin Integrated Development Environment (IDE).

- The ICP Client library seems to be more challenging for the cross platform development.

Therefore, the Time for Task 1(Research question 1) = alpha 1*Total time=0.35*20=

7 weeks.

Hence, using the Weight based calculation method, research question 1 will be performed for

7 weeks.

Using this technique in this project, we have a total weight of 0.65 (1-Task1 weight=1- 0.35)

remaining for other 2-3 continuing research questions.

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
XII

c) Activities time distribution based:

Since, the project time is already defined and we have 20 weeks of time left, this method

cannot be applicable. Also, all the tasks (research questions) and activities to be carried out

are unknown which makes this method unsuitable for this project. However, we can try

giving some duration to the possible activities for Task1 (research question 1).

Possible activities with expected time duration:

I. Learning about Xamarin and using it: 1 week

II. Developing simple Android and iOS application in Xamarin: 2 weeks

III. Making a cross platform application in Xamarin: 2 weeks

IV. Learning to make use of a library in Xamarin: 1 week

V. Using the ICP client library in the project: 2.5 weeks

Therefore, total time for task 1=Sum of Activity Time (I+II+III+IV+V) =1+2+2+1+2.5= 8.5

weeks

Hence, using the Activities time distribution based calculation method; research question 1

will get total time of 8 weeks.

d) Average Hybrid method:

- Average time based duration= 5 weeks

- Weight based duration= 7 weeks

- Activities time distribution based duration= 8 weeks

- Time for Task 1 (1
st
 research question) = (5+7+8)/3=20/3=6.6 weeks

Hence, using the Average Hybrid method calculation method, research question 1 will get

total time duration of 6 weeks.

C.3.2. Proposal

Since, the future research questions are unspecific, looking at the advantages and the week

calculation resulting in 6 weeks that seem to be suitable in term of total project duration of 20

weeks, I propose to use the Average Hybrid method for the 1st research question.

Therefore, the research question 1 will be planned for 6 weeks starting from 11/March/2013

(Week 6 of the project) to 19/April/2013 (Week 11 of the project). The research

recommendation will be provided on 22/April/2013 (Week 12 of the project).

(In case, the 1st research question is completed before the end planning date (19th April), we

shall start with the 2nd Research question.)

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
XIII

C.3.3. List of Activities and tracking them

At the end of each week, a check is performed on the activity carried out during the week and

a go/no-go decision will be taken for the next week activity.

Weeks Activities Status & comments at the end

Week 6 Learning Xamarin studio to

develop a simple Native iOS

(HelloXamiOS) and Android

(HelloXamDroid) apps in C# for

the first 1 week that consists of

simple UI buttons and shows

some text messages on the

display.

Done. Gained basic knowledge on Android and iOS

app development on Xamarin that uses C#. Next

activity can be stepped as planned.

Week 7 Learning and gathering

information to be able to develop

a simple cross platform

application on Xamarin Studio.

Simple cross platform app refers

in making use of shared codes

between the different platform

projects.

Done. The techniques for developing a simple cross

platform application is acquired and hence next

activity can be adapted

Week 8 Develop a cross platform

XamWULCal app that can trigger

a method (that shows an alarm

message on the display) at user

chosen date and time.

Done. A simple cross platform application is created

that fulfills the activity for Week8. Hence, Week 9

can be stepped further.

Week 9 Investigation on the use of native

iOS and Android libraries on

Xamarin.

Done. The methods and techniques for the usage of

native iOS and Android libraries on Xamarin were

known. However, to successfully complete the week

10 activity, additional support is needed to perform

the activity due to no previous experience in usage of

library written in different language than the

platform to be used in.

Week 10 Importing the ICP Client library

on the XamWULCal built in

week 8.

Done. The C# version of ICP Client library (C#

wrapper around C) was provided and hence simply

added the ICP Client library to the project. Next,

activity can be stepped and the C# wrapper class can

be used in Xamarin to access the function of ICP

Client library.

Week 11 Finish the XamWULCal app that

enables to send commands to the

WUL via ICP Client at user

specified date and time.

Not possible for this moment. The ICP Client

(compiled for Android and iOS) was imported to

Xamarin.Android and Xamarin.iOS project in order

to send commands to WUL. But, due to the uneven

version of libICPClient where the NVM doesn’t

implement all the functions referenced by

libICPClient, it wasn’t possible to send commands to

WUL for this moment. Hence, the task was carried

out as planned but the result didn’t appear as

expected, to be able to send commands to WUL via

ICPClient.

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
XIV

C.4. Time proposal for the 2nd research question

Since, Average Hybrid method was the chosen method for the time management in the first

research question, the same method will be used in determining the time required for the

second research question.

Number of weeks left (Total Time): 13

Number of research questions: 2-3

Average number of research questions: (2-3)/2=2.5

To use the Average Hybrid method, first we need to calculate the time span obtained from

other three methods (Average time based, Weight based and Activities time distribution

based).

C.4.1. Calculation

a) Average time based:

Number of weeks per research question =13/2.5= 5.2 weeks

Using the Average time based calculation method each remaining research question will get a

total time of 5 weeks. Therefore, research question 2 will get duration of 5 weeks.

b) Weight based:

Firstly, we need to give a weight value to alpha. The sum of total value of alpha in the

project is 1 and the first research question already had the weight of 0.35. Hence, we only

have 0.65 (1-0.35) of the weight left for the total project (remaining 2.5 research questions).

Providing an alpha value of 0.31 (alpha2=0.31) to this research question which is a little bit

more than the average weight (0.28),

Therefore, the Time for Task 2(Research question 2) = alpha 2*Total time=0.31*13=

4.03 weeks.

Using the Weight based calculation method; research question 2 will be performed for 4

weeks.

We have a total remaining weight of 0.34 (1- 1
st
 Research question weight – 2

nd
 Research

question weight=1- 0.35-0.31) for other 1-2 continuing research questions.

c) Activities time distribution based:

Possible activities with expected time duration:

I. Learning about application design patterns: 2 weeks

II. Learning Xamarin.mobile: 1 week

III. Choosing the best pattern suitable for Xamarin app development and designing a cross

platform app with respect to chosen pattern: 1 week

IV. Implementing Xamarin.mobile to fit the application: 1 week

V. Finalizing the cross platform model with maximum usage of code sharing in Xamarin: 1

week

Therefore, total time for task 2 =Sum of Activity Time (I+II+III+IV+V) =2+1+1+1+1= 6

weeks

Using the Activities time distribution based calculation method, research question 2 will get a

total time of 6 weeks.

d) Average Hybrid method

Average time based duration= 5 weeks

Weight based duration= 4 weeks

Activities time distribution based duration= 6 weeks

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
XV

Time for Task 2 (2
nd

 research question) using Average Hybrid method =

(5+4+6)/3=15/3= 5 weeks

Hence, using the Average Hybrid method calculation method, research question 2 will get total

time duration of 5 weeks.

C.4.2. Proposal

Therefore, the research question 2 will be planned for 5 weeks using the same Average Hybrid

method chosen in the 1
st
 research question. The time range is starting from 29/April/2013 (Week

13 of the project) to 31/May/2013 (Week 17 of the project). The research recommendation will be

provided on 3/June/2013 (Week 18 of the project).

C.4.3. List of Activities and tracking them

At the end of each week, a check is performed on the activity carried out during the week and a

go/no-go decision will be taken for the next week activity.

Weeks Activities Status & comments at the end

Week 13 Learning about Windows

Presentation Foundation (WPF)

patterns/model.

Done. Gathered information on WPF and

shall proceed to next step.

Week 14 Learning different types of WPF

models and their uses in creating

different types of applications.

Viewing the models adapted on

existing Xamarin example

applications.

Done. Learnt about MVC, MVP and MVVM.

Frameworks like MonoCross (uses MVC) and

MVVMCross (uses MVVM) are popular for

the cross platform application development in

Xamarin. Next, step can be taken.

