[image: image15.png]Ele Window Aot

=AIERS
5 5 Deions
® (3 Evemal
553 Flows
® (3 Evemal
& 3 fows
Mateials
@ 0 chascers
® (3 conquesimap
2 detakml
@ (3 envicnment
3 External
2 New Mateiel 4
@ 3 props
2 st
@ 3 ties
Soenes
3 Extenal
Wizards
3 Extenal
@ (3 wiaards

* New Material 4

[Show Advanced Options.

MyTab Myfab Pre:

MyClassColor

MyCategoimage

MyEnum

(R255, 6255, B255, A 255)

Applyto al.

Material Matters
Creation of a material editing toolset
[image: image16.png]INSTITUTE FOR
ENGINEERING & DESIGN
HOGESCHOOL

UTRECHT

Dennis van Zwieten

Student number: 1541262

Course code: TCMT-AFST-09
24-05-2011

[image: image17.png][Extemal

4 Extemal

Material Matters
Creation of a material editing toolset
[image: image18.png]Wizardws | v X

Tihgs A
cuEnTs yer©
ARNINGS Tio

Dennis van Zwieten

Student number: 1541262

Course code: TCMT-AFST-09

Graduate teacher: Jaap de Bruijn

Tutor: Rudy de Jong

Doetinchem

24-05-2011

Summary
This paper is the result of an internship at Engine Software, the oldest still functioning game development studio in the Netherlands. The assignment for this internship was to create a toolset that would drastically reduce the time it takes for artists to create materials.
A large part of making a virtual 3D world look good is in the materials that have been applied to its objects. Creating the raw data for these materials takes a lot of time, so it is important to add a layer between the user and this data. This layer, the Material Editor, makes creating materials easier and faster by only showing the user a small set of options, and automating the rest. The Material Editor has developed into a MaterialWizard, an interface automatically generated run-time based on a user-written WizardScript, using a custom scripting language. This way, users can define what data they want to use for a given material, and how to use that data to fill out the full set of options in the material’s data.

A lot of games use lookup tables to prevent having to calculate the same values over and over, saving processing power for other aspects of the game. These lookup tables contain, among other things, a precalculated set of values defining a falloff curve or animation positions over time. Materials make extensive use of lookup tables as well for lighting distribution, reflection, and more. The Curve Editor allows users to draw curves onscreen, and automatically export all their values into a set of lookup tables for use in the Materials.
Where using the Material Editor and the Curve Editor already saves a lot of time, even more time can be saved with the Previewer, a library that allows instant in-game preview renders of the Material the user is editing, without the need to compile and start up the actual game.
Table of contents
9Preface

9Internship

9Engine Software

11Introduction

131
Engine Software

152
Organization

152.1
Organization

152.2
Procedures

183
Project

183.1
Problem statement

193.2
Assignment

203.3
Requirements and preconditions

203.4
End products

224
Analysis

224.1
Overview

224.2
Methods

245
Material Editor

245.1
Background

255.2
Design

325.3
Realization

385.4
Prototypes

405.5
Final Product

436
Curve Editor

436.1
Background

446.2
Design

476.3
Realization

486.4
Prototypes

496.5
Final Product

537
Previewer

537.1
Background

547.2
Design

557.3
Realization

577.4
Prototypes

587.5
Final Product

598
Planning and evaluation

598.1
MoSCoW Analyses

618.2
Grantt Chart

638.3
Evaluation

659
Reflection

659.1
Competences

699.2
Profile

71Appendices

73Appendix I Requirements analysis document

75Appendix II WizardScript Example

77Appendix III WizardScript parsing result

79Appendix IV WizardScript end result

81Appendix V Using Material Wizards

87Appendix VI Graduation agreement

Preface
Internship

This paper is based on the results of an internship at Enigne Software, a game development studio in the Netherlands. The internship is a mandatory part of the Game Technology and Simulation
 program, which is a specialization option of the MediaTechnology
 study course at Hogeschool Utrecht (University of Applied Sciences Utrecht). The internship takes place in the fourth and final year of the course, and is part of its final examination procedure. The majority of this paper will not require any prior knowledge of the reader, although the design and realization chapters may be easier to understand with basic experience using the C# programming language.
Engine Software
Engine Software was founded in 1995, which makes it the oldest still functioning game development studio in the Netherlands. They are known from titles like DragonHunters, Puzzle Quest, and, more recently, HOP: the Game.
The Engine Software staff makes a total of 22, making them one of the bigger game development studios in the country. Although Engine Software has made games for various gaming platforms, they now focus mainly on Nintendo’s latest hardware (Nintendo DS, Wii and Nintendo 3DS). More information about Engine Software can be found in Chapter 1.
Introduction

Modern videogames often take place in a three dimensional, virtual world. This virtual world is, simply put, a collection of virtual objects. The way these objects look are very important in defining the feel and ambience within that world. An object’s look is more than just its shape. If you only knew the shape, you still would not know what its color is, whether you can see through it, much less how it would feel if you were to run your fingers across it. See Figure 0.1 for an example.
[image: image19.png]S Newscene

| tew Material

53 ew Entty Defrtion
| New Component Defition
Jfe| ew Type Defirtion

[image: image20.png]DiffuseT exture.

Use

E2

) Property nfo
Enables the difuse texture st |

Figure 0.1 Left: Models and lighting only. Right: Materials added, giving more detail to the models.
Because materials are so important, so is their creation. It can take days to create the materials for any given world; the goal of this internship is to create a toolset that will drastically decrease this time. The toolset consists of three separate parts that work together to make this happen:
1. Material Editor

The main section of the toolset, with which the user can create and edit a material.

2. Curve Editor

An editor that can, initially, create lookup tables
 from user-created curves, which can then be referenced from a material in the Material Editor to be used for light distribution, reflection, opacity and more.

3. Previewer

The previewer will allow the user to instantly view a material’s end result from the Material Editor with the click of a button, using the game’s rendering engine.

This paper will start with a more thorough introduction to the assignment. It will then discuss the design, creation, and results of the Material Editor, Curve Editor and Previewer, each having their own dedicated chapter. Finally it will give a summarized overview of the final products and conclusions, ending with project-related items like planning and reflection.
1 Engine Software
Engine Software BV was founded in 1995 and is located in the eastern part of the Netherlands, close to the German border. Before the foundation of Engine Software, the founders gained experience in game development participating in several amateur projects in the years before (1987 -1994) on the Sinclair, MSX, Amiga and Super Nintendo platforms. Engine Software was founded as an independent multi-platform game development studio. Engine Software prides itself in being the oldest game development company in the Netherlands.

Since the fall of the Super Nintendo Entertainment System (SNES, Super Famicom) Engine Software has specialized in developing for handheld platforms, and as such designed games for Gameboy Color, Gameboy Advance, PocketPC, Smartphone, Nintendo DS and Playstation Portable. Sometimes they develop games for other platforms (PC, Wii/WiiWare) but the core business is the design and development of handheld games.

The Engine Software team consists of 22 people, subdivided in the following categories:

· 3 Managers

· 7 Artists

· 3 Designers

· Music composer

· Writer

· 5 Software engineers
· Administrator

· Floor manager

The position of the internship assignment is somewhere between the artists and coders. The project is aimed at facilitating the artists’ tasks by creating software, so both sides are strongly involved.
2 Organization
2.1 Organization
The assignment was handed out by Mr. Jeroen Schmitz (producer, project manager) and Mr. Rudy de Jong (lead programmer), on behalf of the company’s artists. It is a one-man project, where all designing, planning, coding and documenting is done by the author of this document, Dennis van Zwieten, with input and cooperation from some of the coders and artists. Mr. De Jong functions as the project manager and mentor. See
Figure 2.1
.
[image: image21.png]14 palod

[y T —
Show Advanced Options

Testures Testures | Lig

[

Figure 2.1 Cooperation organogram

2.2 Procedures

The following agreements have been established:

1. Working hours are 9:30 to 18:00.

2. Working at home in agreement.

3. Meetings will be held whenever they are deemed necessary.

4. Progress will be reported to Rudy de Jong at weekly intervals.
3 Project

3.1 Problem statement
A big part of making a game is creating the game’s graphical contents. These contents can be anything from 3D models to levels and environments. The 3D models define the shape of a virtual object, and a so-called material defines the rest of its appearance. These materials contain information for the object’s color, additional normal
 data, interaction with light, opacity, etc.

The problem consists of the following points:

1. Creating a material as it is, is an arduous process of editing and tweaking hundreds of values, with no certainty of success, and can take an hour or more.

2. Viewing the material using the in-game rendering engine requires the user to manually compile the material and start up the game, wait for about a minute for the game to start up, and if necessary, navigate to where the material is used.

3. Setting some of the more specific options in the material, like light distribution and color reflection, is impossible due to the lack of lookup table support.
3.2 Assignment
As defined by Engine Software:
Description:
Development of toolset for new game engine which is currently being developed in-house.
Toolset consisting of: (in logical order)
1. Target platform Preview integration
a. (possibly integrated) Preview with the target platform renderer (C++ -> C# integration) in the editor
purpose: Mostly for models (levels) and / or material previews in the editor
2. Material editor
a. Node based material editor
purpose: combine textures with blend modes and additional effects using a visual tool
3. Curve editor
a. Editing of curved values (graph)
purpose: Mostly for editing of LUT tables
Internship tasks: (in logical order)
1. research ctr docs and engine software libraries and tools
2. research user requirements from coding and artist department
3. technical design of toolset
4. estimation of time needed for development of each part of the toolset, resulting in a planning of achievable goals during the intern period. Possibly some parts of the toolset may turn out not to be doable during the internship period.
5. implementation of toolset
The initial assignment also contained an animation editor. This was dropped at the start of the project for the following reasons:
1. It is not directly related to the rest of the items, which are all material related.

2. It would not be used for the currently running development projects.

3. It was fairly certain there would not be enough time to include it in the project.

3.3 Requirements and preconditions
The following requirements have been set:
1. The products created during the internship are implemented in the existing CTRL Editor framework.

2. Much of the code written should be reusable and/or extendable.

3. The use of the Material Editor will be documented

3.4 End products
The list of end products is as follows:
1. The Material Editor

The main part of the assignment. Its purpose is to be able to shorten the time it takes to create a functioning material.

2. The Curve Editor

The Curve Editor should be used to create curves, and link the curves’ data to lookup table entries in the Material Editor.
3. The Previewer

The purpose of the Previewer is to shorten the time it takes to see the results of editing a Material.

4. Document explaining the use of the Material Editor

The document should give step by step instructions on how to create a Material using the Material Editor. See Appendix V.
5. This document

4 Analysis
4.1 Overview

Engine Software uses the CTRL Editor to create their in-game content. This editor is an application with visual components and visual representations of the created items. It is in this editor that the Material Editor will be integrated.
The CTRL Editor already contains a way to create and edit materials. It is, however, very impractical to use. On top of that, it is impossible to say if, when creating a material, it will actually work on the target platform. There has not been any research into optimizing the editor yet.
More details concerning the analysis of the individual components and justification of made choices can be found in the components’ respective chapters.

