

Instruments to Evaluate and Improve

IT Architecture Work

Leo Pruijt

ISBN: 978-94-6233-142-6

© 2015, Leo Pruijt. All rights reserved.

Instruments to Evaluate and Improve

IT Architecture Work

Instrumenten ter Evaluatie en Verbetering

van IT-Architectuur Werk

(met een samenvatting in het Nederlands)

PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Universiteit Utrecht op gezag van

de rector magnificus, prof.dr. G.J. van der Zwaan,

ingevolge het besluit van het college

voor promoties in het openbaar te verdedigen op

woensdag 25 november 2015 des middags te 12.45 uur

door

Leo Jacobus Pruijt

geboren op 6 juli 1961

te Gouda

Promotor: Prof.dr. S. Brinkkemper

Copromotoren: Dr.ir. Raymond Slot MBA

 Dr.ir. J.M.E.M. van der Werf

Dit proefschrift werd mede mogelijk gemaakt door Hogeschool Utrecht.

vii

Preface

About five years ago, I began to consider the possibilities of a PhD study. In the

preceding years, my employer, the HU University of Applied Sciences Utrecht, had

begun to promote and facilitate PhD research, but I had declined invitations,

knowing that it would change the balance in my life considerably. However,

several demanding though satisfying activities made me change my mind in the

second half of 2010. First, I had worked with pleasure on a series of papers on

layered software architectures for a magazine for professional software architects;

written in cooperation with Wiebe Wiersema, a lector of the Information Systems

Architecture Research Group (ADIS).

Second, Raymond Slot, another lector of ADIS, involved me in the ArchiValue

project, a research collaboration of several academic institutions and professional

organizations. Within the context of this project, the Enterprise Architecture

Realization Scorecard (EARS) was developed and we were planning the first case

study on the application of the instrument.

Last, the project within the third year specialization semester Advanced

Software Engineering (ASE), which I coordinated, provided the opportunity to

combine research, education, and software development. In the preceding years, we

had formed a good-working team of lecturers, and quite some students that

followed the specialization had proven to be keen and motivated. Furthermore,

several professional organizations were willing to cooperate.

Being at the end of my PhD study, I can confirm that the above mentioned

activities have provided a solid base for my research. In the last four years, we

were able to extend and improve our work on the EARS instrument and on

software layers, and to raise it to the academic level. Furthermore, the projects of

the ASE specialization have yielded working prototypes, application case data, and

initial tool tests with respect to software architecture compliance checking. The

planning and elaboration of these projects in 2011, 2012, and 2013 required a huge

effort, but the results were amazing, and the collaboration with and between the

students, lecturers, and professionals in the participating organizations was

excellent.

viii

At present, I realize that five years ago I did not know where I was starting on.

The PhD journey felt initially like starting a new job in another field, with another

language, a different knowledge base, and other procedures and ethics. However, I

consider these years as enriching years, in which I have learned a lot, stressed a lot,

though also achieved a lot. Academic work is like monkish work. It requires

patience, perseverance, and humility; mostly trained by acceptance (mostly after a

cooling period) of the remarks and rejections of reviewers higher in the academic

hierarchy.

Many people have contributed to my research and achievements, in one way or

another. Without these contributions, I could not have accomplished the work

presented in this dissertation. Therefore, I am grateful to all of them. However, it is

impossible to include all names, since there are simply to many: colleagues of the

Information Systems Research Group of the HU university of Applied Sciences

Utrecht; members of focus groups on enterprise architecture and software

architecture at Utrecht University; students of the specialization Advanced

Software Engineering; colleagues teaching and coaching these students;

professionals who provided feedback in the design stages of the instruments;

professionals and their organizations participating in case studies on the application

of the instruments; lecturers of courses on design science research and academic

writing, which I followed; and finally, all the reviewers of my workshop,

conference, and journal papers.

Special thanks go to my promoter, Sjaak Brinkkemper, and co-promoters,

Raymond Slot and Jan Martijn van der Werf. Thank you for the guidance,

encouragement, and feedback. You taught me the new job! Furthermore, I would

like to thank the members of the reading committee, Professors Paris Avgeriou,

Arie van Deursen, Erik Proper, Andreas Rausch, and Uwe Zdun, for their time and

effort in reviewing and judging my dissertation.

In addition, I owe special thanks to several members of ADIS who co-authored

my papers. Christian Köppe acted as a great, reliable partner in my research on

software architecture, while Henk Plessius and I collaborated in research on the

effectiveness and benefits of enterprise architecture. Finally, Wiebe Wiersema has

inspired and mentored me since the beginning of our research group, both as lector

and as professional partner.

Last, but not least, I am grateful to my dear wife, Birgitta, for her support and

encouragement, and to our children, Gabe and Imme. You allowed me to work for

many hours in “family time”, and you did not act too harsh on me when my mind

had, again, not followed my body from my working desk to the dinner table.

Leo Pruijt, September 2015

ix

Contents

Preface .. vii

Contents ... ix

1. Introduction ... 1

1.1 Architecture in the Domain of IT ... 1

1.2 Challenges in the Domain of Architecture ... 10

1.3 Research Questions .. 13

1.4 Lines of Research ... 15

1.5 Research Approach and Research Methods ... 16

1.6 Dissertation Outline .. 20

2. Architecture Compliance Checking of Semantically Rich Modular

Architectures: A Comparative Study of Tool Support 23

2.1 Introduction .. 23

2.2 Modular Architectures .. 25

2.3 Test Method and Tested Tools ... 32

2.4 Test Results .. 34

2.5 Discussion ... 38

2.6 Conclusion .. 41

3. A Metamodel for the Support of Semantically Rich Modular Architectures

in the Context of Architecture Compliance Checking....................................... 43

