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Abstract 
 

Introduction 
Radiomics is a tool which aims to utilize the full potential of medical imaging by extracting a large 

amount of quantitative features by using mathematical algorithms, for example tumor intensity, shape 

and texture. Maastro clinic and Moffitt cancer center developed their own radiomics software tool. In 

order to facilitate interoperability of Radiomics,  their differences must be elucidated. 

Objective 
The difference in numerical values will be explored for radiomics features of lung and head/neck 

tumors between the Maastro and Moffitt software tool and we will investigate whether this difference is 

disease site dependent . 

Methods 
The features of Maastro and Moffitt are matched by name, algorithm or both. The CT scans and RT 

structures of the 42 lung and the 52 head/neck patients were loaded into the Maastro and Moffitt tool. 

To quantify the degree of agreement, Lin’s Concordance Correlation Coefficient (CCC) was 

calculated. The CCC’s of the lung and head/neck features were compared to each other.  

Results  
A total of 34 features matched. The lung cohort had 24 features with a poor CCC (<0,90), 1 feature 

had a moderate CCC (0,90-0.95) and 9 features had an almost perfect CCC (>0,99). For the 

head/neck cohort 24 features had a poor CCC, 1 feature had a moderate CCC, 3 features had a 

substantial CCC (0,95-0,99) and 6 features had an almost perfect CCC. The comparison between the 

CCC of lung and the CCC of head/neck showed that 19 features have an equal CCC and 15 features 

do not have an equal CCC.  

Conclusion 
We found a substantial difference in feature values for both lung and head and neck cancer patients 

between the Maastro and Moffitt radiomics software tool. Generally there is a poor agreement, in 

terms of CCC’s, between both tools. We found that for 15 features the difference between both tools 

may depend on the disease site. To ensure the optimal use of radiomics tools for lung and head/neck 

cancer in the future, standardization is required. 
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Samenvatting 

 

Inleiding 
Radiomics heeft ten doel de volle potentie van medische beeldvorming te benutten door het 

extraheren van een grote hoeveelheid kenmerken (features). Mathematische algoritmes beschrijven 

bijvoorbeeld de tumor intensiteit, vorm en textuur. Maastro clinic en Moffitt cancer center hebben beide 

een eigen radiomics tool ontwikkeld. Om de data analyse per tool te verbeteren zullen de verschillen 

tussen beide tools moeten worden onderzocht. 

Doelstelling 
Onderzoeken wat het verschil in de numerieke waarden van radiomic features voor long en hoofd/hals 

tumoren tussen de Maastro en Moffitt sofware tool is. Daarnaast wordt onderzocht of dit verschil 

afhankelijk is van de plaats van de tumor.  

Methode 
De features van Maastro en Moffitt zijn gematcht op naam en algoritme. De CT scans en de RT 

structuren van de 42 long en de 52 hoofd/hals patiënten werden geladen in de Maas tro en Moffitt 

tools. Om de mate van overeenkomst tussen de Maastro en Moffitt tool te kwantificeren is de 

concordantie correlatie coëfficiënt (CCC) van Lin berekend. De CCC’s van de long en de hoofd/hals 

features worden met elkaar vergeleken. 

Resultaten 
In totaal zijn 34 features gematcht. De long cohort had 24 features met een zwakke CCC (<0,90), 1 

feature met een matige CCC (0,90-0,95) en 9 features met een bijna perfecte CCC (>0,99). De 

hoofd/hals cohort had 24 features met een zwakke CCC, 1 feature met een matige CCC, 3 features 

met een wezenlijke CCC (0,95-0,99) en 6 features met een bijna perfecte CCC. De vergelijking tussen 

de CCC’s van long en hoofd/hals laat zien dat 19 features een gelijke CCC hebben, bij 15 features 

verschilde de CCC. 

Conclusie 
Een verschil in feature waardes tussen de Maastro en Moffitt software tool voor zowel long als 

hoofd/hals kanker patiënten werd aangetoond. De CCC toonde een  zwakke overeenkomst tussen 

beide tools. Voor 15 features is het verschil tussen beide tools mogelijk afhankelijk is van de tumor 

plaats. Om het optimale gebruik van de radiomicics tools voor long en hoofd/hals kanker te verzekeren 

is er standaardisatie vereist.  
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Introduction 

 

In 2012 there were 14.1 million new cancer cases and 8.2 million cancer related deaths worldwide. 

Lung cancer accounts for 1.5 million deaths per year and is the leading cause of cancer related death 

in men. It is the most frequently diagnosed cancer type with more than 1.8 million cases per year. 

Head and neck cancer, although less frequently diagnosed than lung cancer with only 550,00 cases 

reported worldwide per year, still accounted for approximately 300,000 deaths in 2012.1 

There are many ways to diagnose cancer, one such way is through the use of medical imaging 

technology. Over the past decade these technologies have greatly increased in number and 

capabilities. Although medical imagining in the past was primarily used as a diagnostic tool, it is now 

used more centrally in oncology to provide screening, prediction, treatment guidance and treatment 

response evaluation. Compared to other sources of information, e.g. demographics, pathology, blood 

biomarkers, genomics and proteomics, medical imaging gives complementary and interchangeable 

information. 2  

Although genomic and proteomic technologies provide detailed information about the molecular 

characteristics of diseased tissues, they can have limited applicability in the clinic and are often 

invasive procedures associated with high risk and cost to the patient. Non-invasive tissue 

characterization using medical imaging is a great opportunity to minimize the use of such invasive 

procedures whilst still obtaining all the information required to treat the patient. Combining medical 

imaging with other sources, such as pathology, genomics, blood biomarkers and proteomics, could 

improve individualized treatment selection and monitoring. 2,3,4 

Radiomics is one of the latest innovations in medical imaging analysis. It is a tool that aims to utilize 

the full potential of medical imaging. In the image the macroscopic (observable with the eye) tumor is 

defined, which is called gross tumor volume (GTV), either by an experienced radiologist or radiation 

oncologist or with an automated segmentation method. From the previously defined tumor region, 

radiomics extracts a large amount of quantitative features by using mathematical algorithms. 

Radiomics can describe for example tumor intensity, shape and texture. These features can help 

depict the complex intra-tumoral heterogeneity of the entire tumor, in contrast to invasive biopsies. 

2,3,4,5 Radiomics anticipates that these features will convey both prognostic and predictive information 

for cancer patients. 6 

Maastro clinic (Maastricht, The Netherlands) and Moffitt cancer center (Tampa, United States) 

collaborate in research of lung- and head-neck tumors. Both institutions share the vision that 

quantitative features extracted from medical images have the potential to provide improved prognostic 

and predictive values. Maastro and Moffitt each developed their own radiomics tool. Tumor size, 

shape and texture features information is obtained by the complex radiomic software.7 To allow for 

meaningful comparison of multi-centric radiomic results,  interoperability of radiomics has to be 

ensured. Therefore, differences between these tools must be elucidated. 
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A recent study by Aerts et al.8 has been performed on radiomics describing feature extraction in both 

lung and head/neck cancer patients, this study present a radiomic analysis on 1019 lung and 

head/neck cancer patients. Another study of Parmar et al.3 demonstrated that the radiomic features 

obtained from lung cancer and head/neck cancer patients, cluster in a different way. 3 Disease specific 

clustering of features are likely influenced by, e.g., tissue localization, cellular phenotype and genetic 

mutational status. With this study we aim to extend the knowledge, as valuable information could be 

gathered concerning interoperability of radiomics. We hypothesize that the difference in numerical 

values of the features between the Maastro and Moffitt tools may as well be influenced by the disease 

site. The main research question is: What is the difference in numerical values for radiomics 

features for lung and head/neck tumors between the Maastro and Moffitt software tool  and 

does this difference depend on the disease site? 
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Method 
 

Research model 
We used a retrospective quantitative measurement study to explore the difference in numerical values 

for radiomics features in lung and head/neck tumors between the Maastro and Moffitt software tool. 

Data collection 
For this study Non-Small Cell Lung Carcinoma (NSCLC) patients (n=52) and head/neck cancer 

patients (n=52), treated between July 2015 and March 2016 were selected from the Maastro clinic 

database. There was no exclusion for gender, age or tumor stage. All patients underwent a CT scan 

for treatment planning purposes at Maastro clinic, according to standard clinical scanning protocols. 

From each of the 104 patients we obtained the treatment planning CT scan and the Radiation Therapy 

(RT) structure set. The CT scans were generated on a Sensation CT (Siemens), a Sensation open CT 

(Siemens), or a Biograph True Point 40 Positron emission tomography (PET) -CT (Siemens). The CT 

Images were reconstructed with an in plane pixel spacing of 0.977 mm x 0.977 mm, with a slice 

thickness of three mm. The primary gross tumor volume (GTV) was delineated manually for treatment 

planning purposes on Eclipse (Varian Medical System, Palo Alto, CA, USA).  

Measurements 

This study used the standard settings of the Maastro and Moffitt tools.  