4.2 Methods
The Material Editor and Curve Editor will be written in the C# programming language. C# is a very versatile language, and comes with drag-and-drop support for making a graphical user interface (GUI). Furthermore, the CTRL Editor and its libraries have also been written in C#.
The Previewer will consist of both C++ and C# parts. The CTRL Editor side of the Previewer will be written in C# for the reasons mentioned above. The other side, implemented in game code, has to be written in C++.
Before starting work on any of the assignment’s parts, a set of requirements was set up. In order to do this a list of questions was created, which the artists – the end users – were asked to answer in a meeting. See Appendix I Requirements analysis document. The results of this meeting can be found below.

1. The priorities for the individual assignments had changed. The Material Editor was found to be most important, next the Curve Editor, and lastly the previewer.

2. The main problems with the current material editor are

a. It takes too long to create a material.

b. There is no error-checking when modifying values, making it possible to create non-working materials.

c. Viewing the result takes too many steps.

3. The idea for a node-based material editor was dropped based on unnecessary complexity in both programming and using it.

4. The new interface design for the material editor was a welcome change; the previewer mockups were accepted.

5. The functional design for the curve editor was agreed on.
6. The previewer should initially be able to simply display a material representation using the game’s rendering engine, but later should allow the user to also view entire scenes.
7. Rendered previews should be integrated into the editor, multiple opened rendering windows was discouraged.
Based on these requirements, basic designs and mockups were created and presented in a second meeting, where the pros and cons to each were weighed by both artists and coders.

A new set of designs was created based on the results of these meetings, and again presented to the artists. This time the designs were generally accepted, with some feedback to further improve compatibility with their wishes.
5 Material Editor
5.1 Background

A material can be defined as a description of a 3D model’s superficial properties. Where the model’s geometry defines its shape, the material defines the look of its surface. Materials contain a large set of properties that define its appearance, such as:

1. Color definition (often a combination of images)
2. Reflective properties (specularity, mirror reflection, etc)
3. Surface texture (smooth, gritty, etc.)

4. Opacity

5. Reaction to light (e.g. color or opacity changes when hit with a certain color of light)

These are of course simplified versions of the actual properties; for example, the ‘Color definition’ alone would consist of, among other things, a base image, any images to blend
 with the base image, blend methods for these images and blend methods for blending the final color and any underlying materials.

To create a single material definition, it is necessary to enter valid values into each of these properties using the CTRL Editor. The only way to test the validity of the material is to compile it into its binary counterpart, start up the target application, and wait for the results. This is a very time-consuming task, seeing as it takes up to an hour to create a single material. When one considers the fact that hundreds of materials need to be made for a single project, the time element gets even more important.
In order to obtain knowledge about the workings of materials, the target hardware’s documentation was researched, as well as existing code considering materials.
5.2 Design
5.2.1 Functional design
Making a material takes a lot of time, and the material editor had to deal with this problem somehow. The first idea was to simply get the set of properties more coherently grouped. That way it was easier to see which options were grouped with, or had effect on other options; see Figure 5.1 Early Material Editor prototype. However, this still left the issue of the large set of data untouched, and so it was rejected.
[image: image1.png]LuFFinder
LuFfinout
LuFRsbe

LuFRscale

Light Nomal

e Lo Somnane
Erabiehel Tan Vector Proj

Blendhiod Blend
Logiealop Cear
BlendFunchGE it

BlendFuncipha add

BlendsicRGE SicAipha
BlendDsRGE Ore s S1c Ao v,
BlendSichlpha SicAipha v
BlendDstpha Ore s S1c Ao v,
BlendColr

e |
Stenciest

StenciMaskFunc

Figure 5.1 Early Material Editor prototype

Another idea was to make the material editor ‘node-based’. The material would consist of a set of connected nodes, where each node could have different inputs and outputs. This was eventually thought to be more cumbersome than helpful, because there would be too many nodes, causing a loss of overview. It was also thought to be too complex to build within the timeframe of the internship, so the idea was banned.

This is where the idea of material Wizards
 came in. They were named Wizards after the well-known Install Wizards from Microsoft Windows, where, by simply selecting some installation options, the software would install itself ‘automagically’.

These material Wizards would show a select set of options that define a material, and would create a valid material based on the user’s input. For example, the user selects two textures he wants to use, then selects a single option for what the textures are to be used for, and clicks a button. The Wizard would then ‘automagically’ convert that input to a useable material, with every necessary option setup so that the result would be what the user had in mind. This solution solved the most pressing issues with the way materials were created; it was easy, fast, and the created materials were always valid.

One disadvantage to using these Wizards was a lack of reusability. Although it would not take much effort to create a single Wizard, having to start from scratch with every single difference in the way the material was used, no matter how small, was something that needed to be looked at. The solution was the Wizard script.

Wizard Scripts are meant to define the way Wizards look and work. Using a custom scripting language, artists could create their own Wizard by simply defining a set of properties and a means of converting these properties to the material’s native settings. Once the Script was defined, it was run through a custom parser, and the Wizard’s layout and user interface were automatically created. The WizardScript design makes the Material Editor infinitely expandable and customizable.
5.2.2 Visual design
Because the material editor had to be used by artists as well as external companies, the Material Editor’s layout was designed to fit into – and function similar to – the existing editing framework, to shorten the learning curve. The tabbed interface used throughout the CTRL Editor allows the users to switch between pages of properties, so that the amount of properties shown in a single page is reduced, and is also applied to the Wizards.
Although Microsoft’s .Net framework
 provides an automated interface for showing and editing properties (the PropertyGrid), the choice was made to make a custom interface with similar capabilities. This interface was designed to simplify its use for users without a programming background. Table 5.1 shows some differences between the PropertyGrid and the new interface. See Figure 5.4 Material Wizard final screenshot for an example of the new interface, and Figure 5.1 for the interface’s original layout.
	Data type (description)
	PropertyGrid
	New interface

	Boolean (yes/no)
	Dropdown, select ‘true’ or ‘false’
	Checkbox

	Enumeration (predefined collection of values)
	Dropdown, values (for example) ‘ALL’, ‘MANY’, ‘SOME’, ‘A_FEW’
	Dropdown, values (for example) ‘All’, ‘Many’, ‘Some’, ‘A Few’

	Color
	Dropdown, select from predefined set of colors
	Rectangle filled with the selected color, clicking brings up a color wheel

Table 5.1 Differences between default and custom components for various data types
Another design choice was to allow the user to minimize a given group of properties. If the wizard needs to display a lot of properties at once, the user can minimize a group of properties to maintain a good overview of their options. Minimizing the group of properties reduces it to displaying the title only. The user can maximize the group to its original state by clicking the same icon.
5.2.3 Technical design
Due to the dynamic nature of the Wizards, the MaterialWizard cannot be entirely described by a class diagram. However, any Wizard has to conform to a basic structure. See Figure 5.2.
[image: image2.emf]
Figure 5.2 UML Class Diagram for Wizard classes
The MaterialWizard class is little more than an empty implementation of the IWizard interface. It only does two things: it makes sure the Data object passed to the Wizard is in fact of the Material type, and it calls the Validate function whenever the value of an attribute has been edited in the Wizard.
The ‘[…] MaterialWizard’ class is a prototype for the MaterialWizards defined in the WizardScripts. It is possible to implement the IWizard interface directly, but then the data and value validation would have to be implemented in every WizardScript file for Materials.

Other classes may implement the IWizard interface, to define Wizards for object types other than Materials.
The amount of WizardTabs in a Wizard, and the amount and contents of the WizardCategories are defined solely in the WizardScript. The WizardScript files are loaded when the application starts, and the script is then converted from the custom scripting language into C#, which is then dynamically compiled and loaded into memory.

Upon loading, the WizardPanel converts the WizardTabs and WizardCategories defined in the IWizard object into its tabbed interface, assigns a fitting editing control to each of the WizardCategories’ attributes, and links the control values to the Wizard’s attributes’ values.
The Convert function is called only when the ‘Convert’ button on the WizardPanel is pressed. This allows the user to tweaking values in the advanced tab
 after creating a basic material using the Wizard’s options. The Validate function is called before converting, as well as every time a field is modified, to ensure that all filled in fields are valid within the context of the Wizard. Both the Convert and Validate functions are defined within the Wizard’s Script. See Appendix II for an example of a WizardScript.
5.2.4 Script language design

The WizardScript script language is mostly based on C#, but with a few additions that make it a lot easier to create Wizards. The basic structure for a WizardScript is as follows:
· Script parsing settings

· Enumerations / class definitions

· Wizard class

· Properties

· Category Type definitions

· Tab definitions

· Category definitions

· Import/Validate/Convert functions

· Any other C# code

It was designed this way to allow users to literally and intuitively define the tabs, categories and properties that were displayed on the screen. The main difference with C# is the addition of keywords. Below is a list of the keywords used in WizardScripts, and their descriptions. See Appendix II for an example of most of these keywords.
1. Data

Defined at the top of the script, the word after this tag defines the type for the object Data in the IWizard interface.

2. Wizard

This tag indicates the start of the Wizard class. After the tag one can specify the Wizard name and class inheritance. All Wizard-specific contents are contained within curly brackets { }.

3. Properties

All of the Wizard’s tabs, categories and category definitions should be inside the Properties tag, within curly brackets.
4. Tab

Defines the categories that should be listed within a tab page. All categories should be contained within curly brackets. The word after ‘Tab’ will be the name that is displayed on the tab header.
5. Category

A Category is simply a container for attributes. Attributes are defined by their type, name and initial value, separated by one or more whitespace characters. Individual attributes are separated by one or more newlines. All attributes should be contained within curly brackets.

6. define

The ‘define’ keyword allows the user to create a custom reusable WizardCategory class. Its attributes are defined the same way as a normal WizardCategory.

7. function

Creates a new function. Its contents should be contained within curly brackets. The name of the function is the word following the tag. The function can be called with the function’s name, followed by brackets (), e.g. ‘function Foo’ can be called with ‘Foo();’
8. with

Possibly the most timesaving keyword used in the Wizards, the ‘with’ keyword allows the user to use the same code for different objects. This is different from a conventional ‘for’ or ‘foreach’ loop in C# in the fact that they require objects of the same type, where the ‘with’ keyword only requires that the objects share similar attributes. It is also possible to use nested ‘with’ loops.
9. C#
‘C#’ is a tag used to allow the use of ‘pure’ C# code. However, keywords like ‘with’ can still be used within C# tag. End the C# tag with ‘/C#’.

The WizardScript also defines some custom data types:

1. file

A link to a file on the user’s pc. The assigned editor control allows the user to browse their pc for a file.

2. image

Similar to the ‘file’ type, the editor control allows the user to browse for an image file.

3. Lut
A reference to a lookup table, defined by a reference to lut definition file and the name of a curve contained within.

5.3 Realization
To make the Material Editor, the following tasks needed to be executed. They will be explained further in their subchapters.
1. Create the visual components for the final Wizard layout

2. Create a parser that converts WizardScripts into C# code
3. Allow ‘external’ C# code files to be compiled and loaded into memory
4. Create an editor for writing the WizardScripts

5. Write a WizardScript

5.3.1 Visual components for the Wizard layout

The Wizard layout consists of a set of tab pages, as can be seen in Figure 5.1. These tab pages contain a set of category boxes, which in turn contain editing controls for the Wizard’s properties. The tab pages are contained within a WizardPanel, which is a basic container control with extended Wizard functionality.
The first task was to create a container control for the Wizard’s properties, the aforementioned category boxes. This control is in and of itself a very basic container panel, its only real differences being a bar on the top to display a title, and a small icon in the right hand corner to minimize the control.

