CORDYS

Thesis
SDF Monitoring

Thesis information

Student Name:

Simon Rosman

Student Number:
First Examiner:

1519616
Marten Wensink

CORDYS

Document Information

- General
Document Title: Thesis
Area or Project: SDF Monitoring
Document Ow ner: Simon Rosman
File Name: Thesis.docx
Attachments: Monitoring Design (Conceptual Solution)
Use Case 3 Design
History
Version | Date Status | Author Affected Approved by:
pages:
v0.1 14-Oct-2009 New Simon Rosman | All
v0.2 24-Nov-2009 | Update @ Simon Rosman | All
v0.3 30-Nov-2009 | Update | Simon Rosman | All
v0.4 03-Dec-2009 | Update | Simon Rosman i All
V1.0 14-Dec-2009 Final Simon Rosman | All Wijnand van Plaggenhoef,
Marten Wensink
Distribution
Version Name Date Publication
Status
v0.2 Marten Wensink, Wijnand van Plaggenhoef 24-Nov-2009 Draft
v0.3 Wijnand van Plaggenhoef 30-Nov-2009 Draft
v0.4 Wijnand van Plaggenhoef 03-Dec-2009 | Draft
v1.0 Wijnand van Plaggenhoef, Marten Wensink, 15-Dec-2009 : Final
Hogeschool Utrecht

Copyright © 2009 by Cordys Corporation B.V. (“ Cordys”). All rights reserved; subject to limited
distribution and restricted disclosure only. Cordys Integrator, Cordys Orchestrator, Cordys
Studio, and Cordys Portal are trademarks of Cordys Systems B.V. All other trademarks
mentioned herein may be/are the trademarks or registered trademarks of their respective ow ners
and should be noted as such. The information in this document is confidential, constitutes the
proprietary property of Cordys, and is protected by copyright laws and international copyright
treaties. No part of this document may be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without the express written permission of
Cordys. The information contained in this document is subject to change without notice. Cordys
does not warrant that the information contained in this document is error free. Cordys assumes
no liability for any damages incurred, directly or indirectly, from any errors, omissions, or
discrepancies between the software and the information contained in this document.

SDF Monitoring Page 2 of 49 Thesis

CORDYS

Thanks

First of all, | would like to thank my uncle Johan Rosman. Without his help, finding a
company to do my internship would have taken a lot more time!

| would like to thank Wijnand van Plaggenhoef as well for giving me the opportunity to do
this internship in the SDF department and for his guidance throughout the project.

Also thanks to Gert Smits for the countless times he helped out in discussions about the
development of a solution. | also want to thank Marten Wensink, my school counselor, for
his advice about writing the plan of approach and the thesis, and for his encouragements.

| wish you pleasant reading, and | hope you will learn from it!

Simon Rosman

SDF Monitoring Page 3 of 49 Thesis

CORDYS

Summary

This document describes the project about monitoring the Cordys Multi-cluster Environment.
This is the Cordys & Google environment.

The purpose of the project is to create a solution which enables Operational Management to
overview & monitor the status of the entire Cordys multi-cluster environment.

The document describes the Conceptual Solution which covers a full solution for the
projects purpose.

The * smallest path’ of this Conceptual Solution was proved with three Use Cases, in a
testing environment.

SDF Monitoring Page 4 of 49 Thesis

CORDYS

TABLE OF CONTENT

TANKS . 3
SUMIMIAIY e ettt ettt 4
L. INErOAUCTION .eee e 8
L0 G0N ENT e 8
1.2 AUGIBNCE ..t e 8
1.3 Purpose of the doCUmMeNto.ouiiiiiii e 9
1.4 Definitions, acronyms, and abbreviations................c.cooevieiennnn. 9
2. BNVIFONMENT . 10
2.1 The Cordys COMPANY ...c.viuirie ettt e eaeaens 10
2.2 Project RiStOrY ... 11
2.3 Related ProjJeCtS ... i 11
2.4 Roles & Stakeholders.........ccovoiiiiiii 12
2.4.1 ProjeCt EXECULEN ... ittt 12
2.4.2 ROIBS ..t 12
2.4.3 Stakeholders ... 12

2.5 Technical ENVironmento 13
2.5.1 The Cordys SOlUtionccoiii i 13
2.5.2 Cordys CIUSEEIutititii e 13
2.5.3 Cordys multi-cluster environmentccovevieiiiiinnnnns 15
2.5.4 SaaS Deployment Framew ork (SDF)........cccoiviiiiiiiiiiiinnns 15

2.6 Organizational environmentccoiiiii i 16
3. Problem, PUrpose, JOb ... 17
3.1 Problem desCriptionc.ooviiiiii i 17
B2 PUIPOSE et 17
3.3 0D, 17
4. Conceptual SOIULION ..o 18
o R] 4 (oo [{1 o] I PP 18
4.2 REQUITEIMENES L.\ttt ettt aeeas 18
4.2.1 Preparing the interviews.......coooviiiiiii i 18
4.2.2 Conducting the iINterview scccooiiiiiiiiii 18
4.2.3 Processing the resultS........coviiiiiiic 18
4.2.4 The results; the requirements............oocovii i 19
4.2.4.1 Key functional requirements...........c.ooovviiiiiiiiininnnns 19
4.2.4.2 Key non-functional requirements..............cocoieviiiiennnn. 19

4.3 DEfINITIONS .ot 19
4.4 Positioning the monitoring tool.............c.ciiiiiii 19
4. 4.1 DESCHIPLION . ettt 19
4.4.1.1 SCENANIO L..neeii i 20
O o] =Y 1 - 14 o R 20

A.4.2 DECISION. ..ttt 20
4.5 Monitoring INtegrationccooiiiiiiiii e 21
4.5.1 DESCHIPLIONttt 21
4.5.2 DECISIONS ..o nitteit e ettt e 21
4.6 Monitoring individual Cordys components...........cccocvviiiiiiinnns 21
B IMPIEMENTALION. .. 22

SDF Monitoring Page 5 of 49 Thesis

CORDYS

5.2 INTrOdUCTION L. 22
5.2 SUCCESS USE CaSESeiiviiiiiieiiii it 22
5.2.1 UCL: Web gateway failure...........cccoviiiiiiiiiiiiiii e 23
5.2.2 UC2: SOAP processor failurecoovviiiiiiiiiien 23
5.2.3 UC3: Engine task in ‘ waiting’ state on Admin Cluster caused
by error on Customer CIUStEr.......c.oviiiiiiii e 24
5.3 Testing enVIFONMENT ..ot 25
5.4 The Monitoring tool: Nagios........ccooviviiiiiiii e, 26
5.4.1 Monitoring tool selectioncocooviiiiiiiiie 26
5.4.2 HOW NagioS WOIKSiiiiiiie i v ee e 26
5.4.2.1 ODJECES .. .i i 26
5.4.2.2 CheCKS ... 26
5.4.2.3 Configuration.......c.coviiiii i 26
5.4.2.4 Web interface ..o 26
5.5 Distributed Nagios environment..........c.coovviiiiiiiiinien, 27
5.5.1 NAQIOS SlaVe .. .viieiiii e 28
B 5. L. L OCSP i, 28
5.5, 1.2 OCHP .t 28
B 5. 2 NS C A 29
5.5.2.1 NSCA ClieNt .o 29
B5.5.2.2 NSCA SBIVEI ..ttt e 29
5.5.3 External command file...........cooiiii i 29
5.5.4 NAgioS MASLEr . ..o 29
5.6 Managing the Nagios configuration..................ccovveiiiiinnn.. 30
5.6.1 NConf, the management toolccoiiiiiiiiiiiii i, 30
5.6.2 Configuration deployment process..........oocvvvviiieiieiiiinnnns 31
5.7 Monitoring Cordys with Nagioscoooviiiiiiii 32
5.7.1 UCL: Web gateway failure..............cooiiiiiiiiiiiiiicie 32
5.7.1.1 Creating the check commandc.cociiiiiinn, 32
5.7.1.2 Assigning the check command to a host..................... 33
5.7.1.3 Testing the service checkc.cooviiiiiiiiii, 34
5.7.0.4 The reSUItS ... e 34
5.7.2 UC2: SOAP processor failureccoiiiiiiiiiicic 35
5.7.2.1 PlUg-iN [aNQUAGE.......oiiiiie i 35
5.7.2.2 Connecting to Cordysccooieiiiiiiiiii i 35
5.7.2.3 Authenticating a SOAP callcoooviiiiiiii, 36
5.7.2.4 Writing the plug-in...........ooo 36
5.7.2.5 Using the plug-in ..., 36
5.7.2.6 Testing the service checks..........c.cooiiiii . 37
B5.7.2.7 The rESUILS ...t e 37
5.7.3 UC3: Engine task in ‘waiting’ state on Admin Cluster caused
by error on Customer CIUSEEr.........ooiiiiiii e 38
5.7.3.1 Problem descriptionccoviiiiiiiii 38
5.7.3.2 The designed SolUtion ... 38
5.7.3.3 The solution procedure..........cocooviiiiiiiiiii, 39
5.7.3.4 Writing the plug-ins ... 40
5.7.3.5 Using the plug-iNS.......coooiiiiii 42

SDF Monitoring Page 6 of 49 Thesis

CORDYS

5.7.3.6 Testing the service checks...........c.cocoiiiiiiiin,
5.7.3.7 The resultS ...,

6. Conclusions
6.1 The results.....
6.2 The process ...

7. Recommendations

7.1 BPM vs. Provisioning Ticket comparison............ccocoevveveninnnnn.
7.1.1 Defining matching conditions ..o,
7.1.2 Thresholdsoviuieiii e
7.1.3 Provisioning models. ...

7.2 Securing the communication between Nagios instances............

7.2.1 Users and

PaSSW OIdS. ..o

7.2.2 Configuration deployment............coooiiiiiiiiiiiii
7.2.3 CheCK reSUILS ...oivii e
7.2.4 Ticket lists / Process Instance listS............ccooovviiiiiiiiinnnnn.
7.3 Nagios implementation OptioNS..........coovviiiiiiiiiiiiiin,
7.3.1 Nagios slave-master communication failure.......................

SDF Monitoring

Page 7 of 49 Thesis

CORDYS

1. Introduction

In a company such as Cordys, a large and complex system is used to offer services to
customers. In order to keep customers satisfied, the amount of problems must be kept to a
minimum. And if any problem might occur, solving it as quickly as possible is most
important.

This phenomenon is called Operational Management. The project described in this thesis is
about assisting Operation Management in their job of guarding the systems status, and
assisting in case problems do occur. The people responsible for Operational management
have indicated they would like to have a solution which reduces the necessity for manually
checking the status of the entire system.

This is called monitoring, and therefore, this project is titled SDF monitoring. SDF stands for
Software as a Service Deployment Framew ork, and can be regarded as the system. This
will be explained in more detail later.

1.1 Content

Chapter 1, Introduction
Is the current chapter.

Chapter 2, Environment
Introduces the Cordys Company. Also, it described the trigger to this project, along with the
history of this project and the related projects.