The features used for this study are; first order statistics, shape and size based features and gray-level 

co-occurrence (GLCM) and gray-level run-length (GLRL) textural features. First-order statistics 

describe the distribution of voxel intensities within the CT image through commonly used, basic 

metrics. Shape and size based features includes descriptors of the three-dimensional size and shape 

of the tumor region. Textural features describing patterns or the spatial distribution of voxel intensities, 

which were calculated from respectively gray level co-occurrence and gray level run-length texture 

matrices. Determining texture matrix representations requires the voxel intensity values within the 

voxel of interest to be discretized. See Appendix II and III for the feature definition and the algorithm 

per feature.8 

The MAASTRO tool is designed by Ralph Leijenaar and runs on MATLAB R2014a (8.3).9 The 

software is able to extract a vast amount of quantitative features.  See Appendix II for the definitions 

and algorithms of the Maastro features. For each patient the treatment planning CT scan and the RT 

structure set was loaded into the tool. We selected the GTV of the RT structures and the features we 

wanted to extract from the GTV; first order statistics, shape and size based and the specified textural 

features. The outputs of numerical values per feature per patient were exported in Microsoft Excel 

2010. Most features are unitless.   

Moffitt uses MATLAB R2016a to extract features out of the GTV.10 See Appendix III for the definitions 

and algorithms of the Moffitt features. The RT structures of the patients were loaded into MATLAB. 

The GTV of the RT structures was chosen and a MATLAB script transformed the GTV from a Digital 

Imaging and Communications in Medicine (DICOM) to a Portable Network Graphics (PNG) format.  
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The CT scan and the PNG format GTV’s were loaded into MATLAB, the implemented code with 

algorithms extracted the features from the GTV of the CT scan. The outputs of numerical values per 

feature per patient were exported in Microsoft Excel 2010 (Excel). Most features are unitless.   

Data analysis  
The first step in comparing both tools was to identify which radiomic features from Maastro could be 

compared with radiomic features of Moffitt. We matched the features by name, algorithm or both. The 

feature definitions lists in Appendix II (Maastro) and Appendix III (Moffitt) were used to do the 

matching. Radiomic features that didn’t match were excluded from the study.   

The CT scans and RT structures of the lung and the head/neck patients were loaded into both the 

Maastro and Moffitt tool to acquire the numerical values of each features of each patient. To quantify 

the degree of agreement between the Maastro and Moffitt tool, Lin’s Concordance Correlation 

Coefficient (CCC) was calculated for the numerical values of each feature for both the lung and 

head/neck patient cohort. The CCC evaluates the degree to which pairs of observations fall on the 45° 

line through the origin. With a CCC value of < 0,90 the strength of agreement is poor, by 0,90 – 0,95 it 

is Moderate, by 0,95 – 0,99 it is substantial and by >0,99 it is almost perfect.11,12,13,14,15,16 We chose the 

CCC because it  has emerged as the best measure of agreement for two methods of measuring in the 

same continuous variable according to Diedenhofen et al.15  

The CCC’s of the lung and head/neck features were compared to each other with the Concor package 

for the R programming language for which a web interface is available 

(http://comparingcorrelations.org/). The lung and head/neck CCC’s are from two independent groups 

and we used a two-tailed test. With p ≤ 0,05 it is statistically plausible that the lung and head/neck 

CCC are different.15,17  

To model the relationship between the feature values of Maastro and Moffitt, we performed a linear 

regression for the first order statistics features values.18  See Appendix V for the formula.   

Ethics 
Patient records are all anonymous to ensure patient privacy is upheld.  Therefore no personal 

information can be obtained from these images.  
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Results  
 

We matched 34 features, including 14 first order statistics, 3 shape and size based features and 17 

GLCM and GLRL texture features. See Table 1 for the names of the matched features. For both tools 

the numerical values per feature were calculated for 42 lung and 52 head/neck patients. We had to 

exclude 10 lung patients because the GTV-1 was not defined and therefore feature extraction was not 

possible.  

 

Table 1. Lung and head/neck feature names for Maastro and Moffitt with the calculated CCC and the 

Correlation comparison p-value for the two-tailed test of equal CCC values. 

# 
 
Feature category Moffitt features Maastro features CCC Lung CCC Head/neck Comparing CCC 

1 First order statistics  Energy Stats_energy 0,019 0,054 0,874 

2 First order statistics  Min HU Stats_min 0,029 0,149 0,573 

3 First order statistics  Max HU Stats_max 0,116 0,396 0,159 

4 First order statistics  Mean HU Stats_mean 0,022 0,001 0,922 

5 First order statistics  Variance HU Stats_var 0,999 0,976 0,000 

6 First order statistics  Skewness HU Stats_skewness 0,999 0,979 0,000 

7 First order statistics  Kurtosis HU Stats_kurtosis 0,999 0,994 0,000 

8 First order statistics  Standard Deviation HU Stats_std 0,999 0,968 0,000 

9 First order statistics 
 Mean Absolute Deviation 
HU Stats_md 0,999 0,990 0,000 

10 First order statistics  Median HU Stats_median 0,022 0,001 0,918 

11 First order statistics  Range HU Stats_range 0,999 0,996 0,001 

12 First order statistics  Entropy Stats_entropy 0,999 0,997 0,001 

13 First order statistics  RMS HU Stats_rms -0,031 0,003 0,874 

14 First order statistics  Uniformity HU Stats_uniformity 0,999 0,994 0,000 

15 Shape and size  Connected 3D components Shape_volumeNumber 0,876 0,658 0,008 

16 Shape and size  Volume Shape_volume 0,999 0,999 1,000 

17 Shape and size  Longest Diameter 
Shape_ 
maxDiameter3D 0,651 0,932 0,000 

18 Texture  Short Run Emphasis (SRE) 
RLGL_ 
shortRunEmphasis 0,894 0,243 0,000 

19 Texture  Long Run Emphasis (LRE) 
RLGL_ 
longRunEmphasis 0,810 0,472 0,004 

20 Texture 
 Gray-Level Nonuniformity 
(GLN) 

RLGL_ 
grayLevelNonuniformity 6,86E-06 1,56E-05 1,00 

21 Texture 
 Run-Length Nonuniformity 
(RLN) 

RLGL_ 
runLengthNonuniformity -6,24E-06 -2,77E-05 1,00 

22 Texture  Run Percentage (RP) 
RLGL_ 
runPercentage 0,906 0,486 0,00 

23 Texture 
 Low Gray-Level Run 
Emphasis (LGRE) 

RLGL_ 
lowGrayLevelRunEmphasis 0,411 0,038 0,063 

24 Texture 
 High Gray-Level Run 
Emphasis (HGRE) 

RLGL_ 
highGrayLevelRunEmphasis -0,042 -0,223 0,389 

25 Texture  
 Short Run Low Gray-Level 
Emphasis (SRLGE) 

RLGL_ 
shortRunLowGrayLevEmpha 0,460 0,061 0,042 

26 Texture 
 Short Run High Gray-Level 
Emphasis (SRHGE) 

RLGL_ 
shortRunHighGrayLevEmpha -0,000 -0,002 0,993 
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CCC = Concordance Correlation Coefficient.  
 

 

 

 

 

 

 

 

 

 

Figure 1. The Concordance correlation coefficient (CCC) between the lung features of Maastro and 
Moffitt and the CCC between head/neck features of Maastro and Moffitt. See Table 1 for the numbers 

per feature. 
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Per feature the CCC was calculated. Most features had a low CCC, in particular textural features e.g. 

Long Run Emphasis of Moffitt and RLGL_longRunEmphasis of Maastro.  For the lung cancer cohort, 

24 features were found to have a poor CCC(<0.90), 1 feature had a moderate CCC (0.90-0.95) and 9 

features had an almost perfect CCC (>0.99). For the head/neck cohort, 24 features were found to 

have a poor CCC (<0.90), 1 feature had a moderate CCC (0.90-0.95), 3 features had a substantial 

CCC (0.95-0.99) and 6 features had an almost perfect CCC (>0.99) (Table 1 & Figure 1).  

First order statistics features (stats_min, stats_max, stats_mean and stats_median) from Maastro 

show differences in the numerical values matched with Moffitt statistic features (min HU, max HU, 

mean HU and Median HU). There is a difference of + 1000 HU, in both the lung and head/neck 

features (Table 2). Figure 2 shows the scatterplots of max HU and stats_max for the lung and 

head/neck cohort. The matched features Energy with stats_engergy and RMS HU with stats_rms have 

a low CCC and R2 compared to the other features of first order statistics (except for the above four 

matched features). 

 

Table 2. Intercept, slope and R2 calculated for the first order statistic features of head/neck (A) and 

lung (B).  

A) 

Head/neck Moffitt features  Head/neck Maastro features Intercept slope R2 

 Energy Stats_energy 2E+09 27,42 0,93 

 Min HU Stats_min 984,38 0,95 0,96 

 Max HU Stats_max 1000,00 1,00 1,00 

 Mean HU Stats_mean 1001,80 0,99 0,98 

 Variance HU Stats_var -312,72 0,96 0,95 

 Skewness HU Stats_skewness 0,07 0,97 0,96 

 Kurtosis HU Stats_kurtosis 0,22 0,99 0,99 

 Standard Deviation HU Stats_std 1,45 0,94 0,94 

 Mean Absolute Deviation HU Stats_md -0,60 0,99 0,98 

 Median HU Stats_median 999,80 1,00 1,00 

 Range HU Stats_range -2,13 0,99 0,99 

 Entropy Stats_entropy 0,04 0,99 0,99 

 RMS HU Stats_rms 1018,40 0,48 0,66 

 Uniformity HU Stats_uniformity 0,00 1,01 0,99 

 
B) 

   

 

  

Lung Moffitt  features  Lung Maastro features Intercept Slope R2 

 Energy Stats_energy 1,00E+10 14,61 0,21 

 Min HU Stats_min 965,24 0,95 0,99 

 Max HU Stats_max 999,72 0,99 0,99 

 Mean HU Stats_mean 999,87 0,99 0,99 

 Variance HU Stats_var 49,58 0,99 0,99 
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 Skewness HU Stats_skewness 0,00 0,99 0,99 

 Kurtosis HU Stats_kurtosis -0,02 1,00 0,99 

 Standard Deviation HU Stats_std 0,08 0,99 0,99 

 Mean Absolute Deviation HU Stats_md -0,02 0,99 0,99 

 Median HU Stats_median 999,95 0,99 0,99 

 Range HU Stats_range 8,89 0,99 0,99 

 Entropy Stats_entropy 0,00 1,00 0,99 

 RMS HU Stats_rms 1120,20 -0,86 0,77 

 Uniformity HU Stats_uniformity 0,00 0,99 0,99 
 
 

 

 

 
 
Figure 2. Scatterplots for lung (A) and head/neck (B) for the features Max HU of Moffitt and Stats_max 

of Maastro.  
 

