

Talking Motion

Demonstrating communication in a vehicular environment

Ruud van Heugten

Meijel, 10 June 2009

Talking Motion
Demonstrating communication in a vehicular environment

Ruud van Heugten

10-06-2009

Graduation report for Fontys University of Applied Sciences

Student information:

Name: R.J.G. van Heugten

Student number: 2056553

Study: Computer Science and Engineering (Fulltime)

Graduation period: 2 February 2009 till 3 July 2009

Company information:

Name: Fourtress BV

Department: Software Engineering
Location: Eindhoven

Supervisor: N. Vos

Technical support: B. Peeters

Tutor information:

School: Fontys University of Applied Sciences

Location: Eindhoven

Name: G. Dirks

Paper information:

Title: Talking Motion, demonstrating communication in a vehicular environment.

Date: 10 June 2009

Confidential: No

Approval by company supervisor:

Name: Date: Signature:

Talking Motion
Demonstrating communication in a vehicular environment

Ruud van Heugten

10-06-2009

Preface

This report is written during my graduation period at Fourtress BV for the Fontys University of

Applied Sciences. It describes the process of getting started with the assignment and what I

have done, up to finishing it at the end of my graduation period.

The assignment I have done is part of the Connect & Drive project which utilizes wireless

communication between cars to improve safety and flow through on the road and decrease the

length of traffic jams. To accomplish this, eight parties work together to create a cooperative

adaptive cruise control system in which Fourtress is responsible for the software application.

My assignment was to create software that could demonstrate the use of the project and also

could be used in a further stage during the Connect & Drive project.

I would like to thank Fourtress for giving me the opportunity to graduate at their company. I

would also like to thank all the employees of Fourtress who helped me make my graduation as

successful as it is. In particular Niels Vos as my supervisor and Bruno Peeters for his technical

assistance during my graduation period. Without their help it would have been a lot more

difficult to get everything working as it is now. Also with the help and support of Geert Dirks as

my tutor for Fontys Hogescholen I can graduate as Bachelor of Information, Communication

and Technology.

Meijel, June 2009

Ruud van Heugten

Talking Motion
Demonstrating communication in a vehicular environment

Ruud van Heugten

10-06-2009

Table of contents

Summary ... 5

Glossary ... 6

1 Introduction ... 7

2 Fourtress BV .. 8
2.1 General ... 8
2.2 In-house-projects .. 8

2.2.1 Commercial projects .. 8
2.2.2 A place called tomorrow ... 9

2.3 Company structure ... 9

3 The assignment .. 10
3.1 Initial situation .. 10
3.2 Final goal .. 11
3.3 Project description.. 12

3.3.1 Structure .. 12
3.3.2 Objectives .. 13

4 Knowledge ... 16
4.1 Connect & Drive ... 16

4.1.1 Background .. 16
4.1.2 Traffic jams .. 17
4.1.3 Cooperative Adaptive Cruise Control .. 17
4.1.4 Intended result and goals ... 18

4.2 Methods .. 18
4.2.1 Agile .. 18
4.2.2 Object Oriented Design Patterns .. 19

4.3 Programming ... 20
4.4 Project Planning ... 20

5 Research ... 22
5.1 Network .. 22

5.1.1 Specifications .. 22
5.1.2 Test ... 23

5.2 Network communication .. 25
5.2.1 Listening .. 25
5.2.2 Filtering ... 26
5.2.3 Sending ... 26

5.3 Programming research .. 26
5.3.1 Dynamic link libraries ... 26
5.3.2 Application Programming Interface .. 27
5.3.3 Threads .. 27

6 Implementation .. 29
6.1 Server and client .. 29
6.2 ServerClient .. 29
6.3 Car ... 31
6.4 Road .. 33
6.5 Demonstrator .. 33

Talking Motion
Demonstrating communication in a vehicular environment

Ruud van Heugten

10-06-2009

7 Results .. 35
7.1 Server and client .. 35
7.2 ServerClient .. 35
7.3 Car ... 36
7.4 Road .. 37
7.5 Demonstrator .. 38

8 Conclusion and recommendations ... 40

Evaluation .. 41

Bibliography ... 42

Appendices ... 43
Appendix I: Plan of approach ...

Talking Motion
Demonstrating communication in a vehicular environment

Ruud van Heugten

10-06-2009

-5-

Summary

Nowadays there are a lot of traffic jams which grow gradually in length over time. Possible

solutions are increasing road capacity or spreading the traffic more over the day. Although

these solutions provide some decrease in traffic, both solutions have flaws. Another possibility
is using the road system better and improve the flow through of traffic. To investigate such a

solution Fourtress BV is working together with a consortium of other companies and technical

universities on the Connect & Drive project.

The Connect & Drive project wants to utilize car to car communication to create a cooperative

adaptive cruise control system. This system makes it possible for cars to use the

communication to calculate the optimal driving speed and warn others for possible hazards

ahead.

An important part of the project is the network communication between cars. To start testing

and look into possible problems that can occur during the communication Fourtress wants to

have a system that simulates final system. These systems must be able to inform each other

with information like the current speed, GPS position and direction without user interaction.

Since hardware is not available at the start, the application uses modules that stub this

hardware and can be swapped later on.

At the start of the assignment a plan of approach is made to have a guideline during the

project. At the start the main goal is research about what is necessary for car to car

communication. The next step is to define modules for more dynamic and communication

without user interaction. When this is possible, modules for simulating a real car can be

implemented.

During the graduation project the main point of interest, making dynamic network

communication possible, was pursued. This was done by utilizing a network library to send and

receive network packets. With these packets it was possible to determine where other

instances of the software application were and after discovering them, communication could be
made. When communication was possible and everything worked ad-hoc, the other modules

needed for simulation could be implemented.

At the end of the graduation it was possible to simulate the final product by utilizing modules

for: speed control, position of the car and more importantly network communication between

cars. By creating graphical interfaces to show the current status of the car and the current

position of the cars in the network, it is easier to see how cars react on each others messages.

Although network communication and simulating a real car is possible there’s still some room

for improving the software application. During network communication a lot of data is being

sent between cars which can cause network problems (overflows e.g.) when a lot of cars are

within each others range. Also is the algorithm that is used in the software application not as

advanced as it will be in the Connect & Drive project.

These improvements can however be done when the final algorithm and network

implementation is ready. By building the software application dynamically and by using

modules it is easier for other software engineers to continue with this project implement those

changes.

Talking Motion
Demonstrating communication in a vehicular environment

Ruud van Heugten

10-06-2009

-6-

Glossary

Abbreviation Description

ACC Adaptive Cruise Control.

Agile Software development method.

C# Programming language.

C++ Programming language.

C-ACC Cooperative Adaptive Cruise Control.

CLI Command Line Interface.

CPU Central Processing Unit.

Cygwin Linux like environment for windows.

DLL Dynamic Link Library.

FDD Feature Driven Development, Agile development method.

GUI Graphical User Interface.

GPS Global Positioning System.

HMI Human Machine Interface

IDE Integrated Development Environment

Java Programming language.

LOS Line of sight.

Microsoft

Winsock

Standard Microsoft implementation of sockets.

MSDN Microsoft Developer Network.

NS-3 Network Simulator 3

OS Operating System.

SME Small and medium-size firm.

SNT Qualnet

developer

Scalable Network Technologies Qualnet developer.

TraNS Traffic Network Simulator.

VANET Vehicular Ad-hoc Network environment.

WiFi Wireless Fidelity, used as a wireless communication protocol.

Winpcap Windows library that utilizes the possibility to capture network traffic.

Wireshark Network traffic capture software, previously known as Ethereal.

Talking Motion
Demonstrating communication in a vehicular environment

Ruud van Heugten

10-06-2009

-7-

1 Introduction

Nowadays it is almost normal to get stuck in a traffic jam. To solve this problem a couple of

actions can be taken but most of them are time or cost consuming and not wanted by local or

national governments. To solve the problem of these traffic jams the Connect & Drive project

is instantiated.

The Connect & Drive project itself is based on utilizing network communication between cars to

control the speed of cars. When the speed is controllable, usage of the road can be optimized

and it makes it safer than it is now. The Connect & Drive project is a collaboration of four

companies, a research centre and three technical universities. Fourtress BV is one of the four

companies and is responsible for the software that takes care of the communication and makes

sure that the speed of the car is controlled.

