
     

Thesis 
SDF Monitoring 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thesis information 

Student Name: Simon Rosman  

Student Number: 1519616 

First  Examiner: Marten Wensink 

  



 

SDF Monitoring Page 2 of 49 Thesis 

Document Information 

 

General  

Document Tit le: Thesis  

Area or Project: SDF Monitoring  

Document Ow ner: Simon Rosman  

File Name: Thesis.docx 

Attachments: Monitoring Design (Conceptual Solut ion) 

Use Case 3 Design 

 

History 

Version Date Status Author Affected 

pages: 

Approved by: 

v0.1 14-Oct-2009 New  Simon Rosman All  

v0.2 24-Nov-2009 Update Simon Rosman All  

v0.3 30-Nov-2009 Update Simon Rosman All  

v0.4 03-Dec-2009 Update Simon Rosman All  

V1.0 14-Dec-2009 Final Simon Rosman All Wijnand van Plaggenhoef, 

Marten Wensink 

 

Distribution 

Version Name Date Publicat ion 

Status 

v0.2 Marten Wensink, Wijnand van Plaggenhoef  24-Nov-2009 Draft 

v0.3 Wijnand van Plaggenhoef  30-Nov-2009 Draft 

v0.4 Wijnand van Plaggenhoef  03-Dec-2009 Draft 

v1.0 Wijnand van Plaggenhoef, Marten Wensink, 

Hogeschool Utrecht  

15-Dec-2009 Final 

 

 

 

 

 

  

Copyright ©  2009 by Cordys Corporat ion B.V. (“ Cordys” ). All rights reserved; subject to limited 

distribut ion and restricted disclosure only.  Cordys Integrator, Cordys Orchestrator, Cordys 

Studio, and Cordys Portal are trademarks of Cordys Systems B.V.  All other trademarks 

mentioned herein may be/are the trademarks or registered trademarks of their respect ive ow ners 

and should be noted as such. The information in this document is conf ident ial, const itutes the 

proprietary property of Cordys, and is protected by copyright law s and internat ional copyright 

treat ies. No part of this document may be reproduced or transmitted in any form or by any 

means, electronic or mechanical, for any purpose, w ithout the express w rit ten permission of 

Cordys. The information contained in this document is subject to change w ithout not ice. Cordys 

does not w arrant that the information contained in this document is error free. Cordys assumes 

no liability for any damages incurred, direct ly or indirect ly, f rom any errors, omissions, or 

discrepancies betw een the softw are and the information contained in this document.  



 

SDF Monitoring Page 3 of 49 Thesis 

Thanks 
First of all, I w ould like to thank my uncle Johan Rosman. Without his help, f inding a 

company to do my internship w ould have taken a lot more t ime!  

I w ould like to thank Wijnand van Plaggenhoef as well for giving me the opportunity to do 

this internship in the SDF department and for his guidance throughout the project.  

Also thanks to Gert Smits for the countless t imes he helped out in discussions about the 

development of a solut ion. I also w ant to thank Marten Wensink, my school counselor, for 

his advice about w rit ing the plan of approach and the thesis, and for his encouragements.  

 

I w ish you pleasant reading, and I hope you w ill learn from it !  

 

Simon Rosman 

  



 

SDF Monitoring Page 4 of 49 Thesis 

Summary 
This document describes the project about monitoring the Cordys Mult i -cluster Environment. 

This is the Cordys & Google environment. 

 

The purpose of the project is to create a solut ion which enables Operat ional Management to 

overview  & monitor the status of the ent ire Cordys mult i-cluster environment. 

 

The document describes the Conceptual Solut ion which covers a full solut ion for the 

projects purpose. 

 

The „ smallest path‟  of this Conceptual Solut ion w as proved w ith three Use Cases, in a 

test ing environment. 

 

 

  



 

SDF Monitoring Page 5 of 49 Thesis 

TABLE OF CONTENT 
Thanks ......................................................................................... 3 

Summary ...................................................................................... 4 

1. Introduction .............................................................................. 8 

1.1 Content ............................................................................... 8 

1.2 Audience ............................................................................. 8 

1.3 Purpose of the document ....................................................... 9 

1.4 Definit ions, acronyms, and abbreviat ions .................................. 9 

2. Environment ............................................................................ 10 

2.1 The Cordys Company .......................................................... 10 

2.2 Project history .................................................................... 11 

2.3 Related projects .................................................................. 11 

2.4 Roles & Stakeholders ........................................................... 12 

2.4.1 Project executer ............................................................ 12 

2.4.2 Roles ........................................................................... 12 

2.4.3 Stakeholders ................................................................ 12 

2.5 Technical Environment  ......................................................... 13 

2.5.1 The Cordys Solut ion ...................................................... 13 

2.5.2 Cordys Cluster .............................................................. 13 

2.5.3 Cordys mult i-cluster environment .................................... 15 

2.5.4 SaaS Deployment Framew ork (SDF) ................................. 15 

2.6 Organizat ional environment  .................................................. 16 

3. Problem, Purpose, Job .............................................................. 17 

3.1 Problem descript ion ............................................................. 17 

3.2 Purpose ............................................................................. 17 

3.3 Job ................................................................................... 17 

4. Conceptual Solution ................................................................. 18 

4.1 Introduct ion ....................................................................... 18 

4.2 Requirements ..................................................................... 18 

4.2.1 Preparing the interview s ................................................. 18 

4.2.2 Conduct ing the interview s .............................................. 18 

4.2.3 Processing the results .................................................... 18 

4.2.4 The results; the requirements .......................................... 19 

4.2.4.1 Key funct ional requirements ...................................... 19 

4.2.4.2 Key non-funct ional requirements ................................ 19 

4.3 Definit ions ......................................................................... 19 

4.4 Posit ioning the monitoring tool .............................................. 19 

4.4.1 Descript ion ................................................................... 19 

4.4.1.1 Scenario 1 .............................................................. 20 

4.4.1.2 Scenario 2 .............................................................. 20 

4.4.2 Decision....................................................................... 20 

4.5 Monitoring Integrat ion ......................................................... 21 

4.5.1 Descript ion ................................................................... 21 

4.5.2 Decisions ..................................................................... 21 

4.6 Monitoring individual Cordys components ............................... 21 

5. Implementation ........................................................................ 22 



 

SDF Monitoring Page 6 of 49 Thesis 

5.1 Introduct ion ....................................................................... 22 

5.2 Success Use Cases ............................................................. 22 

5.2.1 UC1: Web gateway failure .............................................. 23 

5.2.2 UC2: SOAP processor failure .......................................... 23 

5.2.3 UC3: Engine task in „ w ait ing‟  state on Admin Cluster caused 

 by error on Customer Cluster .................................................. 24 

5.3 Test ing environment  ............................................................ 25 

5.4 The Monitoring tool: Nagios .................................................. 26 

5.4.1 Monitoring tool select ion ................................................ 26 

5.4.2 How  Nagios w orks ........................................................ 26 

5.4.2.1 Objects .................................................................. 26 

5.4.2.2 Checks .................................................................. 26 

5.4.2.3 Configurat ion .......................................................... 26 

5.4.2.4 Web interface ......................................................... 26 

5.5 Distributed Nagios environment  ............................................. 27 

5.5.1 Nagios Slave ................................................................ 28 

5.5.1.1 OCSP .................................................................... 28 

5.5.1.2 OCHP .................................................................... 28 

5.5.2 NSCA .......................................................................... 29 

5.5.2.1 NSCA client  ............................................................ 29 

5.5.2.2 NSCA server ........................................................... 29 

5.5.3 External command file.................................................... 29 

5.5.4 Nagios Master .............................................................. 29 

5.6 Managing the Nagios conf igurat ion ........................................ 30 

5.6.1 NConf, the management tool .......................................... 30 

5.6.2 Configurat ion deployment process ................................... 31 

5.7 Monitoring Cordys w ith Nagios ............................................. 32 

5.7.1 UC1: Web gateway failure .............................................. 32 

5.7.1.1 Creat ing the check command .................................... 32 

5.7.1.2 Assigning the check command to a host  ..................... 33 

5.7.1.3 Test ing the service check ......................................... 34 

5.7.1.4 The results ............................................................. 34 

5.7.2 UC2: SOAP processor failure .......................................... 35 

5.7.2.1 Plug-in language ...................................................... 35 

5.7.2.2 Connect ing to Cordys .............................................. 35 

5.7.2.3 Authenticat ing a SOAP call ....................................... 36 

5.7.2.4 Writ ing the plug-in ................................................... 36 

5.7.2.5 Using the plug-in ..................................................... 36 

5.7.2.6 Test ing the service checks ........................................ 37 

5.7.2.7 The results ............................................................. 37 

5.7.3 UC3: Engine task in „ w ait ing‟  state on Admin Cluster caused 

 by error on Customer Cluster .................................................. 38 

5.7.3.1 Problem descript ion ................................................. 38 

5.7.3.2 The designed solut ion .............................................. 38 

5.7.3.3 The solut ion procedure ............................................. 39 

5.7.3.4 Writ ing the plug-ins ................................................. 40 

5.7.3.5 Using the plug-ins.................................................... 42 



 

SDF Monitoring Page 7 of 49 Thesis 

5.7.3.6 Test ing the service checks ........................................ 43 

5.7.3.7 The results ............................................................. 45 

6. Conclusions ............................................................................ 46 

6.1 The results ......................................................................... 46 

6.2 The process ....................................................................... 46 

7. Recommendations .................................................................... 47 

7.1 BPM vs. Provisioning Ticket comparison ................................. 47 

7.1.1 Defining matching condit ions .......................................... 47 

7.1.2 Thresholds ................................................................... 47 

7.1.3 Provisioning models ....................................................... 47 

7.2 Securing the communicat ion betw een Nagios instances ............ 47 

7.2.1 Users and Passw ords ..................................................... 47 

7.2.2 Configurat ion deployment  ............................................... 48 

7.2.3 Check results ............................................................... 48 

7.2.4 Ticket lists / Process Instance lists ................................... 48 

7.3 Nagios implementat ion opt ions.............................................. 49 

7.3.1 Nagios slave-master communicat ion failure ....................... 49 

 



 

SDF Monitoring Page 8 of 49 Thesis 

1. Introduction 
In a company such as Cordys, a large and complex system is used to offer services to 

customers. In order to keep customers sat isf ied, the amount of problems must be kept to a 

minimum. And if  any problem might occur, solving it  as quickly as possible is most 

important. 

