
WP2 Autonomous Platform for Research andEducation

Experimental Automatic Steering Control in a
real-scale boat

https://projectfast.nl/

This project is made possible by the European Regional
Development Fund within the framework of REACT-EU

Het project F.A.S.T. is mede mogelijk gemaakt door
het Europees Fonds voor Regionale Ontwikkeling in het
kader van REACT-EU

This work is licensed under the Creative
Commons CC BY 4.0. license

https://projectfast.nl/
https://creativecommons.org/licenses/by/4.0/

Contents
1 Introduction 3

2 Examples of ship control platforms found in the literature 4

3 Use Case description and experimental steps 5

4 System Architecture 6
4.1 Software setup . 6
4.2 Multiprocessing Python code . 7
4.3 Reference Track Initialization . 7
4.4 GPS (serial) . 8
4.5 Wind sensor (serial) . 8
4.6 Real-Time Control algorithm . 8

4.6.1 Heading deviation from reference track . 8
4.6.2 Calculating heading setpoint: . 8

4.7 Steering actuator (serial or Modbus) . 9
4.8 Speed control (serial) . 10
4.9 HMI - Human Machine Interface (TCP/UDP) . 10
4.10 Logging and Plotting . 10

5 First system test in Blik op Water 11

6 Conclusions and Future work 13

A Code extract: Main steering control loop 15

B Bearing and distance between two points 16

C Finding the shortest distance between a point and a line segment 16

D Control architecture used in Cogge 18

E Communication framework used in Maverick 19

F Real-time monitor during sailing 20

| 2

Experimental Automatic Steering Control in a real-scale boat
A. Caballero-Rosas1, M. Brederveld1, and R. van de Pijpekamp2

1HZ University of Applied Sciences
2TMC Mechatronics BV

November, 2023

Summary

The main goal of Work Package 2 of the Field Lab Autonomous Sailing Technology (FAST) project is
to realize an autonomous shipping platform to be used for research and education purposes. To attain
this goal, the HZ University of Applied Sciences teamed with its main project partner in this journey,
the Research lab. Autonomous Shipping (RAS) based at the Delft University of Technology. Several
streams of work were defined in the early stages of the project tackling different aspects of autonomous
shipping: 1) Upgrading lab autonomous fleets used in the Master curriculums or Maritime technology
and Mechatronics; 2) Applied research on machine object recognition (aka, situational awareness); and
3) creation by students or staff of small and real scale boats with track pilot capabilities and automatic
control systems. This report describes the key design aspects of a real-scale automatic steering boat and
the results of the first field experiments. It also sets the next steps for the continuation of this track within
the HZ University of Applied Sciences.

1 Introduction
Autonomous shipping is expected to deliver multiple benefits to the domain of shipping. It is expected
that not only will it be key in realizing a decrease in crew costs, but also in generating fuel savings due
to improved aerodynamics, increasing crew and cargo safety due to reduced human errors, and enabling
flexibility and optimization opportunities in logistics chains (Akbar et al., 2021). Even though the expected
benefits of this technology are recognized in the literature, and there is a shared consensus among experts,
it is also known that the wide adoption by industry is slow. Experts have demanded more evidence that
this innovation can generate economic benefits and that it will provide an equal or even better level of
safety when compared to conventional shipping.

The expected role of knowledge institutions in advancing this technology is to continue conducting
research and educational projects in real-scale platforms. Not only would this new technology be further
improved and adopted, but also future professionals can interact with it. With this motivation, this study
group developed an automatic control of speed and direction which will be installed in a 4-person boat,
called Blik op Water, property of the Water Management program at the HZ University of Applied Sci-
ences. This platform will be the basis of subsequent autonomy development assignments and experiments
conducted by staff or students of this institution.

Based on the overall architecture of an autonomous ship in Figure 1, the controller of the autonomous
vessel uses sensors to obtain information on the position, speed, heading, and environmental information
such as wind speed. Moreover, another subsystem will find information on obstacles in the surroundings
of the ship. Based on the collected information, optimal paths to follow will be determined. Finally,
commands are transmitted accordingly to actuators for autonomous navigation (Chen et al., 2016). The
work presented in this article refers in particular to the yellow sections of Figure 1, namely, sensors,
actuation, and motion control.

In addition, the platform aims at enabling full transparency when assessing system performance. For
this reason, a log file and monitoring system for tracking relevant variables will be proposed. Enabling
transparency can become a key input to demonstrate that a system design complies with regulations, and
in the case of non-compliance, it should indicate where the gaps are.