Secondly, the layout needed a utility that could identify the type of a property, and assign the correct control to it. This utility was called the ReflectionUtility, since it was based on using the .Net framework’s Reflection capabilities to recover a property’s type. This type was then compared to a collection of types and their editor controls. The WizardPanel then adds these controls to their respective category boxes, dynamically linking their field’s values to the Wizard properties.

5.3.2 Wizard Parser
Before anything can be done with a Wizard, its WizardScript must be converted to C# code. To this end, a custom script parser was written that could handle both the WizardScript language as well as C#, and subsequently convert it to pure C# code.
The WizardParser analyzes the WizardScript line by line, organizes the code into a C# class and returns the resulting C# code. Take, for example, the following code.

define Specular

{

Color

SpecularColor

Color.White

bool

MetallicReflection

lut

DistributionLUT

}
First, the parser runs into the ‘define’ keyword. It then knows that the following lines of code should be contained within a WizardCategory class named Specular. It skips the ‘{‘ on the next line, as it is only for source code clarity, but does remember that it was there.
Next it reads ‘Color SpecularColor Color.White’. This lets the WizardParser know that the Specular class should contain a Color property named SpecularColor, with the initial value of Color.White, a predefined color in the .Net framework. In the next line it registers a Boolean value MetallicReflection, without a default value (although in C# this would default to ‘false’).
Next it sees the line ‘lut DistributionLut’. The ‘lut’ type is not defined in the .Net framework, so it looks for the ‘lut’ value in its object type database. In this case, the database returns a combination of a CurveRef object type and a LutSelectControl editor control. Finally, it reads the ‘}’ line, and it knows that the class definition is completed. It then adds a constructor for the Specular class to finalize the definition for this WizardCategory prototype.
Looking at the parsed result, it is obvious that by using the WizardScript, the amount of code that needs to be written is severely reduced. See also

Appendix III
.
private class Specular : WizardCategory

{

private Color m_SpecularColor;

[DataMember]

public Color SpecularColor { get { return m_SpecularColor; } set { PropertyChangeNotifier.SetProperty("SpecularColor", ref m_SpecularColor, value); } }

private bool m_MetallicReflection;

[DataMember]

public bool MetallicReflection { get { return m_MetallicReflection; } set { PropertyChangeNotifier.SetProperty("MetallicReflection", ref m_MetallicReflection, value); } }

private LibMtl.Data.Definition.CurveRef m_DistributionLUT;

[DataMember]

[EditorControlAttribute("LibMtl.Forms.LutSelectControl, LibMtl, Version=1.0.767.1741, Culture=neutral, PublicKeyToken=null")]

public LibMtl.Data.Definition.CurveRef DistributionLUT { get { return m_DistributionLUT; } set { PropertyChangeNotifier.SetProperty("DistributionLUT", ref m_DistributionLUT, value); } }

public Specular(string title) : base(title)

{

SpecularColor = Color.White;

}

}
5.3.3 Loading external C# files
Loading an external C# file on runtime is basically compiling the source code in the file into memory. This is exactly what the .Net CSharpCodeProvider does. The CSharpCodeProvider requires a CompilerParameters object when compiling the source code. These parameters include settings to:

1. Generate an executable from the compiled assembly
2. Load the assembly into memory

3. Define an output file for the generated assembly

A custom written utility class uses these settings to load a given C# file from disk, compile its source code, and return one of the following:
1. A given Type, if found in the assembly

2. A collection of the Types found in the assembly

3. An instance of one of the compiled classes

The utility can also return any of the above when passing source code directly, as opposed to passing a file path.

5.3.4 WizardScript Editor

The first WizardScript prototypes were written in Notepad, the default text editor included in Windows. This editor offers little support for editing code. It also has no way to reload a WizardScript on the fly, which is especially useful when only changing one or two values, so it was decided to incorporate a WizardScript editor within the CTRL Editor.
The WizardScriptEditor is basically a custom CodeEditor control, combined with a ‘Reload’ button. The CodeEditor is based on the RichTextBox, adding line numbers and customizable syntax highlighting. This combination allows run-time editing of a WizardScript. The Reload button runs the script through the parser and recompiles the result, so that the changes are immediately reflected in the resulting Wizard.
5.3.5 Writing a WizardScript

The first WizardScript was written while designing the WizardScript language. By writing the script at the same time as designing the language, it was impossible to miss the basic feature implementations. It also helped making the writing a WizardScript easier, as optimizations kept coming up.
While writing the WizardScript, it was necessary to constantly make sure that the script actually worked. The base data is very prone to errors, the slightest mistake can - and most likely will - have unwanted consequences for the material’s appearance.

The script was based on the needs as defined by one of the artists. It had to be very versatile, making it the more complicated of the two WizardScripts that had to be written. Some of its features were:
1. Allow 3 textures to be used in a number of ways:

a. Diffuse color

b. Blending with diffuse color

c. Normal map

d. Light map

2. Use the VertexPaint channel in a number of ways:
a. Ambient occlusion

b. Interpolation value between diffuse texture and blended texture

3. Enable per-pixel lighting under different lighting conditions

4. Blend with underlying objects
First, the Wizard’s properties were defined in the script. Because the three textures had mostly the same functionality, a single WizardCategory definition was enough to set the property fields for all textures at once. The lighting conditions had a lot in common as well, so they, too, shared a definition.
Then the Convert function needed to be written. The biggest complications lay in the way the textures could blend with each other, due to the amount of blending options and the lack of a significant amount of possible operations for each material. Because of this, a large part of the WizardScript consists of identifying the blend operation, and assigning the right values to the material.
5.4 Prototypes

The first prototype for the Material Editor brought little improvement over the original. Although it did simplify the overall looks by assigning more appropriate editor controls to the field types, the amount of options was still staggering. See Figure 5.3.
[image: image3.png]LuFFinder
LuFfinout
LuFRsbe

LuFRscale

Light Nomal

e Lo Somnane
Erabiehel Tan Vector Proj

Blendhiod Blend
Logiealop Cear
BlendFunchGE it

BlendFuncipha add

BlendsicRGE SicAipha
BlendDsRGE Ore s S1c Ao v,
BlendSichlpha SicAipha v
BlendDstpha Ore s S1c Ao v,
BlendColr

e |
Stenciest

StenciMaskFunc

Figure 5.3 Early MaterialWizard screenshot
The second prototype was the basis for the MaterialWizards and WizardScripts as they are now. It was not yet possible to edit the WizardScript while running the CTRL Editor, nor were the WizardScripts actually connected to the CTRL Project in any way. It did, however, provide basic MaterialWizard functionality, finally dropping the enormous amount of options available earlier, and brought it down to a workable minimum.
The last actual prototype was a vast improvement over the previous. WizardScripts could be included in the project. They could also be modified and loaded while the application was running, making the process of writing and debugging a WizardScript a lot more efficient.

This was the first release of the Material Editor. Over time, more and more keywords were added to the WizardScript language, allowing even more optimizations and possibilities to WizardScript code.
5.5 Final Product

5.5.1 Results
The final product has achieved all of the aforementioned goals and functionalities. Wizards can be created and edited from the CTRL Editor application, and can be reloaded at any time. All of the properties that are shown in the Wizard can be defined using the Tabs and Categories tags in the WizardScript. See Figure 5.4 for an example screenshot. This Wizard is the final version of the Wizard based on the artist’s design. See also Appendix IV.
[image: image4.png]Ele window

g0Lmtl

[Show Advanced Options.

IS 7o | Lihig | iencin
Lighting ik 2

Varter

o paioud B8

Blendng

RGBFunction
AlphaFunction

Temez

Ambiert Occlusion Mult

Nere

FieName
RGEFuncion
AGEBlend
AlpheFunction
UChernel
MegpingType

Testurel

Coiina01 Niga

N
Modate
Nare
2

U

FieName
RGEFuncion
AGEBlend
AlpheFunction
UChernel
MegpingType

Temel

Ught
Modate
Nare
et

U

FieName
RGEFuncion
AGEBlend
BlhaFuncion
UChernel

MappingType

Y

Difuse
Modate
Speculr
w0

U

Applyto al.

Preview

Figure 5.4 Material Wizard final screenshot

WizardScripts are much like color plates; there are shapes you can color in, but you are free to add your own. Coloring can be done in any way, so long as you stay between the lines, and the end result is only as good as what the user can do. This means that, the WizardScript language gives you a canvas and structure to work with, but it is completely up to the user how to use it, so long as it stays within the boundaries of the WizardScript’s possibilities. As such, the Material Editor can be ‘expanded’ infinitely by adding (and/or modifying) more and more Wizards, directly catering to the user’s wishes. The WizardScript language itself is, due to its simple nature, easily expandable by adding more keywords or tags.
5.5.2 Evaluation

The two WizardScripts that have been created as part of this assignment were designed for different purposes, and they serve them well. One of the Wizards was used internally as soon as the Wizard configuration was complete, and the other followed shortly after. The users gave plenty of constructive feedback, allowing for further improvements on the design, but they were generally very pleased with the results.

The WizardScript’s main weakness is that, although made to allow artists to create their own material editor, the core is still very technical, and requires a basic programming background. However, this is not a fault of the WizardScript design, but a result of its versatility. If this were to be taken out, the Wizard would be little better than the original editor.
5.5.3 Conclusion
The WizardScripts have decreased the time it takes to create a functioning material from over an hour to less than a minute. Writing a WizardScript itself can take one to four hours, depending on the writer’s experience and on how complicated its conversion is. In any way, after creating less than a handful of materials, the time gained is well worth the effort. The Material Editor is easily expandable by simply adding more Material Wizards. The Wizard setup is compeletely reusable for any other data type, and Wizards for different types can even be used within the same project.
5.5.4 Recommendations

There are several ways to improve the Material Editor. However, the main way to ‘improve’ the editor is to simply add more Wizards. The dynamic nature of the WizardScript allows for any combination of properties that can be set in a Wizard.

Other improvements can include:

1. Adding more keywords/tags to the WizardScript language, to further simplify the creation of a WizardScript.
2. Creating more EditorControls to enhance end user experience.
3. Implement Wizard inheritance, so that a basic Wizard can handle common tasks, and the inheriting Wizards only need to include their own specific WizardScript code.
6 Curve Editor

6.1 Background

Curves are, for the sake of this paper, defined as a line running through a set of points, interpolated in a certain manner. In this project, the choice for interpolation was Bezier interpolation, as it is both flexible and easy to implement and understand. The simplest curve that can be created consists of four actual points: The outer points defining the start and end of the curve, and two intermediate points defining the shape of the curve. Extended curves consist of multiple of these four point curves.
Curves can be used in many situations, and in the case of Materials, they will mostly be used for different kinds of falloff graphs. These falloff graphs can be, for example, the light distribution over a surface, or opacity depending on the angle between the viewing vector
 and the surface normal
. Eventually, these curves are exported to a list of values between 0.0 and 0.1 for the target hardware.
The only way of creating such a list was by manually entering all the curve’s values. This is a very time-expensive process, which would be considerably sped up with the use of a curve editor. The curve editor would be able to define points within a graph, and graphically display a line between them. Additionally, the line could be interpolated in different ways, and finally, the resulting curve could be exported to a lookup table.
Several existing curve editors were tested before designing the Curve Editor, like the curve editor in 3D Studio Max, an function plotter
, and more. The idea for a function plotter was dropped in favor of a manual curve editor due to the lack of freedom in a function plotter.
6.2 Design
6.2.1 Functional design
The Curve Editor needed only basic curve editing capabilities. As such, it has not seen as many functional redesigns as the Material Editor. The first design was agreed upon, expanded and finally implemented.