Although the project has not been started too long ago and the hardware is not yet available,

Fourtress wants to start developing the software so they can test their software already. The

main reason for this earlier testing is keeping ahead of possible problems that may occur when

the hardware is available.

To solve this problem, Fourtress is looking forward to have some kind of software that already

has the functionalities of the final hardware. With this software they can start testing for

possible unexpected problems and by making the software dynamically it will be easier to

adapt to the real hardware.

During the graduation period the software that is able to simulate the final hardware and test
software will be made. A step by step plan is made to get to the final goal with a clear view of

the different phases. In this report these phases and progress is described.

After this introduction there will be some information about Fourtress in the second chapter. In

chapter three the actual assignment is described more precisely. The knowledge and research

needed for the assignment are stated in chapter four and five. Chapter six contains the

information about the implementation of the knowledge and research where chapter seven

describes the results of the implementation. The conclusion and recommendations can be

found in chapter eight.

Talking Motion
Demonstrating communication in a vehicular environment

Ruud van Heugten

10-06-2009

-8-

2 Fourtress BV

This chapter contains information about Fourtress BV, how it started, what they do nowadays,

business-models and more about their ‘in-house-projects’.

2.1 General

Fourtress was founded nine years ago (2000) by Harry Schlatmann and Pim Grol. They saw

that companies wanted to invest in technology but did not want to take all the risks. To solve

this they decided to step in and share the risk. Fourtress provided the software engineers but

also took care of the risk for the new technology. This was a great advantage for companies to

explore new technologies and for Fourtress to expand their knowledge.

Fourtress’s core-business is deploying their software engineers as consultancy agents at

customer’s locations, in the field of embedded software and technical automation. This is the

biggest part of all the Fourtress employees. Other employees, managers, mentors, trainees,

graduates and software engineers that are not working at a customer location are located at

the office.

At the office these software engineers work on so called ‘in-house-projects’. These projects are

either commercial projects or started by Fourtress for expanding their knowledge and

technologies.

2.2 In-house-projects

As mentioned in the previous paragraph Fourtress also has ‘in-house-projects’. These projects

can be divided into two different categories. The first category are commercial projects, the

second category contains projects which fit in ‘a place called tomorrow’ which will be explained

below.

2.2.1 Commercial projects

When Fourtress works on commercial projects those projects are also part of the ‘in-house-

projects’. These projects can have all kinds of purposes. One of them is Videology, a project

which aims at improving the usability of security systems.

This project’s main goal is to create a standard for communication between the cameras and

the hardware which captures the data. To achieve this, an embedded device is placed at the

camera side and also at the receiver side. At the camera side the data is processed to see if

the data needs to be captured or not. When the data needs to be captured, when a burglar

comes in for example, a connection with the receiver is made and data is sent. However, when

a security employee wants to look through the camera, he can manually send a signal from the

receiver to the camera to start sending data.

Another commercial project of Fourtress makes it possible for elderly people to easily make

video calls to friends or family. The main goal of this project is to keep the elderly people

active and show them how new technologies can help them in their life.

Talking Motion
Demonstrating communication in a vehicular environment

Ruud van Heugten

10-06-2009

-9-

2.2.2 A place called tomorrow

A place called tomorrow is an overall project which is build up on all of the ‘in-house-projects’

started by Fourtress for expansion of knowledge and technologies. The main goal of ‘a place

called tomorrow’ is to demonstrate people what new technologies can do to improve the

comfort of living in personal care, domotica and automotive.

A good example of a project which is part of ‘a place called tomorrow’ is the ‘lunchbox e-

wallet’. It uses fingerprint recognition as a payment option for the lunch. Before you start

lunch, you simply scan your fingerprint and when it is recognized it deducts the cost of the

lunch automatically from your salary. With this system in use you do not need to carry any

money with you, you just pay with your fingerprint.

Another project that improves the comfort of living is the ‘wireless ambiance’ project. The main

goal of the project is to create a personal ambiance in a room. This ambiance is created by

adapting lights, music and images to the person that is in the room. By adapting these aspects

the person will feel more relaxed.

2.3 Company structure

Figure 1 shows an overview of the company structure of Fourtress. This overview shows the

different departments within the company. The software engineers, trainees and graduates are

all brought together as ‘Technical Employees’. They are supervised by the ‘Technical Manager’.

Overall Director

Project Office

Group Leader

Commercial
Director

Office
Management

Technical
Manager

Manager
Operations

Commercial
Manager

P & O Manager

Technical
Employees

Figure 1: Fourtress BV. Company Structure

Talking Motion
Demonstrating communication in a vehicular environment

Ruud van Heugten

10-06-2009

-10-

3 The assignment

This chapter describes the assignment, which is a part of the Connect & Drive project and

which is described in paragraph 4.1. The assignment description itself can be found in the next

three paragraphs. At first the initial situation is explained followed by the final goal of the

assignment. In the third paragraph the project description can be found.

3.1 Initial situation

Connect & Drive is a project which includes all kinds of technologies needed to be taken car of,

for making a successful product. During the Connect & Drive project all of the cooperating

parties need to work together to complete the project. To do this, each company works on

their part of the project.

The main part of Fourtress during the Connect & Drive project is making the software

application that connects the different aspects of the overall project together. All of these

aspects can be seen in figure 2, which also shows that Fourtress is in the middle of it all

making the software essential for the Connect & Drive project.

Figure 2: The overall technology part of Connect & Drive

Talking Motion
Demonstrating communication in a vehicular environment

Ruud van Heugten

10-06-2009

-11-

As the figure shows the software needs to connect these hardware parts:

• HMI

• Platoon control

• Controlling algorithms

• Communication devices

• GPS

• Car

The first hardware part is the HMI, it can be a graphical interface as pictured in the figure but

it can also be a red warning light inside the car. The platoon control is used to create platoons

of cars already working together as a platoon on a road. The third important hardware part is

the controlling algorithms. They calculate what the best to use speed is in case of nearing a

traffic jam, bad road conditions or possible other hazards. The controlling algorithms are also

based on communication that is received through the communication devices and the GPS. In

the end, all these hardware parts are placed inside the car.

As the figure makes clear all the different hardware parts are connected to each other by

software. The most important reason for this is that the hardware can only do what they are

supposed to do. The GPS system can for example only determine its own position and not the
position of the car ahead.

For the software to work completely as it should be the hardware components need to be

ready before the software can be implemented. The reason for this is that cars can not use the

C-ACC algorithm without communication for example.

3.2 Final goal

For Fourtress it is important to look towards the final goal of the project. They want to know

what the system should do in different situations, how their software should respond to

changes from the hardware and with this knowledge work ahead to prevent delays in the end

of the project.

With this in mind, the final goal of the assignment can be described. The final goal is to create

a software application that can act as a car, equipped with the final product of the Connect &

Drive project. When the software application is ready it should be easy to modify it to changes

in hardware and it should also be easy to test it in a real life environment.

To act as a fully operational system the software application needs to use all off the hardware

parts that are shown in figure 2. But because Fourtress needs to work ahead and already start

with some testing they need to simulate the parts that are not yet available. This simulation

will be done by creating a stub which then can be used for controlled testing. The parts that

are needed for the C-ACC system to work as it should be are:

• Network communication.

• Speed control.

• GPS.

• C-ACC algorithm.

Each part that needs to be simulated is similar to the real version of the product. This makes it

possible to develop a software application and when the real parts arrive at Fourtress they can

be implemented without having to change a lot or even start all over. When the software

application is ready and a fully operational system is made, it needs to be tested.

Talking Motion
Demonstrating communication in a vehicular environment

Ruud van Heugten

10-06-2009

-12-

To test the systems behaviour, a test situation as drawn in figure 3 should be possible. It

shows a car that wants to join the traffic with cars passing by on the highway. The system

should be able to determine the position of its own and use that in combination with its speed

to calculate a safe speed to join the traffic. To calculate this speed communication with other

cars is needed.

Figure 3: Car joining the traffic

During the development of the software application, Fourtress does not want to spend a lot of

money for testing each time a new version of the software is available. To solve this problem

and still be able to test the software, another software application must be made.

This software should make it possible to listen what cars communicate with each other over

the network and display the information in a graphical interface. This enables the software

engineers to test minor changes more easily. Because of the graphical interface it can also be

used to demonstrate the effects of the C-ACC to visitors and customers of Fourtress, but it can

also be used during presentations or conferences because it gives a nice demo effect.

3.3 Project description

Since the initial situation and final goal are clear it is possible to define the project description.