Next, it describes the technical environment, which is necessary in order to fully understand
the technical context.

Chapter 3, Problem, Purpose, Job
Describes the problems with the current environment, or the ‘ Business Case’ of the project.
Additionally, it describes the goals of the projects and the job that must be done.

Chapter 4, Conceptual Solution

Introduces the proposed Conceptual Solution, which has been designed during this project.
Parts of this conceptual solution are: Functional and Non-functional requirements for a
monitoring setup.

Chapter 5, Implementation

Introduces the success conditions that must be met. It introduces the testing environment,
the selected monitoring tool, the setup of the monitoring tool, management of the
monitoring tool. Most importantly, it covers the created solution for proving the Use Cases.

Chapter 6, Conclusions
Evaluates the entire project, and puts a conclusion to it.

Chapter 7, Recommendations
Explains what remaining issues should get attention after this project is finished.

1.2 Audience

The intended audiences for this document are:
e SaaS Deployment Framework team
e The student’ s school
e Operational management (Cordys IT)

SDF Monitoring Page 8 of 49 Thesis

CORDYS

1.3 Purpose of the document

This document serves a number of purposes, namely:
e To describe what this project was about (the subject).
e To describe how the solution was developed.

e To describe what decisions were made, and why.

1.4 Definitions, acronyms, and abbreviations

Term

Description

SaaS

Software as a Service

Cordys BPMS

Business Process Management Suite

Cordys Cluster

A group of tightly coupled servers with Cordys BPMS
installed.

Provisioning The process of remotely distributing and managing
applications, organizations, users and all related data.

Metering The process of logging the usage of applications and
services.

SDF SaaS Deployment Framew ork
The Cordys product used for provisioning and metering
across a number of clusters.

JMX Java Management Extensions

JMX enables a Java application to be remotely
monitored.

JMX counter

This document uses this term as follows: A JMX
component, placed in an application, which allows
external applications to retrieve information, such as
status, from a Java application.

OSI Model Open System Interconnection Reference Model
A description of computer communication in 7 layers.
Layer 7 is abstract, layer 1 is the simplest.

ucC Use Case
Description of the behavior of a system in a certain
situation in relationship to its users (a.k.a. actors).

SOAP Simple Object Access Protocol

SAML Security Assertion Markup Language

DOM The Document Object Model
is a platform- and language-neutral interface that will
allow programs and scripts to dynamically access and
update the content, structure and style of documents.

XML Extensible Markup Language
XML is a simple, very flexible text format used for data
exchange.

PIM Process Instance Manager

Pl / BPM Process Instance / Business Process Model

A Process Instance is a Business Process Model in
execution.

SDF Monitoring

Page 9 of 49 Thesis

CORDYS

2. Environment

2.1 The Cordys Company

Cordys B.V., founded in 1998, is an international company which focuses on software
development. Cordys has branches in the Netherlands, the U.S.A., India and Israel. Cordys
Business Process Management Suite (BPMS) is the main product Cordys is developing. It
consists of several components which offer companies a complete solution to manage and
automate business processes. All components were designed and built customer-separated,
allowing multiple customers per environment.

The Cordys organization has the following departments:

Cordys

Product Development

(PD) Staff Sales IT

NL Israél India

— SDF — SAAS Deployment Framework

— VD — Virtual Desktop

— BPM — Business Process Management

— CWS - Collaborative WorkSpace

Figure 2.1.1 Cordys organizational overview

The Product Development department is the largest department and consists of
approximately 300 employees (approx. 50 in the Netherlands, approx. 10 in Israel and
approx. 240 in India). Its job is to maintain, expand and manage the development of the
Business Process Management Suite. Each sub-department develops a different BPMS
component.

The IT department maintains and manages all computer systems, networking devices and
other peripherals. They also manage connections between the company branches and

datacenters.

This project is run within the SDF (SAAS Deployment Framew ork) team. This project
directly affects the SDF.

SDF Monitoring Page 10 of 49 Thesis

CORDYS

2.2 Project history

In the past, a similar project about monitoring has been done. However, the project had a
different focus. The project was about monitoring Cordys installations from customers.
Customers with their own Clusters wanted to monitor their Cordys installations with their
existing monitoring tool(s).

This project differs from the previous project because multiple Cordys Clusters have to be
monitored. It is also different because this is about monitoring Cordys’ own situation.

2.3 Related projects

This project is related to several other projects.
e The project described in chapter 2.2 (Project history)
e The Cordys Google project
Cordys has started a project with Google to open an application store and various
online business solution products. The monitoring solution is created keeping in
mind the Cordys + Google environment requirements.

SDF Monitoring Page 11 of 49 Thesis

CORDYS

2.4 Roles & Stakeholders

2.4.1 Project executer

The student has this role. This person is responsible for executing the project,
communicating to all stakeholders, project progress and all related tasks.

2.4.2 Roles

End user
This person is an end user of the project results, i.e. he or she will use the created solution.

Project Manager
This person owns the project and has the highest authority in making decisions.

Product Architect
This person guides and advises in designing and building the project solution.

School Counselor
This person is responsible for helping, controlling, checking and evaluating the student
during the internship.

2.4.3 Stakeholders

SDF Team
e End user(s):
All team members
e Project Manager:
Wijnand van Plaggenhoef
e Product Architect:
Gert Smits

IT Team
e End user(s):
Janamanchi Venkatesh; Chalasani Anil Kumar

School

e School Counselor:
Marten Wensink

SDF Monitoring Page 12 of 49 Thesis

CORDYS

2.5 Technical Environment

Basic knowledge of the Cordys environment is necessary to understand the project.
Therefore this document will give a brief explanation of the Cordys environment.

2.5.1 The Cordys Solution

Cordys delivers a single platform which allows organizations to design, execute, monitor,
change and continuously optimize their critical business processes and operations. This is
supported by Cordys BPMS, a set of software. As with all software, it needs an IT

infrastructure to operate. Cordys uses the concept of clusters to run the BPMS software.

2.5.2 Cordys Cluster

Cordys uses a standardized environment for running the Cordys BPMS. This setup is called
a cluster. A Cordys Cluster is a single installation of Cordys BPMS across a nhumber of
machines or blades linked into a single State SyncUp ring. A token is passed around. Each
machine passes the token to the next machine in the ring. If a machine fails, the ring is
rebuilt, and the other machines continue functioning normally.

This technology takes care that services on all machines are connected in a way that
enables load balancing and failover.

SOAD Nemnmnnnn
SOAP Processor

SDF SOAP

——==0 Web Server = Processor
Gateway Monitor
s | DAP

Master - Cordys Server 1

MySQL 5 backend \

State Syncup Ring
SDF Db Cordys Db

Load Balancer

SQAD.Daasasas
SOAP Processor Eyp— Database Server
SDF SOAP
Processor

Web Seiver State Syncup Ring

Gateway Monitor

L = LDAP
Slave

Cordys Server 2

Figure 2.5.1: An example of a Cordys cluster with 2 Cordys machines in a State SyncUp
ring, and a dedicated database server.

SDF Monitoring Page 13 of 49 Thesis

CORDYS

All services within the cluster can be managed from a single user interface, transparent of
w here the services are physically located.

This is shown in the following screenshot, which shows the Cordys interface from were any
Cordys component can be managed.

/2 Cordys Explorer - Windows Internet Explorer !) _J_.l._j
GE; v Ic http:f) fcordys] E' \‘j’\g\ I ‘p\ \
¢ ¢ @8 Cordys Explorer | I f - B - o - [rpage v GTgoks + 7

Welcome J Logout
-] . JYS Syslem v

— =

Model & Manage ﬁ Model & Manage g Model & Manage gfé Model & Manage N

Business Processes » Business Data Business Rules »> Tasks & Notifications »

== - < 1
Model & Manage % Model & Manage @ Manage & Monitor ‘ Other A;

XForms »> Schedules » Cordys Network »> Utilities »
Find [j View & Manage View & Manage (/J View & Manage)
Help & Info > Provisioning » My Channel My Organization w

=

Figure 2.5.2 The Cordys interface focuses on managing a complete cluster, regardless
where a component is physically located.

= B
View & Manage b View & Manage 359

My Account > Metering >

SDF Monitoring Page 14 of 49 Thesis

CORDYS

2.5.3 Cordys multi-cluster environment

Cordys has a number of clusters, and is deploying more clusters. This is the environment
which is used for the Cordys Google project. See chapter 2.3, (Related projects), for more
details. Currently, there is a cluster intended for Customers. This is called a Customer
Cluster. Cordys has another cluster, at a different location, which is built for managing
Customer Clusters. This is called (the) Admin Cluster. This combination of multiple clusters
is called the Cordys multi-cluster environment. This is shown in the following figure.

SDF
Service i g
[<}]
n
Ke)
[+H]
=
2 SDF
Customer Cluster A 5 R ico
>
(]
(7]
e
SDF
Service Admin Cluster

Web Server

Customer Cluster B
Figure 2.5.3 The Cordys multi-cluster environment

How are these clusters linked together? This is where the SaaS Deployment Framew ork
shows up.

2.5.4 SaaS Deployment Framework (SDF)

SDF is the Cordys component which provides provisioning across clusters. SDF provides the
capabilities to create resources such as organizations, users, application subscriptions at the
different clusters using provisioning processes (all these terms will be explained in following
sections). Different users of the Cordys platform have different requirements about what
should be done when a resource is created.

All provisioning processes are based on provisioning models and can be easily customized.
Next to the capability of creating resources, SDF also keeps track of those resources and
provides the capability to modify or delete those resources, also using provisioning
processes.

Lastly, SDF also provides the capability to do metering on the allocation of resources and
the use of resources.

SDF supports provisioning of the following items:

Organization

Organization provisioning will determine the cluster on which the organization will be
created and will than create the organization on the chosen cluster. The SDF bookkeeping
on the Admin cluster is updated with the new organization.

Application

A customer can request the use of applications and the application provisioning is the
process of making the application available within the organization of the customer and also
giving the user access to that application. Part of the application provisioning is the process
of deploying and configuring the application on the given cluster. This is in SDF 3.0 a

SDF Monitoring Page 15 of 49 Thesis

CORDYS

manual process. The SDF bookkeeping on the Admin cluster is updated with the information
that the application is available to the organization.

User

User provisioning is the process of creating a user in a given organization. User provisioning
is done within the context of an organization and is started with a user registration request
(self service) or when an administrator creates the user. In the provisioning process, the
cluster of the organization is determined and the authenticated user and organization user
are created. The SDF bookkeeping on the Admin cluster is updated with the information
that the user is added to the organization. The authenticated user ID is in all clusters and
the SDF bookkeeping equal.

2.6 Organizational environment

The SDF team is responsible for updating and maintaining the SDF software. The IT
department is responsible for keeping the Cordys multi-cluster infrastructure operational.
Together they are the key players in SDF operational management. The results of this
project must conform to their requirements. This project is run within the SDF team because
SDF is the key player in maintaining and using the Cordys multi-cluster environment. The
SDF team is the internal supplier of the SDF software to the IT department. The IT
department is responsible for operational management.