Although for the current projects the Curve Editor would only be used for lookup tables, its design was to be generalized, so that it can be used for multiple purposes. These can include motion paths, or vector drawings. The Curve Editor’s core functionalities should include the following.
1. Creating and deleting curves

2. Adding points to and removing points from curves

3. Moving points in a curve

4. Changing the interpolation method between two points in a line

5. Exporting curve values in multiple ways

Additionally, saving curves to disc and loading them back should be possible. For ease of identification, the user should be able to change the curve’s name and color. The minimal interpolation options should include:
1. Bezier (cubic interpolation)

2. Linear

3. Step (no interpolation, hold start point’s value until next point is reached)

6.2.2 Visual design

The visual style of the Curve Editor is loosely based on the curve editor found in Autodesk 3D Studio Max, a 3D modeling software that the artists use to create the in-game models. Instead of having four apparently loose points, the main points on the line were connected with an incoming and outgoing target, the InHandle and OutHandle. In doing so, the Curve Editor screen seems less cluttered with random points, since all points are connected. This may seem like a minor difference, but when the screen is covered with CurvePoints, having the CurvePointHandles connected to the main CurvePoints makes it much easier to recognize which point is on the curve, and which point is only a guide.
6.2.3 Technical design
The four points needed to create a curve (start, end, and two intermediate points) can be implemented in a number of ways. The choice was made to bind two additional points (handles) Z and B to each actual point A of the curve. This way the curve runs through all A points, using the Z and B handles as guides for its shape. Handles Z and B define the way the curve bends entering and leaving point A, respectively. Choosing point A as the starting point, and a second point D with handles C and E, the curve would run from A in the direction of B, then in the direction of C, finally hitting D. Any additional points on the curve are handled similarly. To summarize, the coordinates x and y for a given position t on a curve with points [Axy, Bxy, Cxy, Dxy] can be calculated according to Equation 1.

X(t) = axt3 * bxt2 + cxt + Ax
Y(t) = ayt3 * byt2 + cyt + Ay

Where:

ax = Dx – Ax – cx – bx,
bx = 3 * (Cx - Bx) – cx,

cx = 3 * (Bx - Ax) ,

ay = Dy – Ay – cy – by,
by = 3 * (Cy – By) – cy,

cy = 3 * (By – Ay)

Equation 1 Bezier calculation formula

Figure 6.1 shows the UML class diagram for the Curve Editor. The Point class is the base of all operations within the Curve Editor, because without a Point, there is no Curve to be edited. The Point’s Move method requires the position difference in both axes as arguments, and is overwritten in CurvePoint to move its CurveHandles along with it.

The Curve Editor can edit a single CurveSet at any one time. This CurveSet can be changed by calling SetCurveSet. The SetAxes method directly sets the CurveSet’s properties. These properties have been placed in the CurveSet so that when serializing a CurveSet, it has all the data it needs to appear exactly the same when deserializing it. If it did not, deserializing would request data from a Curve Editor, which would not exist at that point.
[image: image5.emf]
Figure 6.1 UML Class Diagram for the Curve Editor
6.3 Realization
Making the Curve Editor was a relatively short task. The basics of its design could be implemented directly. The first thing needed for the Curve Editor was to create a canvas to draw the curves on. The .Net PictureBox, in combination with the Bitmap class, is ideal for this situation. The curves are drawn on the Bitmap object, and are then copied into the PictureBox image.
Getting the points on the Curves was a matter of incrementing the value of t from 0 to 1 in a given amount of steps. The resulting values are in the same range as the graph’s, so they still need to be converted to screen coordinates. To accomplish this, the application kept track of scroll and zoom values. However, this turned out to be impractical because it was inaccurate and near impossible to invert the y coordinates in order to convert to screen coordinates.

For this reason, a viewing window approach was chosen instead. This way the application keeps track of a rectangle within the graph which it shows. This rectangle can be flipped in both axes, without changing implementation. Zooming in makes the rectangle smaller and scrolling simply moves the rectangle over the graph.
The CurveSet and Curve Editor’s menu strip were added, allowing the user to add and remove curves, as well as setup the axis ranges. Finally, the Curve Editor was built into the CTRL Editor, and lookup table classes were set to use the Curve Editor for their source data.
6.4 Prototypes

The Curve Editor’s first implementation was as a standalone application. By this time, the CurveSet had not yet been implemented, and all properties that are now in the CurveSet were placed in the Curve Editor itself. The user interface was found to be too cluttered, showing too many options at once. Other than that, it was a fully functional curve editing application, which allowed the user to add and remove curves, and modify the curves by adding or removing points. Exporting curve values was possible as well. See Figure 6.2. On the orange curve, the red, lettered points show the curve points A, B, C and D as used in Equation 1.
[image: image22.png]iHe Window Aboor

o paioud B8

‘grassot.mtl

Show Advanced Dptions

Testures | Lighting | Blending | Advanced

Lighiing

Blendng EN

UseEfectTesture
EffectBlendOperation
EffectTesturebapaing
EffectTextureColorhdd
DiffuseT etureColorhdd
DiffuseTestureColoMultily
VertesPairtAmbiertOcclusion

Temez

Moduate

Frojection

192,132,152

Moo

(255,255, 255)

FieName
RGEFuncion
BlendType
UChernel

DifseT evire

Use (]

Blend
Moduate

uvo

Use
FilName.

UVChannel

gassiga

Uv1

[Auto-convert on Export

Preview.

Figure 6.2 Early Curve Editor screenshot, displaying a random set of curves.
When implementing the Curve Editor within the main application, the aforementioned CurveSet was implemented, so that when saving and loading curves, all their settings were preserved. At this time, the target of the Curve Editor’s main purpose, the lookup tables, were implemented also, and the two were connected; when creating a new LUT definition, the Curve Editor allowed the user to create and modify the lookup tables within.

6.5 Final Product
6.5.1 Results

[image: image6.png]Ele Wndow Aboot Curve Optians View

cellngot.mtl) New LutDef
T

Lutt

Black Curve.

o paioud B8

Nare

Blck Cuve

Coi

Il rocos0azs
Draw Method

UKE

[

Cursor: (0.39931, 0.46278) Poin: (0.50000, 0.07042) [100%, 100%]

Figure 6.3 Curve Editor screen, showing multiple drawing and interpolation methods

Currently, the Curve Editor’s main use is for making LUTs. When creating a LUT, a CurveSet is created, where the user can add any number of Curves. CurvePoints can be added, removed and modified at will. Their CurvePointHandles correctly indicate the direction of the curve, and can be moved anywhere.
For a LUT, values can only be used with incremental X values. The Curve Editor can automatically prevent a curve from looping backwards, giving a warning when the curve is about to do so. It can also lock the outer handles to the maximum and minimum range, to assure that the curve starts and ends at the outermost ranges.

To edit a CurvePoint’s properties, the user can bring up a toolbox by right-clicking it, which allows the user to manually set its position, lock its CurvePointHandles to move along with the CurvePoint, and more.

A curve can export its data in two ways; a list of values according to incremental x axis values, or a collection of CurvePoints, which could allow run-time regeneration of the curve.

6.5.2 Evaluation

In addition to reaching all of its goals, the Curve Editor is completely reusable for other purposes. Its generic curve-based nature allows it to be used for a myriad of things, including bone animation, color transitions, movement definitions, and lookup tables.

Its main weakness is its user interface. While generally being very accessible and easy to use, the fact that it can be used for very differing goals makes the user interface less than ideal. Many of the available options have been well put away under menu buttons, but some applications may need those options to be disabled completely.

6.5.3 Conclusion

The Curve Editor is a complete and functional tool to create, edit and export curves. While as of yet it is only used for light distribution lookup tables, the versatility of the Curve Editor allows it to be used for various things like bone
 and texture animations, paths that objects should follow, and light intensity over distance.
6.5.4 Recommendations

The first point of improvement for the Curve Editor is its user interface. A CurveEditorOptions class could be created to instantly set all options necessary, as well as hide any unnecessary interface components.
A minimum and maximum amount of curves could be set, with fixed colors for each Curve. For a color lookup table, one only needs curves for red, green, blue, and perhaps alpha. Giving these Curves their own color and removing the possibility to add or remove any Curves should make the Curve Editor more easy to use in those situations.
The Curve Editor currently has two ways of exporting a curve; either as a list of the curve’s values at incremental positions on the horizontal axis, or a collection of its CurvePoints. More exporting options could be added to cater to specific goals that cannot use either.

7 Previewer

7.1 Background

Using the MaterialWizards and Curve Editor, the time needed for data creation tasks has been significantly decreased. One major point remains, and that is getting the created data on screen.
To get an idea of what the results look like, the artist has to modify values in the editors, convert the data to a usable format, and start up the game application. All this takes about 2-5 minutes, depending on how many data files have been created or edited. Especially for tweaking a single material, waiting even 30 seconds per preview can become bothersome.

A previewer application should take care of all of this. By running in the background at all times during editing, startup times are close to 0s per preview. Only the data files that are necessary for that specific preview are converted and shown on the screen. This way, artists can have an instant representation of their creations in an emulated environment of the target platform.

7.2 Design
The previewer requires both C# code and C++ code. On the C++ side, the game must be converted to a standalone library, able to receive commands from a C# application. On the C# side, the CTRL Editor needs to have a means of sending and receiving messages to and from the previewer library. To do this, the previewer library makes use of C++/CLI, which enables C++ code to run .NET-type (C#) code. Figure 7.1 shows the general design for the previewer.
A C# PreviewerComponent will be integrated in the WizardPanel class, and it will communicate with the PreviewerLib’s C++ Console class, which will parse and execute the given command lines. These command lines will call rendering and updating functions in the PreviewerLib, which will in turn call its own rendering functions in the existing Rendering backend.
[image: image7.emf]
Figure 7.1 Previewer general design
7.3 Realization
The Previewer had not yet been finished at the time of writing this report, due to unexpected complications and more time being spent on the Material Editor and Curve Editor in general. Its development is currently in an early stage, where only the communication between C++ libraries (native code) and the C# application (managed code) has been realized.
There are multiple ways of achieving such communication. Below is an explanation of some of the more popular methods.