3

Figure 1: The overall architecture of an autonomous vessel. Adapted from Chen et al., 2016

This document continues as follows: Section 2 makes a brief overview of similar approaches used in
other research projects with similar objectives. Section 3 describes the main use case for this platform. Sec-
tion 4 explains the software architecture and its control algorithm. Results and conclusions are elaborated
in Sections 5 and 6 respectively.

2 Examples of ship control platforms found in the literature
Several open-source implementations of track pilots and remote-operated vessels are found in the litera-
ture. Peeters et al. (2020) chose the open-source cross-platform software suite named Mission Oriented
Operations Suite (MOOS) for the development of their Cogge autonomous vessel. This MOOS software
provides internal asynchronous publish-subscribe communication between MOOS Applications (MOOS-
Apps). Peeters et al. (2020) used a marine-oriented expansion of MOOS called MOOS Interval Program-
ming, or MOOS-IvP. MOOS-IvP separates the vehicle navigation and control parts from its autonomy sys-
tem, enabling independence across all these subsystems. In this system, the user can define a set of be-
haviors that the vessel should follow, for example: follow waypoints and maintain a certain speed. Next,
the system requires information such as the current heading and speed (fed by GNSS and IMU sensors)
to determine the desired heading and speed for the ship to reach the following waypoint. Peeters et al.
(2020) implemented a Proportional Integral Derivative (PID) controller to manage the Cogge vessels in
two degrees of freedom on the water plane. Figure 10 in Appendix D displays the main components of
the control hierarchy in the work from Peeters et al. (2020).

Brushane et al. (2021) implemented a communication and control system for an autonomous boat
platform using the OpenDLV software ecosystem and its microservice-based architecture. This architecture
is characterized by small, lightweight processes and decentralized control, resulting in services that are
integrated into the system in a way that changes to one service do not require changes to another 1.

The Research Autonomous Shipping (RAS) lab in the TU Delft deployed the Robotic Operating System
(ROS) in their Grey Seabax and Tito Neri scale models. These ships use Model Predictive Control (MPC)
and neural networks-based adaptive control, and their node communication is enabled via a router using
WiFi (Haseltalab et al., 2020). The purpose of ROS is to allow the ships to share their state with the
other nodes in the network (e.g. to the monitoring control station and/or the other ships in the same

1https://opendlv.org/index.html

| 4

https://opendlv.org/index.html

network). ROS is a platform that allows the connection of different algorithms and sensors on a local
network, meaning that different devices can send data while being recognized by all the agents involved
in the network. In ROS, every node can publish or subscribe to a topic that contains data and a device
can be designed to have multiple nodes that subscribe and publish to different or the same topics. A
key element in this network is the ROS master, which facilitates communication in the ROS network by
keeping track of all active ROS entities. Every node needs to register with the ROS master to be able to
communicate with the rest of the network2.

The implementation approach in our study relates mostly to the work of Zhang et al. (2023). They
developed a test bed to evaluate technology for autonomous sailing. There are some differences between
our prototype and the one of Zhang et al. (2023): they developed a catamaran cargo vessel with azimuth
thrusters, whereas we experimented with a 4-person boat with rudder-propeller actuation. The hardware
architecture in Zhang et al. (2023) has a modular design, which allows for versatility in different sensor
setups. The central component is the message-oriented middleware: Neural Autonomic Transport System
(NATS). All communication between the various components takes place via the NATS. For example, the
NATS translates input from the sensors into information on the current vessel status and passes this infor-
mation on to the controller. The controller then determines the desired control actions and passes them
back to the NATS. The NATS communicates these control actions to the actuation control system. Through
a publish/subscribe middleware, the test bed of Zhang et al. (2023) treats sensors as external devices
and therefore does not rely on integrated onboard sensors. The interactive communication framework of
Zhang et al. (2023) is displayed in Figure 11 in Appendix E.

3 Use Case description and experimental steps
The Blik op Water is a boat with an aluminum hull and with 5 meters in length. This boat will be equipped
with an automatic control system. The boat’s performance, the system’s ability to correct its course, and
its overall navigational capabilities will be assessed. Blik op Water is originally suitable for navigating with
a crew of a maximum of 4 people and it will include an electric engine with a battery pack of 48V/40
Amp. The system will have the possibility to easily switch between automatic control mode and manual
control mode, and it will include an emergency button to be activated in special circumstances.