SDF Monitoring Page 16 of 49 Thesis

CORDYS

3. Problem, Purpose, Job

3.1 Problem description

Whenever a problem arises in the provisioning process, or in the Cordys multi-cluster
infrastructure, finding the source of the problem usually takes a long time. The Cordys
BPMS does monitor its processes, but is does not monitor the supporting components, such
as server hardware, network components and network connections. For example, when a
web server is disabled, it results in malfunctioning provisioning processes, but the cause is
not clearly visible. In addition, the administrator does not know that something is wrong.
The administrator must check manually to ensure all systems are functioning properly.
Administrators do not have an overview of the entire Cordys multi-cluster environment.

Compared to the OSI model, only layer 7 (Application) is being monitored. The Cordys
BPMS keeps log of events and errors, but logs are not stored at a central location, and they
are in various different formats; XML, Plain text and in databases. Some of the log files are
too large to be understood correctly.

In short

Too little information is available of the hardware, network and the infrastructure, and too
much, or too distinct information of the SDF to manage the entire environment, and to be
able to solve problems adequately.

This problem affects the operational management, and it will make operation management
very inefficient and thus expensive to operate.

3.2 Purpose

3.3 Job

The purpose of the project is to create a solution which enables Operational Management to
overview & monitor the status of the entire Cordys multi-cluster environment. The solution
must enable administrators to investigate and act quickly in case of problems. The first
steps of the solution must be created within 4 months.

The job is to provide a solution which corresponds to the projects purpose.
This solution must:
e Provide a single point from which administrators can overview the Cordys multi-
cluster environment, to be referred to as ‘ Error cockpit’ .
e Provide administrators with up-to-date information about the Cordys multi-cluster
environment, i.e. monitoring.

As part of this solution the following tasks must be done:

e Listing requirements and creating a design for a new monitoring environment, to be
referred to as (the) monitoring design.
Monitoring a default installation of a Cordys environment, including software and
hardw are, using an independent monitoring tool
Expanding SDF with extra JMX counters if necessary, or monitoring existing JMX
counters
Integrate the external monitoring tool and the Error Cockpit.
Checking and improving the SDF structure regarding monitoring.

SDF Monitoring Page 17 of 49 Thesis

CORDYS

4. Conceptual Solution

4.1 Introduction

The first part of the project consisted of creating a design for the solution which fills the

gaps between the requirements from Operation Management and the real environment. This

design describes a complete solution for the entire environment. This solution was not

implemented completely because it is too big for one project, but the design must provide a

conceptual solution which describes the ideal solution for the environment.

See the attached Conceptual Solution for more information.

4.2 Requirements

Most important of the solution is that it meets the requirements of the end users. Therefore
creating the design was started with listing the requirements of the users. There are several

end users in the SDF team, and a few in the IT team. These users were interviewed to
retrieve the requirements.

4.2.1 Preparing the interviews

In order to get some useful results from the interviews, a list of questions was created. The

first interview consisted of the following questions:
e Which problems do you encounter often?
e Which information sources do you use to determine the source of a problem?
e Which information is missing?
e Which tools are useful when solving a problem?
All questions are about problems, and problem-solving.

4.2.2 Conducting the interviews
The user in India was asked by email about his requirements. Two of the SDF team
members were individually interviewed in a conversation.

After conducting the first team member, it turned out that the questions were a little bit
incomplete. Most information shows up, but general requirements don’t show up
specifically.
Therefore, the questions were adapted for the next interview. The following points were
added:

e Must have functionality

e Nice to have functionality

Using these points, not only general requirements are retrieved, but also the level of
importance is retrieved.

4.2.3 Processing the results

Data from the interview was transformed into Functional requirements and Nonfunctional
requirements. This was done by:

1. Merging duplicate requirements. Each user names requirements differently.

2. Grouping related requirements.

3. Choosing a representative name or topic for each group.

4. Rewriting the requirements in Use Case format (User X must be able to do Y).

SDF Monitoring Page 18 of 49 Thesis

CORDYS

4.2.4 The results; the requirements

These are the key requirements of the Conceptual Solution which were derived from the
interviews.

For a complete list of the requirements, see chapter 5 & 6 of the attached Conceptual Solution.

4.2.4.1 Key functional requirements

Overview of the entire environment
Administrators must be able to analyze the entire Cordys Multi-Cluster environment in a
single overview. This includes admin cluster and customer clusters.

Pushing alerts in case of problem
Administrators must get alerts in case of any problem.

e This reduces the response time
e This reduces the necessity for manual checking.

4.2.4.2 Key non-functional requirements

Extensibility of Architecture

It is not possible to foresee the needs of future customers, which customer specific objects
need to be monitored and what is needed to do so. For that reason the architecture needs
to provide an extension mechanism to add new sets of objects to be monitored.

Independency of architecture

The monitoring tool must be completely independent of the Cordys product. This means
that Cordys must be able to operate while the monitoring tool is not functioning properly,
and the monitoring tool must be able to operate without Cordys running.

4.3 Definitions

After conducting the interviews, it turned out that almost each different person has a
different view on monitoring, and defines monitoring differently. Therefore the conceptual
solution must contain the definition of monitoring. The conceptual solution describes the
general concept of monitoring, a typical workflow for error handling, and it describes the
expected functionality of a monitoring tool.

4.4 Positioning the monitoring tool

The requirements describe that monitoring must happen using an independent tool.
Therefore the Conceptual Solution starts with describing different scenarios for positioning
the monitoring tool in the Cordys environment. This is also important because information
must be provided from the entire environment and this information must accessible by the
monitoring tool.

4.4.1 Description

Various architectures of monitoring an environment are possible. Since one of the non-
functional requirements was that the monitoring solution must monitor independent of
Cordys. This means that monitoring must not be done using Cordys itself. In the past,
another project built a solution for monitoring Cordys from within itself. That scenario was
considered insufficient and in this design, an external monitoring tool is used.

Two scenarios were created.

SDF Monitoring Page 19 of 49 Thesis

CORDYS

4.4.1.1 Scenario 1

In the first scenario, the monitoring tool is positioned completely outside the Cordys
environment. In this way, one monitoring instance will be used to check the health of all
Cordys systems, for example using the internet.

Pros
e This reduces the number of monitoring instances (failover is necessary).
Cons
e All monitoring data uses the internet connection, so there will be a huge data
increase.
e This solution creates security issues because all cluster components must be
directly accessible by the external monitoring tool.
e No monitoring in case of connectivity problems.

4.4.1.2 Scenario 2

In the other scenario, each Cordys Cluster gets its own monitoring tool instance. All
monitoring instances report to a central monitor, from where administrators can overview
the entire system. Since each Cordys Cluster practically has its own network site (physical
location), it means one monitoring tool instance per location.

AC: Monitoring Master CC’s: Monitoring Slaves
_l\ i !
(v p |
Web i _'/
server Database M A
5 : M
File system, <t ' ' ! -
CPU, RAM Lo | n| &/

Figure 4.4.1 Each Cordys cluster has its own monitoring tool instance.

Pros
e This will allow the tool, to detect low level errors.
o Allinternal cluster components are directly accessible, without accessing them
externally.
e In case of internet connectivity problems, each cluster is still being monitored
independently.

e The Cordys cluster is exposed to vulnerabilities (bugs) in the monitoring tool.
e This risk can be eliminated by limiting external access to the tool.
e Each Cordys cluster requires its own instance of the monitoring tool.

4.4.2 Decision

Scenario two was chosen because it has the least security risks, and it best matches the
Cordys Multi-cluster architecture. Cordys cluster components won’t have to be exposed to
a monitoring tool outside the Cordys network. Additionally, monitoring load is divided
among the clusters.

SDF Monitoring Page 20 of 49 Thesis

CORDYS

4.5 Monitoring Integration

4.5.1 Description

An aspect of the project is, to create a single point of view for administrators. Therefore it
is desirable to be able to access all information of the Cordys multi-cluster environment
from a single tool.

Since administrators are already using Cordys tools to investigate and analyze problems, it
would make sense to be able to use the information from the external monitoring tool from
within Cordys.

This will require some sort of integration between Cordys and the monitoring tool, to
exchange actual status information.

Three integration scenarios were designed, each using a different level of integration. In the
first scenario, no integration is done at all. The monitoring user interface will only display
data from the monitoring tool. In the second scenario, a custom user interface must be build
into the monitoring tool, allowing it to display data from Cordys directly. In the last
scenario, a user interface is built using Cordys technology which allows using existing
Cordys tools. The user interface of the monitoring tool is available as a fallback. These
scenarios will not be further explained because they were not implemented.

See chapter 7.3 of the attached Conceptual Solution for a complete description of these scenarios.

4.5.2 Decisions

A decision, in general, is postponed till the moment, it is required to decide. Using this
principle you are not restricted by earlier decisions, which could have been made later.

No decision was made about a scenario for integrating Cordys and the monitoring tool
because it was not implemented.

How ever, while implementing the monitoring tool, the integration aspect was kept in mind.
This was done by choosing a monitoring tool which is extensible, and by using open source
software.

4.6 Monitoring individual Cordys components

Next, proposals for basic procedures to monitor the individual Cordys components
mentioned in the requirements were created.

Examples of these procedures are: monitoring a web server, monitoring a database server
and monitoring log files.

The conceptual solution doesn’t focus on specifying a certain method for monitoring a
Cordys component, but this will assist when the design will be implemented, and it gives
some understanding of how they work.

This part of the Conceptual solution doesn’t describe procedures for monitoring multi-
cluster related issues, but for individual Cordys clusters and is therefore the least important
part of the Conceptual Solution.

See chapter 8 of the attached Conceptual Solution for the complete list of the procedures and for
more detailed information about the procedures.

SDF Monitoring Page 21 of 49 Thesis

CORDYS

5. Implementation

5.1 Introduction

After creating a conceptual solution for the Cordys environment, it was time to put the
design to the test. A dedicated testing environment was used to implement the conceptual
solution. First of all, it was decided what part of the design should be implemented. This
was because the conceptual solution covers a large area of problems, and not enough time
would be available to create a solution which completely covers the conceptual solution.

First, the requirements will be described in the form of Use Cases.

Next, since a monitoring tool is required to solve the Use Cases, the following chapters will
focus on the monitoring tool; how it works, how it is set up, and how it is managed.

After that, the solution to the Use Cases will be described.

5.2 Success Use Cases

Three Use Cases (UC) were written to verify whether the testing environment does its job
successfully. These Use Cases describe a certain situation or error which the monitoring
tool must be able to detect.

These Use Cases describe the core of the project. The Use Cases were written in order of
feasibility.

UC1 basically describes monitoring a generic component, thereby proving that underlying
components of Cordys can be monitored.

UC2 moves on a little and describes monitoring a Cordys component using standard SOAP,
thereby proving that Cordys internal components can be monitored externally. If a SOAP-
processor can be monitored using SOAP, virtually any other Cordys specific component can
be monitored.