This phenomenon is called Operat ional Management. The project described in this thesis is 

about assist ing Operat ion Management in their job of guarding the systems status, and 

assist ing in case problems do occur. The people responsible for Operat ional management 

have indicated they w ould like to have a solut ion w hich reduces the necessity for manually 

checking the status of the ent ire system. 

This is called monitoring, and therefore, this project is t it led SDF monitoring. SDF stands for 

Softw are as a Service Deployment Framework, and can be regarded as the system. This 

w ill be explained in more detail later. 

1.1 Content 

Chapter 1, Introduction 

Is the current chapter. 

Chapter 2, Environment 

Introduces the Cordys Company. Also, it  described the trigger to this project, along w ith the 

history of this project and the related projects.  

Next, it  describes the technical environment, w hich is necessary in order to fully understand 

the technical context. 

Chapter 3, Problem, Purpose, Job 

Describes the problems w ith the current environment, or the „ Business Case‟  of the project. 

Addit ionally, it  describes the goals of the projects and the job that must be done.  

Chapter 4, Conceptual Solution 

Introduces the proposed Conceptual Solut ion, which has been designed during this project. 

Parts of this conceptual solut ion are: Funct ional and Non-funct ional requirements for a 

monitoring setup. 

Chapter 5, Implementation 

Introduces the success condit ions that must be met. It  introduces the test ing environment, 

the selected monitoring tool, the setup of the monitoring tool, management of the 

monitoring tool. Most important ly, it  covers the created solut ion for proving the Use Cases. 

Chapter 6, Conclusions 

Evaluates the ent ire project, and puts a conclusion to it .  

Chapter 7, Recommendations 

Explains w hat remaining issues should get attent ion after this project is f inished.  

1.2 Audience 

The intended audiences for this document are: 

 SaaS Deployment Framework team 

 The student‟ s school 

 Operat ional management (Cordys IT) 

  



 

SDF Monitoring Page 9 of 49 Thesis 

1.3 Purpose of the document 

This document serves a number of purposes, namely:  

 To describe what this project w as about (the subject).  

 To describe how  the solution w as developed. 

 To describe what decisions w ere made, and w hy. 

1.4 Definitions, acronyms, and abbreviations  

Term Description 

SaaS Softw are as a Service 

Cordys BPMS Business Process Management Suite 

Cordys Cluster A group of t ight ly coupled servers w ith Cordys BPMS 

installed. 

Provisioning The process of remotely distribut ing and managing 

applicat ions, organizat ions, users and all related data.  

Metering The process of logging the usage of applicat ions and 

services. 

SDF SaaS Deployment Framework 

The Cordys product used for provisioning and metering 

across a number of clusters. 

JMX Java Management Extensions 

JMX enables a Java applicat ion to be remotely 

monitored. 

JMX counter This document uses this term as follow s: A JMX 

component, placed in an applicat ion, w hich allow s 

external applicat ions to retrieve information, such as 

status, from a Java applicat ion. 

OSI Model Open System Interconnect ion Reference Model 

A descript ion of computer communicat ion in 7 layers. 

Layer 7 is abstract, layer 1 is the simplest.  

UC Use Case 

Descript ion of the behavior of a system in a certain 

situat ion in relat ionship to its users (a.k.a. actors).  

SOAP Simple Object Access Protocol 

SAML Security Assert ion Markup Language 

DOM The Document Object Model 

is a platform- and language-neutral interface that w ill 

allow  programs and scripts to dynamically access and 

update the content, structure and style of documents.  

XML Extensible Markup Language 

XML is a simple, very f lexible text format used for data 

exchange. 

PIM Process Instance Manager 

PI / BPM Process Instance / Business Process Model 

A Process Instance is a Business Process Model in 

execution. 



 

SDF Monitoring Page 10 of 49 Thesis 

2. Environment 

2.1 The Cordys Company 

Cordys B.V., founded in 1998, is an internat ional company which focuses on softw are 

development. Cordys has branches in the Netherlands, the U.S.A., India and Israel. Cordys 

Business Process Management Suite (BPMS) is the main product Cordys is developing. It  

consists of several components w hich offer companies a complete solut ion to manage and 

automate business processes. All components w ere designed and built customer-separated, 

allow ing mult iple customers per environment.  

The Cordys organizat ion has the follow ing departments:  

Cordys

Product Development 

(PD)
Staff Sales IT

NL IndiaIsraël

SDF – SAAS Deployment Framework

VD – Virtual Desktop

BPM – Business Process Management 

CWS – Collaborative WorkSpace

 

Figure 2.1.1 Cordys organizat ional overview  

The Product Development department is the largest department and consists of 

approximately 300 employees (approx. 50 in the Netherlands, approx. 10 in Israel and 

approx. 240 in India). Its job is to maintain, expand and manage the development of the 

Business Process Management Suite. Each sub-department develops a dif ferent BPMS 

component. 

The IT department maintains and manages all computer systems, netw orking devices and 

other peripherals. They also manage connect ions betw een the company branches and 

datacenters. 

This project is run w ithin the SDF (SAAS Deployment Framew ork) team. This project 

direct ly affects the SDF. 

  



 

SDF Monitoring Page 11 of 49 Thesis 

2.2 Project history 

In the past, a similar project about monitoring has been done. How ever, the project had a 

dif ferent focus. The project w as about monitoring Cordys installat ions from customers. 

Customers w ith their ow n Clusters w anted to monitor their Cordys installat ions w ith their 

exist ing monitoring tool(s).  

This project dif fers from the previous project because mult iple Cordys Clusters have to be 

monitored. It  is also different because this is about monitoring Cordys‟  ow n situat ion.  

2.3 Related projects 

This project is related to several other projects.  

 The project described in chapter 2.2 (Project history) 

 The Cordys Google project  

Cordys has started a project w ith Google to open an applicat ion store and various 

online business solut ion products. The monitoring solut ion is created keeping in 

mind the Cordys +  Google environment requirements. 

  



 

SDF Monitoring Page 12 of 49 Thesis 

2.4 Roles & Stakeholders 

2.4.1 Project executer 

The student has this role. This person is responsible for executing the project, 

communicat ing to all stakeholders, project progress and all related tasks.  

2.4.2 Roles 

End user 

This person is an end user of the project results, i.e. he or she w ill use the created solut ion.  

Project Manager 

This person ow ns the project and has the highest authority in making decisions.  

Product Architect 

This person guides and advises in designing and building the project solut ion.  

School Counselor 

This person is responsible for helping, controlling, checking and evaluat ing the student 

during the internship. 

2.4.3 Stakeholders 

SDF Team 

 End user(s): 

All team members 

 Project Manager: 

Wijnand van Plaggenhoef  

 Product Architect: 

Gert Smits 

IT Team 

 End user(s): 

Janamanchi Venkatesh; Chalasani Anil Kumar 

School 

 School Counselor: 

Marten Wensink 

  



 

SDF Monitoring Page 13 of 49 Thesis 

2.5 Technical Environment 

Basic know ledge of the Cordys environment is necessary to understand the project. 

Therefore this document w ill give a brief explanation of the Cordys environment. 

2.5.1 The Cordys Solution 

Cordys delivers a single platform which allow s organizat ions to design, execute, monitor, 

change and cont inuously opt imize their crit ical business processes and operat ions. This is 

supported by Cordys BPMS, a set of softw are. As w ith all softw are, it  needs an IT 

infrastructure to operate. Cordys uses the concept of clusters to run the BPMS softw are.  

2.5.2 Cordys Cluster 

Cordys uses a standardized environment for running the Cordys BPMS. This setup is called 

a cluster. A Cordys Cluster is a single installat ion of Cordys BPMS across a number of 

machines or blades linked into a single State SyncUp ring. A token is passed around. Each 

machine passes the token to the next machine in the ring. If a machine fails, the ring is 

rebuilt, and the other machines cont inue funct ioning normally.  

This technology takes care that services on all machines are connected in a w ay that 

enables load balancing and failover. 

 

Figure 2.5.1: An example of a Cordys cluster w ith 2 Cordys machines in a State SyncUp 

ring, and a dedicated database server. 

  



 

SDF Monitoring Page 14 of 49 Thesis 

All services w ithin the cluster can be managed from a single user interface, transparent of 

w here the services are physically located. 

This is show n in the follow ing screenshot, w hich show s the Cordys interface from w ere any 

Cordys component can be managed. 

 
Figure 2.5.2 The Cordys interface focuses on managing a complete cluster, regardless 

w here a component is physically located. 

  



 

SDF Monitoring Page 15 of 49 Thesis 

2.5.3 Cordys multi-cluster environment 

Cordys has a number of clusters, and is deploying more clusters. This is the environment 

w hich is used for the Cordys Google project. See chapter 2.3, (Related projects), for more 

details. Current ly, there is a cluster intended for Customers. This is called a Customer 

Cluster. Cordys has another cluster, at a dif ferent locat ion, w hich is built  for managing 

Customer Clusters. This is called (the) Admin Cluster. This combinat ion of mult iple clusters 

is called the Cordys mult i-cluster environment. This is show n in the follow ing f igure.  

 

Figure 2.5.3 The Cordys mult i-cluster environment 

How  are these clusters linked together? This is w here the SaaS Deployment Framew ork 

show s up. 