Moffitt calculates total 3D diameter and Maastro calculates 2D transversal, 2D coronal, 2D sagittal and 
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(matched by name)  showed that the CCC for lung is 0,651 (poor) and for head/neck 0,932 

(moderate). For all the CCC values of all diameter features see Appendix VI.  

The comparison between the CCC of lung and the CCC of head/neck showed that 19 features have 

an equal CCC (p≥0,05) and 15 features do not have an equal CCC (p≤0,05) (Table 1). 
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Discussion  
 

The purpose of this study was to evaluate differences in numerical values for radiomic features for 

lung and head/neck tumors between the Maastro and Moffitt software tool and to see if the differences 

depend on the disease site.  

In this study 34 features could be matched and were included. From the 34 features assessed in this 

study, most features show a poor CCC (<0.90) (24 for lung and 24 for head/neck). The CCC’s 

between lung and head/neck are overall different in strength. Lung has 9 almost perfect CCC’s (>0.99) 

and head/neck has 6 almost perfect CCC’s (>0.99). Generally, the numerical output of both tools is not 

comparable. This suggests that standardization is needed, which should be reflected in the software 

implementation.  

The method described by Diedenhofen et al.15  was used to compare the strength of CCC’s between 

the two groups of patients (lung and head/neck). We found that from the 34 features, 19 features for 

lung and head/neck were not statistically significantly different (p≥0.05). There is no evidence that for 

these 19 features the disease site has an impact on the difference between the output of the Maastro 

and Moffitt radiomics implementations. The remaining 15 features did not have an equal CCC for the 

lung and head/neck cohort, which suggest that for these features the difference between Maastro and 

Moffitt might be disease specific.  

Image preprocessing is performed differently in both software implementations. Maastro adds +1000 

HU to each image to prevent negative values. The first order statistic features (Variance HU/Stats_var, 

Skweness HU/Stats_skewness, Kurtosis HU/Stats_kurtosis, Stantdard Deviation HU/Stats_std, Mean 

Absolute Deviation HU/Stats_md, Range HU/Stats_range, Entropy/Stats_entropy and Uniformity 

HU/Stats_uniformity are not affected by this offset and almost equal between Maastro and Moffitt (R2 

~1). Some feature values (stats_min, stats_max, stats_mean and stats_median) present low CCC 

values, but can easily be corrected for the offset in HU by subtracting 1000 HU, making them 

comparable to the feature values obtained by the Moffitt software. The CCC, unlike the R2 value, 

evaluates not only the linearity but also if the angle falls on the 45° line through the origin. This 

explains why for these features (stats_min, stats_max, stats_mean, and stats_median) there was a 

bad correlation between the Maastro and Moffitt values but a high linear regression R2. Features 

stats_energy and stats_rms cannot be corrected in the same way due to the quadratic term in the 

feature’s mathematical definition. Additionally, we calculated the radiomic features without the +1000 

HU offset for the Maastro tool for one example case. Shape and textural features are not affected by 

the addition of 1000 HU, they are invariant to this offset in image intensity values.  

This study is one of the first that explores the difference of radiomic tools for two institutes. Berthon et 

al.19 did a study in texture analysis for Positron Emission Tomography in oesophageal cancer, this 

study shows the importance of comparing different methods and standardization in radiomics. 19   
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We had to exclude 10 lung patients, since they did not had a segmented GTV, meaning that feature 

extraction was not possible. The features “Connected 3D components” of Moffitt and 

“Shape_volumeNumber” of Maastro had a poor CCC but the numerical values of these features are all 

similar except for one patient. This feature does not have a normal distribution. Therefore CCC is an 

unsuitable method to compare these features. 

Both institutes developed their own radiomics implementations. As there is no defined standard, this 

inherently can lead to differences in numerical output, even for features that have the same name and 

mathematical definitions. This study shows that preprocessing and features calculations differ for 

several features, resulting in different numerical outputs. For standardization of radiomics features it is 

important to understand these differences. Parmar et al.3 demonstrated a difference in clustering 

between lung and head/neck. With the comparison of the CCC this study found 15 features that do not 

have an equal CCC (p≤0.05) for the lung and head/neck cohort between Maastro and Moffitt. This 

suggests that there are differences between the different disease sites and this is important for further 

studies. Standardization is critical, because this can enable optimization of specific disease site 

analysis and treatment.  

To optimize tools it is important that the results obtained can be directly compared across different 

institutes. This study showed that most features had a substantial difference in numerical output in 

both tools, partly due to preprocessing (+1000 HU) in first order statistics. For shape and texture 

features the implementations of the features and/or the settings in the tool are different in both 

institutes. Standardization is required to ensure interoperability of radiomics. We therefore recommend 

that further research identifies the details of the difference in implementations for features with the 

same name and definition. Here, standardization is needed for validation of multi centric studies that 

use different radiomic software. We furthermore observed that not all institutes have the same features 

implemented in their software. For example Maastro may have feature X, while Moffitt does not. On 

the other hand Moffitt may have feature Y but Maastro does not have this feature. It is possible that 

feature X is better than feature Y as a biomarker for a specific situation, disease or diagnose while Y is 

maybe better in another case. In this case multi centric studies are only possible using either the same 

software, or by providing all necessary details on these institute specific features to implement them in 

other softwares, ensuring interoperability." 
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Conclusion 
 

We found a substantial difference in feature values for both lung and head and neck cancer patients  

between the Maastro and Moffitt radiomics software tool. Some first order statistic features have a 

scaling difference of +1000 HU for the Maastro features compared to the Moffitt features. This can be 

corrected afterwards to make them comparable between both tools. Generally there is a poor 

agreement in CCC’s between both tools. We found that for 15 features the difference between both 

tools may depend on the disease site. To ensure the optimal use of radiomics tools for lung and 

head/neck cancer in the future, standardization is required. 
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Appendices 
 

Appendix I 
Copyright / Disclaimer MAASTRO data 
  
Deze informatie en/of beeldmateriaal is eigendom van MAASTRO CLINIC, alle rechten zijn 
voorbehouden aan MAASTRO CLINIC.  Niets van deze informatie en/of beeldmateriaal mag worden 

verveelvoudigd en/of openbaar gemaakt via internet, door middel van druk, fotokopie, microfilm of op 
welke andere wijze dan ook zonder voorafgaande schriftelijke toestemming van MAASTRO CLINIC. 
Aan eventuele onjuistheden of onvolledigheden kunnen geen rechten ontleend worden. 

MAASTRO CLINIC kan evenmin aansprakelijk  gesteld worden indien zich, door het gebruik  van deze 
informatie en/of beeldmateriaal, bij de raadpleger schade zou voordoen van welke aard ook. 
  
This information and/or images are the property of MAASTRO CLINIC. All rights are reserved for 
MAASTRO CLINIC. None of this information and/or images may be reproduced, stored in a retrieval 
system, transmitted or utilized in any form or by any means, electronic, mechanical, photocopying, 

microfilm, internet or otherwise, without permission in writing from MAASTRO CLINIC. 
MAASTRO CLINIC cannot be held responsible should a person making use of this information and/or 
images suffer loss or damage of whatever type or extent. 
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Appendix II 

Supplement I: Radiomics Features 

 

In this study we explore a feature-based approach to extract and quantify meaningful and reliable 

information from CT images. In this section we describe in detail the different groups of imaging traits 

assessed in our study, that were used to derive a prognostic model in non-small cell lung carcinoma. 

We evaluated a total number of 440 CT imaging features, which are divided in four groups as follows: 

 

Group 1. First order statistics 

Group 2. Shape and size based features 

Group 3. Textural features 

Group 4. Wavelet features 

 

Group 1. First order statistics 

 

First-order statistics describe the distribution of voxel intensities within the CT image through 

commonly used and basic metrics. Let 𝑋 denote the three dimensional image matrix with 𝑁 voxels and 

𝑃 the first order histogram with 𝑁𝑙 discrete intensity levels. The following first order statistics were 

extracted: 

1.1.  Energy: 

𝑒𝑛𝑒𝑟𝑔𝑦 = ∑ 𝑋(𝑖)2

𝑁

𝑖

 

1.2.  Entropy: 

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = ∑ 𝑃(𝑖) log2 𝑃(𝑖)

𝑁𝑙

𝑖=1

 

1.3.  Kurtosis: 

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =

1
𝑁

∑ (𝑋(𝑖) − 𝑋)4𝑁
𝑖=1

(√1
𝑁

∑ (𝑋(𝑖) − 𝑋)2𝑁
𝑖=1 )

2
 

where 𝑋 is the mean of 𝑋. 