UC3 takes monitoring to the next level as it describes monitoring across multiple clusters.
The Use Case describes monitoring a provisioning task, which is started on the Admin
Cluster, and is partially executed on the Customer Cluster. If the Customer Cluster is not
able to communicate the results of the provisioning task back to the Admin Cluster, the
Admin Cluster will stay in a waiting state. It is currently impossible to detect such
situations, and in UC3 the monitoring tool must detect and report such situations.

In all Use Cases, an error is created on purpose, in order to simulate a real problem.

How these errors are created is described in paragraph 5.7.1.3 about Use Case 1, paragraph 5.7.2.6
about Use Case 2 and paragraph 5.7.3.6 about Use Case 3

SDF Monitoring Page 22 of 49 Thesis

CORDYS

5.2.1 UC1: Web gateway failure

Short description
If the web gateway is down, this must be detected by the monitor.

Scope
Local cluster

Purpose
This Use Case can prove if a monitoring tool is able to provide information about basic
cluster components.

Actors
e Platform Operator

Scenario
1. The monitor checks periodically if the web gateway is functioning properly.

2. Create failure on the web gateway.
3. The monitor detects the error in the web gateway.
4. The monitor informs the Platform Operator.

Success Conditions
This Use Case is successful if the Platform Operator gets notified within 2 minutes after the
failure.

5.2.2 UC2: SOAP processor failure

Short description
If a SOAP processor fails, this must be detected by the monitor.

Scope
Local cluster

Purpose
This Use Case proves if the monitoring tool is able to retrieve information about Cordys
specific components using SOAP calls.

Actors
e Platform Operator

Scenario
1. The monitor checks periodically if the SOAP processors are functioning properly.

2. Create failure on a SOAP processor.
3. The monitor detects the error in the SOAP processor.
4. The monitor informs the Platform Operator.

Success Conditions
This Use Case is successful if the Platform Operator gets notified within 2 minutes after the
failure.

SDF Monitoring Page 23 of 49 Thesis

CORDYS

5.2.3 UC3: Engine task in ‘waiting’ state on Admin Cluster caused by error on Customer

Cluster

Short description
If a provisioning task which is running on a Customer Cluster fails, this must be detected by
the monitor.

Scope
Multi-cluster

Purpose
This Use Case can prove if the monitoring tool is able to provide previously missing
information about the multi-cluster environment. E.g. it tests the complete environment.

Actors

User / Global Operator
Platform Operator

Scenario

1. A Global Operator starts a provisioning task by creating a user account + assigning an
application to this user.

2. The task is sent to the customer cluster.

3. The customer cluster starts executing the provisioning task.

4. Create failure on customer cluster which is currently undetectable.

5. The monitor detects the error on customer cluster (e.g. by watching the Process
Instance Manager).

6. The monitor updates the Engine task on the Admin Cluster with the error information.

7. The monitor informs the Platform Operator.

Success Conditions
This Use Case is successful if the Platform Operator gets notified within 2 minutes after the
failure.

SDF Monitoring Page 24 of 49 Thesis

CORDYS

5.3 Testing environment

The testing environment consists of 3 virtual computers. The setup is shown in the
following figure.

Cordys AC +

Nagios slave
N

AE,/(™ Nagios Master & NConf

/ N

~
- NIonf

W

Cordys CC +

Nagios slave

N

=

V) "

Figure 5.3.1 The diagram of the testing environment

Symbol Description

Cordys C3 instance
AC = Admin Cluster
CC = Customer Cluster

|:’ Virtual pc running CentOS Linux.

N I Nagios 3.2.0 instance

N

N.Ce"f NConf 1.2.5 instance

The two machines on the left represent the Cordys multi-cluster environment where the
upper machine is the Admin cluster, and the lower machine is the Customer cluster.

The machine on the right is the Nagios master server. All data from the Nagios slaves is
collected here. This is also the machine that stores the Nagios configuration for the entire
environment. This is done with the NConf tool.

SDF Monitoring Page 25 of 49 Thesis

CORDYS

5.4 The Monitoring tool: Nagios

5.4.1 Monitoring tool selection

As a monitoring tool, Nagios was chosen for use in this project. This is because Cordys
already has experience using Nagios. Customers of Cordys are also using Nagios as a
monitoring tool. The tool must be open source. The tool must provide support for:
monitoring Web Servers, Distributed monitoring, Notification, Extensibility, SOAP
communication, Integration with other systems. Nagios supports this and is therefore used.

5.4.2 How Nagios works

To understand the following chapters, it is necessary to understand the basics of Nagios.
Nagios uses its own terms for different monitoring processes. The most important will be
explained briefly.

5.4.2.1 Objects

Nagios distinguishes two types of objects which can be monitored: Hosts and Services
e A host is a node in a network, for example a router or a server.
e A service is a component on a host, for example a web server, mail server, a log file
or CPU load.
Note: A service is always linked to a certain host.

5.4.2.2 Checks

Monitoring an object is done using a check. For hosts, this is a host check, for services, this
is a service check. A check requires a check plug-in which does the actual monitoring by
checking the status of a host or a service and returning the answer to Nagios.

Nagios is command based, meaning any command which is executable from a command
shell, is usable in Nagios. Because of this, it is very easy to create your own check plug-ins
to monitor specific components. This will be further explained in chapter 5.7 where the
created plug-ins are described.

Note: A check plug-in must output certain information in order to be useable for Nagios. See
http://nagios.sourceforge.net/docs/3_0/pluginapi.html for detailed information on this subject.

5.4.2.3 Configuration

As with most Linux software, Nagios stores its configuration in files. Nagios doesn’ t
provide tools to manage these configuration files. This creates some difficulties in managing
multiple Nagios instances in a distributed setup. This will be explained in chapter 5.6
(Managing the Nagios configuration).

Note: For more information about configuring Nagios, and about Nagios itself, see the documentation
on http://nagios.sourceforge.net/docs/3_0/toc.html

5.4.2.4 Web interface

Nagios provides a web interface which allows administrators to view detailed status
information of all components of the monitored environment. This interface must be
installed separately and requires a web server.

SDF Monitoring Page 26 of 49 Thesis

http://nagios.sourceforge.net/docs/3_0/pluginapi.html
http://nagios.sourceforge.net/docs/3_0/toc.html

CORDYS

5.5 Distributed Nagios environment

The Nagios Distributed monitoring is quite complex, and therefore, it will be explained. As
explained in chapter 4.4 (Positioning the monitoring tool), one master server is used, and
one or more slaves. The following figure shows the different components which are used in
the distributed Nagios environment.

Nagios structure

Nagios Master

Nagios Master

./bin/nagios
. /etc/nagios. cfg

External Command file |¢ o nsca
Jvarfrw/nagios.cmd D /bin/nsca
./etc/nsca. cfg

A

Nagios Slave(s) /
Proprietary

Protocol send_nsca

J/bin/nsca
./etc/nsca. cfg

fm 2 [y

s OCSP command

libexec/eventhandlers/submit_check_result

Nagios Slave

/bin/nagios
./ete/nagios. cfg

e

~\

™~

OCHP command

Jlibexec/eventhandlers/submit_host_result

& J

Base directory: /usr/local/nagios/

v

Figure 5.5.1 Nagios distributed setup

The components in the figure are explained in the following paragraphs. The components
are described in order of execution. Each time a service or a host is monitored, the following
Nagios components are used.

SDF Monitoring Page 27 of 49 Thesis

CORDYS

5.5.1 Nagios Slave

Monitoring a service or a host starts at the Nagios slave. The Nagios slave executes a check
plug-in, which checks the status of a certain Cordys component, and returns the result to
Nagios. After receiving the result Nagios executes the command defined in the OCSP or
OCHP configuration option. These commands are required for a Nagios instance to send the
results of each check to the Nagios master.

5.5.1.1 OCSP

The Obsessive Compulsive Service Processor (OCSP) command is executed by Nagios every
time a service check is finished. A script is defined as the OCSP command. Nagios passes
the results of the service check as command-line arguments to this script. The script must
perform a small translation. The status of the service must be translated from text to a
numerical code since the NSCA client only accepts a status code. The script sends the
translated service-check results to the NSCA client, which will send them to the Nagios
master.

About service status translation:

The following shows the service status descriptions and their corresponding code.
e OK gets translated to 0

e WARNING gets translated to 1

e CRITICAL gets translated to 2

e UNKNOWN gets translated to 3

These service status descriptions and codes are Nagios specific.

5.5.1.2 OCHP

The Obsessive Compulsive Host Processor (OCHP) command is executed by Nagios every
time a host check is finished. A script is defined as the OCHP command. Nagios passes the
results of the host check as command-line arguments to this script. The script must perform
a small translation. The status of the host must be translated from text to a numerical code
since the NSCA client only accepts a status code. The script sends the translated host-
check results to the NSCA client, which will send them to the Nagios master.

About host status translation:
The following shows the host status descriptions and their corresponding code.

e UP gets translated to 0
e DOWN gets translated to 1
e UNREACHABLE gets translated to 2
e UNKNOWN gets translated to 3

These host status descriptions and codes are Nagios specific.

SDF Monitoring Page 28 of 49 Thesis

CORDYS

5.5.2 NSCA

NSCA, which stands for Nagios Service Check Adaptor, is an add-on to Nagios which
enables Nagios to be used in a distributed setup. NSCA takes care of communicating
between Nagios slaves and masters. Any check result from a Nagios slave is send to the
Nagios master by NSCA. On the Nagios slave, NSCA is in combination with the OSCP and
OSHP commands. NSCA consists of two parts, a client and a server. It is possible to use
authentication and/or encryption between the NSCA client and server, but this was not
used in the testing environment because securing inter-cluster communication was not in
the scope of the project.

Notes:
e Every check result is send to the NSCA server individually.
e NSCA does not cache check results or combine multiple check results.

e |f sending a check result fails, the result is only stored in the Nagios slave logs. Failed results will
not be resent to the Nagios master.

5.5.2.1 NSCA client
The NSCA client is used on the Nagios slaves. The client transfers the results of a service
or host check to the NSCA server on the Nagios master. The actual results of the check are
supplied as command-line arguments.

5.5.2.2 NSCA server

The NSCA server is located at the Nagios master server and receives service and host
check results from the Nagios slaves. After receiving a check result, it writes the result to
the Nagios external command file, from which it will be processed by the Nagios master.

5.5.3 External command file

Nagios uses an external command file to receive instructions and check results from
external programs and plug-ins. Nagios periodically checks the external command file for
new commands and check results. After NSCA has written a check result to the external
command file, Nagios reads the check result and processes the information inside it.

5.5.4 Nagios Master

The Nagios master is responsible for storing, archiving and displaying the service check
results. After Nagios has read the check result from the external command file, Nagios
updates the host or service status with the received information. If the status has changed,
e.g. a service is Critical; Nagios issues an alert and sends out notifications (if it is configured
to do so).