The project description is the step to get to the final goal from the initial situation. What this

step really means is explained in this paragraph. Because it is a big step to take, the step is

separated into five objectives. These objectives can be found after the structure of the project

is defined. This structure shows who is responsible for what during the graduation project.

3.3.1 Structure

During this project the following project structure is used to make clear who is responsible for

what part of the objectives. This project structure is used on most of the ‘in-house-projects’ at

Fourtress. The structure can be found in figure 4.

Talking Motion
Demonstrating communication in a vehicular environment

Ruud van Heugten

10-06-2009

-13-

As you can see in the figure above, the project employee justifies its actions to the project

leader and gets technical assistances by the technical assistant. The project leader also assists

the project employee by advising in situations where the employee is not experienced enough.

Another task of the project leader is to report the status of the project to the project office.

The project office keeps track of all projects that take place at Fourtress.

During this project the following people will take care of the different project roles. The project

employee of this project is Ruud van Heugten who is a graduate at Fourtress. He gets technical

assistance of Bruno Peeters. All of the work that is done by the project employee is reported to

Niels Vos as the project leader. He will also help with making decisions and tries to stimulate

the graduate to a better overall product. The project office is only has a small part during this

project, its main task is to maintain the overall process and make sure the project stays on

track.

3.3.2 Objectives

To make the step from the initial situation to the final goal a bit easier the step is divided into
five objectives. Although these objectives are clear they are still too big to complete in one

single step. To make these steps smaller, sub-objectives are introduced. These sub-objectives

are smaller steps which are easier to accomplish but still provide enough improvement to finish

the bigger objective.

Network communication

The first objective is to make network communication possible. Network communication is an

essential part of the Connect & Drive project and also the main goal during the graduation

period. The cars need to communicate with each other over the network to warn them for

possible hazards, traffic jams and send them other messages regarding road safety.

• Message from client to server:

The first sub objective is to send a message from a client application to a server
application over a network connection. This is the basic principle of network

communication. When messages can be sent from a client to a server, the server can

be expanded to make it possible for multiple clients to send messages to the server

application without causing interference on the server responsiveness.

• Respond to a specific message to specific client:

When it is possible for the server application to receive messages from multiple clients

at the same time, it needs to respond to those messages in a proper way. To

Project Office

Project Leader

Project Employee Technical

Assistant

Figure 4: Project structure

Talking Motion
Demonstrating communication in a vehicular environment

Ruud van Heugten

10-06-2009

-14-

implement this functionality it can be easier to implement it first in a single client-

server-environment. When server application is able to respond to the messages of this

single client it can be expanded to support a multiple client-server-environment.

• Integrate clients and server:

The overall final objective is to have one single software application that can do

everything that is needed for the Connect & Drive project. To already work towards that

goal the client and server applications need to be combined to one single application.

After they are combined together the same functionality as in the previous sub

objectives should be present.

• Make it all dynamic:

After clients and server are integrated in to one application, the application should work

without too much configuration needed before you can send and receive messages. To

do this another sub objective is introduced to make sure everything works dynamically,

without user interaction.

Speed control

To make sure that cars, equipped with the software application, drive the correct speed the

speed control objective is necessary. The main goal of this objective is to know the current
speed of the car but also control the speed of the car. This control is necessary when the car

needs to brake or in situations where the car could speed up.

• Determine current speed:

Before it is even possible to adjust the speed of the car, to for example other cars or

hazardous situations it is necessary to determine the current speed of the car itself.

With this speed it is possible for the C-ACC algorithm to calculate in how many seconds

the car is going to be at a specific position.

• Adjust speed:

Because speed is an important part of the Connect & Drive project, the ability of

adjusting the speed of the car is also very important. In this sub objective this ability

will be implemented.

Positioning system

During communication between cars it is important to know where the cars are. Not only to

determine how much distance there is between cars but also to know on which road they are.

This is very useful in the C-ACC algorithm because when cars join the traffic it needs to be

communicated to other cars on the specific road. The positioning system will also be used to

know in which direction cars are driving.

• Determine current position:

For the system it is important to know on what road the car is. This is not only

necessary for the C-ACC algorithm when a car is joining the traffic, but also to

determine the best route when other cars communicate that a traffic jam is near.

Other possible usage of the current position is when restaurants want to advertise

to cars in a specific area.

• Determine driving direction:

In a lot of situations it is not necessary for cars to communicate with cars driving in

the other direction. If you know the driving direction of a car you can save time on

communication and connection build up. The driving direction can also be used to

warn the driver if he is driving the wrong way on a one way street.

Talking Motion
Demonstrating communication in a vehicular environment

Ruud van Heugten

10-06-2009

-15-

C-ACC algorithm

After the network communication, speed control and positioning system are ready the C-ACC

algorithm can be created. It utilizes all the previous objectives together and forms an

algorithm that adapts it speed with information it receives through network communication

and the positioning system.

• Create a ACC algorithm:

The C-ACC algorithm is a difficult algorithm that needs to take care of a lot of

different influences but the ACC algorithm is easier. Therefore this algorithm is

implemented first to test out in an early stage how the rest of the system reacts. If

everything works without problems it can be expanded in another sub objective.

• Define what information is needed for expanding the ACC algorithm:

Before the ACC algorithm can be expanded it is necessary to make clear what the

C-ACC algorithm needs to work properly. This is another step which is important for

the further implementation of the C-ACC algorithm.

• Expand the ACC algorithm and make it a C-ACC algorithm:

When it is clear what the ACC needs to make it a C-ACC algorithm it can be

expanded. This is the last step for the main part of the final product. This means
that it needs to be tested very well before it can be used in a real car. The testing

however will be done in the end objective.

End objective

When the C-ACC algorithm is finished, the end objective is to implement everything in one

system that can be installed in a real car. To do this, every objective needs to be tested on its

functionality and if they do their work properly everything can be tested together. When these

tests are done, the system can be tested in a real life situation. These tests can only be done

when the hardware is available.

• Combine everything in a working test application:

The first sub objective of the end objective consists of combining all the different

parts from the previous objectives. When all the different parts are combined they
need to be tested very well before they can be implemented in a real car. The best

and easiest way to do this is, is by creating a test application. This test application

will act as a real car but only on a computer.

• Create a monitoring program for all the cars:

Although a test application is made for the cars itself, it is important to see where

the cars are. This is done by creating a monitoring program that captures all the

network communication done by the cars. After capturing the network

communication the application analyses the data and transforms it in to a graphical

interface which makes it easy to see where cars are and at what speed.

• Implement the software in a real car:

When tests with both the test application and the monitoring program are successful

it is time to implement the software in a real car. After implementation a series of

tests is done to make sure the software will not cause unwanted situations on the

road.

Talking Motion
Demonstrating communication in a vehicular environment

Ruud van Heugten

10-06-2009

-16-

4 Knowledge

Knowledge is a necessary part of getting a problem solved. The problem can be solved with

knowledge which is already at hand or acquired during the problem solving. During the

assignment some knowledge was already at hand but also a fair amount of knowledge was

gained. In this chapter the various parts of knowledge needed during the assignment are

described. The first paragraph explains some general knowledge needed for the project to

begin with. The other paragraphs tell more about the personal knowledge needed.

4.1 Connect & Drive

The graduation assignment was part of the Connect & Drive project. This chapter explains

more about the Connect & Drive project.

Connect & Drive is a big project in which four SME, one research facility and three technical

universities work together towards a common goal. This goal is to create a Cooperative

Adaptive Cruise Control (C-ACC) system based on WiFi communication between cars and

infrastructure. With this type of cruise control you are able to tell and listen to other cars about

possible hazards ahead. Reducing the longitudinal wave motion in traffic jams is however the
main reason for the communication. You can also use the communication to receive

information about road closures or even advertisements of local firms.

4.1.1 Background

The current society is very dependent on mobility, although it causes severe problems on

safety, congestion and the environment. In the Netherlands, road safety is better than in most

other countries around the world, however it lacks in the flow through of traffic. The national

traffic intensity is almost nowhere as high and congestion has become a national problem even

with a good road-system.

The 'Kennis Instituut voor Mobiliteitsbeleid' reported an increase of 53% in travel time loss

between 2000 and 2006 in the Netherlands and after 2006 it even got worse1. The main

problem is: when more people want to travel, the worse it gets. So when the need is the

highest the flow through is the worst.