1.4.  Maximum: 

The maximum intensity value of 𝑋. 
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1.5.  Mean: 

𝑚𝑒𝑎𝑛 =
1

𝑁
∑ 𝑋(𝑖)

𝑁

𝑖

 

1.6.  Mean absolute deviation: 

The mean of the absolute deviations of all voxel intensities around the mean 

intensity value. 

1.7.  Median: 

The median intensity value of 𝑋. 

1.8.  Minimum: 

The minimum intensity value of 𝑋. 

1.9.  Range: 

The range of intensity values of 𝑋. 

1.10.  Root mean square (RMS): 

𝑅𝑀𝑆 = √
∑ 𝑋(𝑖)2𝑁

𝑖

𝑁
 

1.11.  Skewness: 

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =

1
𝑁

∑ (𝑋(𝑖) − 𝑋)3𝑁
𝑖=1

(√1
𝑁

∑ (𝑋(𝑖) − 𝑋)2𝑁
𝑖=1 )

3
 

where 𝑋 is the mean of 𝑋. 

1.12.  Standard deviation: 

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑  𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = (
1

𝑁 − 1
∑(𝑋(𝑖) − 𝑋)2

𝑁

𝑖=1

)

1 2⁄

 

where 𝑋 is the mean of 𝑋. 

1.13.  Uniformity: 

𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦 = ∑ 𝑃(𝑖)2

𝑁𝑙

𝑖=1

 

1.14.  Variance: 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
1

𝑁 − 1
∑(𝑋(𝑖) − 𝑋)2

𝑁

𝑖=1

 

where 𝑋 is the mean of 𝑋. 
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The standard deviation, variance and mean absolute deviation are measures of the histogram 

dispersion, that is, a measure of how much the gray levels differ from the mean. The variance, 

skewness and kurtosis are the most frequently used central moments. The skewness measures t he 

degree of histogram asymmetry around the mean, and kurtosis is a measure of the histogram 

sharpness. As measures of histogram randomness we computed the uniformity and entropy of the 

image histogram. 

 

 

Group 2. Shape and size based features 

 

In this group of features we included descriptors of the three-dimensional size and shape of the tumor 

region. Let in the following definitions 𝑉 denote the volume and 𝐴 the surface area of the volume of 

interest. We determined the following shape and size based features: 

2.1.  Compactness 1: 

𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 1 =
𝑉

√𝜋𝐴
2
3

 

2.2.  Compactness 2: 

𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠  2 = 36𝜋
𝑉2

𝐴3
 

2.3.  Maximum 3D diameter: 

The maximum three-dimensional tumor diameter is measured as the largest 

pairwise Euclidean distance, between voxels on the surface of the tumor 

volume. 

2.4.  Spherical disproportion: 

𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝑑𝑖𝑠𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 =
𝐴

4𝜋𝑅2
 

Where 𝑅 is the radius of a sphere with the same volume as the tumor. 

2.5.  Sphericity: 

𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 =
𝜋

1
3 (6𝑉)

2
3

𝐴
 

2.6.  Surface area: 

The surface area is calculated by triangulation (i.e. dividing the surface into 

connected triangles) and is defined as: 
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𝐴 = ∑
1

2
|𝑎𝑖𝑏𝑖 × 𝑎𝑖𝑐𝑖|

𝑁

𝑖=1

 

Where 𝑁 is the total number of triangles covering the surface and 𝑎, 𝑏 and 𝑐 

are edge vectors of the triangles. 

2.7.  Surface to volume ratio: 

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑡𝑜 𝑣𝑜𝑙𝑢𝑚𝑒 𝑟𝑎𝑡𝑖𝑜 =
𝐴

𝑉
 

2.8.  Volume: 

The volume (𝑉) of the tumor is determined by counting the number of pixels in 

the tumor region and multiplying this value by the voxel size. 

The maximum 3D diameter, surface area and volume provide information on the size of the lesion. 

Measures of compactness, spherical disproportion, sphericity and the surface to volume ratio describe 

how spherical, rounded, or elongated the shape of the tumor is. 
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Group 3. Textural features 

 

The features shown above that resulted from group 1 (first-order statistics) provide information related 

to the gray-level distribution of the image; however they do not provide any information regarding the 

relative position of the various gray levels over the image. In this group we therefore included textural 

features describing patterns or the spatial distribution of voxel intensities, which were calculated from 

respectively gray level co-occurrence (GLCM), gray level run-length (GLRLM) and gray level size-zone 

(GLSZM) texture matrices. Determining texture matrix representations requires the voxel intensity 

values within the VOI to be discretized. Voxel intensities were therefore resampled into equally spaced 

bins using a bin-width of 25 Hounsfield Units. This discretization step not only reduces image noise, but 

also normalizes intensities across all patients, allowing for a direct comparison of all calculated textural 

features between patients. Texture matrices were determined considering 26-connected voxels (i.e. 

voxels were considered to be neighbors in all 13 directions in three dimensions).  

 

Gray-Level Co-Occurrence Matrix based features 

 

A GLCM is defined as 𝑃(𝑖, 𝑗; 𝛿, 𝛼), a matrix with size 𝑁𝑔 × 𝑁𝑔  describing the second-order joint probability  

function of an image, where the (𝑖, 𝑗)th element represents the number of times the combination of 

intensity levels 𝑖 and 𝑗 occur in two pixels in the image, that are separated by a distance of 𝛿 pixels in 

direction 𝛼, and 𝑁𝑔 is the number of discrete gray level intensities. As a two dimensional example, let 

the following matrix represent a 5x5 image, having 5 discrete gray levels:  

𝐼 =

1 2 5 2 3

3 2 1 3 1

1 3 5 5 2

1 1 1 1 2

1 2 4 3 5

 

For distance 𝛿 = 1 (considering pixels with a distance of 1 pixel from each other) in direction 𝛼 = 0, 

where 0 degrees is the horizontal direction, the following GLCM is obtained:  

𝑃(1,0) =

3 3 2 0 0

1 0 1 1 1

1 1 0 0 2

0 0 1 0 0

0 2 0 0 1

 

In this study, distance 𝛿 was set to 1 and direction 𝛼 to each of the 13 directions in three dimensions, 

yielding a total of 13 gray level co-occurrence matrices for each 3D image. From these gray-level co-

occurrence matrices, several textural features are derived. Each 3D gray level co-occurrence based 

feature was then calculated as the mean of the feature calculations for each of the 13 directions.  

 

Let: 

𝑃(𝑖, 𝑗) be the co-occurrence matrix for an arbitrary 𝛿 and 𝛼, 
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𝑁𝑔 be the number of discrete intensity levels in the image, 

𝜇 be the mean of 𝑃(𝑖, 𝑗), 

𝑝𝑥
(𝑖) = ∑ 𝑃(𝑖, 𝑗)

𝑁𝑔

𝑗=1
 be the marginal row probabilities, 

𝑝𝑦
(𝑖) = ∑ 𝑃(𝑖, 𝑗)

𝑁𝑔

𝑖=1
 be the marginal column probabilities, 

𝜇𝑥 be the mean of 𝑝𝑥 , 

𝜇𝑦 be the mean of 𝑝𝑦 , 

𝜎𝑥 be the standard deviation of 𝑝𝑥 , 

𝜎𝑦  be the standard deviation of 𝑝𝑦 , 

𝑝𝑥 +𝑦
(𝑘) = ∑ ∑ 𝑃(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
, 𝑖 + 𝑗 = 𝑘, 𝑘 = 2,3, … ,2𝑁𝑔, 

𝑝𝑥 −𝑦
(𝑘) = ∑ ∑ 𝑃(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
, |𝑖 − 𝑗| = 𝑘, 𝑘 = 0,1, … , 𝑁𝑔 − 1, 

𝐻𝑋 = − ∑ 𝑝𝑥 (𝑖) log2
[𝑝𝑥(𝑖)]

𝑁𝑔

𝑖=1
 be the entropy of 𝑝𝑥 , 

𝐻𝑌 = − ∑ 𝑝𝑦 (𝑖) log2[𝑝𝑦 (𝑖)]
𝑁𝑔

𝑖=1
 be the entropy of 𝑝𝑦 , 

𝐻 = − ∑ ∑ 𝑃(𝑖, 𝑗) log2
[𝑃(𝑖, 𝑗)]

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
 be the entropy of 𝑃(𝑖, 𝑗), 

𝐻𝑋𝑌1 = − ∑ ∑ 𝑃(𝑖, 𝑗)log (𝑝𝑥
(𝑖)𝑝𝑦

(𝑗))
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
, 

𝐻𝑋𝑌2 = − ∑ ∑ 𝑝𝑥
(𝑖)𝑝𝑦 (𝑗)log (𝑝𝑥

(𝑖) 𝑝𝑦
(𝑗))

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
. 