(a) Blik op Water (b) Inland harbor Vlissingen, The Netherlands

Figure 2: Experiment scenario: boat type and test route

Once the control system is developed, the following activities will take place during the experimenta-
tion phase.

2https://www.mathworks.com/help/ros/ug/connect-to-a-ros-network.html

| 5

https://www.mathworks.com/help/ros/ug/connect-to-a-ros-network.html

1. Before departure, the crew will input the predetermined waypoints into the control system. The
waypoints will be defined by their coordinates in latitude and longitude using the WSG84 standard.

2. The crew will start the motor, and activate the automatic control system.
3. The boat will then start sailing towards the first waypoint at a predetermined speed. The control sys-

tem will constantly monitor the boat’s position using the GPS and make adjustments to the heading
as needed to keep the boat on track.

4. The crew will continuously monitor the boat’s progress and ensure that the system is functioning
correctly. The crew will also be responsible for navigating the boat in case of any unexpected cir-
cumstances or obstacles, such as other boats or buoys.

5. If the crew detects any obstacles along the way, they will manually override the automatic control
system and take control of the boat to avoid the obstacle.

6. Once the boat reaches the final waypoint, the crew will deactivate the automatic control system and
steer the boat to the desired destination. After the system is shut off, a collection of the logs can be
made for further analysis.

4 System Architecture
The control system at the heart of the autopilot, is responsible for processing the positional data received
from the RTK GPS, calculating the necessary course adjustments, and sending the corresponding com-
mands to the actuation system. The control logic is designed to minimize lateral deviation from the
predefined path while taking into account the dynamic characteristics of the boat and the environmental
conditions encountered.

The actuation system consists of the components responsible for executing the commands sent by the
control system. It includes the boat’s rudder, the throttle, and the electric motor. The actuators will receive
commands from the control system and adjust the rudder and throttle positions accordingly to correct the
boat’s course and speed. Each subsystem of the control and actuation systems will be explained in the
next subsections.

4.1 Software setup
Python is chosen as the development language for this system due to its accessibility, which makes it ideal
for educational purposes. Because it’s a user-friendly language, students of all levels can participate in
enhancing this system. The following factors explain how the chosen setup is found most beneficial for
educational purposes:

• Real-Time Control: The software’s real-time control algorithm allows students to experiment with
control systems, gaining hands-on experience and practical insights.

• Logviewer: An intuitive Logviewer component lets users visualize and play back-logged data, sen-
sors, and calculations, aiding in data analysis.

• Data Replay: Users can replay logged sensor data, facilitating precise control algorithm tuning and
enhancing students’ understanding of system behavior.

• Cross-Platform Compatibility: The software runs on both Linux and Windows, ensuring accessibility
to a wide range of users.

• Command Line Efficiency: A command line parser simplifies user interaction by allowing options to
be set when starting the program from the command line.

• Customization: Users can enable/disable individual components and sensors, tailoring their learning
experience.

• Hardware Independence: All sensors interface via Ethernet (TCP/IP or TCP/UDP) or USB (serial
RS232 and Modbus), with automatic device detection for seamless hardware integration.

| 6

The expectation is that the developed platform will equip the students of HZ University of Applied
Sciences with a versatile platform for educational exploration and real-time control, making it a valuable
tool for learning and experimenting.

4.2 Multiprocessing Python code
In the Python-interpreted language, it is known that the Real-Time performance can be poor compared
to other more efficient programming languages. To boost the performance of a Python program, Multi-
threading or Multiprocessing is used to speed up the code execution time.

Multithreading allows slower processes to be interrupted by processes requiring more CPU time. As
such, data sharing is relatively easy because there is still only one interpreter actively sharing the same
memory space. Because of this single interpreter, the code can still be slow compared to multiprocessing.
Multiprocessing starts a new interpreter for each process which is similar to starting multiple Python
programs from within the code. This makes it relatively fast and efficient. Data sharing can only be done
via shared memory because there is no other direct connection between all individual processes.

Figure 3 displays this concept and the interacting processes running in the multiprocessing environ-
ment, which are also listed below:

Figure 3: Software architecture

4.3 Reference Track Initialization
Thewaypoint records consist ofWSG84 coordinates and the desired speed at each setpoint, i.e. [Long, Lat, Speed].
Waypoints can be generated using Google Maps, or exported from any other application that can export
WSG84 coordinates. Speed setpoints have to be manually added to the coordinates table.