2.5.4 SaaS Deployment Framework (SDF)  

SDF is the Cordys component w hich provides provisioning across clusters. SDF provides the 

capabilit ies to create resources such as organizat ions, users, applicat ion subscript ions at the 

dif ferent clusters using provisioning processes (all these terms w ill be explained in follow ing 

sect ions). Different users of the Cordys platform have different requirements about w hat 

should be done w hen a resource is created.  

 

All provisioning processes are based on provisioning models and can be easily customized. 

Next to the capability of creat ing resources, SDF also keeps track of those resources and 

provides the capability to modify or delete those resources, also using provisioning 

processes. 

Last ly, SDF also provides the capability to do metering on the allocat ion of  resources and 

the use of resources. 

 

SDF supports provisioning of the follow ing items: 

Organization 

Organizat ion provisioning w ill determine the cluster on w hich the organizat ion w ill be 

created and w ill than create the organizat ion on the chosen cluster.  The SDF bookkeeping 

on the Admin cluster is updated w ith the new  organizat ion.  

Application 

A customer can request the use of applicat ions and the applicat ion provisioning is the 

process of making the applicat ion available w ithin the organizat ion of the customer and also 

giving the user access to that applicat ion. Part of the applicat ion provisioning is the process 

of deploying and conf iguring the applicat ion on the given cluster. This is in SDF 3.0 a 



 

SDF Monitoring Page 16 of 49 Thesis 

manual process. The SDF bookkeeping on the Admin cluster is updated w ith the information 

that the applicat ion is available to the organizat ion.  

User 

User provisioning is the process of creat ing a user in a given organizat ion. User provisioning 

is done w ithin the context of an organizat ion and is started w ith a user registrat ion request 

(self  service) or w hen an administrator creates the user. In the provisioning process, the 

cluster of the organizat ion is determined and the authenticated user and organizat ion user 

are created. The SDF bookkeeping on the Admin cluster is updated w ith the information 

that the user is added to the organizat ion. The authenticated user ID is in all clusters and 

the SDF bookkeeping equal. 

2.6 Organizational environment 

The SDF team is responsible for updating and maintaining the SDF softw are. The IT 

department is responsible for keeping the Cordys mult i-cluster infrastructure operat ional. 

Together they are the key players in SDF operat ional management. The results of this 

project must conform to their requirements. This project is run w ithin the SDF team because 

SDF is the key player in maintaining and using the Cordys mult i-cluster environment. The 

SDF team is the internal supplier of the SDF software to the IT department. The IT 

department is responsible for operat ional management.  



 

SDF Monitoring Page 17 of 49 Thesis 

3. Problem, Purpose, Job 

3.1 Problem description 

Whenever a problem arises in the provisioning process, or in the Cordys mult i -cluster 

infrastructure, f inding the source of the problem usually takes a long t ime. The Cordys 

BPMS does monitor its processes, but is does not monitor the support ing components, such 

as server hardw are, network components and netw ork connect ions. For example, w hen a 

w eb server is disabled, it  results in malfunct ioning provisioning processes, but the cause is 

not clearly visible. In addition, the administrator does not know  that something is w rong. 

The administrator must check manually to ensure all systems are funct ioning properly. 

Administrators do not have an overview  of the ent ire Cordys mult i-cluster environment.  

 

Compared to the OSI model, only layer 7 (Applicat ion) is being monitored. The Cordys 

BPMS keeps log of events and errors, but logs are not stored at a central locat ion, and they 

are in various different formats; XML, Plain text and in databases. Some of the log f iles are 

too large to be understood correct ly. 

In short 

Too litt le information is available of the hardw are, netw ork and the infrastructure, and too 

much, or too dist inct information of the SDF to manage the ent ire environment, and to be 

able to solve problems adequately. 

 

This problem affects the operat ional management, and it w ill make operat ion management 

very ineff icient and thus expensive to operate.  

3.2 Purpose 

The purpose of the project is to create a solut ion which enables Operat ional Management to 

overview  & monitor the status of the ent ire Cordys mult i-cluster environment. The solut ion 

must enable administrators to invest igate and act quickly in case of problems. The f irst  

steps of the solut ion must be created w ithin 4 months.  

3.3 Job 

The job is to provide a solut ion w hich corresponds to the projects purpose. 

This solut ion must: 

 Provide a single point from w hich administrators can overview  the Cordys mult i -

cluster environment, to be referred to as „ Error cockpit ‟ .  

 Provide administrators w ith up-to-date information about the Cordys mult i-cluster 

environment, i.e. monitoring. 

 

As part of this solut ion the follow ing tasks must be done:  

 List ing requirements and creat ing a design for a new monitoring environment, to be 

referred to as (the) monitoring design. 

 Monitoring a default installat ion of a Cordys environment, including softw are and 

hardw are, using an independent monitoring tool 

 Expanding SDF w ith extra JMX counters if  necessary, or monitoring exist ing JMX 

counters 

 Integrate the external monitoring tool and the Error Cockpit . 

 Checking and improving the SDF structure regarding monitoring.  



 

SDF Monitoring Page 18 of 49 Thesis 

4. Conceptual Solution 

4.1 Introduction 

The f irst  part  of the project consisted of creat ing a design for the solut ion w hich f ills the 

gaps betw een the requirements from Operat ion Management  and the real environment. This 

design describes a complete solut ion for the ent ire environment. This solut ion w as not 

implemented completely because it is too big for one project, but the design must provide a 

conceptual solut ion w hich describes the ideal solut ion for the environment. 

 

See the attached Conceptual Solut ion for more information.  

4.2 Requirements 

Most important of the solut ion is that it  meets the requirements of the end users. Therefore 

creat ing the design w as started w ith list ing the requirements of the users. There are several 

end users in the SDF team, and a few  in the IT team. These users w ere interview ed to 

retrieve the requirements. 

4.2.1 Preparing the interviews 

In order to get some useful results from the interview s, a list  of quest ions w as created. The 

f irst  interview  consisted of the follow ing quest ions:  

 Which problems do you encounter often? 

 Which information sources do you use to determine the source of a problem? 

 Which information is missing? 

 Which tools are useful w hen solving a problem? 

All quest ions are about problems, and problem-solving. 

4.2.2 Conducting the interviews 

The user in India w as asked by email about his requirements. Tw o of the SDF team 

members w ere individually interview ed in a conversat ion.  

After conduct ing the f irst  team member, it  turned out that the quest ions w ere a lit t le bit  

incomplete. Most information show s up, but general requirements don‟ t  show up 

specif ically. 

Therefore, the quest ions w ere adapted for the next interview . The follow ing points w ere 

added: 

 Must have funct ionality 

 Nice to have funct ionality 

Using these points, not only general requirements are retrieved, but also the level of 

importance is retrieved. 

4.2.3 Processing the results 

Data from the interview  was transformed into Funct ional requirements and Nonfunct ional 

requirements. This w as done by: 

1. Merging duplicate requirements. Each user names requirements dif ferent ly.  

2. Grouping related requirements. 

3. Choosing a representat ive name or topic for each group.  

4. Rew rit ing the requirements in Use Case format (User X must be able to do Y). 



 

SDF Monitoring Page 19 of 49 Thesis 

4.2.4 The results; the requirements 

These are the key requirements of the Conceptual Solut ion w hich w ere derived from the 

interview s. 

For a complete list  of the requirements, see chapter 5 & 6 of the attached Conceptual Solut ion. 

4.2.4.1 Key functional requirements 

Overview of the entire environment 

Administrators must be able to analyze the ent ire Cordys Mult i-Cluster environment in a 

single overview . This includes admin cluster and customer clusters.  

Pushing alerts in case of problem 

Administrators must get alerts in case of any problem.  

 This reduces the response t ime 

 This reduces the necessity for manual checking. 

4.2.4.2 Key non-functional requirements 

Extensibility of Architecture 

It  is not possible to foresee the needs of future customers, w hich customer specif ic objects 

need to be monitored and w hat is needed to do so. For that reason the architecture needs 

to provide an extension mechanism to add new  sets of objects to be monitored.  

Independency of architecture 

The monitoring tool must be completely independent of the Cordys product. This means 

that Cordys must be able to operate w hile the monitoring tool is not funct ioning properly, 

and the monitoring tool must be able to operate w ithout Cordys running.  

4.3 Definitions 

After conduct ing the interview s, it  turned out that almost each dif ferent person has a 

dif ferent view  on monitoring, and def ines monitoring different ly. Therefore the conceptual 

solut ion must contain the def init ion of monitoring. The conceptual solut ion describes the 

general concept of monitoring, a typical w orkf low  for error handling, and it  describes the 

expected funct ionality of a monitoring tool.  

4.4 Positioning the monitoring tool 

The requirements describe that monitoring must happen using an independent t ool. 

Therefore the Conceptual Solut ion starts w ith describing different scenarios for posit ioning 

the monitoring tool in the Cordys environment.  This is also important because information 

must be provided from the ent ire environment and this information must accessible by the 

monitoring tool. 

4.4.1 Description 

Various architectures of monitoring an environment are possible. Since one of the non-

funct ional requirements w as that the monitoring solut ion must monitor independent of 

Cordys. This means that monitoring must not be done using Cordys itself. In the past, 

another project built  a solut ion for monitoring Cordys from w ithin itself. That scenario w as 

considered insuff icient and in this design, an external monitoring tool is used. 

Tw o scenarios w ere created. 

  



 

SDF Monitoring Page 20 of 49 Thesis 

4.4.1.1 Scenario 1 

In the f irst  scenario, the monitoring tool is posit ioned completely outside the Cordys 

environment. In this w ay, one monitoring instance w ill be used to check the health of all 

Cordys systems, for example using the internet.  

Pros 

 This reduces the number of monitoring instances (failover is necessary).  

Cons 

 All monitoring data uses the internet connect ion, so there w ill be a huge data 

increase. 

 This solut ion creates security issues because all cluster components must be 

direct ly accessible by the external monitoring tool. 

 No monitoring in case of connect ivity problems. 