 

3.1.  Autocorrelation: 

𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = ∑ ∑ 𝑖𝑗𝑃(𝑖, 𝑗)

𝑁𝑔

𝑗 =1

𝑁𝑔

𝑖=1

 

3.2.  Cluster Prominence: 

𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑝𝑟𝑜𝑚𝑖𝑛𝑒𝑛𝑐𝑒 = ∑ ∑[𝑖 + 𝑗 − 𝜇𝑥 (𝑖) − 𝜇𝑦(𝑗)]
4
𝑃(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

3.3.  Cluster Shade: 

𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑠ℎ𝑎𝑑𝑒 = ∑ ∑[𝑖 + 𝑗 − 𝜇𝑥 (𝑖) − 𝜇𝑦(𝑗)]
3
𝑃(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

3.4.  Cluster Tendency: 

𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑡𝑒𝑛𝑑𝑒𝑛𝑐𝑦 = ∑ ∑[𝑖 + 𝑗 − 𝜇𝑥 (𝑖) − 𝜇𝑦(𝑗)]
2
𝑃(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

3.5.  Contrast: 

𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑ ∑|𝑖 − 𝑗|2𝑃(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
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3.6.  Correlation: 

𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =
∑ ∑ 𝑖𝑗𝑃(𝑖, 𝑗) − 𝜇𝑖(𝑖)𝜇𝑗(𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

𝜎𝑥 (𝑖)𝜎𝑦(𝑗)
 

3.7.  Difference entropy: 

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = ∑ 𝑃𝑥−𝑦 (𝑖) log2[𝑃𝑥−𝑦(𝑖)]

𝑁𝑔 −1

𝑖=0

 

3.8.  Dissimilarity: 

𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = ∑ ∑|𝑖 − 𝑗|𝑃(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

3.9.  Energy: 

𝑒𝑛𝑒𝑟𝑔𝑦 = ∑ ∑[𝑃(𝑖, 𝑗)]2

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

3.10.  Entropy (𝑯): 

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ ∑ 𝑃(𝑖, 𝑗) log2[𝑃(𝑖, 𝑗)]

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

3.11.  Homogeneity 1: 

ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 1 = ∑ ∑
𝑃(𝑖, 𝑗)

1 + |𝑖 − 𝑗|

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

3.12.  Homogeneity 2: 

ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 2 = ∑ ∑
𝑃(𝑖, 𝑗)

1 + |𝑖 − 𝑗|2

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

3.13.  Informational measure of correlation 1 (IMC1): 

𝐼𝑀𝐶1 =
𝐻𝑋𝑌 − 𝐻𝑋𝑌1

max{𝐻𝑋, 𝐻𝑌}
 

3.14.  Informational measure of correlation 2 (IMC2): 

𝐼𝑀𝐶2 = √1 − 𝑒−2(𝐻𝑋𝑌2−𝐻𝑋𝑌) 

3.15.  Inverse Difference Moment Normalized (IDMN): 

𝐼𝐷𝑀𝑁 = ∑ ∑
𝑃(𝑖, 𝑗)

1 + (
|𝑖 − 𝑗|2

𝑁2 )

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

3.16.  Inverse Difference Normalized (IDN): 
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𝐼𝐷𝑁 = ∑ ∑
𝑃(𝑖, 𝑗)

1 + (
|𝑖 − 𝑗|

𝑁 )

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

3.17.  Inverse variance: 

𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = ∑ ∑
𝑃(𝑖, 𝑗)

|𝑖 − 𝑗|2

𝑁𝑔

𝑗 =1

𝑁𝑔

𝑖=1

, 𝑖 ≠ 𝑗 

3.18.  Maximum Probability: 

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = max{𝑃(𝑖, 𝑗)} 

3.19.  Sum average: 

𝑠𝑢𝑚 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = ∑[𝑖𝑃𝑥+𝑦(𝑖)]

2𝑁𝑔

𝑖=2

 

3.20.  Sum entropy: 

𝑠𝑢𝑚 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑃𝑥+𝑦(𝑖) log2[𝑃𝑥+𝑦(𝑖)]

2𝑁𝑔

𝑖=2

 

3.21.  Sum variance: 

𝑠𝑢𝑚 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = ∑(𝑖 − 𝑆𝐸)2𝑃𝑥+𝑦(𝑖)

2𝑁𝑔

𝑖=2

 

3.22.  Variance: 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = ∑ ∑(𝑖 − 𝜇)2𝑃(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

 

Gray-Level Run-Length matrix based features 

 

Run length metrics quantify gray level runs in an image. A gray level run is defined as the length in 

number of pixels, of consecutive pixels that have the same gray level value. In a gray level run length 

matrix 𝑝(𝑖, 𝑗|𝜃), the (𝑖, 𝑗)th element describes the number of times 𝑗 a gray level 𝑖 appears consecutively  

in the direction specified by 𝜃, and 𝑁𝑔  is the number of discrete gray level intensities. As a two 

dimensional example, consider the following 5x5 image, with 5 discrete gray levels:  

𝐼 =

5 2 5 4 4

3 3 3 1 3

2 1 1 1 3

4 2 2 2 3

3 5 3 3 2
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The GLRL matrix for 𝜃 = 0, where 0 degrees is the horizontal direction, then becomes: 

𝑝(0) =

1 0 1 0 0

3 0 1 0 0

4 1 1 0 0

1 1 0 0 0

3 0 0 0 0

 

In this study, a GLRL matrix was computed for every of the 13 directions in three dimensions, from which 

the below textural features were derived. Each 3D GLRL feature was then calculated as the mean of 

the feature values for each of the 13 directions. 

 

Let: 

𝑝(𝑖, 𝑗|𝜃) be the (𝑖, 𝑗)th entry in the given run-length matrix 𝑝 for a direction 𝜃, 

𝑁𝑔 the number of discrete intensity values in the image, 

𝑁𝑟 the number of different run lengths, 

𝑁𝑝 the number of voxels in the image. 

3.23.  Short Run Emphasis (SRE) 

𝑆𝑅𝐸 =
∑ ∑ [

𝑝(𝑖, 𝑗|𝜃)
𝑗2 ]

𝑁𝑟
𝑗 =1

𝑁𝑔

𝑖=1

∑ ∑ 𝑝(𝑖, 𝑗|𝜃)𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

 

3.24.  Long Run Emphasis (LRE) 

𝐿𝑅𝐸 =
∑ ∑ 𝑗2𝑝(𝑖, 𝑗|𝜃)𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

∑ ∑ 𝑝(𝑖, 𝑗|𝜃)
𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

 

3.25.  Gray Level Non-Uniformity (GLN) 

𝐺𝐿𝑁 =
∑ [∑ 𝑝(𝑖, 𝑗|𝜃)𝑁𝑟

𝑗=1 ]
2𝑁𝑔

𝑖=1

∑ ∑ 𝑝(𝑖, 𝑗|𝜃)
𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

 

3.26.  Run Length Non-Uniformity (RLN) 

𝑅𝐿𝑁 =
∑ [∑ 𝑝(𝑖, 𝑗|𝜃)

𝑁𝑔

𝑖=1
]

2
𝑁𝑟
𝑗=1

∑ ∑ 𝑝(𝑖, 𝑗|𝜃)𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

 

3.27.  Run Percentage (RP) 

𝑅𝑃 = ∑ ∑
𝑝(𝑖, 𝑗|𝜃)

𝑁𝑝

𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

 

3.28.  Low Gray Level Run Emphasis (LGLRE) 
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𝐿𝐺𝐿𝑅𝐸 =
∑ ∑ [

𝑝(𝑖, 𝑗|𝜃)
𝑖 2 ]𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

∑ ∑ 𝑝(𝑖, 𝑗|𝜃)𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

 

3.29.  High Gray Level Run Emphasis (HGLRE) 

𝐻𝐺𝐿𝑅𝐸 =
∑ ∑ 𝑖 2𝑝(𝑖, 𝑗|𝜃)𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

∑ ∑ 𝑝(𝑖, 𝑗|𝜃)
𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

 

3.30.  Short Run Low Gray Level Emphasis (SRLGLE) 

𝑆𝑅𝐿𝐺𝐿𝐸 =

∑ ∑ [
𝑝(𝑖, 𝑗|𝜃)

𝑖 2𝑗2 ]𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

∑ ∑ 𝑝(𝑖, 𝑗|𝜃)𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

 

3.31.  Short Run High Gray Level Emphasis (SRHGLE) 

𝑆𝑅𝐻𝐺𝐿𝐸 =

∑ ∑ [
𝑝(𝑖, 𝑗|𝜃)𝑖 2

𝑗2 ]𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

∑ ∑ 𝑝(𝑖, 𝑗|𝜃)𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

 

3.32.  Long Run Low Gray Level Emphasis (LRLGLE) 

𝐿𝑅𝐿𝐺𝐿𝐸 =
∑ ∑ [

𝑝(𝑖, 𝑗|𝜃)𝑗2

𝑖 2 ]𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

∑ ∑ 𝑝(𝑖, 𝑗|𝜃)𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

 

3.33.  Long Run High Gray Level Emphasis (LRHGLE) 

𝐿𝑅𝐻𝐺𝐿𝐸 =
∑ ∑ 𝑝(𝑖, 𝑗|𝜃)𝑖2𝑗 2𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

∑ ∑ 𝑝(𝑖, 𝑗|𝜃)
𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

 

 

Gray-Level size-zone matrix based features 

 

A gray level size-zone matrix describes the amount of homogeneous connected areas within the tumor 

volume of a certain size and intensity. In a gray level size-zone matrix 𝑝(𝑖, 𝑗), the (𝑖, 𝑗)th element  

describes the number of times a homogeneous connected region with of size j, with intensity 𝑖 appears.  

As a two dimensional example, consider the following 5x5 image, with 5 discrete gray levels:  

𝐼 =

5 5 1 4 4

5 5 2 5 3

2 5 1 1 2

3 2 2 3 3

1 2 3 3 3

 

The gray level size-zone matrix 𝑝(𝑖, 𝑗) then becomes: 
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𝑝 =

2 1 0 0 0

3 0 1 0 0

2 0 0 0 1

0 1 0 0 0

1 0 0 0 1

 

Let: 

𝑝(𝑖, 𝑗) be the (𝑖, 𝑗)th entry in the given size-zone matrix 𝑝, 

𝑁𝑔 the number of discrete intensity values in the image, 

𝑁𝑧 the size of the largest,homogeneous region in the volume of interest, 

𝑁𝑎 the number homogeneous areas in the image. 