To reduce traffic jams a lot of investments are done in increasing the capacity of the road-

system. However, construction of more roads often is not what residents living nearby want. It

is also expensive, takes a lot of time to finish and it is also bad for the environment. These are

the main reasons to solve the problem by using the available roads. This can be done by

spreading traffic better over the day and let the traffic make more use of the local roads

instead of only using the highways. Also the public transportation can help reducing the

amount of cars on the highway. Although reducing the number of cars will not increase the

capacity of the overall transportation system.

By using innovative technologies the capacity of the current road-system can be increased.

This is what the Connect & Drive proposal is all about. Focus on a new innovative technology

to create new solutions. Connect & Drive wants to use C-ACC as a new Dutch technology to

solve a big problem that is nowhere else as big as in the Netherlands. When the systems are

ready they can be tested and implemented in a real good test-environment like the Dutch

transportation system.

1: Mobiliteitsbalans 2008, Kennisinstituut voor mobiliteitsbeleid.

Talking Motion
Demonstrating communication in a vehicular environment

Ruud van Heugten

10-06-2009

-17-

4.1.2 Traffic jams

As an effect of instability of the traffic stream, the infrastructure is used limitedly. Traffic jams

are caused by human shortcomings, natural human driving behaviour is that people brake just

a bit harder than the car in front of them. This causes a negative oscillation effect in traffic

flow through. In a specific traffic flow this causes a longitudinal wave motion over the highway.

This means that at one point you are standing still and a just minute later you can drive

without problems.

To improve throughput, it is necessary to reduce the negative oscillation caused by human

behaviour. This can be achieved by explicitly advising the driver the optimal driving speed and

perhaps take control of it. A good progress in this process is the Adaptive Cruise Control

(ACC).

ACC utilizes a cruise control system which bases its speed on distance to the car ahead and the

speed of the other car. With these two factors not only the comfort of the driver is improved

but also the safety. However, because ACC can only see the car in front and not further, it can

cause to even exaggerate the wave motion when long lines of cars all use ACC and the first car

abruptly brakes.

4.1.3 Cooperative Adaptive Cruise Control

Connect & Drive describes a research for a new generation in-car-system technology. This

technology is called ‘Cooperative Adaptive Cruise Control’ because the cruise control works

together with other cars and adapts itself to new situations. The main advantage of C-ACC

over ACC is the communication.

With this communication it is possible to tell and listen to cars further ahead or behind you.

These cars can help you determine what speed is the best to use for example. This speed can

be calculated on possible traffic jams ahead but also weather or road information which you

cannot see yet. The wave motion normally caused by natural behaviour can be limited because
you already know what is going to happen. Another good reason to communicate between cars

is when a car wants to join the traffic. When cars tell each other how fast they should drive

and with which distance from each other it is safe and easy to join in.

In order to use a system like this, it is necessary to control all the different aspects of it in an

easy way. In the Connect & Drive project each aspect is done by its own specialist. The

different aspects are for example: controlling the speed of the car, communication between

cars, check weather/road conditions and many more. To control these parts, a software

application needs to be made. For the Connect & Drive project Fourtress will take care of that.

Their software sends signals to the car to slow down when they receive a bad-weather-

message for example.

Talking Motion
Demonstrating communication in a vehicular environment

Ruud van Heugten

10-06-2009

-18-

4.1.4 Intended result and goals

The overall intended result is to show that, the newly developed technology in combination

with several traffic-control-techniques, can shorten the travel-time on known traffic jam-routes

with about 25%1.

A set of goals is created to act as a base for the project. These goals are:

• Proof the current state-of-the-art ACC technology causes instabilities when a lot of

ACC-cars are in line without car-to-car communication.

• By using an advanced decision-algorithm, stabilizing the oscillations of a (long)

string of ACC-vehicles whom are teased by interferences on the follow-speed,

follow-distance, changing numbers of vehicles and on non-communicating vehicles

with the use of vehicle-to-vehicle communication.

• Realizing and justifying of trustworthy and robust WiFi communication technology to

set up ad-hoc vehicle- and infrastructure-networks ‘on-the-fly’ which are strongly

influenced by changing traffic density and mutual speed differences.

• Increasing/decreasing of the (follow) speed and follow distance in case of

interferences with vehicle-vehicle communication and vehicle-infrastructure

communication by using WiFi technology.

• Making clear what the impact of this in-car technology is for the flow through

dynamics and utilisation of the (Dutch) road-system and solving/prevention of

traffic jams.

• Identifying the success factors for the acceptation of C-ACC in both the system-
driven and driver-driven system.

4.2 Methods
During the graduation period a couple of methods where used. One method was used to keep

track of the process of the software development. To help with the software development a

couple of design patterns from the object oriented software development method were used.

This paragraph explains both methods starting with the Agile software development method.

4.2.1 Agile

During the project an Agile software development method was used. Agile software

development refers to a group of software development methodologies based on iterative

development, where requirements and solutions evolve through collaboration between self-

organizing cross-functional teams. This means that during iterations there will be a series of

steps containing analysing, designing, implementing, testing and documenting. This makes it

possible to improve the overall project in each iteration without introducing new problems.

The main problem people can think of when using Agile is that it causes a chaotic design and

code. However, by analyzing at the start of iterations, the design and implementation of the

features are done in the best possible way. Also by analyzing, refactoring of previous code is

more likely to happen.

1: HTAS, Connect & Drive Projectplan.

Talking Motion
Demonstrating communication in a vehicular environment

Ruud van Heugten

10-06-2009

-19-

The Agile software development method was not completely new at the start of the graduation

period because the last project at school also used the Agile as software development method.

Although it was not completely new, the process of the project at school did not went exactly

the way it should be, because it was completely new. This caused some flaws which should not

have to occur when using Agile.

During the assignment, the ‘Feature Driven Development’ (FDD) method was used. The most

important part of this method is keep improving the project by focusing on new features, but

also improving present features. This creates the need to keep analysing the previous project

conditions. Because of this analyzing it is clear what can be improved or needs to be added to

the project.

As said, each iteration also contains designing. As part of the FDD method used, the designing

part is aimed at the feature. This causes to look for the best solution for the specific feature

while keeping it simple. Implementing the design in the code will also be kept simple because

it is not as big as a complete design. After implementation is done, the test-phase is there to

make sure the feature implementation is done in a correct way. After all tests are positive,

documentation of the next feature can be started and thus making it possible for the next

iteration to implement the necessary improvements.

4.2.2 Object Oriented Design Patterns

Before starting the graduation some object oriented design patterns were already known.

These had already been used at school and were implemented in some software applications

during lessons. Although the knowledge was there, the usage of the patterns was not that

clear. It also was not clear what the design patterns could mean for the design of software.

During the graduation period it quickly became clear that design patterns were needed to

improve the dynamics of the software. This became clear when some refactoring needed to be

done and a lot of important functions were tangled up in each other. To solve this, some

learning was needed.

This learning made it clear that a good design with the use of design patterns can improve the

design of the software application a lot. After this learning, the design of the software

application needed a review. It was clear that it needed some drastic changes.

A big change in the design was done by implementing the Singleton pattern. The Singleton

pattern is basically a pattern that makes sure you can only have one instance of an object.

This makes sure you do not run into the problem of using the wrong object, although it does

the same. The singleton pattern was used to provide a logging class in the software

application. This logging class took care of all the logging that needed to be done. Because it

was implemented as a Singleton class, making mistakes during the usage of the logging parts

impossible.

Another pattern used during the graduation period was the adapter pattern. The adapter

pattern is used to act as an adapter for a general interface. The adapter makes it possible to

use the same interface over and over again without changing the design and implementation.

The only part that needs to be changed is the adapter that makes sure the interface gets what

it wants to have. The adapter pattern is used to maintain the same input and output functions

but making it possible to use different input and output sources. Figure 5 shows the basics of

the adapter pattern.

Talking Motion
Demonstrating communication in a vehicular environment

Ruud van Heugten

10-06-2009

-20-

4.3 Programming

The programming language used for the software applications, made during the graduation

period, was C++. The choice for C++ was quickly made. The main reason for it was: the

knowledge that was already at hand. At school the main programming language was C++ and

also a bit of C. Another reason to choose C++ is that it makes object oriented programming

possible and most of the projects at Fourtress are also in C++.

The most important difference with programming during the graduation period was the

difference in IDE. At school, projects programmed in C++, had to be made with Borland C++

Builder as the IDE. At Fourtress they do not use Borland C++ Builder but Microsoft Visual

Studio 2005. Although it was a new IDE, it was not that hard to get started with it. The main

reason being the extensive help files that come with it.