4.4.1.2 Scenario 2 

In the other scenario, each Cordys Cluster gets its ow n monitoring tool instance. All 

monitoring instances report to a central monitor, f rom w here administrators can overview  

the ent ire system. Since each Cordys Cluster pract ically has its ow n netw ork site (physical 

locat ion), it  means one monitoring tool instance per locat ion. 

 

Figure 4.4.1 Each Cordys cluster has its own monitoring tool instance. 

 

Pros 

 This w ill allow  the tool, to detect low  level errors.  

 All internal cluster components are direct ly accessible, w ithout accessing them 

externally. 

 In case of internet connect ivity problems, each cluster is st ill being monitored 

independently. 

Cons 

 The Cordys cluster is exposed to vulnerabilit ies (bugs) in the monitoring tool.  

 This risk can be eliminated by limiting external access to the tool.  

 Each Cordys cluster requires its ow n instance of the monitoring tool.  

4.4.2 Decision 

Scenario tw o was chosen because it  has the least security risks, and it best matches the 

Cordys Mult i-cluster architecture. Cordys cluster components w on‟ t  have to be exposed to 

a monitoring tool outside the Cordys network. Addit ionally, monitoring load is divided 

among the clusters. 

  



 

SDF Monitoring Page 21 of 49 Thesis 

4.5 Monitoring Integration 

4.5.1 Description 

An aspect of the project is, to create a single point of view  for administrators. Therefore it  

is desirable to be able to access all information of the Cordys mult i-cluster environment 

from a single tool. 

Since administrators are already using Cordys tools to invest igate and analyze problems, it  

w ould make sense to be able to use the information from the external monitoring tool from 

w ithin Cordys. 

This w ill require some sort of integrat ion betw een Cordys and the monitoring tool, to 

exchange actual status information. 

Three integrat ion scenarios w ere designed, each using a dif ferent level of integrat ion. In the 

f irst  scenario, no integrat ion is done at all. The monitoring user interface w ill only display 

data from the monitoring tool. In the second scenario, a custom user interface must be build 

into the monitoring tool, allow ing it  to display data from Cordys direct ly. In the last 

scenario, a user interface is built  using Cordys technology w hich allow s using exist ing 

Cordys tools. The user interface of the monitoring tool is available as a fallback. These 

scenarios w ill not be further explained because they w ere not implemented.  

 

See chapter 7.3 of the attached Conceptual Solut ion for a complet e descript ion of these scenarios.  

4.5.2 Decisions 

A decision, in general, is postponed t ill the moment, it  is required to decide. Using this 

principle you are not restricted by earlier decisions, w hich could have been made later. 

No decision w as made about a scenario for integrat ing Cordys and the monitoring tool 

because it  w as not implemented. 

How ever, w hile implementing the monitoring tool, the integrat ion aspect was kept in mind . 

This w as done by choosing a monitoring tool w hich is extensible, and by using open source 

softw are. 

4.6 Monitoring individual Cordys components 

Next, proposals for basic procedures to monitor the individual Cordys components 

mentioned in the requirements w ere created. 

Examples of these procedures are: monitoring a w eb server, monitoring a database server 

and monitoring log f iles. 

The conceptual solut ion doesn‟ t  focus on specifying a certain method for monitoring a 

Cordys component, but this w ill assist w hen the design w ill be implemented, and it gives 

some understanding of how  they w ork. 

This part of the Conceptual solut ion doesn‟ t  describe procedures for monitoring mult i -

cluster related issues, but for individual Cordys clusters and is therefore the least impor tant 

part  of the Conceptual Solut ion. 

 

See chapter 8 of the attached Conceptual Solut ion for the complete list  of the procedures and for 

more detailed information about the procedures. 



 

SDF Monitoring Page 22 of 49 Thesis 

5. Implementation 

5.1 Introduction 

After creat ing a conceptual solut ion for the Cordys environment, it w as t ime to put the 

design to the test. A dedicated test ing environment w as used to implement the conceptual 

solut ion. First of all, it  w as decided w hat part  of the design should be implemented. This 

w as because the conceptual solut ion covers a large area of problems, and not enough t ime 

w ould be available to create a solut ion w hich completely covers the conceptual solut ion.  

First, the requirements w ill be described in the form of Use Cases. 

Next, since a monitoring tool is required to solve the Use Cases, the follow ing chapters w ill 

focus on the monitoring tool; how  it  w orks, how it  is set up, and how  it  is managed.  

After that, the solut ion to the Use Cases w ill be described. 

5.2 Success Use Cases 

Three Use Cases (UC) w ere w rit ten to verify w hether the test ing environment does its job 

successfully. These Use Cases describe a certain situat ion or error which the monitoring 

tool must be able to detect. 

These Use Cases describe the core of the project. The Use Cases w ere w rit ten in order of  

feasibility. 

UC1 basically describes monitoring a generic component, thereby proving that underlying 

components of Cordys can be monitored. 

UC2 moves on a litt le and describes monitoring a Cordys component using standard SOAP, 

thereby proving that Cordys internal components can be monitored externally. If  a SOAP-

processor can be monitored using SOAP, virtually any other Cordys specif ic component can 

be monitored. 

UC3 takes monitoring to the next level as it describes monitoring across mult iple clusters. 

The Use Case describes monitoring a provisioning task, w hich is started on the Admin 

Cluster, and is part ially executed on the Customer Cluster. If the Customer Cluster is not 

able to communicate the results of the provisioning task back to the Admin Cluster , the 

Admin Cluster w ill stay in a w ait ing state. It is current ly impossible to detect such 

situat ions, and in UC3 the monitoring tool must detect and report such situat ions.  

 

In all Use Cases, an error is created on purpose, in order to simulate a real problem. 

How  these errors are created is described in paragraph 5.7.1.3 about Use Case 1, paragraph 5.7.2.6 

about Use Case 2 and paragraph 5.7.3.6 about Use Case 3  

  



 

SDF Monitoring Page 23 of 49 Thesis 

5.2.1 UC1: Web gateway failure 

Short description 

If  the w eb gatew ay is dow n, this must be detected by the monitor. 

Scope 

Local cluster 

Purpose 

This Use Case can prove if  a monitoring tool is able to provide information about basic 

cluster components. 

Actors 

 Platform Operator 

Scenario 

1. The monitor checks periodically if  the w eb gateway is funct ioning properly. 

2. Create failure on the w eb gatew ay. 

3. The monitor detects the error in the web gatew ay. 

4. The monitor informs the Platform Operator.  

Success Conditions 

This Use Case is successful if  the Platform Operator gets not if ied w ithin 2 minutes after the 

failure. 

5.2.2 UC2: SOAP processor failure 

Short description 

If  a SOAP processor fails, this must be detected by the monitor.  

Scope 

Local cluster 

Purpose 

This Use Case proves if  the monitoring tool is able to retrieve information about Cordys 

specif ic components using SOAP calls. 

Actors 

 Platform Operator 

Scenario 

1. The monitor checks periodically if  the SOAP processors are funct ioning properly.  

2. Create failure on a SOAP processor. 

3. The monitor detects the error in the SOAP processor.  

4. The monitor informs the Platform Operator. 

Success Conditions 

This Use Case is successful if  the Platform Operator gets not if ied w ithin 2 minutes after the 

failure. 

  



 

SDF Monitoring Page 24 of 49 Thesis 

5.2.3 UC3: Engine task in ‘waiting’ state on Admin Cluster caused by error on Customer 
Cluster 

Short description 

If  a provisioning task which is running on a Customer Cluster fails, this must be detected by 

the monitor. 

Scope 

Mult i-cluster 

Purpose 

This Use Case can prove if  the monitoring tool is able to provide previously missing 

information about the mult i-cluster environment. E.g. it  tests the complete environment. 

Actors 

 User / Global Operator 

 Platform Operator 

Scenario 

1. A Global Operator starts a provisioning task by creating a user account +  assigning an 

applicat ion to this user. 

2. The task is sent to the customer cluster. 

3. The customer cluster starts executing the provisioning task.  

4. Create failure on customer cluster which is current ly undetectable.  

5. The monitor detects the error on customer cluster (e.g. by w atching the Process 

Instance Manager). 

6. The monitor updates the Engine task on the Admin Cluster w ith the error information.  

7. The monitor informs the Platform Operator.  

Success Conditions 

This Use Case is successful if  the Platform Operator gets not if ied w ithin 2 minutes after the 

failure. 

  



 

SDF Monitoring Page 25 of 49 Thesis 

5.3 Testing environment 

The test ing environment consists of 3 virtual computers. The setup is show n in the 

follow ing f igure. 

 

Figure 5.3.1 The diagram of the test ing environment  

  

Symbol 
Descript ion 

 

Virtual pc running CentOS Linux. 

 

Cordys C3 instance 

AC =  Admin Cluster 

CC =  Customer Cluster 

 

Nagios 3.2.0 instance 

 
NConf 1.2.5 instance 

 

The tw o machines on the left  represent the Cordys mult i-cluster environment w here the 

upper machine is the Admin cluster, and the low er machine is the Customer cluster. 

The machine on the right is the Nagios master server. All data from the Nagios slaves is 

collected here. This is also the machine that stores the Nagios conf igurat ion for the ent ire 

environment. This is done w ith the NConf tool.  

  



 

SDF Monitoring Page 26 of 49 Thesis 

5.4 The Monitoring tool: Nagios 

5.4.1 Monitoring tool selection 

As a monitoring tool, Nagios w as chosen for use in this project. This is because Cordys 

already has experience using Nagios. Customers of Cordys are also using Nagios as a 

monitoring tool. The tool must be open source. The tool must provide support for: 

monitoring Web Servers, Distributed monitoring, Notif icat ion, Extensibility, SOAP 

communicat ion, Integrat ion w ith other systems. Nagios supports this and is therefore used.  

5.4.2 How Nagios works 

To understand the follow ing chapters, it  is necessary to understand the basics of Nagios. 