3.1 Introduction .. 43

3.2 Semantically Rich Modular Architectures.. 46

3.3 SRMACC Metamodel .. 50

3.4 SRMACC Prototype ... 54

3.5 Related work. .. 57

Contents

x

3.6 Conclusion .. 59

4. HUSACCT: Architecture Compliance Checking with Rich Sets of Module

and Rule Types .. 61

4.1 Introduction .. 61

4.2 HUSACCT ... 63

4.3 Related Work .. 68

4.4 Status and Outlook ... 69

5. The Accuracy of Dependency Analysis in Static Architecture Compliance

Checking .. 71

5.1 Introduction .. 72

5.2 Dependency Analysis ... 74

5.3 ACC-Tools Included in the Test ... 78

5.4 Benchmark Test .. 80

5.5 FreeMind Test .. 88

5.6 Frequency of Hard-To-Detect Dependency Types 103

5.7 Discussion ... 108

5.8 Threats to Validity .. 113

5.9 Related Work .. 116

5.10 Conclusion .. 118

6. A Typology Based Approach to Assign Responsibilities to Software Layers 121

6.1 Introduction .. 121

6.2 Typology of Software Layer Responsibility... 124

6.3 Approach to apply the TSLR with the Responsibility Trace Table 131

6.4 Applications .. 134

6.5 Discussion ... 139

6.6 Conclusions .. 140

7. The EARScorecard – An Instrument to Assess the Effectiveness of the EA

Realization Process .. 143

7.1 Introduction .. 143

Contents

xi

7.2 The EARS Instrument .. 146

7.3 Method .. 156

7.4 Case Studies .. 157

7.5 Discussion ... 163

7.6 Conclusions and Future Work .. 164

8. Conclusions ... 167

8.1 Answers to the Research Questions .. 168

8.2 Contributions and Implications .. 174

8.3 Reflections, Limitations, and Future Work .. 178

References .. 183

Publication List ... 193

Appendix 1: Application Case HUSACCT .. 197

1.1 Introduction to the Case System ... 197

1.2 Intended Architecture ... 197

1.3 Implemented Architecture .. 203

1.4 Architecture Compliance Check ... 205

Summary... 211

Nederlandse Samenvatting ... 215

Curriculum Vitae .. 219

Contents

xii

1

Chapter 1

Introduction

This dissertation focuses on architecture work in the field of Information

Technology (IT) and on instruments that may be used to evaluate, improve, and

support IT architecture work. In this chapter, we first introduce the research

domain and the problems that challenged us to initiate research. Second, we present

the research questions, the starting points for research lines that address the

challenges. Third, we provide an overview of our research approach and the used

research methods. Finally, we explain the structure of the dissertation and how the

following chapters are related to the research questions.

1.1 Architecture in the Domain of IT

In the last decades, architecture has emerged as a discipline in the scientific domain

of IT. In the late 1980’s, increased size and complexity of information systems

made it necessary to use some logical constructs (or architecture) for defining and

controlling the integration of all the components of a system (Zachman 1987).

Since then, the discipline of architecture has evolved enormously in practice and

research (Simon et al. 2013, Shaw and Clements 2006).

A well-accepted, generic definition of architecture is from ISO 42010: “The

fundamental organization of a system, embodied in its components, their

relationships to each other and the environment, and the principles governing its

design and evolution” (ISO 2007).

IT architecture work is demanding and challenging, and includes, inter alia,

defining architecture goals and vision, identifying architectural significant

requirements (functional and non-functional), designing and selecting solutions for

these requirements, and ensuring that the solutions are implemented according to

the architectural design.

1.1.1 Types of Architectures

Since the publication of “A framework of information systems architecture”

(Zachman 1987), many types of architectures are distinguished in the domain of IT,

and currently a variety of labels and definitions is used. IT Architecture is one of

these term that lacks a universally accepted definition (Ross 2003). We use the

Chapter 1

2

term in this dissertation as a broad term, to cover all types of architecture used in

the domain of IT.

Five types of architecture that are relevant to our research are shown in

Figure 1.1. The types of architecture, often distinguished in enterprise architecture

frameworks, are structured as hierarchical layers, where each architecture layer

reduces the degrees of freedom of the subsequent layers (Winter and Fischer 2007).

Although each type of architecture has a different focus and represents different

architecture products, consistency between these layers and products should be

maintained. The focus of each type of architecture is as follows (Winter and

Fischer 2007):

 Business architecture “represents the fundamental organization of the

corporation (or government agency) from a business strategy viewpoint.”

 Process architecture “represents the fundamental organization of service

development, service creation, and service distribution in the relevant

enterprise context.”

 Integration architecture “represents the fundamental organization of

information system components in the relevant enterprise context.”

 Software architecture “represents the fundamental organization of software

artifacts, e.g. software services and data structures.”

 Technology (or infrastructure) architecture “represents the fundamental

organization of computing / telecommunications hardware and networks.”

Figure 1.1: Five types of architecture in enterprise architecture

 (after Winter and Fischer 2007)

Technology architecture

Software architecture

Integration architecture

Process architecture

Business architecture

Introduction

3

We have focused our work on enterprise architecture and on software

architecture, which both will be introduced below. Although we regard both types

to represent different domains and disciplines, software architecture is tightly

related to the other types of architectures, as shown in Figure 1.1.

1.1.2 Enterprise Architecture

The term Enterprise Architecture (EA) is defined in various ways by different

authors. A definition of an acknowledged author is the following: enterprise

architecture is “a coherent whole of principles, methods, and models that are used

in the design and realization of an enterprise’s organizational structure, business

processes, information systems, and infrastructure” (Lankhorst et al. 2009).

Currently, enterprise architecture is widely accepted in practice, especially in

larger organizations (Bucher et al. 2006, Obitz and Babu 2009), and a considerable

number of scientific studies have focused on EA, especially in the last decade

(Simon et al. 2013). A diversity of EA management approaches has been proposed

by academia and practitioners (Winter et al. 2010), like GERAM (FAC-IFIP Task

Force 1999), DoDAF (Department of Defense 2009), and TOGAF (The Open

Group 2009). The Open Group Architecture Framework (TOGAF) is the general

EA framework that gained the widest adoption in practice (Obitz and Babu 2009)

and research (Simon et al. 2013). TOGAF provides methods and tools for assisting

in the production, acceptance, use, and maintenance of an EA (The Open Group

2009).

An overview of typical sub-architectures of enterprise architecture, according to

TOGAF, is provided in Figure 1.2. Comparison of Figure 1 and 2 shows that

Figure 1.2: EA sub-architectures according to TOGAF (The Open Group 2009)

 Business Architecture

Information Systems Architectures

Technology Architecture

Application Architecture Data Architecture

Chapter 1

4

currently there is no general accepted terminology for types of architecture, and

that only four of the five types of architecture from Figure 1.1 are present in Figure

2. The mapping from the types of architectures in Winter and Fischer’s layered

model to TOGAF’s EA sub-architectures is as follows: Business architecture and

Process architecture map to TOGAF’s Business Architecture; Integration

architecture maps to Information Systems Architecture; and Technology

architecture maps to Technology Architecture.

In the more recent versions of TOGAF, software architecture is excluded from

enterprise architecture and positioned as part of solution architecture. In contrast to

EA, solution architecture typically focuses on a single project or project release.

The difference between the work of an enterprise architect and solution architect is

summarized as follows (The Open Group 2009):

 “The Enterprise Architect has the responsibility for architectural design and

documentation at a landscape and technical reference model level.”

 “The Solution Architect has the responsibility for architectural design and

documentation at a system or subsystem level.”

Enterprise Architecture Management Function

Over the last decades, Enterprise Architecture Management (EAM) is introduced in

many large organizations. An EAM function forms a means to enhance the

alignment of business and IT and to support the managed evolution of the

enterprise (Buckl et al. 2009). In other words, the objective of EAM is to translate

the broader goals and principles of an organization’s strategy into concrete

processes and IT systems, thereby enabling the organization to realize their goals

and bridging business strategy formulation and the actual implementation of this

strategy (Lange et al. 2012). To realize the organization’s goals, an architecture

development and realization process is essential to the EAM function. The main

activities of an EA realization process with their results, as derived from the

Architecture Development Method of TOGAF 9 (The Open Group 2009), are

depicted in Figure 1.3 and are defined below.