3.34.  Small area Emphasis (SAE) 

𝑆𝐴𝐸 =
∑ ∑ [

𝑝(𝑖, 𝑗)
𝑗2 ]

𝑁𝑧
𝑗=1

𝑁𝑔

𝑖=1

∑ ∑ 𝑝(𝑖, 𝑗)
𝑁𝑧
𝑗=1

𝑁𝑔

𝑖=1

 

3.35.  Large area Emphasis (LAE) 

𝐿𝐴𝐸 =
∑ ∑ 𝑗2𝑝(𝑖, 𝑗)𝑁𝑧

𝑗=1

𝑁𝑔

𝑖=1

∑ ∑ 𝑝(𝑖, 𝑗)
𝑁𝑧
𝑗=1

𝑁𝑔

𝑖=1

 

3.36.  Intensity variability (IV) 

𝐼𝑉 =
∑ [∑ 𝑝(𝑖, 𝑗)𝑁𝑧

𝑗=1 ]
2𝑁𝑔

𝑖=1

∑ ∑ 𝑝(𝑖, 𝑗)
𝑁𝑧
𝑗 =1

𝑁𝑔

𝑖=1

 

3.37.  Size-zone variability (SZV) 

𝑆𝑍𝑉 =
∑ [∑ 𝑝(𝑖, 𝑗)

𝑁𝑔

𝑖=1
]

2
𝑁𝑧
𝑗=1

∑ ∑ 𝑝(𝑖, 𝑗)𝑁𝑧
𝑗=1

𝑁𝑔

𝑖=1

 

3.38.  Zone Percentage (ZP) 

𝑍𝑃 = ∑ ∑
𝑝(𝑖, 𝑗)

𝑁𝑎

𝑁𝑧

𝑗=1

𝑁𝑔

𝑖=1

 

3.39.  Low intensity Emphasis (LIE) 
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𝐿𝐼𝐸 =
∑ ∑ [

𝑝(𝑖, 𝑗)
𝑖 2 ]𝑁𝑧

𝑗=1

𝑁𝑔

𝑖=1

∑ ∑ 𝑝(𝑖, 𝑗)𝑁𝑧
𝑗=1

𝑁𝑔

𝑖=1

 

3.40.  High intensity Emphasis (HIE) 

𝐻𝐼𝐸 =
∑ ∑ 𝑖 2𝑝(𝑖, 𝑗)𝑁𝑧

𝑗=1

𝑁𝑔

𝑖=1

∑ ∑ 𝑝(𝑖, 𝑗)𝑁𝑧
𝑗=1

𝑁𝑔

𝑖=1

 

3.41.  Low intensity small area Emphasis (LISAE) 

𝐿𝐼𝑆𝐴𝐸 =

∑ ∑ [
𝑝(𝑖, 𝑗)
𝑖 2𝑗2 ]𝑁𝑧

𝑗=1

𝑁𝑔

𝑖=1

∑ ∑ 𝑝(𝑖, 𝑗)𝑁𝑧
𝑗=1

𝑁𝑔

𝑖=1

 

3.42.  High intensity small area Emphasis (HISAE) 

𝐻𝐼𝑆𝐴𝐸 =
∑ ∑ [

𝑝(𝑖, 𝑗)𝑖2

𝑗2 ]
𝑁𝑧
𝑗=1

𝑁𝑔

𝑖=1

∑ ∑ 𝑝(𝑖, 𝑗)
𝑁𝑧
𝑗=1

𝑁𝑔

𝑖=1

 

3.43.  Low intensity large area Emphasis (LILAE) 

𝐿𝐼𝐿𝐴𝐸 =
∑ ∑ [

𝑝(𝑖, 𝑗)𝑗2

𝑖 2 ]𝑁𝑧
𝑗=1

𝑁𝑔

𝑖=1

∑ ∑ 𝑝(𝑖, 𝑗)𝑁𝑧
𝑗=1

𝑁𝑔

𝑖=1

 

3.44.  High intensity large area Emphasis (HILAE) 

𝐻𝐼𝐿𝐴𝐸 =
∑ ∑ 𝑝(𝑖, 𝑗)𝑖2𝑗 2𝑁𝑧

𝑗=1

𝑁𝑔

𝑖=1

∑ ∑ 𝑝(𝑖, 𝑗)
𝑁𝑧
𝑗 =1

𝑁𝑔

𝑖=1
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Group 4. Wavelet features: first order statistics and texture of wavelet decompositions 

 

Wavelet transform effectively decouples textural information by decomposing the original image, in a 

similar manner as Fourier analysis, in low –and high-frequencies. In this study a discrete, one-level and 

undecimated three dimensional wavelet transform was applied to each CT image, which decomposes 

the original image 𝑋 into 8 decompositions. Consider 𝐿 and 𝐻 to be a low-pass (i.e. a scaling) and,  

respectively, a high-pass (i.e. a wavelet) function, and the wavelet decompositions of 𝑋 to be labeled as 

𝑋𝐿𝐿𝐿 , 𝑋𝐿𝐿𝐻 , 𝑋𝐿𝐻𝐿 , 𝑋𝐿𝐻𝐻 , 𝑋𝐻𝐿𝐿 , 𝑋𝐻𝐿𝐻 , 𝑋𝐻𝐻𝐿  and 𝑋𝐻𝐻𝐻 . For example, 𝑋𝐿𝐿𝐻  is then interpreted as the high-pass 

sub band, resulting from directional filtering of 𝑋 with a low-pass filter along x-direction, a low pas filter 

along y-direction and a high-pass filter along z-direction and is constructed as: 

𝑋𝐿𝐿𝐻
(𝑖, 𝑗, 𝑘) = ∑ ∑ ∑ 𝐿(𝑝)𝐿(𝑞)𝐻(𝑟)𝑋(𝑖 + 𝑝, 𝑗 + 𝑞, 𝑘 + 𝑟)

𝑁𝐻

𝑟 =1

𝑁𝐿

𝑞=1

𝑁𝐿

𝑝=1

 

Where 𝑁𝐿 is the length of filter 𝐿 and 𝑁𝐻 is the length of filter 𝐻. The other decompositions are 

constructed in a similar manner, applying their respective ordering of low or high-pass filtering in x, y 

and z-direction. Wavelet decomposition of the image 𝑋 is schematically depicted in Figure 1. Since the 

applied wavelet decomposition is undecimated, the size of each decomposition is equal to the original 

image and each decomposition is shift invariant. Because of these properties, the original tumor 

delineation of the gross tumor volume (GTV) can be applied directly to the decompositions after wavelet  

transform. In this study “Coiflet 1” wavelet was applied on the original CT images. For each 

decomposition we computed the first order statistics as described in Group 1 and the textural features 

as described in Group 3. 
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Supplement I Figure 1: Schematic of the undecimated three dimensional wavelet transform applied 

to each CT image. The original image 𝑋 is decomposed into 8 decompositions, by directional low-pass 

(i.e. a scaling) and high-pass (i.e. a wavelet) filtering: 𝑋𝐿𝐿𝐿 , 𝑋𝐿𝐿𝐻 , 𝑋𝐿𝐻𝐿 , 𝑋𝐿𝐻𝐻 , 𝑋𝐻𝐿𝐿 , 𝑋𝐻𝐿𝐻 , 𝑋𝐻𝐻𝐿 

and 𝑋𝐻𝐻𝐻 . 

 

 

 

 

 

 

 

 

 

 

 

 



 

Appendix III 

Image Feature List – Version 1.0 

 

No
. 

Feature Description Calculation Range 

3D features    

1 Border Length  The border length of an image object is defined as the 

sum of edges of the image object that are shared with 

other image objects or are situated on the edge of the 

entire scene. 

The border length of a 3D image object is the sum of 

border lengths of all image object slices multiplied by the 

spatial distance between the slices. 

For torus and image objects with holes the border length 

sums the inner and outer border 

 

bv = ( ∑ bv

#(slices)

n=1

(Slice)) ∗ uslices + bv(Z) 

  

Parameters 

bv : border length of image object v 

bv (slice): border length of image object slice 

bv (z): border length of image object in z-direction 

uslices: spatial distance between slices in the coordinate 

system unit 

[0, ∞] 

2. Length  The length of an image object is the largest of three 

eigenvalues of a rectangular 3D space that is defined by 

 [0, ∞] 



37 
  

the same volume as the image object and the same 

proportions of eigenvalues as the image object. 

The length of an image object can be ≤ the largest of 

dimensions of the smallest rectangular 3D space 

enclosing the image object. 

3. Thickness The thickness of an image object is the smallest of three 

eigenvalues of a rectangular 3D space that is defined by 

the same volume as the image object and the same 

proportions of eigenvalues as the image object 

The thickness of an image object can be ≤ than the 

smallest of dimensions of the smallest rectangular 3D 

space enclosing the image object 

 [0, ∞] 

4. Width The width of an image object is the middle of three 

eigenvalues of a rectangular 3D space that is defined by 

the same volume as the image object and the same 

proportions of eigenvalues as the image object. 

The width of an image object can be smaller or equal 

than the middle of dimensions of the smallest rectangular 

3D space enclosing the image object. 