The reference track is also converted to X-Y coordinates in meters, using the first waypoint as 0.0m,
0.0m. The reference heading between all waypoints is calculated at the beginning of the code.

| 7

4.4 GPS (serial)
The GPS used is a dual antenna Real-Time-Kinetics (RTK) GPS, based on the Ublox ZED-F9P chipset.

Having two antennas with RTK accuracy of +/- 2 cm makes it possible to have a direct heading mea-
surement of the vessel at all times, even at low speeds or zero speed. RTK corrections are received via a
subscription service NTRIP received via 4G on board. This results in a GPS accuracy of 2 to 4 cm. Update
rate of the GPS is set to 5 Hz. This is also the main clock cycle of the real-time control algorithm. The GPS
Python process parses the incoming NMEA0183 and UBX messages and converts them to global variables
for the other Python processes.

4.5 Wind sensor (serial)
Wind speed and direction (relative to ship heading) are available as sensor input data for the real-time
control algorithm. It can be used as a feedforward to the heading/steer controller to make it more robust
for cross-wind conditions. As such, sensor data is converted from incoming NMEA0183 messages and
made available to the rest of the code as global variables.

Note: Signals of this sensor are captured, however, embedding it in the control algorithm is part of
future projects.

!

4.6 Real-Time Control algorithm
The GPS data is used as primary input and clock-tick (when there is valid GPS with RTK precision). Several
computations are made based on the reference track:

• Waypoint segment, the line between the waypoint passed and the next waypoint.
• Segment heading, heading between waypoint passed and next heading. See Appendix B for further

explanation of this calculation.
• Next segment heading: heading between the next waypoint, and the waypoint after that (if it is not

the last point on the reference track)
• Lateral deviation from reference track = nearest point perpendicular to the current segment. See

Appendix C for further explanation on this calculation.

Note: It would be better to fit a spline or curve between the points, but for this first iteration,
this linear approach works.

!

4.6.1 Heading deviation from reference track

The smoothing of the heading reference is proportional to the current segment heading and the heading of
the next segment. When approaching the next segment the heading reference will be proportional to the
distance remaining to the next segment averaged between the current and next segment heading. This
will result in a continuous heading reference between segments.

Advancing the waypoints: When the minimum calculated perpendicular lateral deviation from the next
segment is smaller than the lateral deviation to the current segment, it is assumed the waypoint is passed,
and the next segment is entered. As such, the waypoints and segments will be advanced in this case.

4.6.2 Calculating heading setpoint:

Setpoint heading is relative to the vessel’s current heading, with a maximum of +/- 30 degrees to the left
or right of the vessel.

• Lateral deviation results in a setpoint heading that will steer the vessel toward the reference track.

| 8

• Heading deviation will result in a setpoint heading to steer towards the correct heading.

The lateral deviation and heading deviation both have their gains. The combined setpoint for steering
is an addition of the setpoints for lateral deviation and heading. Tuning these gains will result in a com-
promise between small lateral deviation, but more nervous steering, or larger lateral deviation but better
reference heading following. As for the speed setpoint, this is taken from the current segment and sent to
the speed controller of the vessel.

Note: Many other control strategies might be tested and implemented, and one of the goals of this
project is to allow students to enhance the system with better algorithms and test them in real life
using this platform.

!

4.7 Steering actuator (serial or Modbus)
A Raymarine ST2000+ tiller autopilot is used as the steering actuator (Figure 4a). This actuator is de-
signed for marine purposes and includes an internal compass, a yaw rate sensor, and a heading controller.

(a) Raymarine ST2000+ (from user manual) (b) Rim-drive engine, by Insumo BV

Figure 4: Steering and Propulsion actuators

The actuator can receive commands from an external system using the NMEA0183messages or (propri-
ety) Seatalk2 messages. The actuator is capable of following the waypoint when the NMEA0183 protocol
is used. However, the lateral control accuracy is +/- 0.05 nm (+/- 93m). This is not accurate enough for
the desired control behavior of the vessel (i.e., ideally +/- 1.5 m controlled lateral deviation). The direct
control of the steer-actuator is more or less possible using the Seatalk2 messages, which has been greatly
reverse-engineered by Dipl.-Ing. Thomas Knauf3. A small converter is inserted to translate to/from the
physical Seatalk2 protocol to a 9-bit TTL serial protocol based on the design of AK-Homberger4, but using
Mosfets instead of the 74LS07.