Figure 1.3: Activities and results of an effective EA realization process

Introduction

5

 Define Vision: Determine the EA goals within scope of the architecture

iteration, develop a high level, integrated and approved solution direction

towards matching these goals, and create a concise plan to realize them. As

shown in the figure by the feedback loop, an iterative approach may be used

to develop the architecture.

 Develop Sub Architectures: Develop the required subsets of architectures to

support the agreed architecture vision.

 Plan Migration: Search for opportunities to implement the architecture and

plan the migration.

 Supervise Implementation Projects: Ensure conformance to the architecture

during the development and implementation projects.

 Exploit the Architecture in Operation: Assess the performance of the

architecture in operation, ensure optimal use of the architecture, and ensure

continuous fit for purpose.

Our research focuses on the effectiveness of the EA realization process, since

we consider an effective process conditional for an EAM function to add value to

its organization.

1.1.3 Software Architecture

Software architecture, as a kind of solution architecture, takes care of the internal

organization of an application; a single application in the enterprise architecture’s

application architecture, according to TOGAF (The Open Group 2009). A

definition of Software Architecture (SA), often used within the software

architecture research community, is the following: software architecture “provides

the framework within which to satisfy the system requirements and provides both

the technical and managerial basis for the design and implementation of the

system” (Perry and Wolf 1992). This definition clearly states the objectives of

software architecture. Another definition highlights the structural perspective

(dominant in the ISO 42010 definition of architecture): “Software architecture

involves: a) the structure and organization by which modern system components

and subsystems interact to form systems; and b) the properties of systems that can

best be designed and analyzed at the system level“ (Kruchten et al. 2006b).

Compared to basic analysis and design activities, where the focus is primarily

on the identification and design of individual functional requirements, software

architecture adds a system wide perspective and focuses on non-functional

requirements, like modifiability, reliability, and security. Since the late 1980’s,

software architecture has enjoyed a golden age of innovation and concept

formulation, and it is beginning to enter the more mature stage of quiet discipline

and unremarkable utilization (Clements and Shaw 2009).

Chapter 1

6

To organize architecture models and documentation, different views are

recognized such as logical view and deployment view, where a view is defined as

“a representation of a set of system elements and relationships among them”

(Clements et al. 2010). Many approaches that involve multiple views have been

proposed, like the 4+1 view model (Kruchten 1995), Rozanski and Woods set of

viewpoints (2005), and the views and beyond approach of the Software

Engineering Institute (SEI) (Clements et al. 2010). Since the view and beyond

approach extensively describes the views that are relevant to our work, we have

based our terminology on SEI’s work. The views and beyond approach

distinguishes three categories of views (or viewtypes), which are shown in Figure

1.4 with their views.

The three viewtypes focus on different types of elements:

 Module: models software’s implementation units and their

relationships;

 Component and connector: models elements that have some run-time

presence;

 Allocation: models software elements and their relationships to

environmental elements.

Module Viewtype

Our research does not cover the full width of software architecture, but focuses on

what we have labeled the modular architecture, corresponding with the views of

the Module viewtype. As a small, introducing example, we present small-scale

architecture diagrams from a student’s project: a simple card game, namely Thirty-

Figure 1.4: Viewtypes with their views (Clements et al. 2010)

Module

Component

and

Connector

Allocation

Decomposition

Uses

Class

Client-Server

Process

Concurrency

Deployment

Work Assignment

Implementation

Layered

Shared Data

Introduction

7

One. A conceptual model of the modular architecture is shown in Figure 1.5. Seven

modules of two types are included, namely two layers and five subsystems.

Furthermore, usage relations (the dashed arrows) show the allowed usages. All

other usages between the modules are prohibited. This module model is an

example of an intended architecture, which is the outcome of the architecture

design process (de Silva and Balasubramaniam 2012).

The design of a modular architecture may answer non-functional requirements,

like maintainability, reusability, and portability (Parnas 1972). This requires a well-

designed intended architecture and a complying implemented architecture, which is

the model that has been realized or built-in in low-level design constructs and the

source code (de Silva and Balasubramaniam 2012).

Architecture Compliance Checking

Architecture Compliance Checking (ACC) is an approach to assess whether the

implemented architecture complies with the intended architecture, in order to

identify potential erosion problems (de Silva and Balasubramaniam 2012). ACC

techniques and tools aid the software architect’s task to monitor that the solution is

implemented according to the architectural design.

As an example of the result of an ACC, Figure 1.6 provides an implemented

architecture diagram of the Thirty-One game code at root level. The model shows

that the root of the source code contains a class and two packages. The black,

dashed arrows represent usage relations, while the numbers indicate the numbers of

Figure 1.5: Model of an intended modular architecture of game Thirty-One

Chapter 1

8

dependencies as detected by HUSACCT (Pruijt et al. 2014), an ACC tool

developed in the course of our research. An architectural inconsistency in usage

style is visible in the figure as a red, dotted usage relation. The classes in package

domain contain thirteen dependencies on classes in package userinterface, while

the intended modular architecture in Figure 1.5 prohibits these usages for two

reasons: 1) a lower level layer should not use a higher-level layer; and 2) no usage

relation in Figure 1.5 justifies the usage of package userinterface by domain.

Semantically Rich Modular Architecture

In literature and practice, many modular architecture designs contain module types

with different semantics, such as subsystems, layers, and components. In addition,

different types of rules exist. For example, rule types that restrict the usage of a

module, or rule types that restrict the naming or visibility of elements of a module.

For some types of modules, one or more related rules apply. For instance, in case

of module type layer, usage of higher level layers is forbidden, and in case of a

strict layered model (Fowler et al. 2003), only usage of a directly lower level layer

is allowed.

We introduce the term semantically rich modular architecture (SRMA) for an

expressive modular architecture description, composed of semantically different

types of modules, which are constrained by different types of rules. In our opinion,

modules with specific semantics enhance the expressiveness of a modular

architecture and support architecture reasoning. As an example of an SRMA, the

intended architecture of the core of an E-commerce system is shown in Figure 1.7.

The system is developed in C# and its architecture is based on the .NET common

application architecture (MSDN 2009). Five different types of modules are present:

layers (UML packages with stereotype << Layer>>), subsystems (UML packages),

components (UML component), interfaces (UML interface), and external systems

(UML packages System.Data and CommerceServer). Furthermore, 17 rules of

eight different types are defined in this case. Appendix 1 describes the intended

Figure 1.6: Model of an implemented architecture of game Thirty-One

Introduction

9

architecture of this case, the implemented architecture and the results of a

compliance check in detail.

SRMA Support and ACC

Adersberger and Philippsen (2011) consider the support of semantically rich

architecture models essential for the integration of ACC in model-driven

engineering. Furthermore, they make clear that support of semantically rich

constructs reduce the number of rules that need to be specified. In practice and

literature, many architecture models can be labeled as SRMA, since they contain

modules of different types. Consequently, ACC-tools should provide support for

SRMAs to minimize the gap between the intended architecture as designed and the

architecture as represented in the ACC-tool.