 [0, ∞] 

5. Length/Thickness 

 

The length-to-thickness ratio of an image object. Length/Thickness 

 

[0, ∞] 

6. Length/Width The length-to-width ratio of an image object. Length/Width 

 

[0, ∞] 

7. Number of Pixels 

 

Number of pixels forming an image object.  [0, scene 

size] 

8. Volume The number of voxels forming an image object rescaled 

by using unit information for x 

Vv= #Pv*u²*uslices [0, scene 

size] 
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 and y coordinates and distance information between 

slices. 

 

 

Vv: volume of image object v 

#Pv: total number of voxels contained in Pv 

u: size of a slice pixel in the coordinate system unit 

uslices: spatial distance between slices in the coordinate 

system unit 

9. Asymmetry The more longish an image object, the more asymmetric 

it is. The feature value increases 

with the asymmetry. 

The asymmetry is calculated from the ratio between the 

smallest and largest 

eigenvalues of the image object. 

1 − 
√𝑚𝑖𝑛

√𝑚𝑎𝑥

 

 

λmin: minimal eigenvalue 

λmax: maximal eigenvalue 

[0, 1] 

10. Border Index 

 

The more rough or 

jagged an image object is, the higher its border index. 

Similar to Shape index feature, but border index uses a 

rectangular approximation 

instead of a square. The smallest rectangle enclosing the 

image object is created. The 

border index is then calculated as the ratio of the Border 

length feature of the image object to the border length of 

this smallest enclosing rectangle. 

Expression: 

 

bv/2(lv+Wv) 

 

bv: image object border length 

lv: length of an image object v 

wv : width of an image object v 

 

[1, ∞] 

1 = ideal. 



11. Compactness A figure for the compactness of a 3D image object is 

calculated by a scaled product of its three eigenvalues 

2∗λ1, 2∗λ2, 2∗λ3 divided by the number of its pixel/voxel. 

We include a factor of 2 with each eigenvalue, since 

λi∗eigenvectors represent otherwise half axes of an 

ellipsoid defined by its covariance matrix. The chosen 

approach thus provides an 

estimate of a cuboid occupied by the object. 

2 λ1*2 λ2*2 λ3/Vv 

 

λ1: eigenvalue 1 of a 3D image object v 

λ2: eigenvalue 2 of a 3D image object v 

λ3: eigenvalue 3 of a 3D image object v 

Vv: volume of image object v 

 

[0, ∞] 

1 = ideal. 

12. Density The Density feature describes the spatial distribution of 

the pixels of an image object. 

The ideal compact shape on a pixel raster is the cube. 

The more the shape of an image 

object is like a cube, the higher its density. The more the 

shape of an image object is like 

a filament, the lower its density. 

It is calculated by the edge of the volume fitted cube 

divided by the fitted sphere radius. 

√𝑉𝑣
3

√𝑉𝑎𝑟(𝑋) + 𝑉𝑎𝑟 (𝑌) + 𝑉𝑎𝑟(𝑍)
 

 

Vv: volume of image object v 

3√V: edge of the volume fitted cube 

√Var(X) + Var(Y) + Var (Z): radius of the fitted sphere 

[0, 

depended 

on shape of 

image 

object] 

13. Elliptic Fit It describes how well an image object fits into an ellipsoid 

of similar size and proportions. 

While 0 indicates no fit, 1 indicates for a complete fitting 

image object. 

The calculation is based on an ellipsoid with the same 

volume as the considered image 

object. The proportions of the ellipsoid are equal to the 

proportions of the length to 

 = 2.#{x,y,z)Pv : εv(X,Y,Z)1}/#Pv-1 

 

εv(x,y,z): elliptic distance at a pixel (x,y,z) 

Pv: set of pixels of an image object v 

#Pv: total number of pixels contained in Pv 

[0, 1]; 1 = 

complete 

fitting, 

whereas 0 = 

only 50% or 

less voxels 

fit inside the 

ellipsoid 
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width to thickness of the image object. The volume of the 

image object outside the 

ellipsoid is compared with the volume inside the ellipsoid 

that is not filled out with the 

image object. 

14. Main direction Main direction feature of a three-dimensional image 

object is computed as follows: 

1. For each image object slice (a 2D pieces of the image 

object in a slice) the centers of 

gravities are calculated. 

2. The coordinates of all centers of gravities a re used to 

calculate a line of best fit 

according to the Weighted Least Square method. 

3. The angle α between the resulting line of best fit and 

the z-axis is returned as 

feature value 

  

[0, 90] 

15. Radius of Largest 

Enclosed Ellipse 

It describes how much the shape of an image object is 

similar to an ellipsoid. The calculation is based on an 

ellipsoid with the same volume as the object and based 

on the covariance matrix. This ellipsoid is scaled down 

until it is totally enclosed by the 

image object. The ratio of the radius of this largest 

enclosed ellipsoid to the radius of the 

original ellipsoid is returned as feature value. 

εv(xo,yo,zo) 

with (xo,yo,zo) = min εv(x,y,z), (x,y,z)∉Pv 

εv(x,y,z): elliptic distance at a pixel (x,y,z) 

Expression: 

 

[0, ∞] 

16. Radius of Smallest 

Enclosing Ellipse 

The calculation is based on an ellipsoid with the same 

volume as the image object and 

εv(xo,yo,zo) 

with (xo,yo,zo) = max εv(x,y,z), (x,y,z)∈σPv 

[0, ∞] 
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based on the covariance matrix. This ellipsoid is enlarged 

until it encloses the image 

object in total. The ratio of the radius of this smallest 

enclosing ellipsoid to the radius of 

the original ellipsoid is returned as feature value. 

 

εv(x,y,z): elliptic distance at a pixel (x,y,z) 

 

17. Rectangular Fit It describes how well an image object fits into a cuboid of 

similar size and proportions. 

While 0 indicates no fit, 1 indicates for a complete fitting 

image object. The calculation is based on a cuboid with 

the same volume as the considered image object. The 

proportions of the cuboid are equal to the proportions of 

the length to width to thickness of the image object. The 

volume of the image object outside the rectangle is 

compared with the volume inside the cuboid that is not 

filled out with the image object. 

 

#{(𝑋 , 𝑌, 𝑍) 𝑃𝑣 ∶  𝑣(𝑋, 𝑌, 𝑍) ≤ 1}

#𝑃𝑣
 

 

ρv(x,y,z): rectangular distance at a pixel (x,y) 

#Pv: total number of pixels contained in Pv 

[0, 1]; 1 = 

complete 

fitting, 

whereas 0 = 

0% fits 

inside the 

rectangular 

approximati

on 

18. Roundness Describes how much the shape of an image object is 

similar to an ellipsoid. The more the shape of an image 

object is similar to an ellipsoid, the lower its roundness. It 

is calculated by the difference of the enclosing ellipsoid 

and the enclosed ellipsoid. The radius of the largest 

enclosed ellipsoid is subtracted from the radius of the 

smallest 

enclosing ellipsoid. 

휀𝑣
𝑚𝑎𝑥 −  휀𝑣

𝑚𝑖𝑛  

εv 

max: radius of smallest enclosing ellipsoid 

εv 

min: radius of largest enclosed ellipsoid 

[0, ∞]; 0 = 

ideal. 

19. Shape Index The smoother the surface of an image object is, the lower 

its shape index. It is calculated from the Border length 

feature of the image object divided by four times the 

square root of its area. 

Bv/Vv 

bv: image object border length 

Vv: volume of image object v 

 

[1, ∞]; 1 = 

ideal. 

20. Histogram features The intensity histogram h(a) is the number of pixels 

occurred for brightness level “a” plotted against their 
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brightness level.  The probability distribution of the 

brightness P(a) can be calculated as well. Six features:  

mean, standard deviation, skewness, kurtosis, energy, 

entropy were incorporated. 

1. mean=∑ 𝑖 ∗ 𝑝𝑟𝑜𝑏(𝑖)𝑟𝑎𝑛𝑔𝑒
𝑖=1  

2. sd=√∑ (𝑖 − 𝑚𝑒𝑎𝑛)2 ∗ 𝑝𝑟𝑜𝑏(𝑖)𝑟𝑎𝑛𝑔𝑒

𝑖=1
 

3. skewness=
∑ (𝑖−𝑚𝑒𝑎𝑛 )3∗𝑝𝑟𝑜𝑏 (𝑖)

𝑟𝑎𝑛𝑔𝑒
𝑖=1

(∑ (𝑖−𝑚𝑒𝑎𝑛)2∗𝑝𝑟𝑜𝑏 (𝑖)
𝑟𝑎𝑛𝑔𝑒
𝑖=1

)1.5 

4. kurtosis=
∑ (𝑖−𝑚𝑒𝑎𝑛)4∗𝑝𝑟𝑜𝑏 (𝑖)

𝑟𝑎𝑛𝑔𝑒
𝑖=1

(∑ (𝑖−𝑚𝑒𝑎𝑛)2∗𝑝𝑟𝑜𝑏 (𝑖)
𝑟𝑎𝑛𝑔𝑒
𝑖=1

)2 

5. energy=∑ 𝑝𝑟𝑜𝑏(𝑖) ∗ 𝑝𝑟𝑜𝑏(𝑖)
𝑟𝑎𝑛𝑔𝑒
𝑖=1  

6. entropy=− ∑ 𝑝𝑟𝑜𝑏(𝑖) ∗ 𝐿𝑜𝑔(𝑝𝑟𝑜𝑏(𝑖))
𝑟𝑎𝑛𝑔𝑒
𝑖=1  

 

Where intensity range is [0,range] (normalized) 

prob(i)=
ℎ𝑖𝑠𝑡 (𝑖)

∑ ℎ𝑖𝑠𝑡 (𝑖)
 , hist(i) is the frequency of intensity i 

appears. 