Although C++ is a strong language, it is not that dynamic to build nice and dynamic GUI’s

with. For this task C# was introduced to be using the same IDE as with the C++ programming.

The only problem that came around was, when the C++ part needed to be integrated in C# by

using dynamic link libraries (DLL). The reason for this is that the C++ DLL’s are unmanaged

and C# code is managed. More information on this subject can be found in paragraph 5.3.1.

Because of the dynamic qualities of C# it was not too hard to start programming. And even

when problems occurred, the extensive developer network of Microsoft (MSDN) was there to

help out. The MSDN also helped with problems related to the IDE and C++ programming in

Microsoft Visual Studio 2005.

4.4 Project Planning

For the project planning at school most of the time the V-model was used. This caused that the

overall planning was made up at the start of the project. There was a small possibility to
change it further on but most of the time it was a strict schedule that needed to be followed.

During the last project at school Agile was used and made the planning of the project more

dynamic. Although Agile stands for dynamic and iterative build up software developing, it does

not mean you do not have to plan the overall project. However this was not clear on the school

project and caused it to be an open end.

To make sure the assignment for the graduation period was not going to be an open end. The

final goal and the steps to that final goal were made clear. With the use of Agile based on

iterations it was made clear when what needed to be done. These iterations varied in length

from one week up to three weeks. This dynamically build-up of the overall project made it

possible to shift some tasks further back or start them earlier on. This shifting was done

depending on the project progress.

Because of the dynamic build up it is even more necessary than usual to keep track of the

progress in the project. This tracking was done by daily stand up meetings with all the

software engineers. During these meetings a software engineer tells what he has done

Target
Interface

Adaptee
Interface

 Adapter

Figure 5: Adapter pattern

Talking Motion
Demonstrating communication in a vehicular environment

Ruud van Heugten

10-06-2009

-21-

yesterday and what he is going to do the day of the meeting. He also tells what problems he

encounters and thus gives other engineers the opportunity to help him fix these problems.

Although these daily meetings give a good indication for the process of the project it is

necessary to document the process. To do this without causing a lot of overhead for the

documentation Fourtress uses a software tool. This tool is XPlanner1, an open source tool

which provides a web-based interface with the ability of creating new iterations. After creation

of an iteration it is possible to define objectives and for each objective create different tasks

that need to be done by a specific engineer.

Figure 6: XPlanner User Interface

As said, XPlanner provides a web-based user interface. This user interface is clear and the

usage is very intuitive. This makes it easier for new software engineers to start working with it.

Because it is easy to work with there is not much overhead but it provides a nice overview for

iterations.

1: http://www.xplanner.org.

Talking Motion
Demonstrating communication in a vehicular environment

Ruud van Heugten

10-06-2009

-22-

5 Research

At the start of the assignment not all of the information needed was clear. This made it

necessary to do research. This research ranged from factual research (network technology

e.g.) to knowledge research (dynamic link libraries e.g.). All the research that needed to be

done is described in this chapter.

5.1 Network

An important part of the Connect & Drive project is based on the network part. Cars need to

communicate with other cars and also with the infrastructure. This communication all takes

place over the network. To get started with the project it was necessary to determine the

possibilities of the network protocol that was going to be used. To determine what network

gives the best options, research was needed.

This research was built up in a couple of phases. These phases consist of a facts phase, a test

phase and an implementation phase. In the facts phase the main goal was to get the facts

straight to build up a base for the test phase. During the test phase it was necessary to see if

the facts were true by simulating actual situations in a simulator.

5.1.1 Specifications

The first research part of the project was to find out some actual facts about different

networks. This meant getting to know the maximum range, speed, moving speed and for

example at what frequency they operate. Below are the results of the research.

Network type: 802.11 G 802.11 P 802.16 802.16 E

Range 33-100 m 250 m 5 km fixed LOS 2 km

Duplex Mode Half Half Time & Frequency Time & Frequency

Simultaneously

Connections

1 / channel 1 / channel >100 / channel >100 / channel

Maximum Data

Transfer Speed

54 Mbps 6-27 Mbps 70 Mbps 40 Mbps

Expected Data

Transfer Speed

10–25 Mbps 3-15 Mbps 20-30 Mbps

divided by # users

20 Mbps divided

by # users

Maximum Moving

Speed

Not

available

140 km / h Not applicable 100 km / h

Table 1: Overview of network research

After the research was done it was evaluated to look for the best solution for the Connect &

Drive project. For the network to work in the project it needed to be able to keep working on

certain circumstances. The network should be able to keep a connection when cars travel with

a maximum of 120 km / h and the connection should be steady for about 100 meters. The

data transfer speed on the network is not as important because the messages that will be send

will not be that large.

For the facts research this meant that there was only one good option left and that was the

802.11 P network. Its range is wide enough to maintain a steady connection and the network

still operates when cars are driving 120 km / h.

Talking Motion
Demonstrating communication in a vehicular environment

Ruud van Heugten

10-06-2009

-23-

5.1.2 Test

After the factual research on networks was done it was necessary to see if the results were

true when the 802.11 P network was being used in a real situation. To test the real capabilities

of the network, a network simulator was going to be used. Because there is a large number of

available network simulator the most suitable simulator needed to be found.

To avoid too much delay because of research only three network simulators were tested, to

see which simulator suited the best with the project and capabilities of Ruud van Heugten.

These three network simulators were used in other projects done by other graduates. In the

table below are the results of the research.

 W
in
d
o
w
s

L
in
u
x

E
a
s
e
 o
f
u
s
e

D
o
c
u
m
e
n
ta
ti
o
n

I
n
te
r
fa
c
e

P
o
s
s
ib
il
it
ie
s

C
o
s
t

 T
o
ta
l
s
c
o
r
e

NS-3 Network simulator 1 3 1 1 1 1 3 11

TraNS 2 2 2 1 1 2 3 13

SNT Qualnet Developer 3 1 3 3 3 3 1 17

Table 2: Overview of pro’s and con’s of network simulators

• The ns-3 network simulator1: this network simulator is a discrete-event network

simulator primarily for research and educational purposes. It is free software and runs

on Linux and under Windows by using Cygwin.

• TraNS2: TraNS is a GUI tool that integrates a couple of network and traffic simulators.

This makes it able to test VANET’s and can be used on Linux and Windows because it

utilizes the possibilities of Java.

• Scalable Network Technologies Qualnet Developer3: is ultra high-fidelity network

simulating software. It contains an easy to use GUI which lets the user build up a

network as it is in real life. This simulator can only be used under Windows.

During the test each network simulator was awarded a mark on each of the tested parts. This
mark ranged from one up to three, where three is the best and one the worst. At the end all

the marks were added and a final score came out.

Table 2 makes clear that the SNT Qualnet Developer came out as the best network simulator.

The main reason is the good documentation combined with the clear interface and because it is

easy to use. The downsides of this simulator are that it can not be started on a Linux OS and

that if you want to use the full version of the program the software is not free. However for the

graduation period an evaluation copy could be downloaded.

To get familiar with the program some examples were tested and tried to be reproduced. After

a short while the program could be used in a good way to do some testing. The main goal of

the testing was how the network could handle the signals being send by the cars. To test this,

three groups of cars were simulated as figure 7 shows.

1: http://www.nsnam.org.
2: http://trans.epfl.ch.

3: http://www.scalable-networks.com/products/developer.php.

Talking Motion
Demonstrating communication in a vehicular environment

Ruud van Heugten

10-06-2009

-24-

Each test group was tested on three tests. These three tests describe two, three or four cars

communicating to each other. In each test the communication took place between cars that

had the biggest distance between them. Each test took fifty seconds in which data was

transmitted during thirty seconds.

Cars communicating: 2 3 4

Signals transmitted: 543 978 1729

Signals received and forwarded: 2194 4002 6828

Signals locked on: 3087 5737 9594

Signals received with errors: 893 1735 2766

Table 3: Test results of test group 1

Cars communicating: 2 3 4

Signals transmitted: 678 852 1246

Signals received and forwarded: 5895 8157 10916

Signals locked on: 7918 10361 14538

Signals received with errors: 2023 2204 3622

Table 4: Test results of test group 2

Cars communicating: 2 3 4

Signals transmitted: 861 1000 1664

Signals received and forwarded: 11681 12412 19682

Signals locked on: 15011 16663 26772

Signals received with errors: 3330 4251 7090

Table 5: Test results of test group 3

Test group 1.