When the Raymarine is in heading control mode, the internal compass is used as reference and a
setpoint heading is set by the user with buttons on the device. The setpoint can also be set via the Seatalk2
messages. The internal compass is reasonably accurate but it was found during testing that it can be
influenced by large metallic objects and might drift over time. The compass can be reset using Seatalk2
messages to keep it aligned with any external heading measuring system available. In our case, the RTK
GPS provides an accurate heading. When sending a new compass calibration to the Raymarine ST2000+,
it will adjust the internal compass but also does not accept any other messages for approximately 10
seconds.

3http://www.thomasknauf.de/rap/seatalk2.htm
4https://github.com/AK-Homberger/Seatalk-Autopilot-Remote-Control

| 9

 http://www.thomasknauf.de/rap/seatalk2.htm
https://github.com/AK-Homberger/Seatalk-Autopilot-Remote-Control

Note: It would be easiest to send a heading setpoint to the Raymarine ST2000+ and keep the
compass aligned with the measured heading coming from the GPS. Experiments have shown that
losing control of heading for more than 10 seconds results in an undesirable large deviation from the
reference trajectory.

!

New heading setpoints are accepted by the Raymarine at rates of up to 5 Hz. A new control strategy
is adapted, where the control algorithm reads the current measured compass heading by the Raymarine
internal compass, and adjusts the desired setpoint to be corrected relative to the internal compass. If the
desired setpoint from the RT algorithm is 10 deg left, the steer-actuator Python process reads the current
measured compass heading from the Raymarine and sends back a heading setpoint 10 degrees left of this
measured compass heading. In this way, the error in the heading of the internal compass is compensated
and results in an accurate following of the desired real-time control algorithm.

The Raymarine ST2000+ internal control algorithm seems to be a combination of measured heading
and yaw rate. The measured yaw rate is used for fast correction, and the measured heading is used for
the overall control target. The actuator does not have any sensor on the steering actuator to measure the
extension/retraction of the actuator. When first engaged, if the vessel is heading straight with zero to little
rate, the actuator position is assumed to be neutral.

Note: Combined yaw rate and heading control might be interesting to explore when a different
type of actuator is used for steering. The yaw rate is available in the control algorithm based on
GPS-heading measurement.

!

4.8 Speed control (serial)
A rim-drive electric thruster motor is provided by Insumo B.V. in the Netherlands. The controller is a
SLS60-240 whose logic can be found in the Sinus Leistungssteller website5. This motor has an RS232
serial protocol to override the physical throttle input, so it is possible to control the speed from an external
device. The controller is in speed control mode. A setpoint is therefore referenced as an RPM setpoint
(indirectly) controlling the speed of the vessel.

Note: For actual speed control, an outer control loop might be added, measuring the speed via GPS
and adjusting the RPM setpoint. For now, it uses an open loop speed control based on the setpoint
stored in the reference track.

!

4.9 HMI - Human Machine Interface (TCP/UDP)
To use the system without the need for any connected laptop, an HMI box is added. This box has a small
display and some LEDs showing status information regarding the sensors and control algorithm and has
a couple of buttons, to enable/disable automatic track following.

The HMI box communicates via Wi-Fi to the main controller. The HMI CPU is an ESP32-based con-
troller running micro-python. Micro-python is very similar to regular Python and therefore fits within the
architecture of the complete control system, enabling students to alter the main code and the HMI using
Python as the main programming language.

4.10 Logging and Plotting
When a laptop is connected, real-time data can be visualized via the main code. It will plot the most
relevant sensor and control data and show some numerical data. It has more information than what is
shown on the HMI display and is very useful for developing and debugging the control algorithm. An
example screenshot is shown in Appendix F, Figure F.

5https://www.sinusleistungssteller.de/

| 10

https://www.sinusleistungssteller.de/

5 First system test in Blik op Water
Section 3 described the main test scenario and steps to be executed during testing. This section provides
a detailed analysis of the system’s performance and results during the experiments.

Figure 5: Example planned and executed route

The results suggest the system’s ability to correct the boat’s course in real-time (see Figure 5). During
the experiment session, multiple rounds of the same track were performed. Some of them could not be fully
terminated due to oncoming traffic, which led to the suspension of the system. The results shared further
below, belong to one test carried out almost completely in automatic mode. Measurements displayed in
Figure 6, reveal that even if the boat maintains its course, deviations up to +/- 7 meters are observed.