Nagios uses its ow n terms for different monitoring processes. The most important w ill be 

explained brief ly. 

5.4.2.1 Objects 

Nagios dist inguishes tw o types of objects w hich can be monitored: Hosts and Services 

 A host is a node in a network, for example a router or a server.  

 A service is a component on a host, for example a w eb server, mail server, a log f ile 

or CPU load. 

Note: A service is alw ays linked to a certain host.  

5.4.2.2 Checks 

Monitoring an object is done using a check. For hosts, this is a host check, for services, this 

is a service check. A check requires a check plug-in w hich does the actual monitoring by 

checking the status of a host or a service and returning the answ er to Nagios.  

Nagios is command based, meaning any command w hich is executable from a command 

shell, is usable in Nagios. Because of this, it  is very easy to create your ow n check plug-ins 

to monitor specif ic components. This w ill be further explained in chapter 5.7 w here t he 

created plug-ins are described. 

Note: A check plug-in must output certain information in order to be useable for Nagios. See 

http://nagios.sourceforge.net/docs/3_0/pluginapi.html for detailed information on this subject. 

5.4.2.3 Configuration 

As w ith most Linux softw are, Nagios stores its configurat ion in f iles. Nagios doesn‟ t  

provide tools to manage these conf igurat ion f iles. This creates some dif f icult ies in managing 

mult iple Nagios instances in a distributed setup. This w ill be explained in chapter 5.6 

(Managing the Nagios conf igurat ion). 

Note: For more information about conf iguring Nagios, and about Nagios itself , see the documentat ion 

on http://nagios.sourceforge.net/docs/3_0/toc.html 

5.4.2.4 Web interface 

Nagios provides a w eb interface w hich allow s administrators to view  detailed status 

information of all components of the monitored environment. This interface must be 

installed separately and requires a w eb server. 

  

http://nagios.sourceforge.net/docs/3_0/pluginapi.html
http://nagios.sourceforge.net/docs/3_0/toc.html


 

SDF Monitoring Page 27 of 49 Thesis 

5.5 Distributed Nagios environment 

The Nagios Distributed monitoring is quite complex, and therefore, it w ill be explained. As 

explained in chapter 4.4 (Posit ioning the monitoring tool), one master server is used, and 

one or more slaves. The follow ing f igure show s the dif ferent components w hich are used in 

the distributed Nagios environment. 

 

Figure 5.5.1 Nagios distributed setup 

The components in the f igure are explained in the follow ing paragraphs. The components 

are described in order of execut ion. Each t ime a service or a host is monitored, the follow ing 

Nagios components are used. 

  



 

SDF Monitoring Page 28 of 49 Thesis 

5.5.1 Nagios Slave 

Monitoring a service or a host starts at the Nagios slave. The Nagios slave executes a check 

plug-in, w hich checks the status of a certain Cordys component, and returns the result  to 

Nagios. After receiving the result Nagios executes the command def ined in the OCSP or 

OCHP configurat ion opt ion. These commands are required for a Nagios instance to send the 

results of each check to the Nagios master. 

5.5.1.1 OCSP 

The Obsessive Compulsive Service Processor (OCSP) command is executed by Nagios every 

t ime a service check is f inished. A script is def ined as the OCSP command. Nagios passes 

the results of the service check as command-line arguments to this script. The script must 

perform a small t ranslat ion. The status of the service must be translated from text to a 

numerical code since the NSCA client only accepts a status code. The script sends the 

translated service-check results to the NSCA client, w hich w ill send them to the Nagios 

master. 

 

About service status translat ion: 

The follow ing show s the service status descript ions and their corresponding code. 

 OK  gets translated to 0 

 WARNING gets translated to 1 

 CRITICAL gets translated to 2 

 UNKNOWN gets translated to 3 

These service status descript ions and codes are Nagios specif ic.  

5.5.1.2 OCHP  

The Obsessive Compulsive Host Processor (OCHP) command is executed by Nagios every 

t ime a host check is f inished. A script is def ined as the OCHP command. Nagios passes the 

results of the host check as command-line arguments to this script. The script must  perform 

a small t ranslat ion. The status of the host must be translated from text to a numerical code 

since the NSCA client only accepts a status code. The script sends the translated host -

check results to the NSCA client, w hich w ill send them to the Nagios master. 

About host status translat ion: 

The follow ing show s the host status descript ions and their corresponding code.  

 UP   gets translated to 0 

 DOWN  gets translated to 1 

 UNREACHABLE gets translated to 2 

 UNKNOWN  gets translated to 3 

These host status descript ions and codes are Nagios specif ic.  

  



 

SDF Monitoring Page 29 of 49 Thesis 

5.5.2 NSCA 

NSCA, w hich stands for Nagios Service Check Adaptor, is an add-on to Nagios w hich 

enables Nagios to be used in a distributed setup. NSCA takes care of communicat ing 

betw een Nagios slaves and masters. Any check result  f rom a Nagios slave is send to the 

Nagios master by NSCA. On the Nagios slave, NSCA is in combinat ion w ith the OSCP and 

OSHP commands. NSCA consists of tw o parts, a client and a server. It  is possible to use 

authenticat ion and/or encrypt ion betw een the NSCA client and server, but this w as not 

used in the test ing environment because securing inter-cluster communicat ion w as not in 

the scope of the project. 

Notes: 

 Every check result  is send to the NSCA server individually.  

 NSCA does not cache check results or combine mult iple check results.  

 If  sending a check result  fails, the result  is only stored in the Nagios slave logs. Failed results w ill 

not be resent to the Nagios master. 

5.5.2.1 NSCA client 

The NSCA client is used on the Nagios slaves. The client transfers the results of a service 

or host check to the NSCA server on the Nagios master. The actual results of the check are 

supplied as command-line arguments. 

5.5.2.2 NSCA server 

The NSCA server is located at the Nagios master server and receives service and host 

check results from the Nagios slaves. After receiving a check result , it  w rites the result  to 

the Nagios external command f ile, from w hich it w ill be processed by the Nagios master.  

5.5.3 External command file 

Nagios uses an external command f ile to receive inst ruct ions and check results from 

external programs and plug-ins. Nagios periodically checks the external command f ile for 

new  commands and check results. After NSCA has w rit ten a check result to the external 

command f ile, Nagios reads the check result  and processes the information inside it . 

5.5.4 Nagios Master 

The Nagios master is responsible for storing, archiving and displaying the service check 

results. After Nagios has read the check result  f rom the external command f ile, Nagios 

updates the host or service status w ith the received information. If  the status has changed, 

e.g. a service is Crit ical; Nagios issues an alert  and sends out not if icat ions (if it  is conf igured 

to do so). 

  



 

SDF Monitoring Page 30 of 49 Thesis 

5.6 Managing the Nagios configuration 

An important part of implementing the design is to conf igure Nagios the correct w ay. This is 

especially complicated if  Nagios is used in a distributed setup. Nagios itself provides no 

method to create and maintain Nagios conf igurat ions. Therefore an external ut ility, NConf, 

is used. 

This tool enables administrators to create conf igurations for a distributed Nagios setup. 

Other tools are available, but most of them don‟ t  support distributed setups.  

Even though NConf is designed to create conf igurat ions for Nagios, unfortunately it  doesn‟ t  

provide a method to deploy the created conf igurat ions to Nagios. This is required in order 

for NConf to be useful. 

The NConf documentat ion does provide a few  suggest ions for conf igurat ion deployment in 

its documentat ion. NConf also provides a sample script for conf igurat ion deployment to a 

single machine. 

The next paragraphs describe w hat changes w ere made to each component in order to 

enable administrators to deploy conf igurat ions to mult iple Nagios instances.  

5.6.1 NConf, the management tool 

In the test ing environment, the Nagios master server is also the server on w hich NConf is 

running. The follow ing f igure show s a screenshot of NConf, after it  has generated the 

conf igurat ions. 

 

Figure 5.6.1 The NConf conf iguration screen 

If  an administrator clicks the conf igurat ion deployment button, the deployment page is 

opened and the deployment process is started. 



 

SDF Monitoring Page 31 of 49 Thesis 

5.6.2 Configuration deployment process 

The follow ing f igure shows the steps involved in the conf igurat ion deployment process. It  

show s the involved components including their corresponding script f iles or directories.  

 

Figure 5.6.2 Nagios conf igurat ion deployment process 

Nagios Master 

1. The NConf deployment page starts the conf igurat ion deployment script. 

2. Deploy the conf igurat ion local: 

2.1. The generated conf igurat ion is extracted to a temporary directory.  

2.2. The extracted conf igurat ion is copied to the local Nagios instance conf igurat ion 

directory and Nagios is ordered to reload its conf igurat ion. 

Nagios Slave 

3. The Nagios slave is called, using the SSH protocol, and is instructed to run its ow n 

deployment script. 

4. Deploy the conf igurat ion on the slave: 

4.1. Dow nload the generated conf iguration from the NConf server using the HTTP 

protocol. The conf igurat ion is extracted to a temporary directory.  

4.2. The extracted conf igurat ion is copied to the Nagios slave conf igurat ion directory 

and the Nagios slave is ordered to reload its conf igurat ion.  

 

The steps for the Nagios slave are repeated for each Nagios slave.  

Note: Which Nagios slaves must be conf igured is def ined in the deployment script on the NConf 

server. (/usr/local/nagios/share/nconf/ADD-ONS/deploy.sh) 



 

SDF Monitoring Page 32 of 49 Thesis 

5.7 Monitoring Cordys with Nagios 

This chapter describes how  the Use Cases described in chapter 5.2 (Success Use Cases) 

w ere realized. 

5.7.1 UC1: Web gateway failure 

In this Use Case, the w eb gatew ay of a Cordys cluster must be monitored, and the Platform 

Operator must be not if ied in case of errors. Monitoring the w eb gatew ay consists of 

monitoring the Apache w eb server, because Cordys is using Apache as a w eb gatew ay. 