The first is to use the ‘__declspec(dllexport)’ tag in C++. This enables a class or function to be publically available when compiled into a library (dll, or dynamically loaded library). By exporting both the main class and its functions in this way, a C# application can call these functions using the [DLLImport] attribute and declaring the functions as static extern. Exporting and using a ‘HelloWorld()’ function would be as follows
.
C++:

extern "C" __declspec(dllexport) void HelloWorld();
C#:
[DllImport("helloWorld.dll", EntryPoint = "HelloWorld"]
public static extern void HelloWorld();
HelloWorld();

This works, but it is not at all scalable. Manually exporting and importing every single function is very impractical when adding more functions to the Previewer Library.
The second method is using COM, or Component Object Model. Although COM is very powerful, it requires a lot of extra work to implement in existing code. The C# code for using COM interfaces is very clean and almost identical to using managed code. However, the native side needs a lot of specific additions to the code, and is really only practical if COM is already used elsewhere in the library.
Lastly there is C++/CLI, which is the choice of implementation for the Previewer. C++/CLI is a way to give native C++ code access to managed functions. The C# application can then directly call these managed functions in the library. On top of that, C++/CLI needs minimal code for implementation in C++, and the C# code to use the exported functions is virtually equal to using managed C# code.
In order to use C++/CLI in C++ code, it was only necessary to add a managed wrapper class, and turn on the /clr switch in the compiling options. Example code, assuming the existence of a HelloWorld class:
namespace cppcliwrapper

{
 ref class ManagedHelloWorld
 {
 private:
 HelloWorld* hw;
 public:
 ManagedHelloWorld();
 ~ManagedHelloWorld();
 };
}
The C# managed code can then be used as follows.

using cppcliwrapper;
ManagedHelloWorld mhw = new ManagedHelloWorld();
This is a very clean solution in both native C++ code and managed C# code, and it is easily scalable. For these reasons, this type of implementation has been chosen for use in the Previewer library.
7.4 Prototypes

Before creating the Previewer, several mockups were created to give an impression of a final product. These mockups were created in an early stage. Later it was decided that it would be more orderly to integrate the Previewer into the WizardPanel where the Material was being created, so there would not be any floating windows.
Figure 7.2 shows a mockup for displaying a material. The Previewer can automatically update the rendering at a given frequency in order to test animated Materials. Besides that, it has several viewing options:
1. Which material it should show

2. Which stage of the material’s rendering pipeline it should display

3. On what model the Material should be applied

[image: image8.png]B Mockup_Material

[Autoupdete

=

Figure 7.2 Material previewing mockup
The Previewer should also be able to show an entire scene. A scene would be displayed in an entirely different window, as shown in Figure 7.3. It had the same auto-update functionality, but the main difference was the camera controls and adjustable lights.
[image: image9.png]B Mockup_Scene EBX

Main
] i
(

Figure 7.3 Scene previewing mockup
7.5 Final Product

As mentioned before, the Previewer has not yet been finished. As such, it is impossible to give any more information about results, evaluation or recommendations.
8 Planning and evaluation
8.1 MoSCoW Analyses

MoSCoW
 is a method often used for planning a project. The consonants in MoSCoW stand for Must-have, Should-have, Could-have and Would-like-to-have. Each stands for a priority within the project, sorted highest (Must-have) to lowest (Would-like-to-have). By thinking about the priorities of all aspects of a project and dividing them into these categories, the result is a basic guideline for the final planning and a clear insight into what the most pressing matters within the project.

The planning found in this chapter is the initial planning. Several changes have been made since, which will be explained in chapter 8.3.
8.1.1 Material Wizard
The Material Editor was the main purpose of the assignment, and so it was the first item on the planning.

Must Have
1. Dynamically load WizardScripts

2. Basic MaterialWizard, functionality based on design by one of the artists
Should Have
3. Integrated Previewer
4. Macro pre-processing handler

Could Have
5. MaterialWizards with extended functionality

6. Simplify writing of WizardScripts

7. Validate input values

Would Like To Have
8. Skinnable interface
Deadlines:

Week 12 (March 21): Material Editor Must Haves
Week 20 (May 16): Material Editor Should Haves
Week 21 – end (May 23 - July 4): Material Editor Could Haves
Material Editor Would Like To Haves have been put outside the scope of this internship.
8.1.2 Curve Editor

There has been some discussion on whether or not to put the Curve Editor ahead of the Previewer. When the Lookup tables had been included in the main framework, the Curve Editor got notched up the priority list.

Must Have:
1. Setup ‘resolution’ (minimum and maximum axis values, step size, etc)

2. Add, move and remove curve points

3. Move curve point in- and outhandles

4. Choose method for interpolating values between points

5. Export for target hardware

Could Have:
6. Copy or reuse created curves

7. Multiple curves within a single screen

Would Like To Have
8. Change curve colors
Deadlines:

Week 18 (May 2): Curve Editor Must/Could-Haves
Week 21 – end (May 23 - July 4): Curve Editor Would Like To Haves

Due to the estimated simplicity of the Curve Editor, it was planned to be mostly finished within a week.

8.1.3 Previewer

With the time gained by simplifying the Material Editor itself, the priority of the previewer has drastically decreased, making it the third item on the list.

Must Have:
1. Material preview rendering

Should Have:
2. Auto-Update renderer
3. Material preview on model of choice

4. Scene preview
5. Basic lighting

Could Have:
6. Customizable light sources

7. Camera controls
Deadlines:

Week 15/16 (April 11/18): Previewer Must Haves, possibly Should Haves.
Week 18 (May 2): Previewer Should Haves, possibly Could Haves
Week 21 – end (May 23 - July 4): Previewer Must/Should/Could-Haves
8.2 Grantt Chart

The next page shows a Grantt chart of the actual days that have been spent on the various segments of the internship assignment to this point. The Material Editor and the Curve Editor have been finished in time by pushing the Previewer back to after the Curve Editor, allowing more time to be spent on both. Now that they have been completed, all remaining internship time can be spent focusing only on the Previewer.
[image: image23.jpg]

 SHAPE * MERGEFORMAT

8.3 Evaluation
So far, the project has been an overall success. The planning for the Material Editor and Curve Editor has been accurate by moving the Previewer down the path of the project, in agreement with the project leader. This was done to ensure that at least both the Material Editor and the Curve Editor were completely finished products by the end of the internship, rather than having all three in a half-finished state. Because of this, the Material Editor and Curve Editor can be used by the artists earlier than if the initial planning had been kept to.
Creating a functional curve editor was, as planned, finished within a week. However, while integrating it in the CTRL Editor, a lot of unexpected complications showed up, making it take longer. However, the final items on the Curve Editor planning had been realized before the planned time, making up for the loss of time.
Secondly, the written MaterialWizards, as well as the Wizard’s general user interface, repeatedly got more points to improve on, despite the rather complete list of requirements. By moving the Previewer back, more time was created to comply with these improvements.
9 Reflection
In this chapter, the author will provide a reflective analysis based on his activities during the internship and the achieved products.

9.1 Competences
All three major products that were made for this internship require a thorough analysis and design. In general, the process for each was as follows.

1. Gather information about the problem
2. Create a design based on gathered information
3. Request feedback on design and improve as necessary
4. Define priorities for each part of the product

5. Make a planning based on these priorities

6. Execute based on designs and planning

7. Request feedback on created product and improve as necessary

Based on this way of working, I have complied with the four general competences and the Dublin descriptors as defined in Profiel Bachelor of Engineering
. The next pages show an explanation of every competence and each Dublin descriptor, and an explanation why I feel I have fulfilled all.
General competences

1. Obtaining insight

It was necessary for all products to obtain insight into the problem in order to find a correct solution. On top of that, when I first arrived, I had no knowledge of their editing framework, or the target hardware specifications. Before doing anything else, I analyzed the existing code and created a basic class diagram based on my findings. I also studied the documents pertaining to the target hardware platform to get an idea of how I should best design any of the products in order to get the required result. Next to studying code and documents, I obtained insight into the product requirements by interviewing and holding meetings with artists and developers.
2. Designing
When working with an existing framework, it is important to have a clear and complete design in order for newly created projects to be added in correctly. Because of this, I did not write any code (other than functioning mock-ups) before my designs had been approved.
3. Planning

Planning is an important part in any project, but it is especially important when other people depend on your results. In order to let these people know what they can expect, and when they can expect it, I had made a deadline planning for all three projects, along with a more detailed planning for their subcomponents. I have been able to keep to this planning for the most part. When it seemed that the planned time for a subpart of the project would be exceeded, I negotiated the possibilities with the project leader.
4. Execution
The execution of both of the finished products went smoothly. When running into a problem I made an assessment of what went wrong, and looked for a solution using experience and insight. The Material Editor and Curve Editor have both been integrated in the framework. Both have currently been in use for about a month and a week, respectively, and both have been received with positive remarks. Judging by these remarks and a satisfactory assessment from both my mentor and me, I can say execution went very well.
Dublin descriptors and HBO competences:

1. Knowledge and understanding (broad professionalization, multidisciplinary integration)
Entering the internship, I had considerable knowledge of programming and designing software. As such I needed little assistance to function on a relatively high level, even in a professional environment.
2. Applying knowledge and understanding (working problem-oriented, creative and complex acting)
The successful execution of the project speaks for itself, for without applying knowledge and understanding these products could never have been made. The Material Editor was a ‘free’ assignment after the node-based idea was scrapped, and required a creative solution in order to keep it reusable and flexible.
3. Judgment skills (methodic and reflective thinking and acting, awareness of social responsibility)

Planning and designing are important parts in a project, and doing these correctly shows a person’s skill in making judgment. During this project I have successfully made and maintained a schedule based on demands and company project deadlines. I wrote a guide explaining the use of the Material Editor, which will be used by artists and outsourcing parties. See also Appendix V.
4. Communication (social-communicative skills)

I have clearly communicated my ideas and products to the target audience, consisting mainly of artists without a programming background. Regardless, I was able to convey my story to them without problem. When designing the project’s components, I held meetings with the end users to obtain a set of requirements based on their wishes. In order to make this requirements list accurate, I needed to listen to and understand what they were saying, and convert it to a ‘language’ that is informative to both artists and engineers.
5. Learning skills (transfer and broad employability, broad professionalization)

Most of my knowledge of programming and a variety of graphical applications comes from personal projects. I had learned to use 3D Studio Max several years before starting the MediaTechnology course. I started programming my own games and applications on a calculator based solely on knowledge gained by looking through example code. During my time at the MediaTechnology course, I have made several applications and games outside of the school’s curriculum, and taught myself to program software in C++, a programming language that is not handled by the course. I have a strong interest in programming and design, and will quickly learn how to handle new software in any field.
Although I can call most of these competences my own, there are some points I can improve at:

1. Planning and priorities
While I am mostly able to stick to a planning, I tend to work on several components at the same time, even though according to the planning it wasn’t supposed to start until later. I do this because I like to alternate what I’m working on; I don’t enjoy working on one specific segment for too long at a time. Instead of doing this, I should finish the planning before advancing onto the next item.
2. Communication

While my communicative competences were qualified as good, I could have initiated communication more frequently. Although I kept my tutor and project leader up to date once or twice a week, the only times I communicated the process with the end users was at the time of a product’s release.
9.2 Profile
When working on a project, I am very focused on getting the job done, and getting it done right. Whenever possible I try to make my work generally applicable, and as such reusable for future projects. I can achieve tangible results quickly without rushing, thus maintaining high quality. I often come up with creative solutions to problems that cannot be solved with traditional means, and I can always find a way to improve a product.
As stated above, frequent communication is one of my weaker points, as I tend to dislike presenting a project while it is still in progress. Another weakness is my perfectionism. While this can be a good thing, it has caused me to keep working on a project for longer than necessary on several occasions, causing time loss in other areas.
I am most comfortable in the role of a developer. While I would do well at a managing job based on prior projects, I would rather create things than to tell other people what to do. Although I prefer to be independent on others, I make a strong addition to a team project. I enjoy helping other people in need whenever I can. I am very motivated to make any working product, though programming and creating games is where my ambition truly lies.
Appendices

Appendix I Requirements analysis document

Requirements document setup containing questions for the artists (Dutch)

Requirements verschillende onderdelen material editor

Previewer:
- Wat moet er allemaal gepreviewed worden (denk aan materials, textures, models, scenes, etc)
- Hoe moeten de verschillende preview typen (hierboven gedefinieerd) worden weergegeven?
- Hoe wil je de contents van je previewer instellen? (bv material/model aanpassen, etc)
 - Update preview (in hetzelfde scherm) of nieuwe previewer openen?
 - Materials op sphere/box/cylinder toepassen?
 - ‘geanimeerde’ preview window of alleen ‘screenshots’?
 - etc
- Hoe wil je de camera besturen (indien van toepassing)?
- Moet de belichting aanpasbaar zijn, en zoja hoe?
- Meerdere geopende windows, of limiteren tot 1?
- Algemene verwachtingen previewer?
- Waar liggen de prioriteiten?