Each dot resembles a car.

Test group 2.

Test group 3.

Figure 7: Test groups used in the Scalable Network Technologies Qualnet Developer

Talking Motion
Demonstrating communication in a vehicular environment

Ruud van Heugten

10-06-2009

-25-

As you can see in the tables 3, 4 and 5 the number of signals drastically increases when more

cars are near and more cars are communicating with each other. Because there are so many

signals being send it is more likely that collisions of signals will happen. This will cause more

signals not being received and have to be retransmitted.

5.2 Network communication

After basic network research was done it was necessary to get to know the details on network

communication. These details consist of packets that are being sent between network devices.

These packets contain information about the sender and the receiver of the specific packet. It

also contains information about what flags are set in the packet and what data they contain.

To capture these packets and thus their details it was necessary to find a way this could be

done. At first a program, which could do all of this, was searched and found in Wireshark1.
Wireshark offers the ability to capture and filter packets that come across a specified network

adapter.

However in the software applications it is necessary to capture and filter packets inside of the

application itself. The best way to do that would be, using the same library that Wireshark

uses. The used library of Wireshark is winpcap. Winpcap is open source, because it is open

source it is available and thus can be used in our project. To use the winpcap-library some

additional research was needed.

The library itself is documented very well and much information can be found online on its

website. If there were problems which could not be solved with the provided documentation

there is was a big user-base which was open for new users. This user-base is as big as it is

because of the open source character of the library and none other packet-library is available

for windows, thus being used in many programs.

The research on the usage of the library is split into a couple of sections which are explained in

the next set of paragraphs. These paragraphs together form the total usage of the winpcap-

library in the graduation-project.

5.2.1 Listening

To capture packets and see what information they contain it was necessary to listen on a

network adapter. To listen on a network adapter it was necessary to open the specific network

adapter. The winpcap-library offers a set of functions to complete this step. First of all a list of

all available network adapters was used to select what network adapter was going to be used.

After the network adapter was selected to be used. It was necessary to open it. After opening

the network adapter it is set in a specific mode. In normal mode the network adapter only

captures the packets that are destined to it and thus not capturing packets that are exchanged

between other hosts. However all packets on the network adapter needed to be captured. To

do the network adapter needed to be opened in promiscuous mode. This allowed the program

to capture all of the packets on the network adapter whether they are destined to it or not.

Once the network adapter was opened to capture packets listening could be started. Winpcap

offers a couple of functions to capture packets. These functions can be found in the

documentation of the library. Because it was not clear how many packets had to be captured

the function which is capable of continuous capturing was chosen.

1: http://www.wireshark.org.

Talking Motion
Demonstrating communication in a vehicular environment

Ruud van Heugten

10-06-2009

-26-

5.2.2 Filtering

After being capable of listening on the network adapter it pretty soon became clear that in a

network environment, more packet-transfers are going on than you can imagine. Because we

were looking for specific packets in our project. Filtering of all the packets was necessary. With

the ability of filtering it was also possible to test or debug in a more detailed way.

The winpcap-library makes it possible to add a filter on the previously opened network

adapter. To filter out all the unwanted packets it is necessary to compile the specified filter

first. The filter uses a syntax which can be found in the winpcap documentation.

When the syntax of the filter is correct the filter can be set up so it is actually used by the

capture function that is chosen. When a filter is set all the packets on the network adapter are

filtered and only the ones that passed through the filter are captured.

In an environment where there is only specific data transfer between cars, filtering is still

needed. Because when large groups of cars communicate the big number of packets being

send could mess up your application. It is also helpful to filter packets that are not needed for

a specific car.

5.2.3 Sending

Besides capturing and filtering packets another feature in the winpcap-library was used. This

feature was the ability to send packets. This made it possible to respond in a specific manner

on a captured packet. It is also used to look for other cars around and thus making it possible

to set up new connections.

Another usage of sending out specific packets was to see how the application worked and

reacted on simulated packets. This made it possible of simulating possible situations which can

occur in real live but are too difficult or expansive, to test. Given the fact that these tests can

be done, it is also possible to test the possibilities of the network hardware that is being used.

The winpcap-library gives two options of sending out packets. The first option is to send out

one packet at a time and the second option makes it possible to build up a queue of packets

and send the queue out at once. For the project it was not necessary to send out more than

one specified packet at a time. Cars react on a received packet and that reaction needs to be

sent immediately.

5.3 Programming research

While there was a good base knowledge of programming there was some additional research

necessary on some topics. This research mostly consisted of testing and implementing

examples to see how they actually worked.

5.3.1 Dynamic link libraries

As the program became bigger and bigger there was a need to have some parts gathered. This

was possible because of the design had specific pieces, that took care of a specific task, were

grouped together. These set of pieces could be changed in the future and it was necessary that

they could be updated without having to recompile the complete software application.

The possible solution for this problem was the use of libraries. There are two general kinds of

libraries: static and dynamic libraries. The main difference between these two is the time of

Talking Motion
Demonstrating communication in a vehicular environment

Ruud van Heugten

10-06-2009

-27-

linking them into your software application. Static libraries are linked at compile time and

dynamic libraries are linked at run time.

Another difference between static and dynamic libraries is the use of it. A static is always

embedded in the program and thus can not be removed or get corrupted. A dynamic library is

apart from your program and may get corrupted or accidentally be removed by a user.

Because static libraries are embedded in the program, the program’s size will be bigger and

the program needs to be updated completely when the library gets code improvement.

However a dynamic library can be update without the need of recompiling the program. It just

loads the library and uses it without even knowing what changed. That was the main reason

for choosing a dynamic library for our software application.

5.3.2 Application Programming Interface

During the software development some functions appeared in multiple classes. These functions

were defined the same way but implemented in another way. This caused some overhead in

code that was not necessary. To reduce the overhead and make the use of the functions

easier, interfaces were being used.

An Application Programming Interface (API) defines a set of functions that can be used during

implementation. Classes that implement these functions only need to make sure that the input
and output of the functions are the same as the definition of the interface. This makes it

possible to change between different implementations without changing the already compiled

code.

Using an API can also be helpful for other programmers that are going to work with it. It

reduces the time needed to look more deeply into the other code. During the implementation

of an API time is reduced but it takes more time to create the API. So before choosing to use

an API it is important to calculate what cost-effective wise the best solution is.

5.3.3 Threads

Threads are very helpful in situations where multiple processes are needed. Each thread has

its own process and the process is executed without interference of the other processes. This

makes it possible to execute a bigger process quicker than when not using threads. A good

example is when there are three rooms that need furniture. In the first case there is only one
employee that works as a decorator, a cleaner and as a designer. When taken into account

that only one task can be done per day you will see the following progress for the three rooms:

 Room 1 Room 2 Room 3

Day 1 Decorated

Day 2 Decorated

Day 3 Decorated

Day 4 Cleaned

Day 5 Cleaned

Day 6 Cleaned

Day 7 Designed

Day 8 Designed

Day 9 Designed

Table 6: Example of one employee taking care of three tasks

Talking Motion
Demonstrating communication in a vehicular environment

Ruud van Heugten

10-06-2009

-28-

Table 6 makes clear when room 1 is decorated it needs to wait two days before its being

cleaned. By using threads the same three rooms would be done by three employees: a

decorator, a cleaner and a designer. This would result in the following scheme:

 Room 1 Room 2 Room 3

Day 1 Decorated

Day 2 Cleaned Decorated

Day 3 Designed Cleaned Decorated

Day 4 Designed Cleaned

Day 5 Designed

Table 7: Example of three employees taking care of three tasks

This shows that dividing multiple tasks over multiple processes makes the it possible to finish

tasks earlier and because more work can be done in the same time you can have multiple

functionalities being used at the same time.

For the software application in the Connect & Drive project, threads were needed for the first

time when it needed to listen and send messages at the same time. Because it could happen

that the program was busy with sending a message and thus could listen for other messages.

That could accidentally mean a loss of a message.

To use threads in C++ project there are three possible solutions:

• WinThreads: Microsoft provided threads that are included in Visual Studio.

• PThreads: a POSIX standard for implementation of threads, mostly used on POSIX like
operating systems.

• Boost::Threads: Boost is a collection of libraries which also includes threads.

The choice made was based on the documentation that was available for each of the libraries.