Figure 6: Lateral deviation over time

Later it was found that the control algorithm of the Raymarine ST2000+ might become unresponsive
when running for a longer period and receiving setpoints via Seatalk2. A quick cycle to standby and

| 11

automatic mode will re-set the Raymarine actuator and resume accurate heading control operation. This
might be automated from within the Python code (which remains a future student project). This behavior
is shown in Figure 7 where the thicker line reflects a larger lateral deviation. After pressing the standby
button of the Raymarine ST2000+ (which is flagged by the Change mode text in Figure 7), an immediate
correction is observed in a reduced lateral deviation.

Figure 7: Observed systematic deviations corrected with
Standby button

The control system displayed a very good
performance when taking the 180-degree
bend, close to the Keersluisbrug bridge. A
video demonstration of this particular sit-
uation is available here: https://youtu.be/
pYhZuHU9UoU.

Another observation relates to the ability
to safely berth the boat in the last waypoints,
where larger lateral deviations were observed.
The reference speed set points that the team set
for mooring were much lower than the speed
set points for normal sailing. Given the good
performance observed during normal sailing, it
is believed that larger deviations are the re-
sults of more difficult manoeuvering the boat
at such lower speeds. It remains a gap to be
addressed, understood, and corrected in future
experiments.

Beyond the ability of the system to maintain
the course and heading at acceptable levels, the
team experienced a very good performance of
the powering system (i.e. battery). After a cou-

ple of hours of constantly sailing and testing, a minor percentage of the battery power was consumed,
which speaks of the good efficiency of the motor. It must be said though that weather conditions were
good and moderate wind was present. Also, the superstructure built for mounting control boxes, sensors,
and batteries allowed for comfortable sailing and does not conflict with the other uses that Blik op Water
has with other departments.

Figure 8: Heading deviation over time

Last but not least, the logfiling system lends itself to further improvement, but the amount of data that
is present after sailing enables deep exploration of the system. A set of Python scripts is already available to
plot the log files in the more common graphic outputs to evaluate in detail a specific experimental session.

| 12

https://youtu.be/pYhZuHU9UoU
https://youtu.be/pYhZuHU9UoU

6 Conclusions and Future work
The developed autopilot system successfully demonstrated its capability to navigate a small boat along
a predefined path while automatically correcting its course based on lateral deviations detected by the
RTK GPS. Despite some challenges observed with the actuator and systematic deviations, the platform
does fulfill its main goal, which is to provide a solid foundation for future experimentation with different
control logic and algorithms and the development of situational awareness capabilities with computer
vision.

Figure 9: Man in the loop experiment

The intention here, beyond building a robust
platform with acceptable performance, is to equip
HZ University of Applied Sciences with more plat-
forms to enable our study programs and lectorates
to further explore and learn about automatic con-
trols in a real-scale environment.

Future work will focus on augmenting the sys-
tem’s capabilities by incorporating additional sen-
sors, such as IMU and wind sensors, to anticipate
and correct for strong deviations caused by en-
vironmental factors. An idea to incorporate an
affordable lidar has been also proposed to allow
the system to better handle trajects under bridges,
where it is known that GPS drops its accuracy.

More importantly, the intention of leverag-
ing the platform so other groups in HZ can
embed it in their education programs and lec-
torates is the next challenge of this project.
For the moment, the first idea on the table
is about the integration of the ongoing work
on computer vision technology conducted by
the Data Science lectorate. This will enable
the development of situational awareness ca-
pabilities, enhancing the boat’s ability to de-
tect and avoid obstacles autonomously (which
refers back to Figure 1 at the beginning of
this document, where object detection and col-
lision avoidance are key subsystems that make
part of an autonomous boat.) Ultimately, these
enhancements will contribute to the develop-
ment of a more comprehensive and robust au-
tonomous navigation system for small boats
and better education capabilities in our insti-
tute.

Acknowledgements
The work presented in this article is part of the Field Lab Autonomous Shipping Technology PROJ-04119
funded by the European Regional Development Fund within the framework of REACT-EU.