Week 15 Learning about Xamarin.mobile Done. It was learnt that Xamarin.mobile

provides single set of API access. But, this

library cannot be used directly while adapting

the MVVMcross framework. Hence, instead

the available plugin in the Nuget can be used

that provides many more API accesses

besides GPS and accelerometer. Next step can

be taken.

Week 16 Choosing the most effective

model for Xamarin Cross

platform application

development that makes high

reuse/sharing of codes and

designing a prototype cross

platform app (with respect to the

chosen model).

Done. MVVMCross framework chosen. The

design of the app is designed as the same app

created before. i.e. WULCalendar app but

using the MVVMCross framework. Since, the

WULCalendar app doesn’t make use of any

APIs present in Xamarin.mobile, the next step

can be replaced with the implementation of

the application.

Week 17 Implementing Xamarin.mobile to

fit the design in Week 16.

Changed. Xamarin.mobile doesn’t fit the

design and also better option (MVVMCross

plugin) was found.

Week17 implementation of MVVMCross

framework

Not completed. Due to the unexpected setting

up (tweaks) required for the framework

deployment and fragmentation in IDE for the

development support, the task for

implementing the framework couldn’t be

completed successfully.

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
XVI

D. Research Learning and recommendations

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
XVII

1 Introduction

This research is carried out during the graduation internship that started from February/1/2013 and

ended on July/31/2013. The research questions are supposed to be defined starting from week 5 and

end on week 18 of the project Phasing as stated on the Project Plan.

During the whole internship period, a total of 3-4 research questions are estimated to be defined and

investigated. This document consists of the findings, learning and recommendation on the basis of

these research questions.

2 Research question 1

The first research question was received on week 5 of the project phase. The research question 1

stated “How is it like to develop a cross platform application for the WakeUpLight (WUL) using the

“Xamarin Studio” Integrated Development Environment (IDE) that is able to control WUL’s

functionalities using pre-existing ICP Client library?” The output for this research question should

contain brief useful information on cross platform application development using Xamarin Studio.

The research will be dealing with only two platforms: Android and iOS

I) Planning

The start of the research question was preceded by a time duration proposal (refer “Time Management

for Research Questions.doc”) of 6 weeks for this 1
st
 research question. After the proposal was made

and approved, a planning for possible activities during the research question was done. Finally, these

listed tasks were performed during the research period of the 1
st
 research question and the research

information acquired is noted.

The research consisted of learning a totally new development environment for mobile application.

The activities were to be planned, in order to make sure the result obtained at the end of 1
st
 research

question is on specified time and to avoid getting lost during the research journey. The planning for

the lists of possible activities to be carried out is as follows:

 Week 6: Learning Xamarin studio to develop a simple Native iOS (HelloXamiOS) and

Android (HelloXamDroid) apps in C# for the first 1 week that consists of simple UI

buttons and shows some text messages on the display.

 Week 7: Learning and gathering information to be able to develop a simple cross platform

application on Xamarin Studio. Simple cross platform app refers in making use of shared

codes between the different platform projects.

 Week 8: Develop a cross platform XamWULCal app that can trigger a method (that

shows an alarm message on the display) at user chosen date and time.

 Week 9: Investigation on the use of native iOS and Android libraries on Xamarin.

 Week 10: Importing the ICP Client library on the XamWULCal that is built in week 8.

 Week 11: Finish the XamWULCal app that enables users to send commands to the WUL

via ICP Client at user specified date and time.

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
XVIII

II) Learning, Development & investigations on Xamarin

In general, Objective C using X-Code Integrated Development Environment (IDE) and Java using

Eclipse IDE is used to develop a native iOS and Android app respectively. To make a native app on

different platforms, it is required to recode the whole app totally per platform, which is time

consuming as well as inefficient in terms of cost. There exist some other frameworks (e.g. PhoneGap),

that helps in preventing these issues. However, there arise different problems related to accessing the

device’s native Application Programming Interfaces (APIs) and also the apps built using these

frameworks lack native user experience.

Philips targets to provide a native experience (look and feel) to its customers and hence, taking such

things into account and to save time and cost for the application development in different

environment, Xamarin Studio [11] seems to be a good step for the research. The learning and

investigation topics below flow in systematic as in the planning above.

This chapter consists of learning about Xamarin Studio, Android & iOS native application

development and finally a cross platform application.

A) Xamarin studio

Xamarin is a commercial IDE that is used to build native/cross platform mobile applications across

Android, iOS and Windows platforms with C#. Only the iOS and Android platforms will be

discussed. This IDE is supported on both Windows and Mac OS. It consists of Xamarin.Android

(formerly Mono for Android) and Xamarin.iOS (formerly MonoTouch) for developing Android and

iOS applications respectively, built on top of Mono (an open-source version of the .NET Framework

based on the published .NET ECMA standard), including memory management, reflection, and the

.NET base class libraries, as seen in Figure II.1.

Figure II.1: Xamarin Architecture

 Xamarin’s Ahead of Time (AOT) compiler compiles Xamarin.iOS apps to produce native Arm

binary (.app) suitable for Apple’s app store and Xamarin’s compiler compiles Xamarin.Android apps

down to Intermediate language and finally produces native binary output (.apk) for Android by taking

advantage of Just in Time (JIT) compilation right on the Android device. As Xamarin compiles the

app to a native binary, not cross-compiled, and not interpreted, it gives users brilliant app performance

for even the most demanding scenarios like high frame rate gaming and complex data visualizations.

Also, Xamarin exposes all the Application Programming Interfaces (APIs) available in iOS and

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
XIX

Android to the developer as C# class libraries. The apps built are still native because, they don’t

abstract away the native platform UI APIs instead provide a bindings to the native APIs and provide

access using C# library. [14] Hence, Xamarin being able to provide development of native featured

(User Interface & performance) application and provide the ability to develop the cross platform

application, it seems to be a good and very efficient IDE to choose regardless of its limitations on

Xamarin.Android [15] (most of which are removed from the 4.1 release) and Xamarin.iOS [16].

Note: The Xamarin used in this research is Version 4.0.2 (build 18)

The application development using Xamarin studio for both iOS and Android is only possible on Mac

OS. Whereas, Xamarin studio on Windows doesn’t support iOS development. However, to develop

both Android and iOS applications, Visual studio can be used by installing the Xamarin.iOS and

Xamarin.Android plugins for the Visualstudio. Using the visual studio for the iOS app deployment, a

network Mac OS is required.

B) Helloworld native mobile Application development

For the development of iOS and Android applications on Xamarin, the pre-knowledge of iOS and

Android native development on X-Code and Eclipse respectively helps to understand the common

platform specific terms easily. Android development, iOS development and then a short conclusion on

the native mobile application development using Xamarin will be discussed hereafter.

1. Android Development

The Android development that will be discussed here is a very basic step that contains

just adding of some widget class (Button) on the application layout and making it run.

This is actually to see the native look of the Android app and to gain an idea to implement

some actions to these buttons

a) To start with the Android development on Xamarin, creating a new C#-> Android

Application project sets up a default application to the user with simple application

that counts and displays the number of click on the button present.

b) To create and add permissions to the Android Manifest, right clicking the project -

>Options ->Android Application, and adding the necessary permissions. This will

allow the application to use the services and access protected parts of device APIs

like Camera, GPS, Bluetooth etc. or even restricting to the minimum Android API

level to use the application and many more permissions.

c) To create a layout for the application and add other UI items (i.e. android.widget) can

be done in two ways:

 One way is simply dragging and dropping the UI items available on the ToolBox on

the Resources->layout->Main.amxl. The implementation for the events and actions

carried out on this user interface (Main.amxl layout) by the user can be done on

MainActivity.cs. This MainActivity.cs consists of Activity 1 class (default) which is a

derived class of Activity.