Boost offered the best documentation and without too much of a hassle threads were

implemented in the software. When the threads needed some more specific tasks the

documentation helped out with the problems that came across.

Talking Motion
Demonstrating communication in a vehicular environment

Ruud van Heugten

10-06-2009

-29-

6 Implementation

During the implementation of all sub objectives, the overall software application and the

design of the different applications changed. The most important reason for this is the use of

the Agile development method. The changes made in the design show how the software

applications progressed during the graduation period. This chapter describes the process of

each of the five main software applications.

6.1 Server and client

The first implementation done for the project was creating a server and a client application.

These two applications made it possible to send message over the network by using sockets.

The use of sockets was not new and therefore a good start to begin with. These two software

applications worked almost the same and figure 8 shows the sequence diagram of them.

Figure 8: Sequence diagram server and client applications

Although these designs are pretty clear, they are not very useable for expanding the

functionality. Because both software applications almost work the same and the designs are
comparable the next application needed to integrate both the designs and applications.

6.2 ServerClient

The second implementation stage combined the server and client applications from the first

implementation stage. The combining went well and the sequence diagram of the software

application is shown in figure 9.

Talking Motion
Demonstrating communication in a vehicular environment

Ruud van Heugten

10-06-2009

-30-

Figure 9: Sequence diagram for the ServerClient application

The ServerClient application worked the same as both the server and client of the previous

implementation did. But problems occurred when multiple instances of the ServerClient were

executed. Some instances received messages but some did not. To easily see what went

wrong a logging class was introduced. The logging class wrote to a file to see at what time

which code was executed. Although the logging worked well, it still was not clear what caused

the problems.

With some technical assistance it became clear that the listenMessage function could not

operate at the same time as the sendMessage function. To solve this problem, the functions

needed their own thread to listen or send messages.

These threads did not change the design but now the program was able to send and receive

messages at the same time without loss of messages. At that point of time the design of the
software application was like the design in figure 10.

Figure 10: ServerClient design with integrated logging class

The basics of network communication was working for now but it only used sockets to send

and receive messages but no detailed information on the packets was available. However, that

detailed information was needed to exactly know what was going on during the

communication. To work this out the winpcap-library was used and introduced in the design.

After some investigation to get a working library, the overall code was not really clear anymore

and a lot of functions needed information from other functions to work. That was not a good

situation and some redesign was needed. To make the design more clear, a lot changed and

now almost every class took care of its own functions and values.

Talking Motion
Demonstrating communication in a vehicular environment

Ruud van Heugten

10-06-2009

-31-

The only class that could not be left out was the logging class. It still was invoked by the

classes itself. This caused the software to have multiple instances of the logging class. This

became a problem when multiple classes tried to write to the logging file when another class

was already writing to it. To solve this, the logging class became a Singleton class and could

only be instantiated once. Figure 11 shows the final design for the ServerClient software

application.

Figure 11: Redesigned ServerClient application

6.3 Car

The third implementation phase was focused on implementing the ServerClient application into

a simulated car with the added ability of speed control and a positioning system.

The first step in this process was to change the names of the different classes that made the

application as it was. The class names did not tell much about the actual functions and

possibilities of the class. Although it was not a big programming step it was a big step for the

readability of the design. An important part of the overall project was for other software

engineers to understand and use the code afterwards and with the change of the class names

this part was done in a better way. The design with the new class naming looked like figure 12.

Figure 12: First Car design with renamed classes

With proper names it was time to start implementing the speed control and positioning

system. Because at this time the final hardware for both the speed control and positioning

system were not available, they needed to be simulated. To make the car even more like the
final system, the socket class was removed. This was done because in the final system the

only network communication is done by sending specific packets and not through socket

connection. After the socket class was removed, the logic class was only used as a wrapper for

Talking Motion
Demonstrating communication in a vehicular environment

Ruud van Heugten

10-06-2009

-32-

the network connection thus causing code overhead. By removing the logic class the overhead

was gone and after these changes the design of the car started looking like it should be in the

final product. Figure 13 shows the design of the car so far.

Figure 13: Car design with all needed classes implemented

With the speed control and positioning system, the car was almost ready to be tested in a test

environment. But it still needed some more functions to determine the driving direction, the

distance to the car ahead and the brake speed for example. These functions are the main parts

of the C-ACC algorithm that also needed to be implemented. Another improved for the

software application was a GUI. This GUI was especially useful to see the values of the various

aspects being used.

To use the software application in a GUI, the easiest way was to embed it in a DLL. However,
for the upcoming road application most of the car features were going to be used. To make the

car more dynamic and gain the ability to use the different parts separately, all classes were

transformed into DLL’s. When the application was build up on DLL’s, programming the ‘car-

DLL’ could be started. A new software application was made which included the ‘car-DLL’ and

only used the functions it needed in the GUI. This project than functioned as a visual wrapper

around the car. After some more logical naming of classes the final design for the graphical car

application looked like figure 14.

Figure 14: Final Design of the graphical car application

Talking Motion
Demonstrating communication in a vehicular environment

Ruud van Heugten

10-06-2009

-33-

6.4 Road

After the car was made, it was clear that the system could not be implemented in a real car

because of the lack in hardware available, to control the car. But to be able to show a couple of

cars in a simulated environment it was necessary to create a software application that was

able to do so. This software application was developed as a road that could listen to the

network communication between cars and then use that communication to show the cars on a

virtual road.

Because this road also needed to have the ability to capture network communication it would

be easier to use the same class as used in the car. As said in the previous chapter, this was

done by creating separate DLL’s containing the specific classes. For the road this meant that it

only needed the network communication DLL and in a few simple steps the road was able to

listen to the network communication. Because the road only needed the option to listen, a lot

of functionality was stripped out of the DLL to decrease memory needed for the software

application.

When it was possible to capture all of the network communication between cars, it was

necessary to show this communication in a proper way. This was done the same way as with

the car. Make an extra visual class which implements the methods of the road. The final design

of the road can be seen in figure 15.

Figure 15: Final design of the graphical road application

6.5 Demonstrator

When the road was ready, the test environment was also ready and there could be multiple

computers in a network, each equipped with the car application. The road was able to show

the network communication between those cars. Fourtress also would like to have another

application which made it possible to show multiple cars and a road on a single computer. To

do this some additional coding was needed.

This additional coding consisted of combining both software applications and giving some more

options to simulate a network. On this simulated network the cars can communicate with each

other and the road can show the communication. To make it easier to use, one single

application was made were the user is capable of creating a new car inside the simulated

network environment. The design of the demonstrator is made out of combining the two

designs into one design with a shared visual class. This design can be seen in figure 16.

Talking Motion
Demonstrating communication in a vehicular environment

Ruud van Heugten

10-06-2009

-34-

Figure 16: Final design of the graphical demonstrator application

As the figure above shows, a demonstrator can have multiple instances of a car and only one
road instance. Network communication is utilized in both the car and the road environment but

cars only communicate with other cars and the road only listens to the communication of cars.

Talking Motion
Demonstrating communication in a vehicular environment

Ruud van Heugten

10-06-2009

-35-

7 Results

During the graduation period the overall progress of the software applications can be divided

into five different sections. These five sections are the paragraphs for this chapter. In each

paragraph will be discussed, what the main goal for it was and what result was achieved.

7.1 Server and client

The first part of the graduation period mainly focused on getting the basics of the network

communication to work. This was done by creating a separate server and client application.

The client application was able to send messages to the server which was listening for

messages on the network adapter. After making it possible for a single client to send a

message to the server, the client was expanded and that made it possible for multiple clients

to send a message to the server. Figure 17 shows the message flow between the two

applications. At this point only a CLI was being used.

Looking back at the objectives set at the start of the graduation period, there can be noticed

that one sub objective is already finished which is: making it possible to send a message from

client to server.

7.2 ServerClient

The second phase mostly concerned the improvement of the usability of the program. This

included the use of only one software application instead of two. Another goal was to have the

ability to respond to messages that were received. To only have one single software

application, the previous server and client application were combined to provide a better

usability. Besides better usability it also provided an easier way to implement changes and

improvement to the program.

The other change implemented during this phase consists of responding in a specific manner to

messages being received. That made it possible for a couple of application to start

communicating and sending each other necessary information. At this stage there still was a
CLI used as user interface. Figure 18 shows the status of the program so far.

During this phase two objectives were completely finished and one for a fair bit. The finished

objectives are the objective of combining the server and client application being able to

respond in a specific manner to a received message. The objective of making everything

dynamic was partly finished because two systems could talk with each other but not

completely without user interaction.