SDF Monitoring Page 29 of 49 Thesis

CORDYS

5.6 Managing the Nagios configuration

An important part of implementing the design is to configure Nagios the correct way. This is
especially complicated if Nagios is used in a distributed setup. Nagios itself provides no
method to create and maintain Nagios configurations. Therefore an external utility, NConf,

is used.

This tool enables administrators to create configurations for a distributed Nagios setup.
Other tools are available, but most of them don’ t support distributed setups.

Even though NConf is designed to create configurations for Nagios, unfortunately it doesn’ t
provide a method to deploy the created configurations to Nagios. This is required in order
for NConf to be useful.

The NConf documentation does provide a few suggestions for configuration deployment in
its documentation. NConf also provides a sample script for configuration deployment to a
single machine.

The next paragraphs describe what changes were made to each component in order to
enable administrators to deploy configurations to multiple Nagios instances.

5.6.1 NConf, the management tool

In the testing environment, the Nagios master server is also the server on which NConf is
running. The following figure shows a screenshot of NConf, after it has generated the
configurations.

Welcome admin

| Home | Generating config:
| Basic Items |
» Show History Running syntax check:
¥ Show Dependencies
ac: Total Warnings: 0 Total Errors: 0
» Hosts Show / Add
» Hostgroups Show / Add
» Servicegroups Show / Add
ccl: Tatal Viarnings: 0 Total Errors: 0
» Generate Hagios config
Additional kems
¥ General overview master: Tatal Viarnings: 0 Total Errors: O
» Contacts Show / Add
* Contactgroups Show / Add
*» 05 Show / Add
* Checkcommands Show / &dd i
» Misccommands Show / Add Deploy generated configuration
* Services Show / Add
> Host-template Showe { Add | Deploy configuration to Magios master & slavels). |
> Timeperiods Showe { Add Changes updated successrully.

Figure 5.6.1 The NConf configuration screen

If an administrator clicks the configuration deployment button, the deployment page is
opened and the deployment process is started.

SDF Monitoring Page 30 of 49 Thesis

CORDYS

5.6.2 Configuration deployment process

The following figure shows the steps involved in the configuration deployment process. It
shows the involved components including their corresponding script files or directories.

Configuration deployment

Nagios Master + NConf

Nconf

X) Local Nagios
./share/nconf/deploy_config_distributed.php

Configuration

files
Jete/

~

Configuration Deployment script
/share/nconf/ADD-ONS/deploy.sh

Generated Nagios

Configuration files
./nconf/output/NagiosConfig.tgz

SSH
Protocol

Nagios Slave(s)

Nagios Slave

Local configuration deployment script e
./share/deploy/deploy_local.sh PrOtOCOI
Local Nagios
Configuration
files . .
Jete/ Base directory: /usr/local/nagios/

Figure 5.6.2 Nagios configuration deployment process

Nagios Master
1. The NConf deployment page starts the configuration deployment script.

2. Deploy the configuration local:
2.1. The generated configuration is extracted to a temporary directory.
2.2. The extracted configuration is copied to the local Nagios instance configuration
directory and Nagios is ordered to reload its configuration.

Nagios Slave
3. The Nagios slave is called, using the SSH protocol, and is instructed to run its own

deployment script.
4. Deploy the configuration on the slave:
4.1. Download the generated configuration from the NConf server using the HTTP
protocol. The configuration is extracted to a temporary directory.
4.2. The extracted configuration is copied to the Nagios slave configuration directory
and the Nagios slave is ordered to reload its configuration.

The steps for the Nagios slave are repeated for each Nagios slave.

Note: Which Nagios slaves must be configured is defined in the deployment script on the NConf
server. (/usr/local/nagios/share/nconf/ADD-ONS/deploy.sh)

SDF Monitoring Page 31 of 49 Thesis

CORDYS

5.7 Monitoring Cordys with Nagios

This chapter describes how the Use Cases described in chapter 5.2 (Success Use Cases)
were realized.

5.7.1 UC1: Web gateway failure

In this Use Case, the web gateway of a Cordys cluster must be monitored, and the Platform
Operator must be notified in case of errors. Monitoring the web gateway consists of
monitoring the Apache web server, because Cordys is using Apache as a web gateway.
Nagios provides a standard check plug-in to monitor web servers. This plug-in checks if a
web server responds to a standard HTTP request. If a HTTP response is received, and the
HTTP status code is OK, the plug-in will report that the web server is operating properly.

Since this Use Case is the first, this Use Case also proves if Nagios is functioning properly.
Monitoring the Apache web server is done by creating a service check on the host where
Apache is running. Creating the host definition is not covered here because it is quite
obvious.

5.7.1.1 Creating the check command

The first step in creating a new service check is creating a check command definition. Using
a check command definition, administrators only need to specify the details of a check plug-
in once. After that, the defined command can be easily assighed to a host.

The following figure shows the NConf screen where the check command properties are
added.

Add checkcommand

check command name check_http %

check command line FUSER1 ficheck_http -l SHOSTADDRESSS FARG1E | +

command description ARG1=Multiple options

default command params ! separated by "I
amount of params 1 B

| Submit || Resst |

Figure 5.7.1 The add check command interface

Explanation

check command | This is the name by which Nagios can identify the plug-in.

name:
check command | This is the actual command which will be executed by Nagios. Nagios
line: allows the use of macro variables which will be filled upon plug-in
execution.
$USERLS$ The system path to the location of the check plug-

ins: /usr/local/nagios/libexec

$HOSTADDRESSS$ | This is the IP address of the host on which the
service check will run.

$ARGLS$ This is an optional variable which can be filled by
an administrator when configuring a service check.
Using $ARG(1-10)$ variables, administrators can
supply extra parameters to a check plug-in.

command This is a description, for the command parameters, which will be shown
description: in the NConf interface when assigning the plug-in to a certain host.

SDF Monitoring Page 32 of 49 Thesis

CORDYS

5.7.1.2 Assigning the check command to a host

The next step in monitoring the web server, is assigning the check command to a host, the
host on which the web server is running. This is done by creating a service definition, which
is showed in the following figures.

Services of srv-nl-crd34 AC

A additional services ta host:
check hitp MEEE
check_http

check_imap

check_ldap

check_rit
check_pin_engine_tasks
check_ping

check_pop

check_smtp
check_soap_processor
check_ssh

check_tcp

check_udp

Figure 5.7.2 The check command, created earlier, is added to the host

Modify service
TEFVICE NEme check_hitp %
check cammand check_http -

=l
azsigned to host stv-nl-crdad AC ;I *

=

=

check period 24x7 *
natification period 24x7 *
_
contact groups _I
-
=
ac
FEFVICEQrOURS CC
M- A
system-services-co LI

Command symitax:
ARG I=Mutinie optiohs

params for check command U fCordys!

| Submit || Reset |

Figure 5.7.3 Service check properties

Explanation

service name: This is the name by which the service check will be shown
in the Nagios web interface.

params for check command | By supplying the parameter “ ! -u /cordys/”, the check
plug-in will monitor the Cordys web interface at http://srv-nl-
crd34/cordys/.

SDF Monitoring Page 33 of 49 Thesis

CORDYS

5.7.1.3 Testing the service check

After generating and deploying the configuration, the Nagios slave at the Admin Cluster
started monitoring the web server. It reported back all information about the status of the
web server.

The Nagios web interface now shows the current status of the web server.

Service Status Details For All
Hosts

Status T |Last Check T Status Information

:rg-nl-crde xﬁe check bt ﬁf 12.04-2009 11:11:40 3d Ok 48m Sd= HTTP Gk HTTRAM 1 200 OK - 1561 bytes in

0.001 second response time
Figure 5.7.4 The current status is OK

As step 2 in the user case scenario describes, a failure on the web gateway is created. This
is done by shutting down the web server.

From the command shell:

service httpd stop

Now, Nagios detects that the web server is not operational. The web interface shows a red
warning, and the administrator receives an email in the mailbox.

Service Status Details For
All Hosts

L . . P 4 1 |Status

Cannection refused

stv-nl-crod3d L] FASY s HTTP CRITICAL -
I X =28 check hito | | 12-04-2009 11:28:35 0d Oh Tm 565 141 bl e oo 53
s0cket

Figure 5.7.5 The web server status is CRITICAL

e e e NﬂgiUS EE S 23

Motification Type: PROELEM

Service: check_http

Host: srv-nl-crd34 (Admin Cluster)
Address: 18.1.36.68

State: CRITICAL

Date/Time: Fri Dec 4 11:21:45 CET 2889

Additional Info:

Connection refused HTTP CRITICAL - Unable to open TCP socket

Figure 5.7.6 The email which is received by the administrator

5.7.1.4 The results

Since Nagios detects the failure, and alerts the administrator, as shown in the previous
paragraph, this Use Case was proved successful.

SDF Monitoring Page 34 of 49 Thesis

CORDYS

5.7.2 UC2: SOAP processor failure

The next step, in monitoring Cordys, is using SOAP to request the status of internal
components. In this Use Case the SOAP processors will be monitored.

Since Nagios has no plug-which provides SOAP support to monitor services, a custom plug-

in was written.

5.7.2.1 Plug-in language

The first decision that was made was which language to use, to write the plug-in. The
Python scripting language was chosen because it is ideal for smaller sized scripts, and
Cordys has experience using Python.

5.7.2.2 Connecting to Cordys

The next step was connecting to Cordys using a SOAP call. Determining which method
must be called was done by using fiddler (http://www .fiddler2.com/) while viewing the
SOAP processors from within the Cordys interface. Fiddler analyzes http traffic from

brow ser applications.

List By |-all Computers- |w Refresh Status Rate |15 sec Show Reload
Marne Organiza Compute Startup T Status Process-1 SOAP Do Processir Last-time
{EE Audit Service Process systern srv-nl-cr Automnat Started 30485 a a a
{E? Business Process Man Srsterm srv-nl-cr Autornat Started 29670 0 0 0
{E;[g, Classic Studio Proces: s¥stem sry-nl-cr Automat Started 29627 a a a
éf;? COBQC Processor systern sry-nl-cr Autornat Started 29329 a a a
2 Data Transformation | 5¥stem sry-nl-cr Automat Started 29676 a a a
3 Email Processor systern srv-nl-cr Autornat Started 29711 a a a
o Event Processor systern srv-nl-ct Autormat Started 29572 5 2059 38
3 lava Call Pracessor s¥ystern srv-nl-cr Automnat Started 29797 9 20313 10
{E? LOAF Processor systern srv-nl-ct Autormat Started 29434 2332 279843 2
{EE Metering Calculation F system srv-nl-cr Automnat Started 29747 a a a
{E? Metering Processor systern srv-nl-ct Autorat Started 29630 0 0 0
{E;[g, monitor@sey-nl-crdag sYstemn srv-nl-or Autornat Started 29367 140 7e317Z 4
3 Motification Processor S¥stermn srv-nl-cr Auotomnat Started 29661 a a a
o Provisioning Processg System srv-nl-cr Automnat Started 31042 a a a
3 Rule Repository Proce S¥stem srv-nl-or Automat Started 30487 a a a
o Scheduler Processor Systerm srve-nl-cr Autornat Started 29655 a a a
{EE Security Administratic s¥stem srv-nl-or Automat Started 29579 a a a
{E? Single Sign-0n Servic S¥stem srv-nl-cr Automnat Started 29638 17 5939 3
{E;[g, wFarms Processor systemn sry-nl-cr Autormat Started 29700 1 449 449
éf;? wFarms Translation pr s¥stemn srv-nl-cr Acotormnat Started 29609 a a a
2 wML Stare Processor S¥stem sry-nl-cr Automat Started 29672 129 1346z 3
|F‘|ease right-click an the grid header and zelect 'Calumn Chooszer' ta |Tota| 21 |Running 21 |Idle D Cawn O

Figure 5.7.7 The Cordys interface for monitoring the SOAP processors

SDF Monitoring

Page 35 of 49

Thesis

http://www.fiddler2.com/

CORDYS

The method that must be called is:

<List xmlns="http://schemas.cordys.com/1.0/monitor"/>

This method returns a list of the SOAP processors, including their current status.
This was first tested using SoapUl, a tool to send SOAP calls (http://www .soapui.org/).