Nagios provides a standard check plug-in to monitor w eb servers. This plug-in checks if  a 

w eb server responds to a standard HTTP request. If a HTTP response is received, and the 

HTTP status code is OK, the plug-in w ill report that the web server is operat ing properly.  

Since this Use Case is the f irst , this Use Case also proves if  Nagios is funct ioning properly.   

Monitoring the Apache web server is done by creat ing a service check on the host w here 

Apache is running. Creat ing the host def init ion is not covered here because it  is quite 

obvious. 

5.7.1.1 Creating the check command 

The f irst  step in creat ing a new  service check is creat ing a check command def init ion. Using 

a check command def init ion, administrators only need to specify the details of a check plug-

in once. After that, the def ined command can be easily assigned to a host.  

The follow ing f igure shows the NConf screen w here the check command propert ies are 

added. 

 

Figure 5.7.1 The add check command interface 

Explanation 

check command 

name: 

This is the name by which Nagios can ident ify the plug-in. 

check command 

line: 

This is the actual command w hich w ill be executed by Nagios. Nagios 

allow s the use of macro variables w hich w ill be f illed upon plug-in 

execution. 

$USER1$ The system path to the locat ion of the check plug-

ins: /usr/local/nagios/libexec 

$HOSTADDRESS$ This is the IP address of the host on w hich the 

service check w ill run. 

$ARG1$ This is an opt ional variable w hich can be f illed by 

an administrator w hen configuring a service check. 

Using $ARG(1-10)$ variables, administrators can 

supply extra parameters to a check plug-in. 

command 

descript ion: 

This is a descript ion, for the command parameters, w hich w ill be show n 

in the NConf interface when assigning the plug-in to a certain host. 

  



 

SDF Monitoring Page 33 of 49 Thesis 

5.7.1.2 Assigning the check command to a host 

The next step in monitoring the w eb server, is assigning the check command to a host, the 

host on w hich the w eb server is running. This is done by creat ing a service def init ion, w hich 

is show ed in the follow ing f igures. 

 

Figure 5.7.2 The check command, created earlier, is added to the host 

 

Figure 5.7.3 Service check propert ies 

Explanation 

service name: This is the name by which the service check w ill be show n 

in the Nagios w eb interface. 

params for check command By supplying the parameter “ !-u /cordys/” , the check 

plug-in w ill monitor the Cordys w eb interface at http://srv -nl-

crd34/cordys/.  

  



 

SDF Monitoring Page 34 of 49 Thesis 

5.7.1.3 Testing the service check 

After generat ing and deploying the conf igurat ion, the Nagios slave at the Admin Cluster 

started monitoring the web server. It  reported back all information about the status of the 

w eb server. 

The Nagios w eb interface now  show s the current status of the web server.  

 

Figure 5.7.4 The current status is OK 

 

As step 2 in the user case scenario describes, a failure on the w eb gatew ay is created. This 

is done by shutt ing down the web server. 

From the command shell: 

service httpd stop 

 

Now , Nagios detects that the web server is not operat ional. The w eb interface show s a red 

w arning, and the administrator receives an email in the mailbox. 

 

Figure 5.7.5 The w eb server status is CRITICAL 

 

Figure 5.7.6 The email w hich is received by the administrator 

5.7.1.4 The results 

Since Nagios detects the failure, and alerts the administrator, as show n in the previous 

paragraph, this Use Case w as proved successful. 

  



 

SDF Monitoring Page 35 of 49 Thesis 

5.7.2 UC2: SOAP processor failure 

The next step, in monitoring Cordys, is using SOAP to request the status of internal 

components. In this Use Case the SOAP processors w ill be monitored. 

Since Nagios has no plug-w hich provides SOAP support to monitor services, a custom plug-

in w as w rit ten. 

5.7.2.1 Plug-in language 

The f irst  decision that w as made w as w hich language to use, to w rite the plug-in. The 

Python script ing language w as chosen because it  is ideal for smaller sized scripts, and 

Cordys has experience using Python. 

5.7.2.2 Connecting to Cordys 

The next step was connect ing to Cordys using a SOAP call. Determining w hich method 

must be called w as done by using f iddler (http://ww w .f iddler2.com/) w hile view ing the 

SOAP processors from w ithin the Cordys interface.  Fiddler analyzes http traff ic from 

brow ser applicat ions. 

 

Figure 5.7.7 The Cordys interface for monitoring the SOAP processors 

  

http://www.fiddler2.com/


 

SDF Monitoring Page 36 of 49 Thesis 

The method that must be called is: 

<List xmlns="http://schemas.cordys.com/1.0/monitor"/> 

 

This method returns a list  of the SOAP processors, including their current status.  

This w as f irst  tested using SoapUI, a tool to send SOAP calls (http://w w w .soapui.org/). 

While trying to call the method, it turned out that Cordys requires every SOAP call to be 

authenticated. This is show n in the returned SOAP error message (trimmed for readability).  

<SOAP:Fault> 

<faultstring> 

Anonymous access is denied for the method 'List'. 

</faultstring> 

</SOAP:Fault> 

5.7.2.3 Authenticating a SOAP call 

It  is required to authenticate a SOAP call. This is done by calling the Single Sign-On 

processor w hich has the Request method. This method returns a SAML assert ion and a 

signature, which must be supplied as a header in every SOAP call.  

Using SoapUI it  is possible to authenticate using SOAP. Then, after manually placing the 

returned SAML assert ion and signature in a new  SOAP call, it  is possible to call the List 

method. 

5.7.2.4 Writing the plug-in 

Now  the process of sending a SOAP call is successfully tested, by hand, w ith an exist ing 

tool, it  was t ime to create the Nagios plug-in which w ill do the same, but automated. The 

mechanism of authenticat ing using a separated SOAP call, and using the received assert ion 

and signature, w ill be automated in the script. The script must run w ithout user input. The 

information required for authenticat ion w ill be supplied as command line arguments to the 

plug-in. This is done by Nagios. 

The script uses a number of steps to retrieve the status of a SOAP processor. The plug-in 

w as created in the follow ing steps: 

1. Determine w hich SOAP processor must be monitored and the username and 

passw ord for authenticat ion. 

This information is supplied as parameters to the script.  

2. Send the authenticat ion SOAP call. 

3. Filter the SAML assert ion and the Signature from the answ er. 

4. Create a new  SOAP call to the List method and insert the SAML assert ion and the 

Signature from step 3 as a SOAP header. 

5. Send the SOAP call to the List method. 

6. Filter the SOAP answ er for the requested SOAP processor.  

7. Determine the status of the SOAP processor by reading the status f ield. 

8. Return the status to the standard output, which w ill be read by Nagios. 

9. Exit  the script w ith the error code corresponding to the status.  

These codes are the same as described in chapter 5.5.1.1 (OCSP).  

5.7.2.5 Using the plug-in 

In order to use the plug-in the same steps as w ith UC1 w ere required. 

 Create the check command def init ion 

Because the script requires several parameters, NConf is conf igured to ask for these 

parameters. 

 Create service def init ions 

For each SOAP processor that is monitored, a service def init ion w as created.  

http://www.soapui.org/


 

SDF Monitoring Page 37 of 49 Thesis 

5.7.2.6 Testing the service checks 

After generat ing and deploying the new  configurat ion, Nagios is monitoring a number of 

SOAP processors, as show n in the follow ing f igure.  

 

Figure 5.7.8 The status of the SOAP processors is OK 

 

As step 2 in the user case scenario describes, a failure on a SOAP processor is created. 

This is done by stopping a SOAP processor. In this case w e test the Business Process 

Management processor. From the Cordys interface, stop is selected.  

 

Figure 5.7.9 The BPM processor is ordered to stop 

 

As show n, Nagios has detected the created failure and show s an alert.  

 

Figure 5.7.10 The status of the BPM processor is CRITICAL 

5.7.2.7 The results 

Since Nagios has detected the failure and has alerted the administrator, this Use Case w as 

proven successful. 

  



 

SDF Monitoring Page 38 of 49 Thesis 

5.7.3 UC3: Engine task in ‘waiting’ state on Admin Cluster caused by error on Customer 
Cluster 

In this Use Case the provisioning process w ill be monitored. This is the most complicated 

Use Case because information from mult iple Cordys clusters must be combined.  

5.7.3.1 Problem description 

In the provisioning process, some parts of the process take place on the Admin cluster, and 

some parts on the Customer cluster. If a step in a provisioning process requires act ion on 

the Customer cluster, the Admin cluster gives the instruct ions to the Customer cluster using 

a synchronous SOAP call. 

If  a problem occurs during this phase, it  is detectable because the Admin cluster w ill get a 

t imeout or a similar error. 

If  no problems occur, the Customer cluster w ill start execut ing the received instruct ions as 

a BPM. On the Admin cluster, the provisioning t icket corresponding to the current 

provisioning process is put in wait ing state. 

Under normal condit ions, the Customer cluster w ill report back to the Admin cluster w hen it  

is f inished. If report ing back is successful, the Admin cluster cont inues the provisioning 

process. 

If  report ing back fails, this failure is undetectable from the Admin cluster.  

In short 

The purpose of this Use Case is to detect situat ions w here the Customer cluster has failed 

to report back to the Admin cluster. 

5.7.3.2 The designed solution 

A design w ith proposals for tw o scenarios for monitoring this problem w as created. The 

scenarios take a dif ferent approach. 

In the f irst  scenario, Nagios w ill collect information on the Admin cluster, send it  to Nagios 

at the Customer cluster and thus combine information from the Admin cluster w ith 

information on the Customer cluster. This combined information is sent back to the Admin 

cluster w here Cordys is updated w ith the combined information. This scenario requires a 

few  changes in the SDF softw are. 

In the second scenario, only information on the Customer cluster w ill be monitored in order 

to detect the described problem. This scenario requires changes to be made to Nagios in 

order to create a full solut ion for the problem. This is because Nagios cannot compare the 

information on the Customer cluster to other information and therefore it must have its ow n 

bookkeeping of acknow ledged errors and unimportant information.  