Client Server

Serverclient

Serverclient

Figure 17: Server and client applications

Figure 18: ServerClient application

Talking Motion
Demonstrating communication in a vehicular environment

Ruud van Heugten

10-06-2009

-36-

7.3 Car

After most of the network communication was done, a next step could be made. This step

included the following changes: move from a ServerClient application to a car, change from a

CLI to a GUI and implementing more basic functions towards the final goal. Because the step

was that big, changes were implemented in a couple of phases to make it easier. At first the

most important change was the design of the program. It changed from an unclear design to a

well thought design. This made it possible to give a clearer view of the program and improved
the possibility of future implementation.

The next step focused on making the car more real. This was done by adding the speed control

and positioning system. These two systems were also very important for the C-ACC algorithm

that needed to implemented, in this phase. But during this step it became clear that not all the

objectives could be implemented the way it should be in the final software application of the

Connect & Drive project.

The necessary hardware to control the speed of the car and determine the actual position of

the car was not yet available and thus could not be implemented. Although these functions of

the car could not be implemented as they were planned to, they were simulated in the

software making it still possible to create a good test environment for the cars.

After the cars were able to control their speed and their position, the communication between

each other needed to be more dynamic. By making it more dynamic the car application can be

used in a good test environment without too much user interaction. This was done by changing

all parts of the network communication that were statically defined.

The last important step for the cars was, to implement the C-ACC algorithm. This algorithm

makes it possible for cars to adapt to each other. At first an easier ACC algorithm was

implemented to test if the communication between cars was alright. After tests showed that

the algorithm could be expanded, by using the communication between cars to negotiate about

their speed.

Although the cars were now able to dynamically build up a connection, communicate with each

other and negotiate about their speed, the CLI still made the application a bit user unfriendly.

To change this, a GUI was introduced which made all the used functions of the CLI visible in a

nice and clear GUI. After this step had been done, the car was ready and could be used for

testing purposes.

Figure 19 shows the final GUI used for the car.

Talking Motion
Demonstrating communication in a vehicular environment

Ruud van Heugten

10-06-2009

-37-

Figure 19: Car GUI

This phase finalized a lot of objectives. Most of these objectives are finished but only for the

simulated environment. That is because the hardware that is going to be used in the car was

not available at the time. That taken into account the following objectives were finished this

phase:

Network communication:

• Make it all dynamic.

Speed control:

• Determine current speed.

• Adjust speed.

Positioning system:

• Determine current position.

• Determine driving direction.

C-ACC algorithm:

• Create an ACC algorithm.

• Define what information is needed for expanding the ACC algorithm.

• Expand the ACC algorithm and make it a C-ACC algorithm.

7.4 Road

When the implementation of the car was completed, work on the road application could be

started. Refactoring the car to a road did not take too much time. Mostly because the main

functionality of the road is: to listen to the car communication. This communication could

already be captured by the cars. So getting the logic of the car to work for the road, required

some refactoring of the cars.

It was necessary to create a nice looking GUI that was able of showing driving cars and

displaying information about these cars. The most time was spent on testing how cars were

shown and how the information could be shown better. In the end this resulted in the GUI as

shown in figure 20.

Talking Motion
Demonstrating communication in a vehicular environment

Ruud van Heugten

10-06-2009

-38-

Figure 20: Road GUI

This phase finished one objective which was the creation of a monitor program for all the cars.

In the end this objective was even more important than expected because it gives a good

overview of the impact of the C-ACC algorithm.

7.5 Demonstrator

The final phase of the graduation period was spent on the demonstrator application. The

demonstrator application makes it possible to show what the technology is capable of. It

combines the road and car functionality to one software application. This application can

instantiate multiple cars that are directly shown on the road. Although the main reason for

Fourtress is to show what the Connect & Drive technology is capable off, it is also a good test

environment for further progress in the overall Connect & Drive project.

Talking Motion
Demonstrating communication in a vehicular environment

Ruud van Heugten

10-06-2009

-39-

The demonstrator completes one more objective, made at the start of the assignment. This

objective was to create a good test environment in which everything is combined. Figure 21

shows the GUI of the demonstrator being used with a couple of cars instantiated.

Figure 21: Demonstrator GUI

Talking Motion
Demonstrating communication in a vehicular environment

Ruud van Heugten

10-06-2009

-40-

8 Conclusion and recommendations

At the start of the graduation period Fourtress set up a final goal for the assignment. That final

goal was creating a software application that was able to control the speed of a actual car by

using network communication and a C-ACC algorithm. This was a very ambitious goal that

could only be achieved if the hardware for the car would be ready during the project.

During the project the hardware was not ready but a lot has been done and finished. The

network communication between cars can be implemented in a real car because the cars are

able to communicate with each other over the network without user interaction.

Other functions that work in a simulated environment are the speed control, the positioning

system and a basic C-ACC algorithm. Cars used for the simulation can be started on multiple

computers in a network and can then be monitored by the road application. These two

applications are also combined to make one system which can be used as a demonstrator to

show what the technology can do in real life.

As said, the current application can be used as a demonstrator on conferences, meetings and

presentations. This makes it possible for Fourtress to trigger more companies to invest or

investigate in these technologies. This can make the process of the project go faster and thus

make it possible to use the technology earlier.

When the hardware for the real car becomes available Fourtress can start expanding the basic

implementations that are done for the simulated environment. With minor modifications the

software, in combination with the hardware, should be able to take control of a real car. By
using dynamic libraries this is made even easier. When this step is done some real testing can

be done and the results of those tests will help Fourtress improve the software.

The most important part of improving the software can be done on the C-ACC algorithm. The

reason for this is that a real implementation of a C-ACC algorithm needs to take many more

factors into account. These factors range from the weight and length of a car to the surface the

car is driving on.

Another point of improvement can be done on the communication between cars. The current

communication setup is okay but can be better by optimizing the data being sent between

cars. This can make the cars communicate more information with the same amount of data

being sent.

During the graduation period it also became clear that these two improvements for the final

solution require additional research. This additional research will be done by external

companies also participating in the Connect & Drive project.

Talking Motion
Demonstrating communication in a vehicular environment

Ruud van Heugten

10-06-2009

-41-

Evaluation

At the end of my graduation period I can sit back and have a good look on the past five

months. They went by very quick and that means I enjoyed my time at Fourtress. In this

evaluation I will describe my graduation period the way I’ve experienced it.

The overall thought about my graduation period is that it went very well. At the start I did not

have a good view of what the assignment was exactly about, but in a short period of time it all

came clear to me. I was going to be part of a bigger project which could hopefully change

driving and the way of living in the future.

The first steps were not too difficult as most of the things needed to be done were about

testing what could provide me with enough details on network communication to get me

started with programming. After some research and a lot of information read, I could already

start with programming.

The programming of the software also went well and although there were some difficult tasks,

I learned a lot (for example using DLL’s and threads). The difficult tasks made me research the

different technologies more in detail to solve the problem I had. When the research still did not

help out the other software engineers at Fourtress could sometimes help me out. Most of the

time, this gave a different point of view over the situation and pointed me in another direction

which could solve the problem.

Before the graduation period I was not sure what to do after my graduation, but during my

graduation period it became clear to me that the best choice is to find a job and start working
instead of getting a master degree. The main reasons for this are that I enjoyed my stay at

Fourtress and working all week. Another reason for this choice is that I do not have to go to

classes and lectures anymore.

Talking Motion
Demonstrating communication in a vehicular environment

Ruud van Heugten

10-06-2009

-42-

Bibliography

• Erich Gamma & Craig Larman, Design Patterns, Pearson Education Limited, 2005.

• Bjarne Stroustrup, The C++ Programming Language Special Edition, Addison-Wesley

Pub Co, 2000

• Kennisinstituut voor mobiliteitsbeleid, Mobiliteitsbalans 2008, Kennisinstituut voor

mobiliteitsbeleid, 2008.

• HTAS, Connect & Drive Projectplan, HTAS, 2008.

• MSDN Library, Microsoft, http://msdn.microsoft.com/nl-nl/library/default(en-us).aspx.

• Winpcap, Cace Technologies, http://www.winpcap.org.

• Boost Libraries, Boost, http://www.boost.org.

Talking Motion
Demonstrating communication in a vehicular environment

Ruud van Heugten

10-06-2009

-43-

Appendices

Appendix I: Plan of approach