While trying to call the method, it turned out that Cordys requires every SOAP call to be
authenticated. This is shown in the returned SOAP error message (trimmed for readability).

<SOAP:Fault>
<faultstring>
Anonymous access 1s denied for the method 'List'.
</faultstring>

</SOAP:Fault>

5.7.2.3 Authenticating a SOAP call

It is required to authenticate a SOAP call. This is done by calling the Single Sign-On
processor which has the Request method. This method returns a SAML assertion and a
signature, which must be supplied as a header in every SOAP call.

Using SoapUl it is possible to authenticate using SOAP. Then, after manually placing the
returned SAML assertion and signature in a new SOAP call, it is possible to call the List
method.

5.7.2.4 Writing the plug-in
Now the process of sending a SOAP call is successfully tested, by hand, with an existing
tool, it was time to create the Nagios plug-in which will do the same, but automated. The
mechanism of authenticating using a separated SOAP call, and using the received assertion
and signature, will be automated in the script. The script must run without user input. The
information required for authentication will be supplied as command line arguments to the
plug-in. This is done by Nagios.
The script uses a number of steps to retrieve the status of a SOAP processor. The plug-in
was created in the following steps:
1. Determine which SOAP processor must be monitored and the username and
password for authentication.
This information is supplied as parameters to the script.
2. Send the authentication SOAP call.
Filter the SAML assertion and the Signature from the answer.
Create a new SOAP call to the List method and insert the SAML assertion and the
Signature from step 3 as a SOAP header.
Send the SOAP call to the List method.
Filter the SOAP answer for the requested SOAP processor.
Determine the status of the SOAP processor by reading the status field.
Return the status to the standard output, which will be read by Nagios.
Exit the script with the error code corresponding to the status.
These codes are the same as described in chapter 5.5.1.1 (OCSP).

W

©O© 00 N O O

5.7.2.5 Using the plug-in
In order to use the plug-in the same steps as with UC1 were required.
e Create the check command definition
Because the script requires several parameters, NConf is configured to ask for these
parameters.
e Create service definitions
For each SOAP processor that is monitored, a service definition was created.

SDF Monitoring Page 36 of 49 Thesis

http://www.soapui.org/

CORDYS

5.7.2.6 Testing the service checks

After generating and deploying the new configuration, Nagios is monitoring a number of
SOAP processors, as shown in the following figure.

SOAP Processor O

Business Faisw [(Buziness Process
Process |’ '|' Ik 12-04-2009 15:35:18 0d Oh Sm 59= :

Management), status:
hManagemert

started

SOAP Processor OR
12-04-2009 15:358:35 0d Oh Sm 39= (LDAP Processor],
status: started

HTTP Ok HTTP# 1 200
12-04-2009 15:358:35 Od 2h S56m 42 0K - 1561 bytes in 0,001
zecond response time
- SOAP Pracessor Ok
}_,l,_ Ik, 12-04-2009 15:35:45 Od Oh Sm 29s (monitorgdsty-nl-crd34],
status: started

LDAP Processor }_,l,_ o] 4

check httn | | OK
Monitar G-
nl-croad
Figure 5.7.8 The status of the SOAP processors is OK

As step 2 in the user case scenario describes, a failure on a SOAP processor is created.

This is done by stopping a SOAP processor. In this case we test the Business Process
Management processor. From the Cordys interface, stop is selected.

Marme Crganizal Computer Starkup T Status Process-I
{:E Audit Service Processe systern srv-nl-cr Autornat Started 30485
-i:? Business Proc ' l-cr Automat Started 29670
{:E Classic Studio Stop [-cr &utornat Started 29627
-i:? COBOC Proce g [-cr Automat Started 29829
{.-\.[.,-\. . - I3 lomr fikaraat Ttztad TARTA

Figure 5.7.9 The BPM processor is ordered to stop

As shown, Nagios has detected the created failure and shows an alert.

ZOAP Processor

Business o ;
Process 14 12.04-2000 154518 0d Oh Om 9s = cAL (Business

Process Managemert],
hanagemert

statusz: not running

SOAP Processor OR
12-04-2009 15475358 0d Oh 14m 49 (LDAP Processor),
status: started

HTTP Ok: HTTRA 1 200

LDaP Prncessnrﬁ Ok

check hitp | | OK 12-04-2009 15:47:33 0d 3h 5m 525 OK - 1561 bytes in 0.001
zecond responze time
. i SOAP Processor OR
%ﬁ 14 oK 12-04-2009 15:47:48 0d Oh 14m 395 (monitor@sry-nl-crd34),

status: started
Figure 5.7.10 The status of the BPM processor is CRITICAL

5.7.2.7 The results

Since Nagios has detected the failure and has alerted the administrator, this Use Case was
proven successful.

SDF Monitoring Page 37 of 49 Thesis

CORDYS

5.7.3 UC3: Engine task in ‘waiting’ state on Admin Cluster caused by error on Customer
Cluster

In this Use Case the provisioning process will be monitored. This is the most complicated
Use Case because information from multiple Cordys clusters must be combined.

5.7.3.1 Problem description

In the provisioning process, some parts of the process take place on the Admin cluster, and
some parts on the Customer cluster. If a step in a provisioning process requires action on
the Customer cluster, the Admin cluster gives the instructions to the Customer cluster using
a synchronous SOAP call.

If a problem occurs during this phase, it is detectable because the Admin cluster will get a
timeout or a similar error.

If no problems occur, the Customer cluster will start executing the received instructions as
a BPM. On the Admin cluster, the provisioning ticket corresponding to the current
provisioning process is put in waiting state.

Under normal conditions, the Customer cluster will report back to the Admin cluster when it
is finished. If reporting back is successful, the Admin cluster continues the provisioning
process.

If reporting back fails, this failure is undetectable from the Admin cluster.

In short
The purpose of this Use Case is to detect situations where the Customer cluster has failed
to report back to the Admin cluster.

5.7.3.2 The designed solution

A design with proposals for two scenarios for monitoring this problem was created. The
scenarios take a different approach.

In the first scenario, Nagios will collect information on the Admin cluster, send it to Nagios
at the Customer cluster and thus combine information from the Admin cluster with
information on the Customer cluster. This combined information is sent back to the Admin
cluster where Cordys is updated with the combined information. This scenario requires a
few changes in the SDF software.

In the second scenario, only information on the Customer cluster will be monitored in order
to detect the described problem. This scenario requires changes to be made to Nagios in
order to create a full solution for the problem. This is because Nagios cannot compare the
information on the Customer cluster to other information and therefore it must have its own
bookkeeping of acknowledged errors and unimportant information.

Decision
The first scenario was chosen because it gives the best usable solution. Additionally,

making changes into Nagios is undesirable, and the modifications into SDF are very small
and have zero impact on other functionality of SDF.

See the attached UC3 design for more detailed information about the scenarios.

SDF Monitoring Page 38 of 49 Thesis

CORDYS

5.7.3.3 The solution procedure
The solutions components and procedure steps are shown in the following figure.

4 ™\

Cordys AC + Nagios slave

Provisioning Tickets

Ticket 1 (waiting) <@ AC

>

7

Ticket 2 (waiting) B Nagios
Master
\ | N
(q) 1S
EE N

StartBpm1 (waiting) [€ CC ‘ I ~
StartBpm?2 (waiting)
Cordys CC + Nagios slave |

Figure 5.7.11 The diagram of the components and steps involved in the Use Case solution.

The procedure consists of the following steps;
On the Admin cluster:
1. Nagios requests a list of provisioning tickets in waiting state from the Provisioning
Processor.
2. Nagios sends the list to the Nagios instance at the Customer cluster.

On the Customer cluster:

3. Nagios reads the received list of tickets and requests a list of Process Instances
(BPM’ s), containing the guids from the received list, from the PIM (Process
Instance Manager).

4. Nagios compares the statuses of the Process Instances to the statuses of the
tickets and puts the mismatching Tickets, including their related Process Instances,
in a list. Nagios sends this list to the Nagios instance at the Admin cluster.

Again on the Admin cluster:
5. Nagios reads the received list and orders the Provisioning Processor to put the
tickets into error status.

As visible in the above list, the entire procedure consists of three parts. Therefore also three
Nagios plug-ins were created:

e Request ticket list & send to customer cluster (AC)
e Compare ticket list to process instance list (CC)
e Update the tickets in the returned list (AC)

SDF Monitoring Page 39 of 49 Thesis

CORDYS

5.7.3.4 Writing the plug-ins

Plug-in 1: distribute engine tasks list
The reason this name was chosen for this plug-in is pretty obvious, this plug-in itself
doesn’ t actually do any monitoring. But it is necessary for the other plug-ins to function

properly.
A lot of code could be reused from the SOAP processor plug-in:
e Parsing command-line arguments.
e Authentication module.
e Sending a SOAP call to Cordys.
e Parsing XML data.
e Filtering XML objects.

The plug-in was created in the following steps:
1. Read the command-line arguments:
username and password to connect to Cordys.
2. Authenticate (using the SAML module from the SOAP processor plug-in).
3. Send the SOAP call to the Provisioning processor using the
GetPreviousEngineTasks method. A filter is added to this request using the
Filter element. Tickets which are already in Error state are filtered out.
4. Parse the received ticket list into a XML DOM structure.
Write the XML DOM structure to a file.
6. Copy the file to the Customer cluster using the scp command.
a. If copying failed, exit with status CRITICAL.
b. If copying succeeded, exit with status OK.

(é]

SDF Monitoring Page 40 of 49 Thesis

CORDYS

Plug-in 2: check pim engine tasks

The name describes that this plug-in compares the PIM with the Engine Tasks in order to
check the consistency between them. The list of Engine Tasks which was received from the
Admin cluster is compared to the PIM.

A lot of code could be reused from the SOAP processor plug-in, and from plug-in 2 from
this Use Case:

Parsing command-line arguments.
Authentication module.