21. Run length matrix 

features 

Run-length texture features examine runs of similar gray 

values in an image. Runs may be labeled according to 

their length, gray value, and direction (either horizontal or 

vertical). Long runs of the same gray value  correspond to 

coarser textures, whereas shorter runs correspond to 

finer textures. Texture content was quantified by 

computing 11 features derived from the run-length 

distribution matrix. They are   

1: Short Run Emphasis (SRE).  

2: Long Run Emphasis (LRE).  

3: Gray-Level Nonuniformity (GLN).  

 4: Run Length Nonuniformity (RLN).   

5: Run Percentage (RP).   

𝑝(𝑖, 𝑗) is the element of run-length matrix, let M be the 

number of gray levels, N be the maximum run length.  𝑛𝑟  

is the total number of runs, 𝑛𝑝  is the number of pixels in 

the image. Define 3 new matrices first. 

(a) 𝑝𝑝(𝑖, 𝑗) = 𝑝(𝑖, 𝑗) ∗ 𝑗 

(b) 𝑝𝑔 (𝑖) = ∑ 𝑝(𝑖, 𝑗)𝑁
𝑗=1  

(c) 𝑝𝑟(𝑗) = ∑ 𝑝(𝑖, 𝑗)𝑀
𝑖=1  

 

1. SRE=
1

𝑛𝑟

∑ 𝑝𝑟(𝑗)

𝑗2
𝑁
𝑗=1  

2. LRE=
1

𝑛𝑟

∑ 𝑝𝑟(𝑗) ∗ 𝑗2𝑁
𝑗=1  

3. GLN=
1

𝑛𝑟

∑ 𝑝𝑔 (𝑖)2𝑀
𝑖=1  
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6: Low Gray-Level Run Emphasis (LGRE).   

7: High Gray-Level Run Emphasis (HGRE).   

8: Short Run Low Gray-Level Emphasis (SRLGE).   

9: Short Run High Gray-Level Emphasis (SRHGE).   

10: Long Run Low Gray-Level Emphasis (LRLGE).   

11: Long Run High Gray-Level Emphasis (LGHGE).  

4. RLN=
1

𝑛𝑟

∑ 𝑝𝑟(𝑗)2𝑁
𝑗=1  

5. RP=
𝑛𝑟

𝑛𝑝
 

6. LGRE=
1

𝑛𝑟

∑
𝑝𝑔(𝑖)

𝑖2
𝑀
𝑖=1  

7. HGRE=
1

𝑛𝑟

∑ 𝑝𝑔(𝑖) ∗ 𝑖 2𝑀
𝑖=1  

8. SRLGE=
1

𝑛𝑟

∑ ∑ 𝑝(𝑖,𝑗)

𝑖2∗𝑗2
𝑁
𝑗=1

𝑀
𝑖=1  

9. SRHGE=
1

𝑛𝑟

∑ ∑
𝑝(𝑖,𝑗) ∗𝑖2

𝑗2
𝑁
𝑗=1

𝑀
𝑖=1  

10. LRLGE=
1

𝑛𝑟

∑ ∑ 𝑝(𝑖,𝑗)∗𝑗2

𝑖2
𝑁
𝑗=1

𝑀
𝑖=1  

LRHGE=
1

𝑛𝑟

∑ ∑ 𝑝(𝑖, 𝑗) ∗ 𝑖2 ∗ 𝑗 2𝑁
𝑗 =1

𝑀
𝑖=1  

22. Co-occurrence matrix 

features 

The Co-occurrence matrix is a matrix that contains the 

frequency of one gray level intensity appearing in a 

specified spatial linear relationship with another gray level 

intensity within a certain range. Computation of features 

requires first constructing the co-occurrence matrix, then 

different measurements can be calculated based on the 

matrix. The measurements include: contrast, energy, 

homogeneity, entropy, mean and max probability. 

𝑝(𝑖, 𝑗) is the element of the co-occurrence matrix. 

 

1. Contrast=∑ |𝑖 − 𝑗|2 ∗ 𝑝(𝑖, 𝑗)𝑖 ,𝑗  

2. Energy=∑ 𝑝(𝑖, 𝑗) ∗ 𝑝(𝑖, 𝑗)𝑖 ,𝑗  

3. Homogeneity=∑ 𝑝(𝑖,𝑗)

1+|𝑖−𝑗|𝑖,𝑗  

4. Entropy=− ∑ 𝑝(𝑖, 𝑗) ∗ log (𝑝(𝑖, 𝑗))𝑖 ,𝑗  

5. Sum Mean=0.5*∑ (𝑖 + 𝑗) ∗ 𝑝(𝑖, 𝑗)𝑖 ,𝑗  

Max probability=max(𝑝(𝑖, 𝑗)) 

 

23. Laws features Laws features are constructed from a set of five one-

dimensional filters, each designed to reflect to a different 

type of structure in the image. These one-dimensional 

filters are defined as E5 (edges), S5 (spots), R5 (ripples), 

W5 (waves), and L5 (low pass, or average gray value). 

By using these 1-D convolution filters, 3D filters are 

For each filtered images (125), the energy was calculated 

as following: 
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generated by convolving 3 types of 1D filter, such as 

L5L5L5, L5L5E5, L5L5S5, L5L5R5, L5L5W5, etc. The 

total number of 3-D filters is 125. After the convolution 

with the 3D filters for the image, the energy of the texture 

feature can be computed. 

  













NI

Ni

NJ

Nj

Nk

Nk

kjih
R

Energy
1 1

2

1

),,(
1

,  

 

 

Where R is a normalizing factor, I and J, K are image 

dimensions, ℎ(𝑖, 𝑗, 𝑘) is derived from the convolution filters 

and original image. 

24. Wavelet decomposition The discrete wavelet transform can iteratively decompose 

an image (3D) into four components. Each iteration splits 

the image both horizontally and vertically into low-

frequency (low pass) and high-frequency (high pass) 

components. Thus, four components are generated: a 

high-pass/high-pass component consisting of mostly 

diagonal structure, a high-pass/low-pass component 

consisting mostly of vertical structures, a low-pass/high-

pass component consisting mostly of horizontal structure, 

and a low-pass/low-pass component that represents a 

blurred version of the original image. Subsequent 

iterations then repeat the decomposition on the low-

pass/low-pass component from the previous iteration. 

These subsequent iterations highlight broader 

diagonal, vertical, and horizontal textures. And for each 

component, we calculated the energy feature. 


  


M

i

N

j

L

k

kjiI
MxNxL

Energy
1 1

2

1

),,(
1
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log()
),,(
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kjiI

MxNxL
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L
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I(i, j, k) shows the subblock elements and M, N, and L are 

the dimensions of each subblock and   

 
 

i j k
kjiInorm ),,(22

 

The number of features really depends on the number 

of decomposition level selected.  

1 level:  2* 8(block) = 16 features 

     2 level:  2* 15(block) = 30 features 

 

25. Fractional Anisotropy Fractional anisotropy of long vs. short axis 
√(L − W)2 +  (W − T)2 + (T − L)2 

√𝐿2 + 𝑊2 + 𝑇 2
∗ √

1

2
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L: Length 

W: Width 

T: Thickness 

26. Spherecity It describes how spherical is the image object. 𝜋
1
3 (6𝑉𝑝 )

2
3

𝐴𝑝

 

Ap = surface area 

Vp = volume 

 

27 Number of 

Macrospiculations 

Number countable spiculations of tumor   

31. Distance of center of 

gravity to border of 

tumor 

Measure of distance from center of gravity to border of 

the tumor. Reported as average, std dev, minimum and 

maximum. 

  

32. Attachment of tumor to 

other anatomical 

structures 

Describes the attachment of the tumor to the other 

anatomical structures. Reported as relative border to 

lung, relative border to attached structure, ratio of free to 

attached surface area. 

  

33. Intensity value of tumor 

in HU 

Brightness values of tumors measured in Hounsfield units 

(HU). Reported as mean(HU) and Std Dev (HU) 
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Appendix IV 
 

The feature values of the Maastro and Moffitt tool are 𝑥 and 𝑦. The formula of the CCC then 

is:     𝐶𝐶𝐶 =
2𝜌𝜎𝑥𝜎𝑦

𝜎𝑥
2+𝜎𝑦

2+(𝜇𝑥+𝜇𝑦)2 

Where  𝜌 is the Pearson correlation, 𝜎 the standard deviation, 𝜎 2 the variance, and 𝜇 the mean.  
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Appendix V 
 

The linear regression formula is Y = a + bX. In this formula ‘a’ is the intercept, which is the value of Y 

when X=0. ‘b’ is the slope of the regression line and gives the average increase of Y when variable X 

increases by one unit.  
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Appendix VI 
The new calculated CCC for Longest Diameter of Moffitt with Shape_maxDiameter2D1, 
Shape_maxDiameter2D2, Shape_maxDiameter2D3 and Shape_maxDiameter3D of Maastro.          
 

Feature Maastro Feature Moffitt CCC Lung CCC head/neck 

Shape_maxDiameter2D1 Longest Diameter 0,676453879 0,787669494 

Shape_maxDiameter2D2 Longest Diameter 0,688697225 0,787670403 

Shape_maxDiameter2D3 Longest Diameter 0,574404612 0,517999839 

Shape_maxDiameter3D Longest Diameter 0,651190078 0,931705241 
 

 

 