 For example: If a button is added on the layout (Main.axml) with an ID myButton, a

reference to this button, and a click event to button to show a text on the top of itself

can be done by:

Button btnRef=FindViewById<Button>(Resource.Id.myButton);//reference to the

button

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
XX

button.Click += delegate {btnRef.Text = “Message Displayed on the button”;}

//triggering action when a click is done on the button

 The other way is to create it dynamically i.e. creating a new instance of Layout class

and adding items to it as we normally do in C#.

For Example: To create a new layout with vertical

orientation, adding a button on it and displaying the layout

can be done by:

var layout = new LinearLayout (this); // new instance of

layout

layout.Orientation = Orientation.Vertical;//setting up the

property

var btnPress = new Button (this);//new instance of Button

layout.AddView (btnPress);///adding the new button to the

layout

SetContentView (layout);//displaying the layout as the

content view

Figure II.2: Native Android HelloWorld app built using

Xamarin

So, we can say that Xamarin.Android provides all the native field, properties and

methods for this instance of Button to the user in the form of C# class library. This

button is a totally native Android Button, as seen in Figure II..
d) Similarly, it is possible to access all other Android APIs to build a native Android

application using Xamarin in C#.

2. iOS Development

The iOS development that will be discussed here is a very basic step that contains just

adding of Button and label on the application layout and making it run. This is actually to

see the native look of the iOS app and to gain an idea to implement some actions to these

buttons.

a) To start with the Android development on Xamarin,

creating a new C#->iPhone-> Single View

Application project sets up an empty iOS application.

b) For maintaining the compatibility of the application,

info.plist can be changed accordingly.

c) The layout of the application can be designed either

(uses Xamarin.iOS UI Kit) using a source code editor

(not tried) or by using the X-Code interface builder.

To use the X-Code Interface Builder (IB) to design

the layout, right click the class with .xib extension

(storyboard)-> OpenWith-> XCode Interface Builder.

This will load the X-code and lets us view/create

layouts/widgets for the application. All the changes

made in the layout from XCode IB (should have

knowledge of X-CodeIB for creating Referencing

outlets and Sent Events) are automatically updated

with the new changes in the Xamarin iOS project.

The .designer.cs (sub tree on the

layout/ViewController class derived from

Figure II.3: Native

HelloWorld iOS app built

using Xamarin

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
XXI

UIViewController) consists of the Outlets added as:

[Outlet]

MonoTouch.UIKit.UIButton btnClickOutlet { get; set; } //a button

[Outlet]

MonoTouch.UIKit.UILabel lbl2 { get; set; }// a label

With actions defined to it as:

[Action ("btn1Pressed:")]

partial void btn1Pressed (MonoTouch.Foundation.NSObject sender);

which can be consumed by:

partial void btn1Pressed (NSObject sender)

{this.lbl2.Text=" btn 1 clicked.";}// displaying message when btn1 clicked

However, the actions to the outlets can also be made in Xamarin as mentioned earlier.

The Main.cs loads this ViewController when the application starts.

In Figure II.3, we can see that the application layout containing buttons and labels

have native look and feel (in fact, they are native) and were accessed as a C# class

library.

d) Similarly, it is possible to access all other iOS APIs to build a native iOS application

using Xamarin in C#.

3. Conclusion

a) A totally native application (full platform SDK access) for both Android and iOS

can be built using Xamarin’s Xamarin.Android and Xamarin.iOS respectively.

b) All the native APIs present can be totally used and accessed through Xamarin’s

libraries in C# that are mapped to all those native APIs.

c) It’s not only the native look on the application built on Xamarin, but in fact, the

UI items are all native components from each platform.

C) Cross-platform mobile application development

Earlier, native iOS and Android applications were built using the Xamarin. Now, it’s time to learn and

then develop a cross platform application so as to find out how we can be efficient in terms of time,

cost and user experienced using the cross platform mobile app development feature of Xamarin.

Learning, development and then a conclusion on cross platform mobile application using Xamarin

IDE will be discussed hereafter.

1. Learning

At first, the word “Cross platform mobile application” sounds like a single universal

application (like a web application) that can be deployed and run on different mobile

platforms. Personally, before exploring to the Xamarin world, I assumed the same and

initially thought of developing a single universal application project on Xamarin to build

an application that runs on all mobile platforms. But this is not the real case here in

Xamarin. Instead, cross platform mobile app actually referred in the sharing of codes

between different platforms and still, we need to build multiple application projects on

Xamarin according to the number of platforms we target i.e. There should be at least two

different application projects if we want to build a cross platform application for Android

and iOS; and also should either contain a different shared library project or a file shared

between platforms. Hence, cross platform development means, writing codes once and

using it in each of this different platform’s application project without rewriting the code.

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
XXII

There can be an interrogation like “If we can share codes between all the platforms, why

not to build a single application by sharing all the codes and finally compile it to run on

all platforms instead of creating different applications for each platform?” Yes, it is true

that we can share codes between the platforms, but the truth is that, not all the codes can

be shared. There are several platform specific features that don’t exist/support/differ

between platforms that lead in preventing total sharing of codes between the platforms.

For example: the way of notifying users by an application on Android is different in

Android, iOS and Windows.

Xamarin cross platform application uses a simple architecture as seen in Figure II.

Figure II.4: Xamarin Cross platform architecture

Figure II shows that the User Interface (UI) layer that consists of all the user facing layer

like screens, widgets etc. in each target platforms and the App layer that consists of code

that is application specific aren’t shared. These two layers are implemented separately

with respect to the number of target platforms. The shared layers that can be reused across

the platforms are Business Layer (BL), Service Access Layer (SAL), Data Access layer

(DAL) and the Data Layer (DL). The presence of shared layers depend on the type of

application to be built for example: if an application doesn’t make use of network

resources, the Service Access Layer may not exist.

The sharing of the codes between the platforms can be done by the different ways. One

method is File Linking. In this method, the code (file/class/) that is to be shared lies in

same/different directory and only a reference of the file meant to be shared is provided to

each platform application project. Finally, it is compiled together with the platform

specific project (including unshared layers) to create platform specific application. Any

changes in one of the code will synchronize to change in every project. Other method for

sharing codes is creating a platform specific library project or creating Portable Class

libraries (PCL) which can be consumed across different platforms. Instead of providing a

reference, the files to be shared can be cloned across different projects too. Microsoft

Project Linker can also be used which keeps multiple project files synchronized as source

files are added to each. These are all the methods that can be used in sharing codes while

developing a cross platform mobile application using Xamarin.

For developing a cross platform app, following these mentioned steps will help to achieve

some relief in the development:

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
XXIII

a) Making a prototype for both platforms that consist of application characteristics that

are universal like feature selection via tabs or menus, lists of data and scrolling,

navigating back etc. This helps in maintaining the user experience to a greater extent

across different platforms.

b) Determining device-specific features like Camera, GPS, Accelerometer etc. to take

advantage of each platform. This can alter user experience to some extent.

c) Defining the shared code, building the UI for each platform project and finally start

with application implementation.

2. Cross-platform development

To start with the development of a cross platform app, simple prototypes for both the

platforms was designed for both the iOS and Android UI layer, as seen in Figure II..

Android consists of two buttons, one for selecting Date and the other for Time, as it

doesn’t support like a DateTime Picker in iOS. However, on iOS, two different buttons

can be used to let the user select Date and Timer separately like on Android. A Spinner is

used to show the list of WUL functions on Android and a PickerView is used on iOS.

