
Teaching Software Architecture Concepts with HUSACCT
Tool Demo

Christian Köppe
HAN University of Applied Sciences,
Arnhem/Nijmegen, the Netherlands

christian.koppe@han.nl

Leo Pruijt
HU University of Applied Sciences, Utrecht, the

Netherlands
leo.pruijt@hu.nl

Abstract
Teaching software architecture (SA) in a bachelor computer science
curriculum can be challenging, as the concepts are on a high ab-
straction level and not easy to grasp for students. Good techniques
and tools that help with addressing the challenging SA aspects in a
didactically responsible way are needed.

In this tool demo we show how we used the software architec-
ture compliance checking tool HUSACCT for addressing various
concepts of SA in our courses on software architecture. The stu-
dents were introduced to architectural reconstruction and architec-
ture compliance checking, which helped them to gain important
insights in aspects such as the relation between architectural mod-
els and code and the specification of dependency relations between
architecture elements as concrete rules.

Categories and Subject Descriptors K.3.2 [Computers and Edu-
cation]: Computer and Information Science Education —Computer
science education

General Terms Software Architecture, Education

Keywords Architecture Reconstruction, Architecture Confor-
mance Checking

1. Introduction
Software architecture is a complex knowledge area, where many
concepts are on a high abstraction level. Addressing all these con-
cepts in a way that the students can easily grasp them is challeng-
ing.

In our experience, many students perform well at the lower level
concepts of programming and small-scale designing. The more ab-
stract the concepts become, the more difficult it is for them to
grasp these concepts and connect their programming knowledge
to these high-level architectural concepts. We observed that stu-
dents often develop high-level architectural models such as com-
ponent diagrams or layered architectures, but somehow don’t see
them directly related to the system to be built based on these mod-
els. In the implementation of such systems, the architecture is often

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted.
presented at SPLASH-E 2015, October 26, 2015, Pittsburgh, PA, USA.
Copyright is held by the owner/author(s).

not completely realized as intended. Reasons are many-fold: low-
level issues the students solve in the most straight-forward way,
hereby violating the architectural decisions made before; insuffi-
cient knowledge about how the models translate to concrete imple-
mentations; or the perception that architecture needs to be done in
larger projects, but is not relevant or valuable when it comes to the
concrete realization.

Finding ways to help students with better understanding archi-
tectural concepts and supporting them with connecting these con-
cepts to their prior knowledge on programming and software design
would improve software engineering education. We believe that us-
ing a compliance checking tool such as HUSACCT offers possibil-
ities to address these issues in a holistic way. The need for defining
the architecture in such a tool including the associated rules that
are an essential part of it require the students to think further than
just making box-and-arrow diagrams. The students hereby have to
ensure that they make correct use of the different architectural el-
ements and rule types in order to define a correct representation
of the architecture. Furthermore, the necessary correct mapping of
these architectural elements to source code artifacts makes this con-
nection explicit and shows the students that changing one of them
is likely of direct influence on the other one.

In the next section we shortly describe the HUSACCT tool.
We then explain how the tool is used in our software architecture
courses. We conclude with an elaboration on the educational value
of using HUSACCT.

2. The HUSACCT tool
HUSACCT (HU Software Architecture Compliance Checking
Tool) was initially developed by a group of 25 students during
an advanced software architecture course at the HU University of
Applied Sciences and has been improved since. It supports compli-
ance checking of semantically rich modular architectures (SRMA):
“expressive modular architectures, composed of different types of
modules, which are constrained by different types of rules; ex-
plicitly defined rules, but also rules inherent to the module types”
[5]. This extensive SRMA support offers good opportunities for
applying it also for educational purposes.

The following summary is quoted from [6], where an extensive
description of the tool is given:

“HUSACCT is a tool that provides support to ana-
lyze implemented architectures, define intended architec-
tures, and execute conformance checks. Browsers, dia-
grams and reports are available to study the decomposi-
tion style, uses style, generalization style and layered style
[3] of intended architectures and implemented architec-
tures. HUSACCT is free-to-use and open source. It has
been developed in Java and analyzes Java and C# source

code. The executable and source code are downloadable at
http://husacct.github.io/HUSACCT/. An introduc-
tion video and documentation are accessible at the same
site.”