Material editor:
- Wat is er mis aan de huidige material editor? (algemene probleemanalyse)
- Algemene verwachtingen material editor?
- Moet de editor node-based zijn of niet?
- Property grouping voorkeur? (welke eigenschappen bij elkaar in de buurt moeten, anders dan huidige grouping)
- Eerste tusstenstap richting standaard 3ds max editor? (openklapbare panels ipv losse tabs naast elkaar, checkboxes ipv false/true, color picker ipv microsoft dropdown, etc)
 - Aparte dialogs voor textures/combiners/luts, icm ‘up one level’ knop?
 - Schematische tree-view van de material?
 - etc
- Prioriteiten?

Curve editor:
standaard curve editor eigenschappen:
- X en Y as range en stapgrootte instellen
- Punten toevoegen en verwijderen
- Punten bewegen (slepen met muis en handmatige invoer)
- Punten handles draaien
- Iterpolatie algoritme aanpassen (Smooth, linear, step) (standaard Bezier?)
- Verschillende curves binnen een (lut-)scherm, bijv RGB binnen dezelfde lut (?)
- Kopieren/hergebruiken curves/luts
- Preview uiteindelijke waarden (LUT heeft alleen integer waarden voor X as (index), kan afwijken/wijkt af van wat je ziet in de editor)
- Offset aanpassen voor uitendelijke waarden (neem midden/linkerhoek/rechterhoek van x unit)
- Exporteren/opslaan als 3ds format

- Verder nog eisen?

Appendix II WizardScript Example
Example of a WizardScript, using Material for Data. Also shows custom syntax highlighting.
SKIP_COMMENTS yes

SHOW_WARNINGS no

STOP_ON_WARNING no

USE_WITH_REGIONS yes

Data Material

Description "My new Wizard"
enum SomeEnum

{

NONE,

ALL

}

Wizard MyWizard : MaterialWizard
{

Properties

{

define MyClass

{

/// A color in MyClass

Color

MyClassColor

Color.White

}

Tab MyTab

{

Category MyCategory

{

/// The path to the texture

image

MyCategoryImage

SomeEnum

MyEnum

}

MyClass

MyClassInstance

}

}

function Convert

{

if(Validate(false) != null) return;

ShowMessage("Convert finished!");

}

function ShowMessage message

{

MessageBox.Show((string)message);

}

function Validate

{

if(MyCategory.MyCategoryImage == null)

{

ShowMessage("Image is null!");

return "Image file incorrect";

}

return null;

}

function Import

{

Assert(Data != null, "Data is null!");

Data.Wizard = this;

}

C#

void Assert(bool condition, string message)

{

if(!condition)

throw new Exception(message);

}

/C#

}

Appendix III WizardScript parsing result
WizardScript parsing result when parsing the WizardScript example in Appendix II.

using System;

using System.IO;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Drawing;

using System.ComponentModel;

using System.Windows.Forms;

using System.Runtime.Serialization;

using LibEditor.Data;

using LibEditor.Util;

using LibEditor.Wizards;

using LibEditor.Data.Exporter;

using LibMtl.Wizards;

using LibMtl.Data.Material;

public enum SomeEnum

{

NONE,

ALL

}

[

DataContract(Name = "MyWizard", Namespace = "", IsReference = true),

Export

]

public class MyWizard : MaterialWizard

{

[DataContractAttribute(Name = "MWMyClass", Namespace = "", IsReference = true)]

private class MyClass : WizardCategory

{

private Color m_MyClassColor;

[DataMember]

[DescriptionAttribute(" A color in MyClass")]

public Color MyClassColor { get { return m_MyClassColor; } set { PropertyChangeNotifier.SetProperty("MyClassColor", ref m_MyClassColor, value); } }

public MyClass(string title) : base(title)

{

MyClassColor = Color.White;

}

}

#region Tab MyTab

[DataMember]

WizardTab tabMyTab;

[DataContractAttribute(Name = "MWMyCategory", Namespace = "", IsReference = true)]

protected class catMyCategory : WizardCategory

{

private string m_MyCategoryImage;

[DataMember]

[DescriptionAttribute(" The path to the texture")]

[EditorControlAttribute("LibEditor.Util.EditorControls.ImageFileBrowser")]

public string MyCategoryImage { get { return m_MyCategoryImage; } set { PropertyChangeNotifier.SetProperty("MyCategoryImage", ref m_MyCategoryImage, value); } }

private SomeEnum m_MyEnum;

[DataMember]

[DescriptionAttribute("")]

public SomeEnum MyEnum { get { return m_MyEnum; } set { PropertyChangeNotifier.SetProperty("MyEnum", ref m_MyEnum, value); } }

public catMyCategory() : base("MyCategory")

{

}

}

[DataMember]

protected catMyCategory MyCategory;

[DataMember]

private MyClass MyClassInstance;

#endregion

public override void Init()

{

Tabs = new WizardTabList();

if (tabMyTab == null) tabMyTab = new WizardTab("MyTab");

Tabs.Add(tabMyTab);

tabMyTab.Categories = new WizardCategoryList();

if (MyCategory == null) MyCategory = new catMyCategory();

tabMyTab.Categories.Add(MyCategory);

if (MyClassInstance == null) MyClassInstance = new MyClass("MyClassInstance");

tabMyTab.Categories.Add(MyClassInstance);

base.Init();

}

public override string Description

{

get { return "My new Wizard"; }

}

public override void Convert()

{

if(Validate(false) != null) return;

ShowMessage("Convert finished!");

}

public void ShowMessage(object message)

{

MessageBox.Show((string)message);

}

public override string Validate(bool showWarnings)

{

if(MyCategory.MyCategoryImage == null)

{

ShowMessage("Image is null!");

return "Image file incorrect";

}

return null; // null == OK

}

public override void Import()

{

Assert((Data as Material) != null, "(Data as Material) is null!");

(Data as Material).Wizard = this;

}

void Assert(bool condition, string message)

{

if(!condition)

throw new Exception(message);

}

}

Appendix IV WizardScript end result
Screen capture of the Wizard created with the WizardScript in Appendix II.

[image: image24.png]

Appendix V Using Material Wizards
A document describing the use of Material Wizards, written when the Material Editor was first released.
Using Material Wizards in the CTRL Editor
A brief description on how to easily create materials

[image: image25.jpg]

Engine Software

Wizards
Introduction

Engine Software uses the CTRL Editor for making and managing data for their CTR projects. Materials are one such data type to use this editor. Making a material is made easy with the use of so-called ‘Wizards’, getting their name from the well-known installation guides when using Windows products.

These material wizards are designed to allow the user to quickly create a fully functional material, without having to worry about all the underlying settings needed to create the material they had in mind. By only offering a handful of well-ordered options at any given time, the user has a clear overview of what exactly he is working on, and can easily switch tasks with the click of a button.

Wizard Layout

A wizard generally has two ways to subdivide its options. Fist is the tabbed pages. These tabs divide the options into broad, general sets of options. The user can switch between tabs at any time by clicking the tab header at the top of the wizard page.

Secondly, all tabs have one or more categories, which group together specific options. A category’s box can be minimized to save screen space by clicking the ‘-‘ button [image: image11.png]

 at the top-right corner. Note that none of the wizard’s options are contained outside a category.

Both tabs and categories have names to allow the user to quickly identify the option set he is looking for.
Using wizards in your project

Adding Wizards
[image: image26.png]403p3 [el
101p3

JOM;
SONIAIIE e

91BN
ElVI1e)
21A3.d
JENEL)

HEY-E]

10daJ jooyds jeuly
juawusisse uonduasap [eul4

uonejuswndog

J03p3 [eLRIEN
J03Ip3 dAIND
uoI1eIFDIU| MBIARI

*213 ‘suonippo ‘buixif bng

J03p3 [eLRIEN
J03Ip3 dAIND
uoIIeIFDIU| MBIARI]

uonpuaWadw|

Joyp3 [eLRieN
J03Ip3 aAIND)
uoljed893u] M

aid

ubisap [021UY93]

J03p3 [eLRIEN
J03Ip3 dAIND
uoIIeIFDIU| MBIARI]

SISAIpup sjuawaiinbay

9p02 J01P3 1Y1D Ydieasay
2pod Aleuq| ¥10q1| YaJeasay
auigu3 uoneuaWNd0Q
OpUd3UIN UOIIEIUAWNI0Q
1USWIUOJIAUD }Jom dnias

Y2033y

07

ST

yan

9T

QT

kran

€T

ran

TT

oT

6

8

L

syseL

To use a wizard for making a material, your project first needs to include a wizard you want to use. First, make sure your version of the CTRL Editor is compatible with wizards. You can do this by opening your project in the editor. The editor is compatible if a folder named ‘Wizards’ is listed underneath ‘Scenes’. If your editor software is not compatible, please contact Engine Software for an upgrade.

Adding a wizard works the same way as adding any other data file to the project. Place your wizard in a folder inside the ‘data’ directory.

(eg. “C:/CTR projects/MyGame/data/wizards/myWizard.ws”). Click on the ‘Add Existing File’ button [image: image12.png]

 in the project viewer, and select your wizard. It should appear in the ‘Wizards’ folder.

[image: image27.png]M. De Jong

Artists Dennis van Zwieten Engineers

After adding the wizard, it is automatically opened as a text file. All you need to do here is close it using the ‘X’ button at the top right corner. You are now ready to use the wizard.

Using a wizard

Every time you create a file type that uses a wizard, you will need to select which wizard to use. The same goes for opening any saved files of said file types that are set to use a wizard, but have not selected one. Select the wizard you want to use, and click ‘OK’. An editing window should open, utilizing the wizard you have selected. Optionally, you can select no wizard and click the ‘Show advanced options’ checkbox to manually edit values. You can always select a wizard later on. See ‘Advanced Tab’ for more details.

[image: image28.png]E8 Form1

7] Hide Inactive Hardes
Lock Extreme Points

Cuve
Color

255,165,0)

Point
Point Posiior:

0.3970143, 05801282)

BEZIER
[Lock Handles

Any field in the editing window can have a short description assigned to them; hover your mouse over the field’s text label to the left to show it.