Figure 1.7: Intended architecture of the core of an E-commerce system

Chapter 1

10

1.2 Challenges in the Domain of Architecture

Although architecture has been introduced in many IT departments, practicing

architecture does not always proceed without problems. With our work, we intend

to contribute to the advancement of architecture in the domain of IT and the

effectiveness of architecture work by means of the development and improvement

of supporting instruments and tools. In the context of ongoing research on

architecture at HU University of Applied Sciences and Utrecht University, we have

scoped our work to the domains of enterprise architecture and software

architecture, and within these domains to a limited number of challenges. These

challenges and our motivation to take up these challenges are described below.

1.2.1 Challenges in the Domain of Enterprise Architecture

Enterprise architecture management (EAM) has become increasingly recognized as

a crucial part of both business and IT management, but there is still some way to go

(Simon et al. 2013). EAM functions are, in general, still relatively immature

(Bucher et al. 2006). Moreover, many EAM initiatives are confronted with

substantial challenges and often fail (Löhe and Legner 2014).

Evidence of the immaturity of EAM functions has come from research on the

state-of-the-art of EAM in practice, like the following findings:

 Most EAM functions, score low in maturity on “Development of

architecture”, “Use of architecture”, and “Monitoring” (of the

implementation activities) (van Steenbergen et al. 2010).

 The performance of the EAM function is rarely measured, even though this

constitutes a valuable starting point for improvement (Winter et al. 2010).

The study “An Exploration of Enterprise Architecture Research” (Simon et al.

2013) shows that, up to 2012, the following three streams were dominating in

EAM research: “EA frameworks”, “Design & operations of EA management”, and

“EA conception & modeling”. For future work, the study suggests greater

emphasis on the following research areas: 1) business architecture management (at

the strategic level); 2) standards management; 3) the integration with operational

architecture management; and 4) EA lifecycle phases beyond documentation. The

authors argue: “A shift of focus to EA processes and organization may provide the

necessary basis and also facilitate giving more pragmatic advice, needed to attract

practitioners”.

Our research in the domain of enterprise architecture has focused on assessment

of the effectiveness of the EA realization process of EAM functions. As such, it

builds upon the above-cited challenges found by van Steenbergen et al. and Winter

Introduction

11

et al. In addition, our research fits in the fourth research area mentioned for

emphasis in future research, in the above-cited study of Simons et al.

1.2.2 Challenges in the Domain of Software Architecture

In the comprehensive survey “The Golden Age of Software Architecture”, Shaw

and Clements (2006) make clear that the discipline software architecture has grown

phenomenally since the late 1980’s. They also identified six areas where significant

opportunities for new contributions in software architecture were possible. Three

years later, in “The Golden Age of Software Architecture Revisited” (Clements and

Shaw 2009), the three research areas below were repeated as opportunities with

strong potential to make real improvements.
1. Object-oriented programming versus architecture

2. Design decisions and quality attributes

3. Conformance checking and architecture recovery

Our work in the domain of software architecture has focused on two research

areas, of which the challenges are described below in more detail. The first one,

architecture compliance checking, is clearly linked to Clements and Shaw’s third

research opportunity in the list above. The second one, quality of layered designs,

fits well within the research area of Clements and Shaw’s second opportunity.

In our work in practice and in education, we have frequently observed problems

related to these two research areas. Our observations motivated us for research in

these areas, and even more, when we found them confirmed in literature.

Architecture Compliance Checking

Problems with architecture compliance are not new, as is illustrated by the

following statement, noted two decades ago: “high level models are almost always

inaccurate with respect to the system’s source code” (Murphy et al. 1995). The

terms architecture conformance and architecture consistency are also often used in

literature. We prefer the term architecture compliance, since in ACC it best

expresses the objective of the activity: check if the implementation follows the

design. Although, the results of the check may be used as well to alter the design as

to adjust the implementation.

In 2006, architecture conformance was included in the list of six promising

research areas (Shaw and Clements 2006). Three years later, in “The Golden Age

of Software Architecture Revisited” (Clements and Shaw 2009), it was repeated as

one of only three opportunities with strong potential to make real improvements. A

part of the motivation in the last paper was described as follows: “Tools to analyze

code for architecture conformance are still woefully inadequate and rely on humans

Chapter 1

12

making suggestions (read: guesses) about architectural constructs that might be

lurking in the code.”

More recently, in a survey of techniques and technologies to control software

architecture erosion (de Silva and Balasubramaniam 2012), architecture erosion is

defined as “the phenomenon that occurs when the implemented architecture of a

software system diverges from its intended architecture”. Two considerations from

the study are of interest here: 1) “Approaches that link architectural models to

implementation possibly make the strongest claim for constraining architecture

erosion”; and 2) “However, despite the availability of a large number of

dependency/static analysis tools, recent industry surveys indicate that these are not

extensively used in projects for checking architectural conformance at code level.”

In summary, research on ACC is needed to solve the following problems:

 The implemented architecture deviates frequently from the intended

architecture.

 Supporting tools are still inadequate.

 The adoption of these tools in practice is low.

Quality of Layered Designs

One of the most common patterns used in the module view of software

architecture, is the Layers pattern, or Layered style (Clements et al. 2010, Harrison

and Avgeriou 2008). The use of layers to decouple the system’s components in a

vertical manner is crucial in order to support modifiability, portability, and

reusability (Avgeriou and Zdun 2005). However, the layered view of architecture

”is also poorly defined and often misunderstood” (Clements et al. 2010). The

authors motivate this phenomenon as follows: ”Because true layered systems have

good properties of modifiability and portability, architects have incentive to show

their systems as layered, even if they are not.”

In line with the cited problem, we have frequently observed that many layered

architectures are poorly designed and documented. In many cases, only the layers

are listed. These cases miss a specification of the responsibilities per layer, the

communication rules between the layers, and a justification. Such architectural

products are very incomplete and provide little guidance to the developers.

Our concerns focus especially on the assignment of responsibilities, since we

have found numerous cases in practice and education, where a certain type of

responsibility was not only implemented in the intended layer, but also in other

layers. Some striking examples of this problem are the following:

 User interface responsibility (e.g., with access to UI-libraries) in the domain

layer, or in a layer intended for control responsibility only;

 Use case specific control functionality in the domain layer;

 Domain responsibilities in the presentation layer;

Introduction

13

 Data access responsibilities in presentation and domain layers.

We concluded that research is needed that aims on qualitative improvement of

layered designs, with the focus on responsibility assignment.

1.3 Research Questions

In line with our intentions, as described above, the main research question of this

thesis is:

How can IT architecture work be evaluated and improved?

In the first place, the main question above provides an impression of our intention.