3. HUSACCT in a software architecture course
Both authors use HUSACCT in courses on software architecture at
their universities. The courses are both part of bachelor curricula
in Computer Science with a strong focus on Software Engineering.
The courses at the HU University of Applied Sciences are at the
2nd year (introductory level) and 3rd year (advanced level). The
course at HAN University of Applied Sciences is at the 3rd year.

In the courses, two of the topics covered that make use of the
HUSACCT tool are architecture reconstruction and architecture
compliance checking. The lectures on these topics consist of the-
oretical explanation and hands-on exercises. The results of these
exercises are immediately discussed in class. Additionally, take-
home assignments are given which implicitly address other impor-
tant aspects too (as described in section 4). Example systems for
the practical parts were HUSACCT itself (version 1.0) for the take-
home assignments and an open source card game for the in-class
exercises. Both are implemented in Java, which the students are
familiar with, and had the source code available.

The following sections describe the take-home assignments in
more detail.

3.1 Assignment 1: Architecture Reconstruction
This assignment is intended for making the students familiar with
HUSACCT and to introduce architecture reconstruction, a process
of reverse engineering that allows an analyst “to build, maintain,
and understand a representation of an existing architecture” [2].

The students get the source code of HUSACCT itself (version
1.0) and have to reconstruct the intended architecture of it. They
first have HUSACCT analyze the source code. Based on this anal-
ysis, HUSACCT builds an explorable hierarchical model which
can be examined using various HUSACCT views. Figure 1 shows
a module diagram of the implemented architecture (based on the
high-level packages) and their dependencies. Each shown depen-
dency is based on a summary of all concrete dependencies between
both elements in the implemented system. The number of concrete
dependencies is shown in the diagram and the dependencies with
the highest numbers of concrete dependencies are additionally em-
phasized by representing them with thicker lines. After selection of
a dependency arrow in the diagram, a tabular and sortable overview
is given of all concrete dependencies. This overview contains infor-
mation on the from- and to-artifacts (on class level), the line num-
ber in the source code file and the type of dependency. Clicking on
a concrete dependency opens a code browser which highlights the
line of code causing this dependency.

Using these views, the students have to examine the imple-
mented architecture and reason about a probable intended architec-
ture. They also have to examine the dependencies in detail, hereby
being exposed to a variety of dependency types. Based on their
findings, the students finally are asked to identify which elements
which parts of the intended architecture represent. All results of this
assignment had to be handed in by the students and were discussed
in the following class meeting.

3.2 Assignment 2: Architecture Compliance Checking
In this assignment, the students are given the intended architecture
of HUSACCT v1.0. A component model was provided (see Figure
2), which also formed the starting point of the HUSACCT imple-
mentation. All components had a clear responsibility, such as the
analysis of the source code (Analyse component) or the definition

Figure 1: Visualization of implemented architecture and a tabular
dependency overview

Software Architecture 1

© HU SAP-A4: 1

Assignment SA & Practice 4: Software Architecture Compliance Checking

Provided
• HUSACCT, see the previous assignment instruction for download, run, documentation …
• ‘SAP 3 HUSACCT_1.0 Source Code Assignment.zip’ in folder Assignments on Sharepoint.

Assignments
1. Create a workspace and analyse the code of HUSACCT_1.0.

See the instructions in the previous assignment.

2. Perform a SA compliance check on the top level of the modular architecture.
2.1. Define the intended modular architecture (HUSACCT view: Define intended architecture).

2.1.1. Create modules
Based on the component model below, create five component with the same names.
Select SoftwareArchitecture => New Module; enter name and setModule type to Component.

2.1.2. Create rules

In the previous step, for each component a facade and a ‘facade convention rule’ were added
automatically. Other rules are derivable from the diagram above. Most dependencies
between the components are allowed, but in HUSACCT, ‘is allowed’ rules don’t have to be
registered, only real constraints. Register the following rules: Select module => Rules - Add.