Figure II.5: Prototype for the Cross platform app

This application doesn’t use any of the device’s hardware (Camera, Bluetooth etc.) but

instead uses a .NET framework’s base class library (System.Timers.Timer) that will be

coded once and reused across multiple platforms. Following the cross platform

architecture as in Figure II, a Xamarin Solution (XamCalWUL) for this development will

contain three project, one for implementing the iOS UI layer (XamiOSCalenWUL),

second for implementing the Android UI layer (XamDroidCalWUL) and the last one for

shared project (XamCore). The XamCore contains a class inherited from the Timer coded

once and used across different platforms, as seen in Figure II.5. To display debug

message across Android and iOS, conditional compilation is too done that allows running

a main UI Thread to display the message on the target platform. For example, a

conditional compilation that shows a log message “Function Triggered from Android”

while running on Android:

#if __ANDROID__

Console.WriteLine(“Function Triggered from Android”);

#else {Console.WriteLine(“Function Triggered from other devices”);}

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
XXIV

Figure II.6: XamCalWUL architecture

After designing and implementing the UI layer for both the platforms, the shared code

was used to trigger the WUL function in user specified Date and Time by simply cloning

the file “WULCustTimer.cs” Class across iOS and Android projects (Due to the less

amount of shared code present, the Core project was removed and the class was cloned in

each project instead)

The cross application built contains little amount of shared code (WULCustTimer.cs) due

to its simplicity in functionality to only trigger a Timer. The application built can be seen

in Figure II.7.

To access the device hardware APIs like Camera, Bluetooth etc., Xamarin provides a

binding to the Native APIs. However, if we want to perform an increase in shared code

across the platforms and make application development even faster, Xamarin.mobile is

the perfect library to be used. Xamarin.mobile exposes a single set of APIs for accessing

common mobile device functionality across iOS, Android, and Windows platforms. This

library abstracts the contacts, camera, and geo-location APIs across all these platforms.

Future plans include notifications and accelerometer.

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
XXV

Figure II.7: Cross platform applications (XamiOSCalenWUL & XamdroidCalWUL) built in Xamarin

3. Conclusion

a) Cross-platform development consists of multiple projects with different platform specific UI

layer and App layer implemented. The shared part can be the BL, SAL, DAL and DL.

b) The sharing of codes can be done by the method of File Linking into each/separate app

project or by cloning the files to be shared or using Microsoft Project Linker available only

for Windows.

c) Making prototypes, determining device-specific features and defining shared code ahead will

help to relief in building a cross platform application that provides a similar user experience

on all platforms.

d) Xamarin.mobile exposes a single set of APIs for accessing common mobile device

functionality across different platforms increasing the amount of shared code.

D) Using existing native C/C++, Java and Objective-C libraries

The cross platform application built so far has the ability to trigger a message display the function

chosen by the user at user selected date and time. Now the task of using an ICP Client to send remote

commands (ON, OFFF etc.) to the WUL device, instead of displaying the message, is yet to be

accomplished.

1. Learning

At the present context, we have native libraries available written in C, Objective-C (C

containing a wrapper for iOS) and Java (C containing wrapper for Android) that can be

used in iOS and Android platforms respectively. But to make use of any libraries; it is

only possible to access C# libraries in Xamarin. It is not practically possible to recreate all

the existing native libraries to be used in C#. Hence, there should be some tweaks so as to

simplify the usage of existing native, Java and Objective C libraries.

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
XXVI

To be taken into account, Xamarin.iOS makes use of only static libraries due to the

restriction in the Apple store as iOS limits the Just In Time (JIT) compilation and only

supports Ahead Of Time (AOT) compilation. Whereas no such restriction is yet seen on

Android store (Google Play).

i. We can use the binding feature in Xamarin to access the Objective-C library as a C#

library. [17]

ii. To reuse the Java libraries as C# library, it can be done in three ways: [18]

1) Create a Java Bindings Library – With this technique, a Xamarin.Android project is used

to create C# wrappers around the Java types. A Xamarin.Android application can then

reference the C# wrappers created by this project, and then use the .jar file.

2) Java Native Interface – The Java Native Interface (JNI) is a framework that allows non-

Java code (such as C++ or C#) to call or be called by Java code running inside a JVM.

3) Port the Code – This method involves taking the Java source code, and then converting it

to C#. This can be done manually, or by using an automated tool such as Sharpen.

By the above methods, it is possible to use the libraries in Xamarin written in Objective C

and Java languages for developing Xamarin.iOS and Xamarin.Android application

respectively. However, on the basis of information collected from a forum post [19], it

was found that binding a native library and making it to be used as C# class library will

only allow the native platform application of that library on Xamarin. For example: If we

bind the Android’s ICP Client library to be used as a C# class library, it can only be used

in Xamarin.Android project application but not on Xamarin.iOS application and vice

versa. This makes a double task to bind the other library too. Instead, if we bind a native

C/C++ library (not compiled for specific platform), it will allow to be used in both the

platforms. Therefore, the C/C++ ICP Client library (if available) can be used to bind and

make accessible as a C# class library on Xamarin.

iii. For binding the native C/C++ library, we can follow some of the many methods as

follows:

1) Creating a wrapper around the C/C++ library using different available tools like

Simplified Wrapper and Interface Generator (SWIG) [20], CXXI (pronounced as Sexy)

[21] can be used. SWIG seems to be more efficient than CXXI due to the reason CXXI is

reflection based and not suitable for Ahead of Time Compilation (AOT) features needed

in Xamarin.iOS application. [22]

2) Using Platform Invocation Services (P/Invoke), C# DllImport (using

System.Runtime.InteropServices) enable interop with DLL files and lets us use a C/C++

DLL dynamic link library, or custom legacy DLL- even one we can’t rewrite but have the

ability to modify. This can also be a good alternative for using the C/C++ ICP Client

library in the Xamarin project.

In order to use the ICP client library on the Xamarin project, different methods and

techniques as explained above can be used. However, the exact information on the type

(Language) of ICP client library available is so far still unclear to me, whether the ICP

Client library available is only native Android/iOS or C++ or C.

To conclude the learning on using different types of existing libraries on Xamarin, Java,

Objective C and native C/C++ libraries can be used on Xamarin and accessed as a C#

class library by applying different techniques.

http://github.com/mono/cxxi

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
XXVII

2. Importing and using a simple Test Native C shared library (.so) in Xamarin

The existing ICP Client library available is of four types. One is a C library, second is the

C library wrapped with a wrapper to be used in Android (Java), the third type is a C

library wrapped with a wrapper to be used in iOS (Objective C) and the fourth is the C#

ICP Client library compiled for Windows (C# wrapper around C).

On this information, instead of trying to import and use the complicated ICP Client

library at the beginning, a simple Test C shared library (.so that is built using NDK-build)

will be imported and consumed in the Xamarin.Android Project using the P/Invoke

mechanism.

Let’s assume we have a native shared library called MyTest.so (C header and source

compiled using ndk-build on Eclipse) and we want to use it in the Xamarin.Android

project. The MyTest.so consists of a single function

int MyTest_GetValue();
Now, we need to use this function on Xamarin.Android project. Here are the steps so as

to succeed:

Step 1: Creating a new folder inside the Xamarin.Android project called lib and sub-

folder armeabi. Copying the .so library to be used inside the armeabi folder. [23]

Step 2: Setting the properties of the library.so (imported library) Build action to

"AndroidNativeLibrary" and Copy to output to "Always Copy".

Step 3: (Working in Xamarin.Android Class eg: MainActivity.cs)

- Including the namespace InteropServices by “using

System.Runtime.InteropServices;”

- Using the standard DllImport in the project to import the native library as

below: [DllImport("LibTest.so")] public extern static int

MyTest_GetValue();// with exact Functtion Name, Type & Params in the .so

Lib.

Step 4: Consuming the function above (MyTest_GetValue()) in the application.

For Example:

int value= MyTest_GetValue();

Console.Writeline(value.ToString());

As in the above mentioned ways, the functions in the library can be used by using the

P/Invoke (Platform Invocation Service) that allows managed code (C#) to call unmanaged

functions that are implemented in a DLL in Xamarin.Android project.