Sending a SOAP call to Cordys.
Parsing XML data.

Filtering XML objects.

Writing output to a file.

The plug-in was created in the following steps:

1.

w

Read the command-line arguments:

e Username and password to connect to Cordys.

e The filename of the ticket file received from the Admin cluster.

e Filename of the file to write the output to.

e Server address of the Admin cluster

e Username and password to connect to the Admin cluster

e Location to upload the return file on the Admin cluster
Read the ticket file received from the Admin cluster
Authenticate (using the SAML module from the SOAP processor plug-in).
Send the SOAP call to the Business Process Management processor using the
QueryAdminData method.
Browse the list of Process Instances and for each Process Instance:

e Compare the status with the related ticket

e If the statuses mismatch, add the ticket to the export list
Write the export list to the output file
Copy the output file to the Admin cluster using the scp command.

a. If copying failed, exit with status CRITICAL.

b. If copying succeeded

i. If one or more mismatches were found, exit with status CRITICAL.
ii. If no mismatches were found, exit with status OK.

SDF Monitoring Page 41 of 49 Thesis

CORDYS

Plug-in 3: check process cc pim errors
The name of the plug-in describes that this plug-in processes the list of PIM errors from the
Customer cluster. Almost all code from the previous plug-in could be reused.

The plug-in was created in the following steps:

1.

w

Read the command-line arguments:

e Username and password to connect to Cordys.

e The filename of the ticket error file received from the Customer cluster.
Read the ticket error file received from the Customer cluster.
Authenticate to Cordys.
Browse the list of error tickets, and for each ticket:

e Create an error message with error details from the ticket file.

e Send a SOAP call to the Provisioning processor using the ActivityError

method. This method updates the ticket with the supplied error information.

Exit the plug-in:

a. If no tickets were updated, exit the script with status OK.

b. If one or more tickets were updated, exit the script with status CRITICAL.

5.7.3.5 Using the plug-ins
In order to use the plug-ins, configuring them into Nagios was required.

Create the check command definition

Because the plug-ins require several parameters, NConf is configured to ask for
these parameters.

Create service definitions

Plug-in 1 and 3 were configured to run on the Admin cluster. Plug-in 2 was
configured to run on the Customer cluster.

SDF Monitoring Page 42 of 49 Thesis

CORDYS

5.7.3.6 Testing the service checks

After generating and deploying the new configuration, Nagios is monitoring the provisioning
process, consisting of 3 service checks. This is shown in the following figure.

srv p— Distribute e Wiriting local file... done.
xg Engine 14 oK 12-08-2009 14:02:53 Start copying to Nagios
Tasks List slave... success!
Process CC Fas Reading ticket return
PIM Errars | Ok 12-08-2009 14:03:03 file... done. File empty.
- Mo tickets to update.
Mo tickets inticket list.
Feading PiM iz skipped.
srv nl-crods W Check PIM - rasy e o WEiLING Cutpt file. .
x‘ Encjine tasks taskst t O 12-08-2009 140204 e Start coprying to
Magioz master...
success!

Figure 5.7.12 The status of the Provisioning plug-ins is OK.

Step 4 in the Use Case dictates that a currently undetectable failure must be created. As
explained in paragraph 5.7.3.1 (Problem description), this is a situation where the Customer
cluster cannot report back to the Admin cluster in asynchronous calls.

The failure is created by modifying the cluster.AdminClusterUri property of the
Provisioning processor on the Customer cluster so it points to a non-existing server.

Now, a new provisioning process is started. The tickets are shown in the following figure.
Overview of all tasks for the provisioning engine

Close
L || | Ep
[T Creation date Ticket state Chiject trype hlodel name
[T] 8-12-2009 14:1 .. Waiting Qrder 107: Add account...
[T | 8-12-2009 14:1..) Waiting LlzerApplsubscr | 601 Add user ap...

Figure 5.7.13 The tickets are in waiting state.

SDF Monitoring Page 43 of 49 Thesis

™

CORDYS

Now, after the Customer cluster has stopped executing the BPM, Nagios detects the
mismatch, and sends a list back to the Admin cluster. Meanw hile, an email was sent to
inform the Administrator of the mismatch. The detection of the mismatch is shown in the
following figure.

Last Check

sr\-' p—— Distribwte A Wiriting local file... done. Start
x . Engine + 1 12-05-2009 14:21:53 copying to Magioz slave. .
Tazks List successl

Reading ticket return file....
12-05-2009 14:22:03 done. File empty. Mo tickets ta
Lpdate.
PlInd MISMATCH, nct all
proceszses match to their
ticket status. Mismatching
12-08-2009 14:22:04 tickets: 1 (Matching tickets: 07,
Wikiting output file. .. dome.
Ztart copying to Magios
master... success!

Figure 5.7.14 Nagios at the Customer cluster has detected the mismatch, and sent this
mismatch to the Admin cluster

Process CC Fasy
PIhd Errors

sty-nl-crod3s nI crias x‘ w “heck Pl msv
Engine tasks task

Now, Nagios at the Admin cluster will read the received list with mismatching tickets, and
will update the tickets in Cordys. As shown in the following figure, Nagios has received the
list, and updated Cordys with the information. Additionally, an email has been sent to the
Administrator informing him about the updated tickets.

Last Check

—— Diztribwte . Wiriting local file... done. Start
AC— x . Engine 12-08-2009 14:28:53 copying to Madgios slave. .
o Tazks List successl

Reading ticket return file...
done. Requesting saml...
done. Sending soap regquest..
done. Ticketz processed: 1
PInd MISMATCH, nict all
proceszses match to their
ticket status. Mismatching
12-08-2009 14:29:04 tickets: 1 (Matching tickets: 03,
Wiriting autput file. .. done.
Start copying to Magios
mazter... success!

Figure 5.7.15 Nagios at the Admin cluster has processed the list of mismatching tickets,
and updated Cordys.

Process CC rasy

Pitd Errors 12-03-2009 14:29:13

stv-nl-crofd nI croas xb w Check Pk msv
Engine tasks task

SDF Monitoring Page 44 of 49 Thesis

CORDYS

The ticket is now updated. This is shown in the following figure.
Overview of all tasks for the provisioning engine

K Close
A (| O || e
[T Creation date Ticket state Chject type Maodel narme
[T 8-12-2009 14:1.. Waiting Ordar 101 Add account...
[T a-12-200914:1..) Errar LzerdpplSubscr) 601 Add user ap...

Figure 5.7.16 The ticket was put into error state.

Note: The Order ticket will stay in waiting state. This is because the UserApplSubscr ticket is a
child ticket of the Order ticket. It is designed this way, and this is a normal situation.

The error details show that the error is logged by the Nagios plug-in. This will enable
administrators to distinguish errors from Nagios plug-ins from Cordys errors. The error
information is shown in the following figure.

(N)Error in BPM
<:ZIEIa|:k

Code UCFODB0 Message wrapper
Message [(M)Error in BPM
Creation date 8-12-2009 14:29:08

Details com.cordys.ucf.base_exception.UcfException: {N}Error in BPM details: -
Logged by Nagios plugin:
BPM: Ucf/StartBpm_ucf30_bpm
BPM Status: ABORTED
BPM Error: <faults

Figure 5.7.17 Screenshot of the error details, logged by the Nagios plug-in.

5.7.3.7 The results
The tests show that:
¢ Nagios has successfully detected the mismatch between the Process Instance on
the Customer cluster and the Provisioning Ticket on the Admin cluster.
¢ Nagios has successfully updated the ticket to error state.
¢ Nagios has successfully notified the Administrator by email.
Therefore, the Use Case was proven successful.

SDF Monitoring Page 45 of 49 Thesis

CORDYS

6. Conclusions

6.1 The

6.2 The

results

In drawing a conclusion, the purpose of the project is compared to the achievements.

The purpose of the project was to create an overview of the status the entire Multi-cluster
Environment; to provide administrators with up-to-date information about the Cordys multi-
cluster environment.

The created Conceptual Solution covers this concept adequately.

The testing environment has proved that monitoring Cordys components is possible and
provides the missing information about the Cordys Multi-cluster Environment (See paragraph
5.7.1.4 about Use Case 1, paragraph 5.7.2.7 about Use Case 2 and paragraph 5.7.3.7
about Use Case 3).

This could be easily expanded to a solution where all Cordys components are monitored.

Additionally, this project has created knowledge about monitoring the Cordys system, and
has helped to raise awareness about monitoring. This showed up during the many
discussions and conversations. This awareness will help integrating the monitoring aspect
into further application development.

process

Overall the process went good. Indicators for this were: Results were delivered quick,
enthusiastic reactions at the first presentation and positive feedback during the evaluation
meetings.

The process also had a few weaknesses:

Interviews

A few things could have been done better in preparing the interviews described in chapter
4.2 (Requirements). The questions for the interview were not discussed before conducting
the interviews. This resulted in discovering the incompleteness of the questions during the
first interview.

This could have been avoided by reviewing the interview questions in advance.

Designing the Conceptual Solution

At the start of designing the Conceptual Solution, the following problem was encountered:
Finding the most usable way of writing down the requirements took some time. This
resulted in multiple formats and notations of the same requirements. This could have been
avoided by deciding which one was going to be used, and then sticking to it. On the other
hand, that might have led to a situation where requirements would have been written in an
unusable or insufficient format.

One other problem was finishing the Conceptual Solution. When the design was almost
finished, more ideas came up and it was not clearly defined when the Conceptual Solution
would be finished. This resulted in perhaps spending too much time on the design. This
could have been avoided by defining milestones for the Conceptual Solution, limiting the
scope more, and more important: Defining the end.

Writing the Thesis

This was started too late. This was caused by planning insufficient time for it in the
beginning of the project. This was not done because the plan of approach was not yet
finished at that time, but it should have been done anyway to have initial thesis version
ready earlier in the project. From this could be concluded that this internship was more
about the work, than about graduating.

SDF Monitoring Page 46 of 49 Thesis

CORDYS

/. Recommendations

7.1 BPM vs. Provisioning Ticket comparison

7.1.1 Defining matching conditions

Situation

In UC3, the status of Tickets is compared to the status of the corresponding Process
Instance. The conditions on which the plug-in flags them as mismatching are hardcoded in
the Nagios plug-in.

Recommendation

The matching conditions could be stored in a configurable matrix. This should be preferably
configurable from NConf.

7.1.2 Thresholds

Situation

If, for example, a ticket is in ‘waiting’ state, and its related Process Instance is also in
“waiting’ or ‘running’ state, this is a matching situation according to Nagios. However, if it
keeps this way for a week, it could be undesirable.

Recommendation
Enhance the Nagios plug-in so that it can handle time threshold and flag a situation as
mismatching if a Process Instance is running or waiting too long.

7.1.3 Provisioning models

Situation

Different provisioning models can be used, and each of them can involve different steps on
the Customer cluster.

Recommendation
An analysis should be done if the solution to UC3 is suitable for all provisioning models.