The term evaluate should be interpreted as a broad term, covering similar terms in

this dissertation, like assessment, check, or review. It is our aim to contribute the

solution of the problems described in the previous section. Furthermore, the main

question is wide enough to cover both enterprise architecture and software

architecture. However, the main question embraces such a large field of research

that further scoping is needed. As explained in the previous sections, we have

delimited our research to three research areas. Each area relates to a major research

questions below.

Since most of our work has focused on modular architectures in the domain of

software architecture, we first discuss the questions related to software architecture.

This order is also followed in the remainder of this dissertation.

1.3.1 Research Questions Software Architecture

RQ1: How can architecture compliance be evaluated and improved?

Based on the notion that monitoring architecture compliance requires tool support,

while the adoption of Architecture Compliance Checking (ACC) supporting tools

is still limited, we have conducted research on ACC support. We started from a

functional point of view, by identifying requirements regarding ACC support and

by studying existing static ACC tools. Next, we scoped our research to the

following sub-questions:

RQ1.1: Do static ACC-tools provide functional support for semantically rich

modular architectures?

In literature and practice, many modular architecture designs contain different

types of modules, with different semantics, and different types of rules. Therefore,

an important requirement in our ACC research concerns the support of

semantically rich modular architectures (SRMAs).

Chapter 1

14

RQ1.2: How can SRMA support be provided in the context of static ACC?

Since the research results of RQ1.1 showed that only limited ACC-tool support

was available for semantically rich modular architectures, we concluded that

research was needed to bridge the gap between modular architectures in software

architecture designs on one side, and module and rule models in ACC-tools on the

other side.

RQ1.3: How accurate do static ACC-tools report dependencies and violations

against dependency rules?

Static ACC focuses on the existence of rule violating dependencies between

modules. Because of the high number of dependencies at implementation level,

accurate tool support is essential for effective and efficient ACC. However, the

effectiveness of ACC is profoundly dependent on the ability of the used ACC-tool

to detect the dependencies between units in the implemented software and to report

violating dependencies.

RQ2: How can the quality of layered designs with respect to the assignment of

responsibilities be evaluated and improved?

Layers are commonly used in modular architectures, but many layered

architectures are poorly designed and documented. In this dissertation, we scoped

our research in this area to supporting instruments with respect to the assignment of

responsibilities to software layers. In the design of a layered model, the assignment

of responsibilities is an essential step. Based on the allocated responsibilities,

architectural rules are defined to restrict dependencies between the layers.

Furthermore, software developers need to decide, based on the responsibilities of

the layers, where specific functionality has to be implemented, and where not.

1.3.2 Research Question Enterprise Architecture

RQ3: How can the achievement of an EAM function with respect to the

realization of its goals be evaluated and improved?

To add value to the organization, an Enterprise Architecture Management (EAM)

function should be able to realize its goals in line with the corporate strategy. The

EAM function works effectively, when it is able to transform a given baseline

situation into a target situation, as specified by one or more goals set out to the

EAM function. Since no instrument was available to assess and enhance the

effectiveness of EAM functions conform this definition of effectiveness, research

was aimed on the design of an instrument to discover the strengths and weaknesses

in the realization process of an EAM function.

Introduction

15

1.4 Lines of Research

Three lines of research are visible in our work, which relate to the three major

research questions.

1.4.1 Architecture Compliance Checking Support

RQ1 has initiated a research line with the focus on the support of static architecture

compliance checking, which line we have labeled as Architecture Compliance

Checking Support (ACCS). In our view, ACC does not only enable architectural

consistency, but by linking model to code, it also promotes architecture awareness.

Furthermore, ACC might also be useful to improve the quality of intended modular

architectures, based on the insights gained at implementation level. Since efficient

ACC requires tool support, we have initiated a line of research on the effectiveness

of the support provided by static ACC-tools. Static ACC tools analyze software

without executing the code and focus on modular architectures.

1.4.2 Layered Architecture Design Support

RQ2 is addressed in a research line, which we have labeled as Layered

Architecture Design Support (LADS). With the aim to advance the practice and

education regarding layered architectures, we have initiated research on analysis of

the observed problems and on instruments to design layered architectures of high

quality. In this dissertation, we focus on the assignment of responsibilities to

software layers. Outside the scope of this dissertation, we have been working on a

fundamental approach to design logical and physical layered designs.

1.4.3 Enterprise Architecture Realization Assessment

RQ3 is addressed in a research line focusing on the ability of an enterprise

architecture management function to realize its goals. We have labeled this line of

research as Enterprise Architecture Realization Assessment (EARA). To contribute

to the further development of the EAM practice, we have participated in research,

which was instigated as part of a larger study on the value of enterprise

architecture, sponsored by the Dutch Government and three profit organizations.

We started from the notion that to add value to an organization, an EAM function

should be able to realize its goals. Accordingly, an effective EA realization process

is essential. Based on these notions, we initiated research on the design of an

assessment instrument aimed on the improvement of an EAM function’s ability to

realize its goals.

Chapter 1

16

1.5 Research Approach and Research Methods

1.5.1 Research Approach

The research approach of the work presented in this dissertation can best be

characterized as design-science research. As explained in the previous paragraphs,

we have based our work on problems identified in practice, and we have tried to

contribute to the solution of these problems by the design of new instruments and

the improvement of existing types of instruments.

The Information Systems Framework (Hevner et al. 2004), shown in Figure 1.8,

provides an overview of Information Systems (IS) research in its context. The

authors use the framework to explain that behavioral-science and design-science

paradigms need to be combined in IS research. Furthermore, they use the

framework to explain their guidelines concerning effective design-science research.

The following guidelines are provided: 1) Design as an artifact; 2) Problem

relevance; 3) Design evaluation; 4) Research contributions; 5) Research rigor; 6)

Design as a search process; 7) Communication of research.

We also found guidance in the design-science research methodology (DSRM)

process model (Peffers et al. 2008), which distinguishes the following activities:
1. Problem identification and motivation

2. Define the objectives of a solution

3. Design and development

4. Demonstration

Figure 1.8: The IS research framework (Hevner et al. 2004).

People

Organizations

Technology

Foundations

Methodologies

Develop/Build

Justify/Evaluate

Relevance RigorEnvironment Knowledge BaseIS Research

Business

needs

Applicable

Knowledge

Application in the

Appropriate environment

Additions to the

Knowledge Base

Introduction

17

5. Evaluation

6. Communication

In each line of research, we have pursued the process and guidelines described

above, although in a more iterative way.

First, we identified problems in the practice of IT architecture, as described in

the previous sections (Peffers activity 1, Hevner guideline 2).

Second, we identified requirements for the solution (Peffers activity 2, Hevner

guideline 6), whereby we made use of the knowledge base in the form of scientific

and professional literature (Hevner guideline 5). In several cases, this activity has

delivered knowledge results that could be communicated afterwards, like a

classification of common module and rule types, and a classification of dependency

types.