Hence, we can see that Native libraries can be successfully imported and used in

Xamarin.Android projects. (Testing a native library on Xamarin.iOS project wasn’t

performed. However, directly implementing the native ICPClient library on Xamarin.iOS

project will be performed)

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
XXVIII

3. Implementing ICP Client library functions on Xamarin Project to send remote commands

to the WUL

There are different variations of ICP Client library that can be used in the Xamarin

Project. The Java and Objective C variation of ICPClient library can be used in

Xamarin.Android and Xamarin.iOS project respectively by creating a binding to these

libraries in Xamarin. Since, these ICPClient libraries available are already a wrapper

(Objective-C/Java) around C. Hence, creating another wrapper (C#) will be a wrapper

around a wrapper. Hence, instead of using these libraries, we tend to use the native Core

library (C) and also C# wrapper of the ICP Client is already available for the use in the

project. The native C ICP Client library (libICPClient compiled for Android/iOS) will be

imported to the Xamarin.Android and Xamarin.iOS project and it will be used for sending

remote commands to the WUL through the C# wrapper available in Xamarin.

According to the architecture of ICP Client library (ICPClient-API.docx), IcpClientInit,

IcpClientSignOn, Sign on callback and Data Upload are the necessary functions and

callbacks to be used for sending a remote command to the WUL. However, in the

wrapper code, the implementation for Data Upload (data collection portal) isn’t seen. The

first step would be to Initialise (Init), sign on (SignOn) and handling callback. After being

able to consume important functionalities from the native ICP Client library, consumption

of the data collection portal (UploadData) can be carried out further.

i. ICP Client on Xamarin.Android

To start in Xamarin.Android, the import of Android compiled ICP Client library

(libICPClient) to Xamarin.Android project (XamDroidCalWUL) was done. The version

of ICP Client used is an older version so as to eliminate problems related to Non-Volatile

Memory (NVM) as lots of changes related to NVM are made in the new version of ICP

Client. Other required libraries (libcrypto.so, libssl.so and libicpnvm.so) that are

referenced from the ICPClient library are too imported to the project. Performing the

same method as carried out in the Test (Research question 1.II.D.2) to make use of

icpClientInit and icpClientSignOn functions, the function didn’t seem to get access from

the library with a null reference exception. Here, what we do is calling the C library

functions and ignoring the Java Native Interface (JNI) functions. According to Mr.

Aravind Gundumane, the null reference might be due to JNI interface for NVM where

values can only be provided from Java application. The only way is to compile out JNI

layer and expose C NVM interface to application. Hence, for a moment it wasn’t possible

to use the ICP Client library in Xamarin.Android.

ii. ICP Client on Xamarin.iOS

Moving further with using the ICP Client on Xamarin.iOS project (XamIOSCalenWUL),

the available static (since iOS only supports static libraries) latest ICPClient library

(libICPClient.a) compiled for iOS is imported. Also, other available libraries referenced

by ibICPClient.a (libcrypto.a and libssl.a) are imported to the project. The library too

references to the NVM functions, but only the C source and header file is available for

NVM (older version). Hence, it should be first compiled in X-Code to create a static

library for different architectures. For now, we can build the i386 architecture meant for

simulators. Creating a new project (Cocoa Touch Static Library) on X-code and adding

the NVM C source and header to the project, a static library for i386 architecture

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
XXIX

(libICPNVM.a) was built. Now, this library can be used in Xamarin.iOS project which

will be referenced by the libICPClient. Even after importing this library to the

Xamarin.iOS project, there exists failure in referencing the functions like

icpPAL_NVM_SetProductInfo, icpPAL_SetPropertyByteArray etc. According to Mr.

Chris Tilmans, the reason behind this failure was due to the different versions of ICP

Client library and the NVM (source and header files). All the functions that are

referenced by the new version of libICPClient.a aren’t implemented in the imported

version of NVM, which is pretty much old. The design and implementation of ICPClient

and NVM is changed at the current time than implemented previously. The older version

of NVM is fully implemented in C and the older version of ICPClient library only

referenced the limited functions present at that moment in NVM. But, the newer version

of ICP Client consists of different other references to functions which the current version

of NVM thereafter references to other library written in Objective-C. This causes a

disruption in using the newer version of NVM either here in Xamarin.iOS project. Due to

this reason, for the current moment, the ICP Client library cannot be used in Xamarin.iOS

project for sending commands to the WUL.

4. Conclusion

1) Java, Objective-C and Native libraries (C/C++) can be used in Xamarin projects for the

development of Android and iOS applications.

2) A test native shared library compiled for Android was used on Xamarin.Android project to

consume its underlying functions to prove the usage of native libraries on Xamarin studio.

This test supports to some extent that native ICP Client library can be too used in Xamarin.

However, due to the complicated underlying implementations (of which I am unaware) in ICP

Client library, it might not be completely possible.

3) Instead of creating a wrapper around a wrapper, it was chosen to use the core ICPClient

library compiled for different platforms (iOS and Android).

4) Trying to access the functions on ICP Client library compiled for Android, resulted a null

reference failure, indicating a direct non-access to the C functions present in the library.

5) Due, to the difference in the version of ICP Client library and the NVM, at the current

moment and change in the architecture/implementation of the required libraries over time, it

is not possible to use the ICP Client library to send commands to the WUL at the current

moment using the native library.

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
XXX

III) Conclusion(S) & Recommendation(S) on Research question 1

Xamarin allows development of native/cross platform mobile applications across Android, iOS and

Windows platforms with C#, including memory management, reflection, and the .NET base class

libraries. It gives users brilliant app performance for even the most demanding scenarios like high

frame rate gaming and complex data visualizations, since the apps built are native. The apps built

have native look and feel and can access all the APIs that are exposed by the devices. The ability to

provide sharing of codes even between the different platforms is the most fascinating feature of

Xamarin. To facilitate increase in sharing of codes, it also provides different libraries, for example:

Xamarin.mobile that exposes a single set of APIs for accessing common mobile device functionality

across different platforms. There exist different limitations on Xamarin which weren’t faced/

recognized during the research question 1.

Different existing libraries (Java/Objective-C/Native) are supported to be used on Xamarin for the

development of mobile applications which was also proved by conducting a use of a simple test

library (for Xamarin.Android project). However, regarding the use of ICP Client library on Xamarin

to send commands to WUL due to the confusions in different versions of ICP client and other

dependent libraries available, the change in the architecture/implementation of the libraries over time

and lack of complete information of the library, it wasn’t possible to use the native library on Xamarin

at the current moment. However, different steps can be followed next so as to try to make ICP Client

library workable on Xamarin:

a) Making a decision on which version of Core ICP Client and other referencing libraries to use

and how to approach it. On the basis of the decision from discussions, trying to make use of

the Core ICP Client library (native C) compiled for iOS and Android in Xamarin project. OR

b) Using the existing Java/Objective-C ICP Client library to make it able to be used in Xamarin

project. Though these libraries already being a wrapper, a C# bindings can be done on top of

it to be used in Xamarin. This will include some automatic bindings by Xamarin and manual

works.

To conclude, Xamarin seems to be a good IDE for the development of both native and cross platform

mobile applications, taking care of Philips requirements of providing a faster application with native

look and feel to deliver a great user experience to the users. Also, time saving, cost saving and ability

to reuse existing libraries for the cross platform mobile application development are really the worthy

values to gain after embracing this IDE.

Possible future works:

a) Using a Soap protocol to send commands to WUL instead of ICP Client.

b) Trying to make the ICP Client workable on Xamarin to send remote commands to the WUL.

c) Making the use of Xamarin.mobile to provide a maximum share of codes for the access of

device APIs like Camera, Bluetooth etc.

d) Collecting information on open source framework called MonoCross for the crossplatform

mobile application development.

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
XXXI

3 Research question 2

The second research question was received on week 13 of the project phase. The research question 2

stated “A recommendation on the best model/approach/patterns for the maximum sharing of codes

between the platforms in Xamarin.” The output for this research question should contain brief useful

information on the efficient pattern that can be used in Xamarin to increase the use of shared code.

The research will be dealing with only two platforms: Android and iOS

I) Planning

The start of the research question was preceded by a time duration proposal (refer “Time Management

for Research Questions.doc”) of 5 weeks for this 2nd research question. After the proposal was made

and approved, a planning for possible activities during the research question was done. Finally, these

listed tasks were performed during the research period of the 1st research question and the research

information acquired is noted.