Special thanks to colleagues of Insumo BV, Provincie Zeeland, Art en Tech, TMC Mechatronics, CE
Industries, and Maarten van Oeveren who made relevant connections to line up all these stakeholders.
Special gratitude to the Water Management team who facilitated their Blik op Water for this study and
accommodated it some of their courses agreeing with our development schedule.

| 13

References
Akbar, A., Aasen, A. K., Msakni, M. K., Fagerholt, K., Lindstad, E., & Meisel, F. (2021). An economic

analysis of introducing autonomous ships in a short-sea liner shipping network. Int T Oper Res,
28, 1740–1764. https://doi.org/10.1111/itor.12788

Brushane, F., Jämsä, K., Lafond, S., & Lilius, J. (2021). A experimental research platform for maritime
automation and autonomous surface ship applications [13th IFAC Conference on Control Appli-
cations in Marine Systems, Robotics, and Vehicles CAMS 2021]. IFAC-PapersOnLine, 54(16), 390–
394. https://doi.org/https://doi.org/10.1016/j.ifacol.2021.10.121

Chen, L., Negenborn, R., & Lodewijks, G. (2016). Path planning for autonomous inland vessels using a*bg.
9855, 65–79. https://doi.org/10.1007/978-3-319-44896-1_5

Haseltalab, A., Garofano, V., Afzal, M. R., Faggioni, N., Li, S., Liu, J., Ma, F., Martelli, M., Singh, Y., Slaets,
P., et al. (2020). The collaborative autonomous shipping experiment (case): Motivations, theory,
infrastructure, and experimental challenges. Conference Proceedings of iSCSS.

Peeters, G., Kotzé, M., Afzal, M. R., Catoor, T., Van Baelen, S., Geenen, P., Vanierschot, M., Boonen, R.,
& Slaets, P. (2020). An unmanned inland cargo vessel: Design, build, and experiments. Ocean
Engineering, 201, 107056.

Zhang, Y.-Y., Shuai, J., Billet, J., & Slaets, P. (2023). Design and build of an autonomous catamaran urban
cargo vessel. Journal of Physics: Conference Series, 2618(1), 012002.

| 14

https://doi.org/10.1111/itor.12788
https://doi.org/https://doi.org/10.1016/j.ifacol.2021.10.121
https://doi.org/10.1007/978-3-319-44896-1_5

A Code extract: Main steering control loop

Algorithm 1: Main steering control loop
Input: (lon, lat, speed), for each waypointi where i ∈ [1 . . . n]
foreach waypointi do

Convert lon and lat to X,Y in meters, where X1, Y1 = [0, 0] ;
Compute ref. heading Hi from waypointi to waypointi+1 // based on B

end
Initialize;
closestPoint = 0, lateralDeviation = 0, lateralDirection = 0, segmentLength = 0;
distanceToSegment = 0, segmentHeading = 0 ;
rudderSetpoint = 0, yawRate = 0;
Set B = 30, as blending distance // based on B;
Set i = 1, as waypointi counter;
while program is running do

actualPosition = GPS position;
Find segment AB such that A = waypointi and B = waypointi+1;
Find segment BC such that B = waypointi+1 and C = waypointi+2;
Find Distance D of actualPosition to nearest point of AB;
Find Distance F of actualPosition to nearest point of BC;
if F > D then

i = i+ 1;
Update;
closestPoint, lateralDeviation, lateralDirection, segmentLength;
distanceToSegment, segmentHeading

end
Deltaheading = Hi −Hi+1;
Normalize Deltaheading such that Deltaheading ∈ [−180◦ . . . 180◦] ;
Calculate lateralDeviation of actualPosition to waypointi;
if lateralDeviation < B then

relativeCovered = 1− (lateralDeviation/B);
if relativeCovered > 1 then

relativeCovered = 1
end
if relativeCovered < 0 then

relativeCovered = 0
end

end
Hnew = Hi + (relativeCovered ∗Deltaheading);
Normalize Hnew such that Hnew ∈ [0◦ . . . 360◦] ;
Compensate for 0 crossing;
Calculate if the error is to the left or to the right;
Calculate rudderSetpoint, correct to [−30◦ · · ·+ 30◦] ;
Send setpoint to steer actuator;
Send setpoint to speed controller;

end

| 15

B Bearing and distance between two points
The bearing or heading angle between two points on the Earth’s surface is calculated by the following
expressions6:

• Input values are the latitude and longitude in the WGS84 decimal format of the two points.
• The function first defines the Earth’s radius in meters as R = 6377918.
• It then converts the input latitude and longitude coordinates from degrees to radians using the π

180
conversion factor.