Decision 

The f irst  scenario w as chosen because it  gives the best usable solut ion. Addit ionally, 

making changes into Nagios is undesirable, and the modif icat ions into SDF are very small 

and have zero impact on other funct ionality of SDF.  

 

See the attached UC3 design for more detailed information about the scenarios.  

  



 

SDF Monitoring Page 39 of 49 Thesis 

5.7.3.3 The solution procedure 

The solut ions components and procedure steps are show n in the follow ing f igure. 

 

Figure 5.7.11 The diagram of the components and steps involved in the Use Case solut ion. 

The procedure consists of the follow ing steps;  

On the Admin cluster: 

1. Nagios requests a list  of provisioning t ickets in w ait ing state from the Provisioning 

Processor. 

2. Nagios sends the list  to the Nagios instance at the Customer cluster.  

 

On the Customer cluster: 

3. Nagios reads the received list  of t ickets and requests a list  of Process Instances 

(BPM‟ s), containing the guids f rom the received list , f rom the PIM (Process 

Instance Manager). 

4. Nagios compares the statuses of the Process Instances to the statuses of the 

t ickets and puts the mismatching Tickets, including their related Process Instances, 

in a list . Nagios sends this list  to the Nagios instance at the Admin cluster.  

 

Again on the Admin cluster: 

5. Nagios reads the received list  and orders the Provisioning Processor to put the 

t ickets into error status. 

 

As visible in the above list, the ent ire procedure consists of three parts. Therefore also three 

Nagios plug-ins w ere created: 

 Request t icket list  & send to customer cluster (AC) 

 Compare t icket list  to process instance list  (CC) 

 Update the t ickets in the returned list  (AC) 

  



 

SDF Monitoring Page 40 of 49 Thesis 

5.7.3.4 Writing the plug-ins 

Plug-in 1: distribute engine tasks list 

The reason this name was chosen for this plug-in is pretty obvious, this plug-in itself 

doesn‟ t  actually do any monitoring. But it  is necessary for the other plug -ins to funct ion 

properly. 

A lot  of code could be reused from the SOAP processor plug-in: 

 Parsing command-line arguments. 

 Authenticat ion module. 

 Sending a SOAP call to Cordys. 

 Parsing XML data. 

 Filtering XML objects. 

 

The plug-in was created in the follow ing steps: 

1. Read the command-line arguments:  

username and passw ord to connect to Cordys. 

2. Authenticate (using the SAML module from the SOAP processor plug-in). 

3. Send the SOAP call to the Provisioning processor using the 

GetPreviousEngineTasks method. A f ilter is added to this request using the 

Filter element. Tickets w hich are already in Error state are f iltered out. 

4. Parse the received t icket list  into a XML DOM structure.  

5. Write the XML DOM structure to a f ile. 

6. Copy the f ile to the Customer cluster using the scp command. 

a. If  copying failed, exit  w ith status CRITICAL. 

b. If  copying succeeded, exit w ith status OK. 

  



 

SDF Monitoring Page 41 of 49 Thesis 

Plug-in 2: check pim engine tasks 

The name describes that this plug-in compares the PIM w ith the Engine Tasks in order to 

check the consistency betw een them. The list  of Engine Tasks w hich w as received from the 

Admin cluster is compared to the PIM. 

A lot of code could be reused from the SOAP processor plug-in, and from plug-in 2 from 

this Use Case: 

 Parsing command-line arguments. 

 Authenticat ion module. 

 Sending a SOAP call to Cordys. 

 Parsing XML data. 

 Filtering XML objects. 

 Writ ing output to a f ile. 

 

The plug-in was created in the follow ing steps: 

1. Read the command-line arguments: 

 Username and passw ord to connect to Cordys. 

 The f ilename of the t icket f ile received from the Admin cluster. 

 Filename of the f ile to w rite the output to.  

 Server address of the Admin cluster 

 Username and passw ord to connect to the Admin cluster 

 Locat ion to upload the return f ile on the Admin cluster 

2. Read the t icket f ile received from the Admin cluster 

3. Authenticate (using the SAML module from the SOAP processor plug-in). 

4. Send the SOAP call to the Business Process Management processor using the 

QueryAdminData method. 

5. Brow se the list  of Process Instances and for each Process Instance:  

 Compare the status w ith the related t icket 

 If  the statuses mismatch, add the t icket to the export list  

6. Write the export list  to the output f ile 

7. Copy the output f ile to the Admin cluster using the scp command. 

a. If  copying failed, exit  w ith status CRITICAL. 

b. If  copying succeeded 

i. If  one or more mismatches w ere found, exit  w ith status CRITICAL. 

ii. If  no mismatches w ere found, exit  w ith status OK.  

  



 

SDF Monitoring Page 42 of 49 Thesis 

Plug-in 3: check process cc pim errors 

The name of the plug-in describes that this plug-in processes the list  of PIM errors from the 

Customer cluster. Almost all code from the previous plug-in could be reused. 

 

The plug-in was created in the follow ing steps: 

1. Read the command-line arguments: 

 Username and passw ord to connect to Cordys. 

 The f ilename of the t icket error f ile received from the Customer cluster. 

2. Read the t icket error f ile received from the Customer cluster.  

3. Authenticate to Cordys. 

4. Brow se the list  of error t ickets, and for each t icket:  

 Create an error message w ith error details from the t icket f ile.  

 Send a SOAP call to the Provisioning processor using the ActivityError 

method. This method updates the t icket w ith the supplied error information. 

5. Exit  the plug-in: 

a. If  no t ickets w ere updated, exit the script w ith status OK.  

b. If  one or more t ickets were updated, exit  the script w ith status CRITICAL. 

5.7.3.5 Using the plug-ins 

In order to use the plug-ins, conf iguring them into Nagios w as required. 

 Create the check command def init ion 

Because the plug-ins require several parameters, NConf is conf igured to ask for 

these parameters. 

 Create service def init ions 

Plug-in 1 and 3 w ere conf igured to run on the Admin cluster. Plug-in 2 w as 

conf igured to run on the Customer cluster.  

  



 

SDF Monitoring Page 43 of 49 Thesis 

5.7.3.6 Testing the service checks 

After generat ing and deploying the new  configurat ion, Nagios is monitoring the provisioning 

process, consist ing of 3 service checks. This is show n in the follow ing f igure.  

 

Figure 5.7.12 The status of the Provisioning plug-ins is OK. 

 

Step 4 in the Use Case dictates that a current ly undetectable failure must be created. As 

explained in paragraph 5.7.3.1 (Problem descript ion), this is a situat ion w here the Customer 

cluster cannot report back to the Admin cluster in asynchronous calls.  

The failure is created by modifying the cluster.AdminClusterUri property of the 

Provisioning processor on the Customer cluster so it points to a non-exist ing server. 

Now , a new  provisioning process is started. The t ickets are shown in the follow ing f igure.  

 

Figure 5.7.13 The t ickets are in w ait ing state. 

  



 

SDF Monitoring Page 44 of 49 Thesis 

Now , after the Customer cluster has stopped executing the BPM, Nagios detects the 

mismatch, and sends a list  back to the Admin cluster. Meanw hile, an email was sent to 

inform the Administrator of the mismatch. The detect ion of the mismatch is show n in the 

follow ing f igure. 

 

Figure 5.7.14 Nagios at the Customer cluster has detected the mismatch, and sent this 

mismatch to the Admin cluster 

 

Now , Nagios at the Admin cluster w ill read the received list  w ith mismatching t ickets, and 

w ill update the t ickets in Cordys. As show n in the follow ing f igure, Nagios has received the 

list , and updated Cordys w ith the information. Addit ionally, an email has been sent to the 

Administrator informing him about the updated t ickets. 

 

Figure 5.7.15 Nagios at the Admin cluster has processed the list  of mismatching t ickets, 

and updated Cordys. 

  



 

SDF Monitoring Page 45 of 49 Thesis 

The t icket is now  updated. This is show n in the follow ing f igure.  

 

Figure 5.7.16 The t icket w as put into error state. 

Note: The Order t icket w ill stay in w ait ing state. This is because the UserApplSubscr t icket is a 

child t icket of the Order t icket. It  is designed this w ay, and this is a normal situat ion. 

 

The error details show  that the error is logged by the Nagios plug-in. This w ill enable 

administrators to dist inguish errors from Nagios plug-ins from Cordys errors. The error 

information is show n in the follow ing f igure.  

 

Figure 5.7.17 Screenshot of the error details, logged by the Nagios plug-in. 

5.7.3.7 The results 

The tests show  that: 

 Nagios has successfully detected the mismatch betw een the Process Instance on 

the Customer cluster and the Provisioning Ticket  on the Admin cluster. 

 Nagios has successfully updated the t icket to error state.  

 Nagios has successfully not if ied the Administrator by email.  

Therefore, the Use Case w as proven successful. 



 

SDF Monitoring Page 46 of 49 Thesis 

6. Conclusions 

6.1 The results 

In draw ing a conclusion, the purpose of the project is compared to the achievements.  

The purpose of the project w as to create an overview  of the status the ent ire Mult i -cluster 

Environment; to provide administrators w ith up-to-date information about the Cordys mult i-

cluster environment. 

The created Conceptual Solut ion covers this concept adequately.  

The test ing environment has proved that monitoring Cordys components is possible and 

provides the missing information about the Cordys Mult i-cluster Environment (See paragraph 

5.7.1.4 about Use Case 1, paragraph 5.7.2.7 about Use Case 2 and paragraph 5.7.3.7 

about Use Case 3). 

This could be easily expanded to a solut ion w here all Cordys components are monitored.  

Addit ionally, this project has created know ledge about monitoring the Cordys system, and 

has helped to raise aw areness about monitoring. This show ed up during the many 

discussions and conversations. This awareness w ill help integrat ing the monitoring aspect 

into further applicat ion development. 