The research consisted of learning different type of patterns. The activities were to be planned, in

order to make sure the result obtained at the end of 2nd research question is on specified time and to

avoid getting lost during the research journey. The planning for the lists of possible activities to be

carried out is as follows:

 Week 13: Learning about Windows Presentation Foundation (WPF) patterns/model.

 Week 14: Learning different types of WPF models and their uses in creating different types of

applications. Viewing the models adapted on existing Xamarin example applications.

 Week 15 : Learning about Xamarin.mobile

 Week 16: Choosing the most effective model for Xamarin Cross platform application

development that makes high reuse/sharing of codes and designing a prototype cross platform

app (with respect to the chosen model).

 Week 17: Initially planned- Implementing Xamarin.mobile to fit the design in Week 16.

Changed the activity at the end of week 16 to- Further implementation of MVVMCross

framework Reason: Due to unfit of this activity to the context. The application that was

designed using the MVVMCross framework doesn’t make use of any APIs (contacts, camera

etc.) provided by the Xamarin.mobile. In case, if there is need of such APIs, MVVMCross

framework provides plugins for such APIs that can be used easily.

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
XXXII

II) Learning on Patterns and implementation approaches

According to the planned activities second research question deals about learning the different kinds

of patterns as there is a need of providing recommendation on the use of pattern for the cross platform

application development.

A) Patterns

Patterns are the frameworks designed in order to make the application development

efficient by the separation of Views or User Interfaces (UI) and the actual business logics

of the application. This enables to freely make changes in the user interface design

without the change in the business logic implemented. This technique also allows UI

designers independently design the UI part and let the software engineers implement the

real business logic of the application. It also increases testability, maintainability and

extensibility of the software application built.

The decoupled views and the business logic are interconnected (binded) to each other by

a thin layer. This thin layer is designed form different kinds of patterns. Among many

existing patterns, the mostly used patterns are Model View Controller (MVC), Model

View Presenter (MVP) and Model View ViewModel (MVVM). Across all these patterns,

the View and the Model are pretty much the same but simply changes in the connectivity

technique between these elements either through the Controller in the MVC, the Presenter

in MVP and the ViewModel in MVVM. [12] These patterns is not only adapted for

developing windows form or web applications but it is also used in the software

development on other platforms according to the fit.

1. Model view controller (MVC)

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
XXXIII

When to use MVC? [13]

 Use in situations where the connection between the view and the rest of the program is not

always available (and you can’t effectively employ MVVM or MVP).

 This clearly describes the situation where a web API is separated from the data sent to the

client browsers. Microsoft’s ASP.NET MVC is a great tool for managing such situations and

provides a very clear MVC framework.

2. Model view presenter (MVP)

When to use MVP? [13]

 Use in situations where binding via a data-context is not possible.

 Windows Forms is a perfect example of this. In order to separate the view from the model, a

presenter is needed. Since the view cannot directly bind to the presenter, information must be

passed to it view an interface (IView).

3. model view viewmodel (MVVM)

Figure II.8: MVVM Pattern

As seen in the above Figure II.8, the ViewModel (VM) acts as the mediator between the

Model and the View. There is data binding, Commands and Notifications present between

the View and the VM. These elements make the interconnection between the View and

the VM. Whatever events occur in the View is sent to the VM. The VM then changes the

data in the Model and after the task is done, the VM sends notification to the View what

to do (display).

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
XXXIV

When to use MVVM? [13]

 Use in situations where binding via a data-context is possible. Why? The various IView

interfaces for each view are removed which means less code to maintain.

 Some examples where MVVM is possible include WPF and javascript projects

using Knockout.

B) Frameworks in Xamarin

After learning about different types of patterns, a suitable framework for Xamarin needs to be

adapted. Searching the frameworks on the internet, two types of popular frameworks were found

to be used on Xamarin; MonoCross and MVVMCross (MVX). The MonoCross adapts the MVC

pattern whereas MVX adapts MVVM pattern.

MVX is very active at the current moment and has lots of incredible features (discussed in C). In

fact, MVX is developed from the long ago Github fork of MonoCross project, shifting from MVC

to MVVM pattern. Hence, being developed from experience of MonoCross, MvvmLight (MVVM

tool in C#) and being the most active framework at the present context, MVX framework was the

chosen framework (MVVM pattern) to be adapted in Xamarin. Further research step consists of

collecting information and investigation on MVX.

C) MVVMCross (MVX)

MVX is an Open source cross platform framework for MonoTouch (Xmarin.iOS), MonoDroid

(Xmarin.Android, WP7 and WinRT). It utilizes the MVVM C# pattern for the cross platform

native application development. It was started by Stuart Lodge in November 2011. [14] [15] This

framework makes extensive use of Portable Class library (PCL).

1. Architecture using MVX

Figure II.9: MVVM .Net Implementation

http://knockoutjs.com/

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
XXXV

The MVVMCross framework makes the use of MVVM pattern as seen in Figure II.9 for a WUL

Alarm app. It consists of View, View-Model (VM) and the Model. It represents the state and behavior

of the presentation independently of the GUI controls used in the interface. To revise, View consists

of all the UI rendering codes and the implementation of platform specific codes like push notifications

in iOS or File I/O access across platforms. Model consists of all the business logic and services like

database, web services. The VM acts as a mediator between the View and the model.

ICommand and INotifyPropertyChanged play a great role in the communication between the View

and the VM. They lie on the VM implementation. They contain all sorts of triggers to actions (clicks)

in the View and the update of the view. The actions on View that are binded with the ICommand

present in the VM, it performs specific operations that sets the different properties present in the VM.

When there is a change in the properties, using the INotifyPropertyChanged event, the View elements

binded to that changed properties updates according to the updated data in the VM.

ICommand can be seen as below which is triggered on the click action of a button on the View. The

button’s click action is binded to the ICommand btnClickAction.

Private System.MvvmCross.ViewModels.MvxCommand btnClickAction;

Public System.Windows.Input.ICommand BtnClickAction{

 get{btnClickAction=btnClickAction ?? newCirrious.MvvmkCross.ViewModels.MvxCommand (ClickOperation);

return btnClickAction;}}

Private Void ClickOperation(){

//set or change properties that will in turn activate the INotifyPropertychanged event to update the view

SetPproperty= someValue;}

The INotifyPropertyChanged (RaisePropertyChanged) can be seen as below which updates the value

of the setProperty (binded to some textview’s or buttons text) on the view.

Private string setProperty;

Public String SetProperty{

get{return setProperty;}

set{setProperty=value; RaisePropertyChanged(()=>Hello);}}

MVX framework has lots of features (Research Question 2.II.C.3) cross platform application

development.

2. Implementing the MVX in cross platform application.

Implementing the MVX in the Xamarin application also contains multiple projects in a solution

project, like in the cross platform approach while using just Xamarin. That means 3 projects for

targeting two platforms (Android & iOS in this research). Since, MVX makes extensive use of

Portable Class Library (PCL), one project is the PCL project (core project), which consists of all the

shared codes across the platforms. The other two projects consist of the View implementation for

Android and iOS consisting of the UI implementation and platform specific implementation that

cannot be implemented in the PCL project. The information is collected on the basis of learning from

the n+1 tutorial found on the YouTube and Code Project by Stuart Lodge. [16] [16].

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
XXXVI

a. PCL project (Core Project)

The PCL project used in the implementation of MVX framework is a Portable Class Library of Profile

104. This consists of only the portable codes and cannot be used to implement the platform specific

implementations. This profile defines a small subset of .Net that contains parts of the assemblies for:

 mscorlib

 System.Core

 System.Net

 System.Runtime.Serialization

 System.ServiceModel

 System.Windows

 System.Xml

 System.Xml.Linq

 System.Xml.Serialization

Profile104 consists of the all the necessities needed to build the MVVM applications. It doesn’t

support the conditional compilation for platforms and restricts to use it. While creating a PCL project

in Visual studio, the default PCL might not be of this profile. Also, the target frameworks in the PCL

(in Visual Studio) might not contain Android and iOS. Hence, for creating the required PCL to work

for MVX, some tweaks to make the Profile 104 [17]and to include also Android and iOS target

framework [18] need to be performed (currently).