Third, we designed and developed a solution to the given problem, based on the

requirements from the previous step (Peffers activity 3). This approach resulted for

each line of research in deliveries of constructs, a model, and a method, or an

instantiation (Hevner guideline 1). Where needed, we made use of academic and

professional literature, or we involved experts to find optimal solutions. During the

design process, we have often made use of metamodeling techniques. These

metamodels were important to identify key concepts, and to define, simulate and

communicate functional mechanisms (Hevner guideline 6). In addition, the

metamodels proved to be significant artifacts, which also could be communicated

afterwards.

Fourth, to demonstrate the applicability and validate the solutions, the designed

instruments were applied in real situations in professional organizations (Peffers

activity 4, Hevner guideline 3). In several cases, laboratory experiments were

conducted as well.

Fifth, evaluations of the solutions were conducted in several forms such as

comparison of performance measures to the requirements, client feedback, and

expert feedback (Peffers activity 5, Hevner guideline 3).

Sixth, the results of our research were communicated by means of conference

and journal papers, presentations, web sites and videos, and as such were added to

the knowledge base (Peffers activity 6, Hevner guideline 7).

Based on the demonstration and evaluation results, we have performed extra

iterations of activity two to five; each iteration aimed at a set of new requirements

and points of improvements acquired during the demonstration and evaluation

activities.

Chapter 1

18

1.5.2 Research Methods

To answer the research questions, we have used different research methods, both

qualitative and quantitative. This section explains which research methods are used

and in which research lines a method is used.

We have used four research methods, namely literature study, model

development, laboratory experiment, and case study research. Below, these

methods are described in more depth. These research methods are used in the three

lines of research: Architecture Compliance Checking Support (ACCS), Layered

Architecture Design Support (LADS), and Enterprise Architecture Realization

Assessment (EARA). An overview of the research methods used in each research

line is provided in Table 1.1. Since the research approach for all three lines of

research was design-science research, as discussed in the previous section, the

same methods are used in the different lines of research. Except the method

“laboratory experiment”, this method has been used extensively in the first research

line, but not in the other lines of research.

Literature Study

Literature study was an important part of all three research lines, and was

performed during the activities 1,2, 3 and 6 of the DSRM process model (Peffers et

al. 2008). Scientific literature was searched and used extensively, but to align with

the professional field, standard works from this field were searched and used,

where needed. For example, in the ACCS research line, literature was studied to

identify requirements to ACC support. In the LADS research line, responsibility

types were distilled from leading literature in the field of software architecture and

layers. In the EARA research line, the designed instrument was based on principles

found in literature, and on bodies of knowledge from the professional field.

Furthermore, literature was studied extensively in all three lines of research to find

related work, in order to reflect on the objectives and results of our work.

Model and Method Building

Models and methods are important artifacts of design-science research. “Models

aid problem and solution understanding and frequently represent the connection

Table 1.1: Application of research methods per line of research

Research method \ Line of research 1 ACCS 2 LADS 3 EARA

Literature study x x x

Model development x x x

Laboratory experiment x

Case study x x x

Introduction

19

between problem and solution components enabling exploration of the effects of

design decisions and changes in the real world. Methods define processes. They

provide guidance on how to solve problems, that is, how to search the solution

space. These can range from formal, mathematical algorithms that explicitly define

the search process to informal, textual descriptions of best practice approaches, or

some combination” (Hevner et al. 2004).

In all three lines of research, we have built models in the design process of the

solutions. In case of the EARA research line, mathematical formalization of the

model has provided a rigorous foundation of the metrics included in the solution.

Laboratory Experiment

A laboratory experiment in software engineering is characterized as follows: “The

change proposal is evaluated in an off-line laboratory setting (in vitro), where an

experiment is conducted and a limited part of the process is executed in a

controlled manner” (Wohlin et al. 2012).

In case of the research line of ACC support, we have extensively made use of

laboratory experiments, since such an experiment focuses on one factor and

provides objective results. We have used laboratory experiments to explore the

SRMA support of ACC-tools, evaluate the accuracy of dependency detection and

violation reporting of ACC-tools, and to confirm the relevance of our findings.

Case Study Research

In our research, we have conducted multiple case studies (Yin 2014) for

demonstration and evaluation purposes. In the ACCS research line, six different

business information systems of four organizations were subject of an architecture

compliance check, supported by our own tool and several commercial tools. This

way, we were able to test our concepts and the tool’s performance in practice,

which resulted in new insights and new requirements for the next versions of our

metamodel and tool.

In the LADS research line, three cases were used to demonstrate the

applicability of the instruments developed within this line of research: a design

case, a review case, and a complex case of a large governmental software system.

These cases were also used to evaluate, the completeness and accuracy of the

instruments.

In the EARA research line, four cases (two full assessments and two brief

assessments) were used to demonstrate and evaluate the EARS instrument. The full

assessments were conducted at a large governmental organization and a large

financial organization. In both cases, ten stakeholders were interviewed.

Chapter 1

20

1.6 Dissertation Outline

This dissertation is the outcome of research performed to answer the research

questions in section 1.3. The research questions are answered in the following

chapters of this dissertation. Chapters 2 to 7 each answer one research question or

sub-question. These chapters have been written as individual papers for publication

in scientific conference proceedings or journals. This entails some overlap in the

abstracts and introductions of chapter 2 to 5, since the publications have resulted

from the same line of research. Chapter 7 is an exception, as it results from

merging a conference and a journal paper.

Chapter 1: Introduction

In this chapter, we first introduce the research domain and the problems that

challenged us to initiate research. Second, we present the research questions, the

starting points for research lines that address the challenges. Third, we provide an

overview of our research approach and the used research methods. Finally, we

explain the structure of the dissertation and how the following chapters are related

to the research questions.

Chapter 2: Architecture Compliance Checking of Semantically Rich Modular

Architectures: A Comparative Study of Tool Support

This chapter answers research question RQ1.1. First, requirements are presented

regarding the support of Semantically Rich Modular Architectures (SRMA) in the

context of Architecture Compliance Checking (ACC). An SRMA contains modules

of semantically different types, like layers and components, constrained by rules of

different types. On basis of the requirements and an inventory of common module

and rule types, eight commercial and non-commercial tools were tested. The test

results show large differences between the tools, but all could improve their

support of SRMA.

The work in this chapter was presented and published at the IEEE International

Conference on Software Maintenance (ICSM) (Pruijt et al. 2013a).

Chapter 3: A Metamodel for the Support of Semantically Rich Modular

Architectures in the Context of Architecture Compliance Checking

A partial answer to research questions RQ1.2 is presented, including an approach

for support of SRMAs in the context of static ACC. The approach is grounded in

the SRMACC metamodel, which enables support of rich sets of module and rule

types. Furthermore, the metamodel enables extensive support of the semantics of

Introduction

21

these types. To validate the feasibility of the metamodel, an open source prototype

implementation was developed, tested and applied in practice.

The work in this chapter was presented and published at the WICSA Workshop

on Software Architecture Erosion and Architectural Consistency (SAEreCon)

(Pruijt and Brinkkemper 2014).