Additionally, different matching conditions could be desirable for each provisioning model.
Therefore the Nagios plug-ins could be enhanced to distinguish the different provisioning
models and apply different matching schemes to them.

7.2 Securing the communication between Nagios instances

7.2.1 Users and Passwords

Situation
The root account is used in scripts for sending files to other Nagios instances.

Recommendation
Create a user account with limited access to only the file and directories necessary.

SDF Monitoring Page 47 of 49 Thesis

CORDYS

7.2.2 Configuration deployment

Situation
Slaves download their configuration from the NConf server using the HTTP protocol, and
using HTTP basic authentication.

Recommendation
This could be changed to HTTPS or SCP.

7.2.3 Check results

Situation
NSCA is not configured to use authentication when sending check results to the Nagios
master.

Recommendation
This could be configured to prevent 3™ party applications from sending false information to
the Nagios master. NSCA can also be configured to use encryption.

Note: Authentication must be configured on both master and slave servers.

7.2.4 Ticket lists / Process Instance lists

Situation
Ticket lists and Process Instance lists are exchanged between the Nagios instances. This is
done using SCP. This is a secure protocol.

Recommendation

Authentication is currently done using a username and password combination. This could be
replaced with public key authentication.

SDF Monitoring Page 48 of 49 Thesis

CORDYS

7.3 Nagios implementation options

7.3.1 Nagios slave-master communication failure

Situation

In case of a communication error between the Customer Cluster and the Admin Cluster,
Nagios slaves at the Customer Clusters will not be able to send their check results to the
Nagios master. The Nagios master will detect this because it checks the age of check
results. If check results are too old, Nagios will issue an alert, saying the service results are
outdated. The maximum age is configurable. Nagios uses the term freshness for this topic.
(See: http://nagios.sourceforge.net/docs/3_0/freshness.html for more information).

The following figure shows an example of the Nagios master interface in this situation.

srv-nl-crd3d AC

srv-nl-crf8 CC

x2€

xX2€

Business Process Management

Einail Processar

LD&P Processor

Metering Calculation Processor
Metering Processor
MNotification Processar
Provisioning Processar

check fip

check ity

check local disk

check local load

check local procs

check local swap

check local users

check process co pim erors
distribute encine tasks list
moritor@sry-ni-crdz4

Business Process Management

Ermail Processor

MNotification Processar
Provisioning Processar
check hitp

check local disk

check local load

check pim engine tasks
check ping

check ssh

monitor@sry-ni-crdss

Service Status Details For All Hosts

11-30-2009 15:29:02
11-30-2009 15:30:02
11-30-2009 15:30:02
11-30-2009 15:30:02
11-30-2009 15:29:02
11-30-2008 15:29:02
11-30-2009 15:29:02
11-30-2009 15:30:02
11-30-2009 15:30:02
11-30-2009 15:29:02
11-30-2009 15:29.02
11-30-2009 15:30:02
11-30-2008 15:30:02
11-30-2009 15:29:02
11-30-2008 15:29:02
11-30-2009 15:30:02

11-30-2009 15:29:02

11-30-2008 15:29:02
11-30-2009 15:29:02
11-30-2008 15:29:02
11-30-2009 15:29:02
11-30-2009 15:29:02
11-30-2009 15:29.02
11-30-2009 15:29:02
11-30-2009 15:29.02
11-30-2009 15:29:02

11-30-2008 15:29:02

11-30-2009 15:29:02

0dOh1m 18s
0d Oh Om 185
0d Oh Om 18s
0d Oh Om 185
0dohim 18s
0d Oh1m 18s
LG RIRE:
0d Oh Om 185
0d Oh Om 185
0dOh1m 18s
0d Oh1m 188
0d Oh Om 18s
0d Oh Om 185
0dohim 18s
0d Oh1m 18s
0d Oh Om 185

0dOh1m 18s

0d Oh13m 18
0d 0h13m 188
0d Oh13m 18
0d k1 3m 16z
0d 0h13m 185
0d Oh 13 188
0d 0h13m 185
0d Oh14m 188
0d 0h13m 188
0d Oh13m 18

0d Ok 13m 183

CRITICAL: Servioe results are outdated! Check if the Nagios slave is operating properly
CRITICAL: Service results are outdiatsd! Check If the Nagios slave is operating properly
CRITICAL: Service results ere outdiated] Check if the Nagios slave is operating properly
CRITICAL: Service results are outdiatsd! Check If the Nagios slave is operating properly
CRITICAL: Service results ere outdiated] Check if the Nagios slave is operating properly
CRITICAL: Service results are outciated! Check if the Nagios slave is operating properly
CRITICAL: Service results are outdated! Check if the Nagios slave is operating properly
CRITICAL: Servioe results are outdated! Check if the Nagios slave is operating properly
CRITICAL: Service results are outdated! Check if the Nagios slave is operating properly
CRITICAL: Servioe results are outdated! Check if the Nagios slave is operating properly
CRITICAL: Service results are outdiatsd! Check If the Nagios slave is operating properly
CRITICAL: Service results ere outdiated] Check if the Nagios slave is operating properly
CRITICAL: Service results are outciated! Check if the Nagios slave is operating properly
CRITICAL: Service results are outdiated] Check if the Nagios slave is operating properly
CRITICAL: Service results are outciated! Check if the Nagios slave is operating properly
CRITICAL: Service results are outdated! Check if the Nagios slave is operating properly

CRITICAL: Servioe results are outdated! Check if the Nagios slave is operating properly

CRITICAL: Service results are outciated! Check if the Nagios slave is operating properly
CRITICAL: Service results ere outdiated] Check if the Nagios slave is operating properly
CRITICAL: Service results are outciated! Check if the Nagios slave is operating properly
CRITICAL: Service results are outdated! Check if the Nagios slave is operating properly
CRITICAL: Servioe results are outdated! Check if the Nagios slave is operating properly
CRITICAL: Service results are outdiatsd! Check If the Nagios slave is operating properly
CRITICAL: Servioe results are outdated! Check if the Nagios slave is operating properly
CRITICAL: Service results are outdiatsd! Check If the Nagios slave is operating properly
CRITICAL: Service results ere outdiated] Check if the Nagios slave is operating properly
CRITICAL: Service results are outciated! Check if the Nagios slave is operating properly

CRITICAL: Service results are outdlated] Check if the Nagios slave is operating properly

Figure 7.3.1 Example of the Nagios web interface while the Nagios slaves are down

Nagios doesn’ t do anything particular in this case.

Recommendation
It is possible to configure the Nagios master to take action in this case. For example to
perform a ping to the Nagios slaves.

Links

This could be done using event handlers, which can be executed if a certain service
fails repeatedly.
Another option is to enhance the stale service or stale host script to
investigate the error.

The following pages contain more information about this topic:

http://nagios.sourceforge.net/docs/3_0/distributed.html

http://nagios.sourceforge.net/docs/3 0/freshness.html

http://nagios.sourceforge.net/docs/3 0/eventhandlers.html

SDF Monitoring

Page 49 of 49

Thesis

http://nagios.sourceforge.net/docs/3_0/freshness.html
http://nagios.sourceforge.net/docs/3_0/distributed.html
http://nagios.sourceforge.net/docs/3_0/freshness.html
http://nagios.sourceforge.net/docs/3_0/eventhandlers.html

	Document Information
	Thanks
	Summary
	Introduction
	Content
	Chapter 1, Introduction
	Chapter 2, Environment
	Chapter 3, Problem, Purpose, Job
	Chapter 4, Conceptual Solution
	Chapter 5, Implementation
	Chapter 6, Conclusions
	Chapter 7, Recommendations

	Audience
	Purpose of the document
	Definitions, acronyms, and abbreviations
	Environment
	The Cordys Company
	Project history
	Related projects
	Roles & Stakeholders
	Project executer
	Roles
	End user
	Project Manager
	Product Architect
	School Counselor

	Stakeholders
	SDF Team
	IT Team
	School

	Technical Environment
	The Cordys Solution
	Cordys Cluster
	Cordys multi-cluster environment
	SaaS Deployment Framework (SDF)
	Organization
	Application
	User

	Organizational environment
	Problem, Purpose, Job
	Problem description
	In short

	Purpose
	Job
	Conceptual Solution
	Introduction
	Requirements
	Preparing the interviews
	Conducting the interviews
	Processing the results
	The results; the requirements
	Key functional requirements
	Overview of the entire environment
	Pushing alerts in case of problem

	Key non-functional requirements
	Extensibility of Architecture
	Independency of architecture

	Definitions
	Positioning the monitoring tool
	Description
	Scenario 1
	Pros

	Scenario 2
	Pros

	Decision

	Monitoring Integration
	Description
	Decisions

	Monitoring individual Cordys components
	Implementation
	Introduction
	Success Use Cases
	UC1: Web gateway failure
	Short description
	Scope
	Purpose
	Actors
	Scenario
	Success Conditions

	UC2: SOAP processor failure
	Short description
	Scope
	Purpose
	Actors
	Scenario
	Success Conditions

	UC3: Engine task in ‘waiting’ state on Admin Cluster caused by error on Customer Cluster
	Short description
	Scope
	Purpose
	Actors
	Scenario
	Success Conditions

	Testing environment
	The Monitoring tool: Nagios
	Monitoring tool selection
	How Nagios works
	Objects
	Checks
	Configuration
	Web interface

	Distributed Nagios environment
	Nagios Slave
	OCSP
	OCHP

	NSCA
	NSCA client
	NSCA server

	External command file
	Nagios Master

	Managing the Nagios configuration
	NConf, the management tool
	Configuration deployment process
	Nagios Master
	Nagios Slave

	Monitoring Cordys with Nagios
	UC1: Web gateway failure
	Creating the check command
	Explanation

	Assigning the check command to a host
	Explanation

	Testing the service check
	The results

	UC2: SOAP processor failure
	Plug-in language
	Connecting to Cordys
	Authenticating a SOAP call
	Writing the plug-in
	Using the plug-in
	Testing the service checks
	The results

	UC3: Engine task in ‘waiting’ state on Admin Cluster caused by error on Customer Cluster
	Problem description
	In short

	The designed solution
	Decision

	The solution procedure
	Writing the plug-ins
	Plug-in 1: distribute engine tasks list
	Plug-in 2: check pim engine tasks
	Plug-in 3: check process cc pim errors

	Using the plug-ins
	Testing the service checks
	The results

	Conclusions
	The results
	The process
	Interviews
	Designing the Conceptual Solution
	Writing the Thesis

	Recommendations
	BPM vs. Provisioning Ticket comparison
	Defining matching conditions
	Situation
	Recommendation

	Thresholds
	Situation
	Recommendation

	Provisioning models
	Situation
	Recommendation

	Securing the communication between Nagios instances
	Users and Passwords
	Situation
	Recommendation

	Configuration deployment
	Situation
	Recommendation

	Check results
	Situation
	Recommendation

	Ticket lists / Process Instance lists
	Situation
	Recommendation

	Nagios implementation options
	Nagios slave-master communication failure
	Situation
	Recommendation
	Links