A general MVVMCross Core PCL project consists:

 Assemblies reference- The reference to MVVMCross assemblies [19] need to be provided. For

examples: Cirrious.CrossCore.dll (core interfaces and concepts including Trace, Inversion of

Control (IoC) and Plugin management) and Cirrious.MvvmCross.dll (Mvvm classes including base

classes for the MvxApplication and our MvxViewModels) etc.

 Model: Business logic or Services (Interface and implementation pairs) and database

 View-Model- Inherited from MvxViewModel, uses the services and contains public properties that

call RaisePropertyChanged Event.

 packages.config: This is an external file with packages of MVVMCross that resides in all the three

projects (Core PCL, Android and iOS) targeting iOS and Android as follows:
<?xml version="1.0" encoding "utf-8"?>

<packages>

<package id="MVVMCross.HotTuna.CrossCore" version ="3.0.4" targetFramework="portable-

win+net45+MonoAndroid16+MonoTouch40+sl40+wp71"/>

<package id="MVVMCross.HotTuna.StarterPack" version= "3.0.4" targetFramework="portable-

win+net45+MonoAndroid16+MonoTouch40+sl40+wp71"/>

 </packages>

 App.cs: Need to add App.cs to the root namespace (folder). Contains the application wiring,

including the start instructions. It inherits MvxApplication, registers the services and registers

special object for the MVX framework (IMvxAppStart).

b. Android Project (Android View)
The Android project consists of all the code implementations/Xml that renders the Android UI (to

provide native UI) and the platform specific implementations like File I/O access.

A general MVVMCross Android project consists of:

 Normal Android application constructs: such as Assets folder, Resources folder and the activity

class.

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
XXXVII

 Assemblies reference: The reference to the Core PCL project needs to be provided, as well as to the

MVVMCross assemblies. For example: Cirrious.CrossCore.dll (core interfaces and concepts

including Trace, IoC and Plugin management), Cirrious.MvvmCross.Binding.dll

(DataBinding classes which is mainly used from XML), Cirrious.MvvmCross.dll (Mvvm classes -

including base classes for our views and viewmodels), Droid specific version references (like

Cirrious.CrossCore.Droid.dll Cirrious.MvvmCross.Binding.Droid.dll,

Cirrious.MvvmCross.Droid.dll) etc.

 MvvmCross Android Binding Resource File: The MvxBindingAttributes.xml seen in figure II.10

should be added to the /Resources/values folder. This is required to use the binding and other

features by the MVVMCross.

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <declare-styleable name="MvxBinding">
 <attr name="MvxBind" format="string"/>
 <attr name="MvxLang" format="string"/>
 </declare-styleable>
 <declare-styleable name="MvxListView">
 <attr name="MvxItemTemplate" format="string"/>
 <attr name="MvxDropDownItemTemplate" format="string"/>
 </declare-styleable>
 <item type="id" name="MvxBindingTagUnique"/>
 <declare-styleable name="MvxImageView">
 <attr name="MvxSource" format="string"/>
 </declare-styleable>
</resources>

Figure II.10: MvxBindingAttributes.xml

 Setup.cs: This class is added in the root namespace. It performs the initialization of

the MvvmCrossframework and your application, including:

- the Inversion of Control (IoC) system

- the MvvmCross data-binding

- our App and its collection of ViewModels

- our UI project and its collection of Views

Most of this functionality is provided automatically. Within the Android UI project, all we have to

supply are App, business logic and ViewModel content and some initialization for the Json.Net plugin

and for the navigation mechanism. However, the use of Json is not mandatory and other serialization

mechanisms can be adapted either.

 Views and Bindings: After the general structure is ready, we can start constructing the UI for our

application to consume the PCL core project. The binding between the UI and the ViewModel

created can be done using the MvxBind. For example, if we need to bind the Text property of a

TextView in the Android view, with the string property “TextPropInVM” in the Core PCL, then we

can simply bind them as in Figure II.11. The term “local” seen is referenced from

MvxBindingAttributes.xml as seen in Figure II.10.

<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 local:MvxBind="Text TextPropInVM " />
</LinearLayout>

Figure II.11: Binding Android View and Core PCL VM

A general MVVMCross Android application is ready after creating the view and binding it to the VM

of the core project. Hence, it can be seen that just after binding the view to the VM of the Core PCL

project, makes an app ready and proves that the UI and the business are really decoupled to maximum

extent while making great use of Core PCL (shared codes).

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
XXXVIII

c. iOS Project (iOS View)
The iOS project consists of all the code implementations/View Controllers that renders the iOS UI (to

provide native UI) and the platform specific implementations like push notifications.

Like in the Android project, a general MVVMCross iOS project consists of:

 Normal Android application constructs: The default constructs while creating an iOS app like

the Resources folder the info.plist 'configuration' information, the AppDelegate.cs class,

the Main.cs class and the MyViewController.cs class. The AppDelegate provides a set of callback

that iOS uses to inform about events in the application's lifecycle. To use

this AppDelegate within MvvmCross, we need to modify it so that it inherits

from MvxApplicationDelegate instead of UIApplicationDelegate:

 Assemblies reference: The MVVMCross assemblies and Android Specific assemblies for

MVVMCross are referenced.

 Setup.cs: The Setup in iOS performs the same task as in the Android.

 Views and Bindings: The view items in the View Controller (VC) can be created using Xcode

Interface Builder (XIB) in Mac (Xamarin Studio) or even programmatically (both Xamarin and

VisualStudio). However, the VC should inherit the MvxViewController as seen in figure II.12,

instead of the default UIViewController. The VM related specifically to this VC is too assigned, so

that the specific view load that is related to its VM.

public partial class TipView : MvxViewController {
 public new TipViewModel ViewModel {
 get { return (TipViewModel)base.ViewModel; }
 set { base.ViewModel = value; } }
 }

Figure II.12: iOS View Controller

After the outlets (object reference to the UI components) are created from the XIB, bindings can be

made between the view items and the VM properties when the VC loads. Binding a UILabel’s text

property to the string property TextPropInVM in the Core VM can be seen in Figure II.13.

public override void ViewDidLoad ()
 {
 base.ViewDidLoad ();

 this.CreateBinding (this.TouchLabel).To((PCLCoreVM vm) =>
 vm. TextPropInVM).Apply();
 }

Figure II.13: iOS Binding

Similar to MVVMCross Android app, general MVVMCross iOS application is ready just

after creating the view and binding it to the VM in the core project. This too shows the

decoupling of the View and the VM and making extensive use of shared codes using the PCL.

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
XXXIX

3. different Concepts in MVVMCross app development

a) Multiple screens

Cross platform applications with multiple screens can be too created using the MVX framework.

Instead of using Intents from one screen to open other screen, MVX application follow a different

strategy. Since, the Views and the ViewModels are binded together using the MVX framework, VM

are responsible for which screen to load. So, when there is a need of certain screen, the VM binded

with its view can be activated. For example: When the app start, the first VM activates which loads its

binded view (first screen). So, to open a different screen when a button-click on this first screen, the

click event of the first screen (button) is binded to the first VM (Figure II.13). From this first VM, the

SecondViewModel (VM) that is binded with the second Screen can be activated (Figure II.14).

Hence, activating the SsecondViewModel (VM) from the first VM will enable the app to show the

second screen. This way, multiscreen applications can be built using MVX using the VM transitions.

public void GoToSecondVM ()
 {
 Base.ShowViwModel<SecondViewModel>(); //base class method
 }

Figure II.14: Activating SecondViewModel from a VM

Technically, adding ICommand's to ViewModel's, binding ICommand's to Views (Buttons), adding

multiple view models, adding multiple views, finally navigating between views/view models make a

multiscreen mvx application.

b) Passing information between the screen

At certain point during the application development, there arises the need of passing information

(data) between the screens. This can be accomplished simply by passing the required data using the

VM (binded with the active screen) that activates the other VM (binded to the next screen) while

loading next screen as below:.