The EffectMaterialWizard
The EffectMaterialWizard is a wizard that creates a fairly simple material. It allows you to blend two textures, as well as use an effect texture. This effect texture should be defined in code, so all the material needs to know is how to use it. The wizard also sets up basic material blending and lighting. The following pages will walk you through creating a material using the EffectMaterialWizard.

Creating an EffectMaterial
To create an EffectMaterial, add the wizard to your project using the methods explained above. After you have done that, create a new material by clicking the ‘New File’ button, and selecting the ‘Material’ option.
This brings up the ‘Select Wizard’ form, where you will select the EffectMaterialWizard. Your new material is created using the selected wizard. The main tab, ‘Textures’, is displayed, containing boxes for DiffuseTexture, Texture2 and Effects.

The tabs and their categories will be explained in detail on the following pages.

Textures

Diffuse texture
The first thing you will want to do is setup a diffuse texture, the base texture for the material, in the DiffuseTexture category. Check the ‘Use’ checkbox to enable the texture, then click the browse button [image: image13.png]

 next to the ‘FileName’ textbox. Browse to your texture file, and open it. A little thumbnail of your texture should appear next to the browse button. Set the UV Channel to ‘Uv 1’ or ‘Uv 2’, depending on which UV channel (defined in the model) you want your texture to use.

Texture2
Optionally, you can setup a second texture to be blended with the diffuse texture, using the ‘Texture2’ category. Check the ‘Use’ checkbox, select your texture, and set the UV channel to the desired value, as you did with the DiffuseTexture. Set the ‘RGBFunction’ to ‘Blend’, and select the desired blending method. You can choose from the following values:

· Modulate

multiply the color values of the two textures

· Add

add the color values of the two textures

· Signed Add

add the color values of the two textures, subtracts 0.5

· Decal

set Texture2 as an overlay, using its alpha channel as mask

· Subtract

subtract Texture2’s values from DiffuseTexture’s values

Effects

The Effects category has three functions:

· Enable and setup the Effect texture

· Setup additional color effects for the (blended) diffuse texture

· Enable Vertex Paint for color multiplication

To enable the use of the Effect texture, check the ‘UseEffectTexture’ checkbox. The effect texture can be blended in the same ways as the secondary texture. The effect texture’s texture mapping can be any of the following:

· UV

the effect is mapped to the model’s UV0 channel

· Sphere

the effect is mapped as a sphere based on model normals

· Cube

the effect is mapped as a cube based on model normals

· Projection

the effect is projected onto the model using projec. matrix

· View

the effect is projected onto the model using view matrix

The EffectTexturecolorAdd field allows you to add a color to the effect texture’s color values before applying it.

The other options do not affect the effect texture, but instead apply to the diffuse texture:

· DiffuseTextureColorAdd

Adds a color to the diffuse texture

· DiffuseTextureColorMultiply
Multiplies the diffuse texture with a color

Lighting

Specular0 and Specular1

Any material can have two different specular highlights. Either can be enabled with the ‘Use’ checkbox. The color defines the specular highlights color. The highlight’s distribution can be made to look ‘metallic’ by checking the ‘MetallicReflection’ checkbox. This makes the specular highlights stronger towards the edges of the model, and more faint towards the center.

Colors

This category contains the material’s three basic colors: Ambient, diffuse and emission. They are roughly used as follows:

Primary Lighting = Emission + (Global ambient * Ambient) + (Diffuse * lighting)

The Primary Lighting color is then multiplied with the diffuse texture to give the final result.

Other

Here you can enable the use of fog on the material, as well as the use of fragment lighting by checking the ‘Fog’ and ‘UsePerPixelLighting’ checkboxes respectively.

Blending

Blend

The Blending tab contains options to change the way your material is rendered. By changing the BlendType, your material will interact with underlying materials differently:

· None

no blending, the material is applied as-is

· AlphaBlend

default blending, uses alpha channel to blend the material

· Additive

adds the material’s colors to the underlying material

· Subtractive

subtracts the material’s colors from underlying material

· PunchThrough

alpha values lower than .5 (or 127) are cut off

Advanced

You can access the ‘Advanced’ tab by checking the ‘Show advanced options’ checkbox at the top of the wizard’s window. However, use of the ‘Advanced’ tab is discouraged, and will not be discussed here.
Appendix VI Graduation agreement
Afstudeerovereenkomst (Dutch)

	DEEL I
	Na overeenstemming met de bedrijfsbegeleider, dien je voor het verkrijgen van een voorlopige goedkeuring deel I van deze afstudeerovereenkomst in te vullen, en digitaal te sturen naar janne.meijer@hu.nl van het Onderwijsbureau.
	Datum
	:
	     11-02-2011

	
	
	Laatste wijziging document
	:
	

	Gegevens van de afstudeerder

	

	Studentnummer
	:
	     1541262
	Afstudeerperiode
	:
	     Februari-juni

	Naam
	:
	     Dennis van Zwieten
	l
	
	     

	Adres
	:
	     Brugakker
	Huisnummer
	:
	     1307

	Postcode
	:
	     3704 WE
	Woonplaats
	:
	     Zeist

	Studentenmail
	:
	     dennis.d.vanzwieten@student.hu.nl

	Telefoonnummer
	:
	     0306954332

	Mobiel
	:
	     0646532317

	Gegevens afstudeerbedrijf

	

	Bedrijfsnaam
	:
	     Engine Software B.V.

	
	
	
	
	
	

	Bezoekadres
	:
	     Burg. Van Nispenstraat
	Huisnummer
	:
	     6

	Postcode
	:
	     7001 BS
	Woonplaats
	:
	     Doetinchem

	
	
	
	
	
	

	Postadres
	:
	     PO Box 252
	Huisnummer
	:
	     

	Postcode
	:
	     7000 AG
	Woonplaats
	:
	      Doetinchem

	

	Algemene e-mail
	:
	     info@engine-software.com

	Website
	:
	     http://www.engine-software.com

	Gegevens bedrijfsbegeleider

	

	Naam
	:
	     Rudy de Jong
	Functie
	:
	     Lead Programmer

	Titel
	:
	     
	E-mailadres
	:
	     rudy@engine-software.nl

	Stageperiode en - vergoeding

	

	Begindatum
	:
	14-02-2011

	Einddatum
	:
	08-07-2011

	Vergoeding
	:
	275 EUR

	Duo-stage met
	:
	     

	Afstudeerdocent
	:
	J. Bruijn

	Omschrijving van het bedrijf

· hoe ben je aan het bedrijf gekomen?

· is er sprake van een afstudeerproject binnen je eigen onderneming, die van je partner of die van bekenden

· formuleer in je eigen woorden de grootte, de branche, de core business van het bedrijf en de plaats van ‘mediatechnologie’ in het bedrijf

· wat is jouw positie in het bedrijf/de afdeling, en geef aan hoeveel MT-collega’s je dagelijks op de werkplek hebt

	

	     

Engine Software B.V. is een game development bedrijf in Nederland, dat zich voornamelijk concentreert op Nintendo spelcomputers. Ik heb dit bedrijf gevonden door te zoeken naar game developers met een focus op spelcomputers. Hiervan zijn er maar een handvol in Nederland, dus daar was weinig keus. Ik had zelf de voorkeur voor Nintendo spelcomputers, en Engine Software B.V. is daarom voor mij ideaal.

Engine Software B.V. heeft momenteel 20 werknemers, verdeeld onder management, programming, design en artists. De opleiding Mediatechnologie haalt zijn kracht uit de combinatie van drie uitgangspunten: techniek (programming), creativiteit (design) en communicatie (management). Dit bedrijf heeft in grote mate te maken met alle drie van deze punten.

Ik zal voor deze stage opdracht een positie tussen de programmers en artists hebben. Mijn taak is om een content management systeem te maken gebaseerd op onderzoek naar een nieuwe spelconsole. Hiervoor zal ik voornamelijk communiceren met de artiesten, en hun eisen aan het product als basis nemen voor mijn werkzaamheden. Ondertussen zal ik ook met de programming kant moeten praten over mogelijkheden binnen hun eigen framework.

	Opdrachtformulering

· beschrijf het afstudeerproject (de aanleiding tot de opdracht, een probleemomschrijving, formulering van de opdracht, methoden / technieken / systemen, op te leveren producten plus voor wie maak je de producten en waarvoor / hoe gaan de producten gebruikt worden, projectactiviteiten en globale planning)

· beschrijf in hoeverre je project recht doet aan de 4 generieke competenties van de B Eng

· geef aan aan welk team (GTS, IMP, of BCT) of welke inhoudsdeskundige docenten je je bedrijf en opdracht hebt voorgelegd, op welke datum, of het team een go / no go-advies heeft gegeven, voeg de feedback die je hebt ontvangen als bijlage toe

· geef aan wat voor jou de uitdaging van dit project is

	

	Het afstudeerproject is een ‘ontwikkeling van een toolset voor een game engine’. Deze game engine wordt momenteel ontwikkeld door Engine Software B.V. De aanleiding hiervoor is de opkomst van een nieuwe spelconsole. De toolset bestaat uit:

(Uit de opdracht zoals geformuleerd door Engine Software B.V.:)

· Material editor
- Node based material editor
purpose: combine textures with blend modes and additional effects using a visual tool

· Animation editor
- Editing of animation sets
purpose: Control of animation transitions and animation blending (including preview on target hardware platform)

· Curve editor
- Editing of curved values (graph)
purpose: Mostly for editing of LUT tables

· Target platform Preview integration
- (possibly integrated) Preview with the target platform renderer (C++ -> C# integration) in the editor
purpose: Mostly for models (levels) and / or material previews in the editor

Het doel van deze toolset is om de taak van de game artists te vergemakkelijken. Door een visuele tool te maken kunnen ze makkelijk parameters van materials en animaties aanpassen en de effecten hiervan zien zonder steeds te moeten testen op de hardware.

Dit project doet uiteraard recht aan alle competenties van de Bachelor of Engineering. Voor alle onderdelen zal ik moeten uitzoeken wat er van het onderdeel wordt verwacht, in welke programmeertaal ik het moet schrijven en hoe deze programmeertaal werkt (inzicht verkrijgen). Op basis hiervan zal ik een globaal ontwerp maken van de hele toolset, en voor elk onderdeel apart een specifiek, gedetailleerd ontwerp om aan de hand daarvan te gaan werken (ontwerpen). Vervolgens zal ik aan moeten geven hoe lang ik denk over de onderdelen te gaan doen, en wat ik denk wel en niet te kunnen doen (plannen). Deze vier competenties zullen in alle subonderdelen en het hele project regelmatig terugkomen.

De opdracht is voorgelegd aan het GTS team. Ik heb een positief advies gekregen op 11-02-2011.

De grootste uitdagingen van dit project voor mij zijn de grafische aspecten en de communicatie met de artiesten. Ik zal goed moeten informeren naar wat zij precies willen van het product. Daarnaast zal ik een basis voor grafische effecten moeten programmeren, waar ik weinig ervaring mee heb.

	Voorwaarden afstuderen

Geef aan in hoeverre:

· je nog cursussen open hebt staan (eis: Propedeuse, alle projecten, en minimaal 144 studiepunten uit de B-fase moeten behaald zijn)

· het project in omvang overeenkomt met 840 werkuren

· de afstudeeropdracht een gestructureerde projectopdracht is

· het onderwerp in het verlengde van de opleiding Mediatechnologie ligt (welke van de MT-gebieden behelst het project?)