From-Module Constraint To-Module
Analyse is not allowed to use Define
Analyse is not allowed to use Validate
General GUI & Control Is the only module allowed to use Graphics

2.2. Create a diagram of the defined architecture (Define intended architecture => Intended architecture

diagram). Export the diagram and include it in your result document. Close the diagram.

2.3. Assign the packages and classes of the source code to the modules of the intended architecture.
Select a module and click on Add within panel ‘Assigned software units’. Select and add the
software units from the table below. Precondition: the application is analysed.

Module Source code
Analyse husacct.analyse
Interface<Analyse> husacct.analyse.IAnalyseService
Define husacct.define
Interface< Define > husacct.define.IDefineService
General GUI & Control husacct.control
Interface< General GUI & Control > husacct.control.IControlService,ILocaleChangeListener
Graphics husacct.graphics
Interface< Graphics > husacct.graphics.IGraphicsService
Validate husacct.validate
Interface< Validate > husacct.validate.IValidateService

Figure 2: Component Model of HUSACCT v1.0

Software Architecture 1

© HU SAP-A4: 1

Assignment SA & Practice 4: Software Architecture Compliance Checking

Provided
• HUSACCT, see the previous assignment instruction for download, run, documentation …
• ‘SAP 3 HUSACCT_1.0 Source Code Assignment.zip’ in folder Assignments on Sharepoint.

Assignments
1. Create a workspace and analyse the code of HUSACCT_1.0.

See the instructions in the previous assignment.

2. Perform a SA compliance check on the top level of the modular architecture.
2.1. Define the intended modular architecture (HUSACCT view: Define intended architecture).

2.1.1. Create modules
Based on the component model below, create five component with the same names.
Select SoftwareArchitecture => New Module; enter name and setModule type to Component.

2.1.2. Create rules

In the previous step, for each component a facade and a ‘facade convention rule’ were added
automatically. Other rules are derivable from the diagram above. Most dependencies
between the components are allowed, but in HUSACCT, ‘is allowed’ rules don’t have to be
registered, only real constraints. Register the following rules: Select module => Rules - Add.

From-Module Constraint To-Module
Analyse is not allowed to use Define
Analyse is not allowed to use Validate
General GUI & Control Is the only module allowed to use Graphics

2.2. Create a diagram of the defined architecture (Define intended architecture => Intended architecture

diagram). Export the diagram and include it in your result document. Close the diagram.

2.3. Assign the packages and classes of the source code to the modules of the intended architecture.
Select a module and click on Add within panel ‘Assigned software units’. Select and add the
software units from the table below. Precondition: the application is analysed.

Module Source code
Analyse husacct.analyse
Interface<Analyse> husacct.analyse.IAnalyseService
Define husacct.define
Interface< Define > husacct.define.IDefineService
General GUI & Control husacct.control
Interface< General GUI & Control > husacct.control.IControlService,ILocaleChangeListener
Graphics husacct.graphics
Interface< Graphics > husacct.graphics.IGraphicsService
Validate husacct.validate
Interface< Validate > husacct.validate.IValidateService

Figure 3: Example rules of intended architecture HUSACCT v1.0

of the intended architecture (Define component). Additionally, the
rules that are applicable for the relations between the modules of
the intended architecture and for the modules themselves (such as
naming constraints) were given (see Figure 3 for an example). Fi-
nally, an overview of the mappings from the elements of the in-
tended architecture to the software units in the analyzed source
code (Figure 4) was provided. This information was used by the
students to define the intended architecture of HUSACCT in the
tool itself.

The students then had to execute the compliance check, examine
the results, and to answer a series of questions such as “Which
rule is most often violated and is this a problem?” or “Will it be
easy to replace the existing user interface of Define by another

Figure 4: Define intended architecture view in HUSACCT, module hierarchy, mapping to software units and rule specification shown

implementation? Why?”. As with the previous assignments, the
students had to hand in their results which then were used for an
extensive discussion in the next class meeting.

3.3 Assignment 3: Combination of reconstruction and
compliance checking

This assignment is given only at the 3rd year students of HU Uni-
versity of Applied Sciences as part of the course Advanced Soft-
ware Architecture. It is intended for applying both architecture re-
construction and compliance checking on a larger and more com-
plex system and in a group of 3-4 students. The collaborative aspect
encourages discussions between the students and increases the va-
riety of e.g. potential solutions.