Chapter 4: HUSACCT: Architecture Compliance Checking with Rich Sets of

Module and Rule Types

This chapter complements the answer to research questions RQ1.2 and presents

HUSACCT, a static ACC tool that adds extensive support for semantically rich

modular architectures (SRMAs) to the current practice of static ACC tools.

HUSACCT provides support for five commonly used types of modules and eleven

types of rules. The chapter illustrates how basic and extensive support of these

types is provided, and how the support can be configured. In addition, the internal

architecture of the tool is discussed.

The work in this chapter was presented and published at the ACM/IEEE

International Conference on Automated Software Engineering (ASE) (Pruijt et al.

2014).

Chapter 5: On the Accuracy of Architecture Compliance Checking Support:

Accuracy of Dependency Analysis and Violation Reporting

Research question RQ1.3 is addressed in this chapter, which presents a study on

the accuracy of ACC tools regarding dependency analysis and violation reporting.

On the base of an inventory of 34 different dependency types, ten tools were tested

and compared by means of a custom-made benchmark. In a second test, the code of

open source system FreeMind was used to investigate the performance of the tools.

Based on analysis of the test results, ten hard-to-detect types of dependency were

identified and four challenges in dependency detection. The relevance of these

findings is substantiated by a frequency analysis of the hard-to-detect types of

dependencies in five open source systems.

A shorter version of the work in this chapter was presented and published at the

IEEE International Conference on Program Comprehension (ICPC) (Pruijt et al.

2013b). The complete chapter is submitted for journal publication (Pruijt et al.

2015).

Chapter 6: A Typology Based Approach to Assign Responsibilities to Software

Layers

This chapter answers research question RQ2, and presents the Typology of

Software Layer Responsibility (TSLR) and a complementary instrument, the

Chapter 1

22

Responsibility Trace Table (RTT). These instruments aid the design,

documentation, and review of a layered software architecture with respect to the

assignment of responsibilities. The application of the TSLR and RTT is

demonstrated in three cases.

The work in this chapter was presented and published at the 20
th
 Conference on

Pattern Languages of Programs (PLOP) (Pruijt et al. 2013d).

Chapter 7: The EARScorecard – An Instrument to Assess the Effectiveness of the

EA Realization Process

As an answer to research question RQ3, this chapter presents the Enterprise

Architecture Realization Scorecard (EARS) and an accompanying method to

discover the strengths and weaknesses in the realization process of an EA

management function. Two assessment cases illustrate the use of the instrument.

Chapter 7 is the integration of a conference and a journal paper. The former was

presented and published at the conference Trends in Enterprise Architecture

Research (Pruijt et al. 2012), while the latter was published in the Journal of

Enterprise Architecture (Pruijt et al. 2013c).

Chapter 8: Conclusions

The final chapter of the dissertation provides an overview of the most relevant

findings and contributions of our research. Furthermore, the implications and

limitations of our research are discussed, as well as an agenda of possible future

work in the three lines of research.

Appendix 1: Application Case HUSACCT

To illustrate the applicability of our ACC approach and our tool HUSACCT, as

described in Chapter 2-4, a case study is presented in this appendix. The assessed

system is an E-commerce system of a governmental organization. The intended

architecture, implemented architecture, and the results of the compliance check are

described and illustrated.

We regard our architecture compliance checking tool HUSACCT as a

significant artifact of our research. HUSACCT is free-to-use and open source. The

executable, user manual and source code are downloadable at

http://husacct.github.io/HUSACCT/. An introduction video is accessible at the

same site.

http://husacct.github.io/HUSACCT/

23

Chapter 2

Architecture Compliance Checking of
Semantically Rich Modular Architectures:

A Comparative Study of Tool Support

Architecture Compliance Checking (ACC) is an approach to verify the

conformance of implemented program code to high-level models of

architectural design. ACC is used to prevent architectural erosion

during the development and evolution of a software system. Static

ACC, based on static software analysis techniques, focuses on the

modular architecture and especially on rules constraining the

modular elements. A semantically rich modular architecture (SRMA)

is expressive and may contain modules with different semantics, like

layers and subsystems, constrained by rules of different types. To

check the conformance to an SRMA, ACC-tools should support the

module and rule types used by the architect. This chapter presents

requirements regarding SRMA support and an inventory of common

module and rule types, on which basis eight commercial and non-

commercial tools were tested. The test results show large differences

between the tools, but all could improve their support of SRMA, what

might contribute to the adoption of ACC in practice.

2.1 Introduction

Software architecture is of major importance to achieve the business goals,

functional requirements and quality requirements of a system. However,

architectural models tend to be of a high-level of abstraction, and deviations of the

software architecture arise easily during the development and evolution of a system

(Murphy et al. 1995). Architecture Compliance Checking (ACC) is an approach to

bridge the gap between the high-level models of architectural design and the

implemented program code, and to prevent decreased maintainability, caused by

architectural erosion. Architectural erosion is “the phenomenon that occurs when

the implemented architecture of a software system diverges from its intended

Chapter 2

24

architecture” (de Silva and Balasubramaniam 2012). Opposing terms are

architecture compliance and its synonym architecture conformance. Knodel and

Popescu defined architecture compliance as “a measure to which degree the

implemented architecture in the source code conforms to the planned software

architecture” (Knodel and Popescu 2007).

Many tools and techniques are available to analyze a software system, and to

reconstruct, visualize, check, or restructure its architecture (Ducasse and Pollet

2009). In our study we focus on tools supporting static ACC, which analyze the

software without executing the code. These tools, which we label as static ACC-

tools, focus on the modular structure in the source code and identify structural

elements such as packages and classes. In addition, they analyze use-relations

between these elements, such as an invocation of a method or access of an

attribute. Furthermore, these tools support the definition of rules on the structural

elements in the code, or on logical modular elements that are mapped to the code.

Finally, ACC-tools check the compliance and report violations to the rules. For

example, if a method call from class A to class B in the code corresponds with a

not-allowed dependency from a lower layer to a higher layer in the intended

architecture, then the tool should report a violation.

Although Shaw and Clements included ACC in 2006 in their list of promising

areas (Shaw and Clements 2006), the adoption of ACC-tools is still limited (de

Silva and Balasubramaniam 2012, Gleirscher and Golubitskiy 2012), and research

is necessary to advance and improve current methods and tools (Canfora et al.

2011). A few studies have compared ACC-tools and techniques, and these studies

revealed large differences in terminology and approach. A high level overview of

techniques and tools is included in a survey on architectural erosion (de Silva and

Balasubramaniam 2012) and in a survey on software architecture reconstruction

(Ducasse and Pollet 2009). Two other studies (Knodel and Popescu 2007, Passos et

al. 2010) identified and compared five static ACC techniques at a more detailed

level. One of these studies (Passos et al. 2010) also explored the effectiveness and

usability of three tools, each representing one technique, by executing tests on the

basis of a small system.