6.2 The process 

Overall the process w ent good. Indicators for this w ere: Results w ere delivered quick, 

enthusiast ic react ions at the f irst  presentat ion and posit ive feedback during the evaluat ion 

meetings. 

 

The process also had a few  w eaknesses:  

Interviews 

A few  things could have been done better in preparing the interview s described in chapter 

4.2 (Requirements). The quest ions for the interview  w ere not discussed before conduct ing 

the interview s. This resulted in discovering the incompleteness of the quest ions during the 

f irst  interview .  

This could have been avoided by review ing the interview  quest ions in advance.  

Designing the Conceptual Solution 

At the start  of designing the Conceptual Solut ion, the follow ing problem w as encountered: 

Finding the most usable way of w rit ing dow n the requirements took some t ime. This 

resulted in mult iple formats and notat ions of the same requirements. This could have been 

avoided by deciding w hich one was going to be used, and then st icking to it. On the other 

hand, that might have led to a situat ion w here requirements w ould have been w rit ten in an 

unusable or insuff icient format. 

One other problem was f inishing the Conceptual Solut ion. When the design was almost 

f inished, more ideas came up and it w as not clearly def ined w hen the Conceptual Solut ion 

w ould be f inished. This resulted in perhaps spending too much t ime on the design. This 

could have been avoided by def ining milestones for the Conceptual Solut ion, limit ing the 

scope more, and more important: Defining the end.  

Writing the Thesis 

This w as started too late. This w as caused by planning insuff icient t ime for it  in the 

beginning of the project. This w as not done because the plan of approach w as not yet 

f inished at that t ime, but it  should have been done anyw ay to have init ial thesis version 

ready earlier in the project. From this could be concluded that this internship w as more 

about the w ork, than about graduating. 



 

SDF Monitoring Page 47 of 49 Thesis 

7. Recommendations 

7.1 BPM vs. Provisioning Ticket comparison 

7.1.1 Defining matching conditions 

Situation 

In UC3, the status of Tickets is compared to the status of the corresponding Process 

Instance. The condit ions on w hich the plug-in f lags them as mismatching are hardcoded in 

the Nagios plug-in. 

Recommendation 

The matching condit ions could be stored in a conf igurable matrix. This should be preferably 

conf igurable from NConf. 

7.1.2 Thresholds 

Situation 

If , for example, a t icket is in „ w ait ing‟  state, and its related Process Instance is also in 

„ w ait ing‟  or „ running‟  state, this is a matching situat ion according to Nagios. How ever, if it  

keeps this w ay for a w eek, it  could be undesirable. 

Recommendation 

Enhance the Nagios plug-in so that it  can handle t ime threshold and f lag a situat ion as 

mismatching if  a Process Instance is running or w aiting too long.  

7.1.3 Provisioning models 

Situation 

Different provisioning models can be used, and each of them can involve different steps on 

the Customer cluster. 

Recommendation 

An analysis should be done if  the solution to UC3 is suitable for all provisioning models.  

Addit ionally, different matching condit ions could be desirable for each provisioning model. 

Therefore the Nagios plug-ins could be enhanced to dist inguish the dif ferent provisioning 

models and apply dif ferent matching schemes to them. 

7.2 Securing the communication between Nagios instances 

7.2.1 Users and Passwords 

Situation 

The root account is used in scripts for sending f iles to other Nagios instances.  

Recommendation 

Create a user account w ith limited access to only the f ile and directories necessary.  



 

SDF Monitoring Page 48 of 49 Thesis 

7.2.2 Configuration deployment 

Situation 

Slaves dow nload their conf igurat ion from the NConf server using the HTTP protocol, and 

using HTTP basic authenticat ion. 

Recommendation 

This could be changed to HTTPS or SCP. 

7.2.3 Check results 

Situation 

NSCA is not conf igured to use authenticat ion w hen sending check results to the Nagios 

master. 

Recommendation 

This could be conf igured to prevent 3 rd party applicat ions from sending false information to 

the Nagios master. NSCA can also be conf igured to use encrypt ion.  

Note: Authenticat ion must be conf igured on both master and slave servers. 

7.2.4 Ticket lists / Process Instance lists 

Situation 

Ticket lists and Process Instance lists are exchanged between the Nagios instances. This is 

done using SCP. This is a secure protocol.  

Recommendation 

Authenticat ion is current ly done using a username and passw ord combinat ion. This could be 

replaced w ith public key authenticat ion. 

  



 

SDF Monitoring Page 49 of 49 Thesis 

7.3 Nagios implementation options 

7.3.1 Nagios slave-master communication failure 

Situation 

In case of a communicat ion error betw een the Customer Cluster and the Admin Cluster, 

Nagios slaves at the Customer Clusters w ill not be able to send their check results to the 

Nagios master. The Nagios master w ill detect this because it checks the age of check 

results. If  check results are too old, Nagios w ill issue an alert , saying the service results are 

outdated. The maximum age is conf igurable. Nagios uses the term freshness for this topic. 

(See: http://nagios.sourceforge.net/docs/3_0/freshness.html for more information).  

The follow ing f igure shows an example of the Nagios master interface in this situat ion.  

 

Figure 7.3.1 Example of the Nagios w eb interface w hile the Nagios slaves are dow n 

Nagios doesn‟ t  do anything part icular in this case. 

Recommendation 

It  is possible to conf igure the Nagios master to take act ion in this case. For example to 

perform a ping to the Nagios slaves. 

 This could be done using event handlers, w hich can be executed if  a certain service 

fails repeatedly.  

 Another opt ion is to enhance the stale_service or stale_host script to 

invest igate the error. 

Links 

The follow ing pages contain more information about this topic:  

 http://nagios.sourceforge.net/docs/3_0/distributed.html 

 http://nagios.sourceforge.net/docs/3_0/freshness.html 

 http://nagios.sourceforge.net/docs/3_0/eventhandlers.html 

http://nagios.sourceforge.net/docs/3_0/freshness.html
http://nagios.sourceforge.net/docs/3_0/distributed.html
http://nagios.sourceforge.net/docs/3_0/freshness.html
http://nagios.sourceforge.net/docs/3_0/eventhandlers.html

	Document Information
	Thanks
	Summary
	Introduction
	Content
	Chapter 1, Introduction
	Chapter 2, Environment
	Chapter 3, Problem, Purpose, Job
	Chapter 4, Conceptual Solution
	Chapter 5, Implementation
	Chapter 6, Conclusions
	Chapter 7, Recommendations

	Audience
	Purpose of the document
	Definitions, acronyms, and abbreviations
	Environment
	The Cordys Company
	Project history
	Related projects
	Roles & Stakeholders
	Project executer
	Roles
	End user
	Project Manager
	Product Architect
	School Counselor

	Stakeholders
	SDF Team
	IT Team
	School


	Technical Environment
	The Cordys Solution
	Cordys Cluster
	Cordys multi-cluster environment
	SaaS Deployment Framework (SDF)
	Organization
	Application
	User


	Organizational environment
	Problem, Purpose, Job
	Problem description
	In short

	Purpose
	Job
	Conceptual Solution
	Introduction
	Requirements
	Preparing the interviews
	Conducting the interviews
	Processing the results
	The results; the requirements
	Key functional requirements
	Overview of the entire environment
	Pushing alerts in case of problem

	Key non-functional requirements
	Extensibility of Architecture
	Independency of architecture



	Definitions
	Positioning the monitoring tool
	Description
	Scenario 1
	Pros

	Scenario 2
	Pros


	Decision

	Monitoring Integration
	Description
	Decisions

	Monitoring individual Cordys components
	Implementation
	Introduction
	Success Use Cases
	UC1: Web gateway failure
	Short description
	Scope
	Purpose
	Actors
	Scenario
	Success Conditions

	UC2: SOAP processor failure
	Short description
	Scope
	Purpose
	Actors
	Scenario
	Success Conditions

	UC3: Engine task in ‘waiting’ state on Admin Cluster caused by error on Customer Cluster
	Short description
	Scope
	Purpose
	Actors
	Scenario
	Success Conditions


	Testing environment
	The Monitoring tool: Nagios
	Monitoring tool selection
	How Nagios works
	Objects
	Checks
	Configuration
	Web interface


	Distributed Nagios environment
	Nagios Slave
	OCSP
	OCHP

	NSCA
	NSCA client
	NSCA server

	External command file
	Nagios Master

	Managing the Nagios configuration
	NConf, the management tool
	Configuration deployment process
	Nagios Master
	Nagios Slave


	Monitoring Cordys with Nagios
	UC1: Web gateway failure
	Creating the check command
	Explanation

	Assigning the check command to a host
	Explanation

	Testing the service check
	The results

	UC2: SOAP processor failure
	Plug-in language
	Connecting to Cordys
	Authenticating a SOAP call
	Writing the plug-in
	Using the plug-in
	Testing the service checks
	The results

	UC3: Engine task in ‘waiting’ state on Admin Cluster caused by error on Customer Cluster
	Problem description
	In short

	The designed solution
	Decision

	The solution procedure
	Writing the plug-ins
	Plug-in 1: distribute engine tasks list
	Plug-in 2: check pim engine tasks
	Plug-in 3: check process cc pim errors

	Using the plug-ins
	Testing the service checks
	The results


	Conclusions
	The results
	The process
	Interviews
	Designing the Conceptual Solution
	Writing the Thesis

	Recommendations
	BPM vs. Provisioning Ticket comparison
	Defining matching conditions
	Situation
	Recommendation

	Thresholds
	Situation
	Recommendation

	Provisioning models
	Situation
	Recommendation


	Securing the communication between Nagios instances
	Users and Passwords
	Situation
	Recommendation

	Configuration deployment
	Situation
	Recommendation

	Check results
	Situation
	Recommendation

	Ticket lists / Process Instance lists
	Situation
	Recommendation


	Nagios implementation options
	Nagios slave-master communication failure
	Situation
	Recommendation
	Links