The students are first asked to analyze a larger open source sys-
tem (up to 300.000 lines of code, a couple of examples were pro-
vided but the students were free to choose). They then have to de-
termine a possible intended architecture through examining the an-
alyzed modular elements and reasoning about possible design de-
cisions made by the developers of the systems. Based on this likely
intended architecture, the students had to identify possible applica-
ble rules, e.g. rules of layering if layers were identified or commu-
nication via interfaces only if components were identified. Based
on the results of the following compliance check, the students have
to give advice on possible improvements for the system on both ar-
chitectural and implementation level, making again the connection
between these two more tangible.

4. Educational Value of HUSACCT
In our opinion, using HUSACCT in software architecture education
is valuable, as it:

• supports the teaching of the procedural part of architecture
reconstruction and architecture compliance checking;

• makes the connection between the intended architecture and the
realized source code explicit and visible through the required

mapping of architectural elements on software units (as shown
in Figure 4);

• supports better understanding of semantically rich modular ar-
chitectures [5], as there are two different representations of the
intended architecture: as hierarchical tree and as diagram (see
Figures 1 and 4);

• supports better understanding of the different types of rules that
are related to the dependencies between different modules, as
these rules need to be explicitly defined in HUSACCT (see
Figure 4);

• shows the relation between a logical division into components
in the architecture and the equivalents in the realized software
system, as in HUSACCT all elements of the compliance check-
ing process map to components in the software architecture (in
Figure 4, the component Analyse is mapped to the package
husacct.analyse);

• gives good insight in the variety of possible dependencies in
source code, as all dependency types described in [4] are in-
cluded in the source code analysis of HUSACCT and provided
in the violation view (see Figure 5), including direct linking to
the violation-causing source code;

• shows the direct relation between an architectural violation and
the part of the source code that is responsible for it, again ex-
plicitly linking these high- and low-level aspects, hereby mak-
ing the relevance of the architectural concepts more experience-
able; and

• combines conceptual and procedural knowledge, two important
knowledge dimensions as described in the revised Bloom’s
taxonomy [1].

However, we cannot provide empirical proof of these assump-
tions yet. In the future, we will validate the applicability of the tool
in a large scale empirical study across different universities.

Figure 5: Violation report and implemented architecture view in HUSACCT (only parts are shown)

References
[1] L. W. Anderson and D. R. Krathwohl. A taxonomy for learning,

teaching, and assessing: A revision of Bloom’s taxonomy of educational
objectives. Addison Wesley Longman, Inc, New York, 2001. ISBN
0321084055. .

[2] L. Bass, P. Clements, and R. Kazman. Software Architecture in Prac-
tice, volume 3rd editio. Addison-Wesley Professional, Oct. 2012. ISBN
0321815734, 9780321815736.

[3] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P. Mer-
son, R. Nord, and J. Stafford. Documenting Software Architectures:
Views and Beyond. Addison-Wesley, 2010.

[4] L. Pruijt, C. Köppe, and S. Brinkkemper. On the Accuracy of Architec-
ture Compliance Checking Support: Accuracy of Dependency Analysis

and Violation Reporting. In Proceedings of the International Confer-
ence on Program Comprehension, ICPC’13, pages 172–181, San Fran-
cisco, CA, USA, 2013. ISBN 9781467330923.

[5] L. Pruijt, C. Köppe, and S. Brinkkemper. Architecture Compliance
Checking of Semantically Rich Modular Architectures: A Comparison
of Tool Support. In Proceedings of the 29th International Conference
on Software Maintenance, ICSM’13, pages 220–229. IEEE Computer
Society Press, 2013. .

[6] L. Pruijt, C. Köppe, J. van der Werf, and S. Brinkkemper. HUSACCT:
Architecture Compliance Checking with Rich Sets of Module and Rule
Types. In Proceedings of the 29th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2014), pages 1–4, 2014.
ISBN 9781450330138. . URL http://dl.acm.org/citation.
cfm?id=2642937.2648624.