//Method to go to the second VM
public void GoToSecondVM ()
 {
 Base.ShowViwModel<SecondViewModel>(new{passData=“Hello“});
//base class method
 }

Using the new keyword above creates a new anonymous class and the compiler generates that as an

internal class so we need to use it externally. Hence, we need to add assembly attributes in the

AssemblyInfo.cs as:

 [assembly: InternalISVisibleTo(“Cirrious.MvvmCross“)]

The reserved Init() VM method as seen below can be used to pass the information between the

information as seen above.

//VM reserved Init() method implemented in the second VM to pass data
Public void Init (string passData)
{
SetProperties= passData;
}

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
XL

c) Gestures

As gestures relates to the platform specific implementation, they live on the View project of the MVX

application and they are implemented in each platform separately. There are various ways to

implement gesture recognizer. For example, in iOS a tap gesture recognizer implementation would

look something like this:

Var gesture= nwe UITapGestureRecognizer(()=>
{
//The operation to be performed on the tap gesture
})
View.AddGestureRecognizer(gesture);

Where, View is the main view where the gesture is to be implemented

d) Plugin/ NuGet (Native abstraction)

MVVMCross NuGets are the packages available for an easy development. They contain a template

(default Classes and assemblies) for the MVVMcross application development. These also contain the

implementations of the Native APIs that can be shared across platforms. Since, the MVX framework

adapts the PCL project but the PCL doesn’t support the platform specific implementations. For this,

we can use the existing plugins in the MVVMCross or create a custom plugin to be used to access the

native APIs in PCL. However, for a custom plugin the implementation needs to be done on each

number of targets.

1. Declaring common functionality (an interface)

An interface can be declared in the PCL Core project that consists of the functionalities to

be used which should be registered as a MVX plugin.

2. Writing platform specific implementations

The platform specific implementations for the specific platforms can be done in the view

project (iOS and Android) which implements the interface declared in the PCL Core

project.

3. Using the interface and not the implementation

The interface is declared and the implementation is done in the platform specific view

project. Now, for consuming the platform specific functions from the PCL, the interface

implemented by the View can be used.

e) Xamarin.Mobile

Xamarin.Mobile is a library that exposes a single set of APIs for accessing common mobile device

functionality across iOS, Android, and Windows platforms (Figure II.15). This increases the amount

of code developers can share across mobile platforms, making mobile app development easier and

faster. Xamarin.Mobile currently abstracts the contacts, camera, and geo-location APIs across iOS,

Android and Windows platforms. Future plans include notifications and accelerometer services. [5] It

maps to native implementation on each platform.

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
XLI

Figure II.15: Xamarin.mobile

To use contacts on Android and iOS, we can use:

Var book= new AddressBook(){PreferContactAggregation=true};

Foreach(Contact c in book.Where(c=>LastName== “search keyword”)){

Console.WriteLine(C.DisplayName);

Foreach(Phone p in c.Phones)

Console.WriteLine(“Phone: ”+p.Number);

Foreach (Email e in c.Emails)

Console.WriteLine(“Email: “+e.Address);}

Xamarin.Mobile can be a boon in the cross platform development using Xamarin. But, when we adapt

an MVVMCross framework, even Xamarin.Mobile seems ligther as MVVMCross provides plugin

features containing lots of functions (except for Contacts) that Xamarin.Mobile includes and other

many functions that Xamarin.Mobile doesn’t include like Accelerometer, Bluetooth etc.

Xamarin.Mobile is not portable code - it can't be called directly from PCLs. The first version of

Xamarin PCL support is supposed to be due very soon. However, it can be used in the PCL by making

some tweaks. But, instead of using the Xamarin.mobile, looking at the plugins for the APIs already

existing in the MVVMCross, Xamarin.mobile can be skipped to be used while adapting the

MVVMCross framework.

f) Native libraries

Getting the P/Invoke mechanism work (Appendix D. Research Question 1. II.D2), if we want to use

the functions in the native libraries in the PCL, then we can follow the same procedure as mentioned

above in using Plugin (3.d).

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
XLII

4. features

The advantages of MVVMCross include: [20]:

 Binding support on iOS (XIB) and Android (XML)

 A lot of app behavior gets put into VM and is reusable across platforms

 Since VM are platform-agnostic unit tests can be written that covers most of the app's

behavior

 View models are shared, but views remain totally native

 VM can be customized on how to present based on the needs (such as showing multiple at

once for a tablet version)

 The framework itself is very extensible, allowing for a lot of customization when needed.

5. Exisiting applications using this framework

Lots of most demanding scenarios, like high frame rate gaming and complex data visualizations have

been built using the Xamarin and MVVMCross framework as below: [21]

 Kinect Star Wars - http://www.youtube.com/watch?v=MXPE2iTvlWg

 Aviva Drive - http://www.aviva.co.uk/drive

 Origo Foci-Eb 2012 - http://slodge.blogspot.co.uk/2012/10/origo-foci-eb-2012-example-

mvvmcross.html

 The CrossBox DropBox client - https://github.com/runegri/CrossBox

 The Blooor shopping list app - https://github.com/Zoldeper/Blooor

 Various Conference apps - SQLBitsX, DDDSW, LondonAzure,

https://github.com/slodge/MvvmCross/tree/vnext/Sample%20-%20CirriousConference

6. bottleneck:

The biggest problem is the setting up the MVVMCross framework. To utilize the MVX framework,

NuGet packages are used officially in VisualStudio using the Xamarin.iOS and Xamarin.Android

plugin. Using the Visualstudio for the development, the PCL support for the Xamarin.iOS and

Xamarin.Android frameworks doesn’t exist by default. Hence, tweaks must be done in order to make

use of them. [17]. Even following the tweaks didn’t work out in this project. The NuGet package for

using the MVVMCross requires NuGet 2.5 which isn't yet finished/released for Xamarin Studio on

Mac. Hence, unable to use the NuGet, all the references, required classes should be done manually on

Mac. Even after the modeling of the application, due to these problems at the present context, while

trying to manually work with the assemblies for the MVVMCross framework [18] couldn’t be set

properly. The straight forward getting started with the MVVMCross isn’t yet perfect. Hence, though

MVVMCross being powerful, the initial setup is really the main bottleneck during the development.

http://www.youtube.com/watch?v=MXPE2iTvlWg
http://www.aviva.co.uk/drive
http://slodge.blogspot.co.uk/2012/10/origo-foci-eb-2012-example-mvvmcross.html
http://slodge.blogspot.co.uk/2012/10/origo-foci-eb-2012-example-mvvmcross.html
https://github.com/runegri/CrossBox
https://github.com/Zoldeper/Blooor
https://github.com/slodge/MvvmCross/tree/vnext/Sample%20-%20CirriousConference

Research on Cross-platform mobile app development

Saurav Aran, Fontys ICT (Software) Graduation project, June 2013
XLIII

III) Conclusion and recommendation

Xamarin with MVVMCross framework is a very powerful combination for the cross platform mobile

application development. These two combined boosts up the cross platform application development

process by giving a single language of C# for the development across different platforms. They enable

shared codes across different platforms, provide native look and feel to the cross app, support native

and existing libraries, high performance apps and large applications have a common architecture.

However, for the cross platform support, the use of different IDEs (Xamarin, MonoDevelop,

VisualStudio) the development using Xamarin components and MVVMCross framework make a

tiresome work to find the correct path. But once, the correct path is known, it makes the whole life

easier for the cross platform application development. To conclude, a native-cross platform

application can be built with excessive sharing of codes across platforms using Xamarin and

MVVMCross framework together.

The recommendation would be to make use of Xamarin and MVVMCross framework for the

development. Despite of the disability to set up the framework for use and some overheads, based on

the research information on the features and supports of Xamarin and MVVMCross, they should be

applied in the cross platform mobile application development.