· het project binnen een MT-werkomgeving wordt uitgevoerd

· je bedrijfsbegeleider een HBO’er is, een ervaren begeleider is, je inhoudelijk kan helpen met het project (gevorderd mediatechnoloog), dagelijks op de werkplek aanwezig is, en een onafhankelijk beoordelingsadvies kan geven

· de voorzieningen / faciliteiten in orde zijn (eigen werkplek, computer, betaling, e.d.)

· het project recht doet aan het HBO-niveau van de opleiding (koppel aan de Dublin-descriptoren)

· het project wordt uitgevoerd bij een ander bedrijf dan waar je je stage in het derde jaar hebt gelopen.

	

	     
Mijn huidige puntentotaal staat op 147, en de laatste 3 punten wachten op invoer. Ik heb dus geen cursussen meer open staan.

Het project komt zeker overeen met 840 uur, zo niet meer. Zoals in de opdracht al staat geformuleerd, bestaat de kans dat sommige onderdelen niet afgemaakt kunnen worden. Omdat de opdracht bestaat uit meerdere, in verschillende opzichten ingewikkelde en uitgebreide sub-onderdelen, kan ik zelf in overleg de opdracht schalen om dit binnen de 840 uur te houden.

Ondanks dat de opdracht uit verschillende onderdelen bestaat, blijft het toch een enkel product, namelijk de toolchain. De onderdelen onderling moeten met elkaar kunnen communiceren, waardoor het ontwerp sterk moet staan. De opdracht is duidelijk onder te verdelen in sub-onderwerpen, zonder dat er wordt afgeweken van de hoofdopdracht. Dit alles duidt op een gestructureerde opdracht.

Het onderwerp (game development/design) en het project (de toolchain) hebben alles te maken met Mediatechnologie. Ontwepen, plannen, programmeren en communiceren komen allemaal sterk voor in beide.

Mijn bedrijfsbegeleider is Rudy de Jong, lead programmer bij Engine Software B.V. Hij heeft een bachelor en master degree in computer science, en 8 jaar ervaring in de games industrie. Daarnaast heeft hij eerder minstens vier andere stagiairs begeleid. Hij is fulltime werknemer, en dus dagelijks aanwezig en aanspreekbaar.

Het project doet in alle opzichten recht aan het HBO-niveau van de opleiding. Ik zal mijn aanwezige kennis en inzicht moeten toepassen op alle onderdelen van de opdracht, alsmede leren hoe de aanwezige systemen werken en hoe deze te gebruiken.

Naast kennis en inzicht zal ik met de grafische artiesten moeten praten over wat er van het product verwacht wordt. Ook zal ik met de programmeurs moeten overleggen wat wel en niet mogelijk is binnen hun game engine. Ik zal aan beide partijen, elk met verschillende specialisaties, mijn ideëen moeten voorleggen en duidelijk maken.

Voor mijn oriënterende stage heb ik gewerkt voor ForceLink B.V. Dit bedrijf houdt zich bezig met apparaten voor revalidatie in combinative met visuele cues.

	Afstudeerdocent

Je hebt in deel I van de overeenkomst (pagina 1) een voorkeur opgegeven van afstudeerdocent (1e examinator). Geef in het kort aan waarom je voor deze docent(e) gekozen hebt.

	

	Ik heb gekozen om de voorkeur te geven aan dhr. G. Ovink. De reden hiervoor is dat hij naar mijn mening de meest enthousiaste en geinteresseerde docent is op de Game Technology afdeling, met brede ervaring in game gerelateerde onderwerpen.

	Aanvullende opmerking(en)

	

	Verdere details uit de opdrachtformulering:

Internship tasks:

· research user requirements from coding and artist department

· technical design of toolset

· estimation of time needed for development of each part of the toolset, resulting in a planning of achievable goals during the intern period. Possibly some parts of the toolset may turn out not to be doable during the internship period.

· implementation of toolset

	DEEL II
	Na overeenstemming met de afstudeerdocent en de bedrijfsbegeleider, dien je voor het verkrijgen van een definitieve goedkeuring deel II in te vullen en de complete afstudeerovereenkomst 1x digitaal op te sturen naar janne.meijer@hu.nl van het Onderwijsbureau en 1x per post voorzien van drie handtekeningen naar Onderwijsbureau t.a.v. Louis Raaijmaakers, Nijenoord 1 Postbus 182 – 3500 AD Utrecht).
	Datum
	:
	     

	
	
	Laatste wijziging document
	:
	

	Omschrijving van het afstudeerproject

	

	Titel

In-Game Content Creation

Material Editor voor next-gen game consoles

Randvoorwaarden

(verwijs hier naar de handleiding afstuderen MT)

Uitgangspunten
· Producten moeten voor artiesten makkelijk bruikbaar zijn

· Producten moeten makkelijk uitbreidbaar zijn door het bedrijf

Probleemstelling

Het maken van materials neemt nu gemiddeld meer dan een uur tijd in voor artiesten, tweaken van deze materials duurt nog langer. Zo veel tijd is er niet om aan materials te werken, dus moet het proces worden aangepast.

Deze tijd zit voornamelijk in twee onderdelen:

· Het daadwerkelijke instellen van alle material eigenschappen, en deze kloppend houden

· Het weergeven van de gemaakte materials duurt lang i.v.m. lange opstart-tijd van de applicatie.

Doelstelling

Het doel van het afstudeerproject is om het maken van materials (het uiterlijk van objecten in games) te vergemakkelijiken voor artiesten.

Producten
De op te leveren producten zijn:

· Material Editor voor het eenvoudig maken van in-game weer te geven materials

· Material/Scene previewer voor het snel weergeven van de gemaakte materials

· Curve Editor voor het aanpassen van verschillende eigenschappen van de materials

	Te volgen aanpak

	

	Methode
Voor elk van de drie onderdelen (Material editor, curve editor en previewer) worden de volgende stappen ondernomen:

· Onderzoek naar onderwerp van het probleem

· Eisen vaststellen

· Ontwerpen

· Uitvoeren

Stappen
Hieronder volgt een zgn. Moscow analyse. MoSCoW staat voor het onderverdelen van taken in verschillende prioriteitsklassen: Must-Have, Should-Have, Could-Have en Would-Have (of would like to have). Elk onderdeel heeft zijn eigen Moscow analyse.

Material Editor
Must-Have:
- Dynamisch inladen van Wizard scripts
- Een ‘voorbeeld’ Wizard voor basic material: Functionaliteit gebaseerd op ontwerp Maarten

Should-Have:
- Geintegreerde Previewer
- Macro pre-processing handler

Could-Have:
- Uitgebreidere Wizards
- Verdere versimplificatie* van het schrijven van wizards
- Validatie van ingestelde waarden**

Wouldliketo-Have:
- Skinnable interface

Previewer
Must-Have:
- Material preview render

Should-Have:
- Auto-Update renderer
- Material preview op gekozen model
- Scene preview
- Basic belichting

Could-Have:
- Instelbare lichtbronnen
- Camera controls

Wouldliketo-Have:
- ?

Curve Editor
Must-Have:
- ‘resolutie’ instellen (min/max x/y waarden, stapgrootte, etc)
- Punten toevoegen/verwijderen/bewegen
- Handles van punten aanpassen
- Interpolatiemethode aanpassen
- Exporteren voor CTR

Could-Have:
- Kopieren/hergebruiken curves
- Verschillende curves binnen scherm

Wouldliketo-Have:
- Verschillend gekleurde curves binnen het scherm

* Versimplificatie houdt bijvoorbeeld in:
- Gerbuik van ‘standaard’ functies uit de material wizard (bijv instellen van combiners oid)
- Voorgedefinieerde macros
- etc

	Planning

	

	Tijdschema
(koppel de stappen/activiteiten aan een tijdschema)
Week 12 (21 mrt): Material Editor Must-Haves
Week 15/16 (11/18 apr): Previewer Must-Haves, misschien ook Should-Haves.
Week 18 (2 mei): Curve editor Must/Could-Haves, Previewer Should-Haves, misschien ook Could-Haves
Week 20 (16 mei): Editor Should-Haves
Week 21 e.v. (23 mei - 4 juli): Editor en Previewer Must/Should/Could-Haves

Voorlopige inhoudsopgave scriptie

- voorwoord

- inhoudsopgave

- samenvatting

- inleiding

- probleemstelling

- opdrachtomschrijving

- planning

- werkwijze

- bespreking van mogelijke oplossingen van problemen en motivering van de keuzes

- beschrijving van de werkzaamheden

- een analyse van de resultaten

- beschrijving van implementatie

- conclusies

- evaluatie

- geraadpleegde literatuur

[image: image14.png]

Grantt Chart

Time worked on all internship segments

� Game Technology and Simulation: A two-year specialization course focused on game development and design.

� MediaTechnology: At its heart a very broad course centered around hardware, programming and design, but with a multitude of specialization options.

� Lookup table (or LUT): A collection of pre-calculated values. When the algorithm that the results are based on is always the same, the results can be stored in a static collection for easy access, so that there is no need for run-time calculations. Depending on the algorithm and the frequency of its use, this can save a lot of processing power, and more relevant to games, can keep the frame rate from dropping severely.

� Normal: A vector perpendicular to a plane’s surface. By modifying the normals with a Normal map in the material, an illusion of geometrical detail can be created with limited actual geometry.

� Blending: combining colors of two or more sources with a given blend method

Blend method: Some examples are: add (light), subtract (paint), and multiply

� Although referred to here as ‘material Wizards’, the Wizard class is designed to effectively allow any data structure to be created using a Wizard.

� Microsoft .Net Framework: ‘provides an abstraction layer over the operating system’, contains ‘pre-built code for common low-level programming tasks’ and ‘reusable, customizable solutions for larger programming tasks’

� The ‘Advanced’ tab contains all of the material’s settings. The use of the advanced tab is generally discouraged, but it is built in for those who want to specify properties not available in the Wizard.

� Viewing vector: the direction of the line between the camera and a target point in 3D space.

� Surface normal: a line perpendicular to the surface.

� Online function plotter: � HYPERLINK "http://www.sunsite.ubc.ca/LivingMathematics/V001N01/UBCExamples/Plot/calc.html" �http://www.sunsite.ubc.ca/LivingMathematics/V001N01/UBCExamples/Plot/calc.html�

� Source: � HYPERLINK "http://www.moshplant.com/direct-or/bezier/math.html" �http://www.moshplant.com/direct-or/bezier/math.html�

� Bone animations: In 3D modeling, an abstraction of the model is used for animation in order to minimize the animating points. This abstraction, or model skeleton, is a collection of bones. The model itself is then placed over these bones as a ‘skin’, following the bones’ motions.

� Note: Code examples in this chapter based on the examples at � HYPERLINK "http://blogs.msdn.com/b/borisj/" �http://blogs.msdn.com/b/borisj/�.

� MoSCoW: See also � HYPERLINK "http://www.coleyconsulting.co.uk/moscow.htm" �http://www.coleyconsulting.co.uk/moscow.htm�

� Profiel van de Bachelor of Engineering (2006) ISBN: 90-810570-1-4

PAGE