• Next, it calculates theX and Y components of the distance between the two points using the Haver-
sine formula.

– X = R ∗ cos(lat2) sin(lon2 − lon1),
– Y = R ∗ (cos(lat1) sin(lat2)− sin(lat1) cos(lat2) cos(lon2 − lon1))

• Finally, the function calculates the bearing (i.e. heading) between the two points using the arctan
function: bearing (degrees) = arctan(X,Y) ∗ 180

π .
• The bearing is returned in degrees and is adjusted to be within the range of 0 to 360 degrees:

bearing (degrees) =
{
bearing (degrees)+ 360, if < 0

bearing (degrees), otherwise

• The distance between the two points uses the Pythagorean theorem, dist =
√
X2 + Y 2

C Finding the shortest distance between a point and a line segment

p1p2

pt

The deviation of a current point pt to a line segment defined by two points
p1 and p2 is calculated by finding the closest point on the line segment,
the lateral deviation, the lateral direction, the length of the segment, the
distance from pt to the end of the segment, and the direction from pt to
the closest point on the segment7.

1. Calculate Distances and Directions

• Calculate the length of the segment p1p2:

dst_segment =
√
(p1x − p2x)2 + (p1y − p2y)2

• Calculate the distance from pt to p2:

dst_end =
√
(ptx − p2x)2 + (pty − p2y)2

• Calculate the changes in x and y from p1 to p2:

∆x = p2x − p1x

∆y = p2y − p1y

• Calculate the heading of the segment:

dst_heading = arctan 2(∆x,∆y)× 180

π

Adjust dst_heading to be in the range [0, 360] degrees.
6based on https://www.igismap.com/formula-to-find-bearing-or-heading-angle-between-two-points-latitude-longitude/
7based on http://csharphelper.com/howtos/howto_point_segment_distance.html

| 16

https://www.igismap.com/formula-to-find-bearing-or-heading-angle-between-two-points-latitude-longitude/
http://csharphelper.com/howtos/howto_point_segment_distance.html

2. Handle Case where p1 and p2 are the Same Point

• If p1 and p2 are the same point, then the closest point is p1, and the lateral deviation is the
distance from pt to p1:

lat_deviation =
√

(∆x)2 + (∆y)2

3. Calculate the Closest Point on the Line Segment

• Calculate the parameter t that minimizes the distance from pt to the line defined by p1 and p2:

t =
(ptx − p1x)∆x+ (pty − p1y)∆y

(∆x)2 + (∆y)2

• If t < 0, then the closest point on the line segment is p1.
• If t > 1, then the closest point on the line segment is p2.
• Otherwise, the closest point on the line segment is:

closestx = p1x + t∆x

closesty = p1y + t∆y

4. Calculate the Lateral Deviation and Direction

• Calculate the changes in x and y from pt to the closest point:

∆x = ptx − closestx

∆y = pty − closesty
• Calculate the lateral deviation:

lat_deviation =
√

(∆x)2 + (∆y)2

• Calculate the lateral direction:

lat_direction = arctan 2(−∆x,−∆y)× 180

π

Adjust lat_direction to be in the range [0, 360] degrees.

| 17

D Control architecture used in Cogge

Figure 10: Control hierarchy implemented in the autonomous vessel Cogge. Taken from Peeters et al.,
2020

| 18

E Communication framework used in Maverick

Figure 11: Interactive communication framework of Maverick. Source: Zhang et al., 2023

| 19

Fig
ur
e1

2:
Liv

em
on

ito
rd

ur
in
gs

ail
in
g

F
Re

al
-t
im

e
m
on

ito
r
du

ri
ng

sa
ili
ng

| 20

	Introduction
	Examples of ship control platforms found in the literature
	Use Case description and experimental steps
	System Architecture
	Software setup
	Multiprocessing Python code
	Reference Track Initialization
	GPS (serial)
	Wind sensor (serial)
	Real-Time Control algorithm
	Heading deviation from reference track
	Calculating heading setpoint:

	Steering actuator (serial or Modbus)
	Speed control (serial)
	HMI - Human Machine Interface (TCP/UDP)
	Logging and Plotting

	First system test in Blik op Water
	Conclusions and Future work
	Code extract: Main steering control loop
	Bearing and distance between two points
	Finding the shortest distance between a point and a line segment
	Control architecture used in Cogge
	Communication framework used in Maverick
	Real-time monitor during sailing