Our research builds on these previous studies, but we focus on ACC-tool

support of semantically rich modular architectures (SRMAs). We use this term for

expressive modular architectures, composed of different types of modules, which

are constrained by different types of rules; explicitly defined rules, but also rules

inherent to the module types. Kazman, Bass, and Klein have stated the principle

that elements in a software architecture should be coarse enough for human

intellectual control, but also specific enough for meaningful reasoning (Kazman et

al. 2006). Modules with specific semantics, like subsystems, layers, components or

facades, enhance the expressiveness of a modular architecture and support

Architecture Compliance Checking of Semantically Rich Modular Architectures

25

architecture reasoning. Adersberger and Philippsen consider the support of

semantically rich architecture models essential for the integration of ACC in

model-driven engineering (Adersberger and Philippsen 2011). Furthermore, they

make clear that support of semantically rich constructs reduces the number of rules

that need to be defined, compared to semantically poorer boxes and lines models.

We started our study with the following research question: Do static ACC-tools

provide functional support for semantically rich modular architectures? To answer

this question, we identified requirements, developed test-ware based on the

requirements, and we tested eight ACC-tools. We restricted our study to the

functional support of SRMAs by ACC tools, and consequently we do not focus on

other aspects, like usability, scalability or accuracy (in another study, we

investigated the accuracy of dependency analysis and violation reporting (Pruijt et

al. 2013b)). Other approaches than ACC that may be supported by the same tools,

like architecture reasoning and re-engineering, are outside the scope of this paper

as well.

The next section of this chapter identifies the information available in

semantically rich modular architectures, presents requirements and a classification

of common module and rule types. Section 2.3 describes the test method and

introduces the tools, while Section 2.4 holds the test results. Section 2.5 discusses

the test outcome and compares it to related work, while Section 2.6 concludes this

chapter with recommendations, and addresses some issues that require further

research.

2.2 Modular Architectures

2.2.1 Focus of Static ACC

Software architecture compliance checking covers a large field, since software

architecture is a broad term. According to Perry and Wolf, software architecture

“provides the framework within which to satisfy the system requirements and

provides both the technical and managerial basis for the design and implementation

of the system” (Perry and Wolf 1992). Static ACC does not cover the full width of

software architecture, but only the static structure of the software: the modular

architecture. According to the Views and Beyond approach (Bass et al. 2012,

Clements et al. 2010), module styles focus on the structure of the units of

implementation and not on runtime behavior or the allocation to non-software

resources. Different module styles are defined such as the decomposition style,

uses style, generalization style, and layer style.

Chapter 2

26

A modular architecture should describe the modular elements, their form

(properties and relationships) and rationale (Perry and Wolf 1992). Modular

elements, properties and relationships, are in ACC’s center of attention, and should

be included in a complete compliance check. A modular element, or module, is an

implementation unit of software with a coherent set of responsibilities (Clements et

al. 2010). Properties and relationships express architectural rules. Properties are

used to define constraints on the modular element and its content. Relationships are

used to constrain how the different elements may interact or otherwise may be

related (Perry and Wolf 1992).

2.2.2 Requirements Regarding SRMA Support

A semantically rich modular architecture may contain a lot of information about

the modules and the rules constraining these modules. Modules may be of types

with different semantics, while different types of rules may be used to constrain the

modules. A rich set of module types provides a language to express characteristics

of the modules in an architectural model, as well as default constraints associated

to the type of module. A rich set of rule types provides a language to express

constraints on the modules in an architectural model. Provision of a rich rule set

allows architects to define logical rules in a comparable way as expressed in

regular language, without the need to translate a logical rule to one or more rules at

tool level.

Consequently, to support compliance checks of SRMA’s, ACC-tools should

preferably be able to: a) register common information in SMRAs (modular

elements, properties and relationships of different types); b) prevent inconsistencies

in the definition of the architectural model; and c) check the rules included in the

architectural model and report violations. Inconsistencies in the model, like

modules not properly mapped to code, will hamper the accuracy of the actual rule

check. Consequently, inconsistencies should be recognized and reported.

In line with these requirements, we focused our research on the following

questions. Do ACC-tools provide support for: a) common types of modules and

their semantics; b) common types of rules; and c) inconsistency prevention within

the defined architecture?

To determine the module types, rules types and inconsistency checks relevant to

our research, we studied academic and professional literature, as well as software

architecture documents from professional practice and ACC-tool documentation.

The following subsections describe the outcome of our study.

Architecture Compliance Checking of Semantically Rich Modular Architectures

27

2.2.3 Common Module Types

SMRAs may contain modules of different types. We identified the following six

common types of modules relevant for static ACC:

1. Physical clusters are the type of modules that represent a wide variety of

software structures or units in the code, like classes, Java packages, or C#

namespaces (Clements et al. 2010). This type of module does not represent a

unit in the design, but in the code.

2. Logical clusters represent units in the system design with clearly assigned

responsibilities, but with no additional semantics. Comparable terms are

subsystems, or packages.

3. Layers represent units in the system design with additional semantics. Layers

have a hierarchical level and constraints on the relations between the layers. The

concept of layering can be traced back to the works by Dijkstra (Dijkstra 1968)

and Parnas (Parnas 1972). Although the layered style is not supported by UML

(Shaw and Clements 2006), it is one of the most common styles used in software

architecture (Clements et al. 2010, Harrison and Avgeriou 2008). We cite

Larman (Larman 2005), who summarizes the essence of a layered design as “the

large-scale logical structure of a system, organized into discrete layers of

distinct, related responsibilities. Collaboration and coupling is from higher to

lower layers.”

4. Components within a software architecture are designed as autonomous units

within a system. The term component is defined in different ways in the field of

software engineering. In our use, a component within a modular architecture

covers a specific knowledge area, provides its services via an interface and hides

its internals (in line with the system decomposition criteria of Parnas (Parnas

1972)). Consequently, a component differs from a logical cluster in the fact that

it has a Façade sub module and hides its internals. Since our definition of

component is intended for modular architectures, it does not include runtime

behavior, and a module in a module view may turn into many runtime

components within the “component and connector view” (Clements et al. 2010).

5. Facades are related to a component and act as an interface as described under

components. We use the term façade, referring to the façade pattern (Gamma et

al. 1995), to differentiate with the Java interface, which has not exactly the same

meaning as a design-level interface. A facade may be mapped to multiple

elements at implementation level, like Java interface classes, exception classes

and data transfer classes.

6. External systems represent platform and infrastructural libraries or components

used by the target system. Useful ACC support includes the identification of

external system usage and checks on constraints regarding their usage (Ali et al.

2012).

Chapter 2

28

2.2.4 Example of an SRMA

An example of an SRMA, with modular elements of different types, is shown in

Figure 2.1. The model shows a part of a modular architecture of one of the systems

at an airport, where it was subject of an ACC. This system is used to manage the

state and services of human interaction points where customers communicate with

baggage handling machines, self-service check-in units, et cetera.

Various notations for modular architecture diagrams are used in practice

(Clements et al. 2010). The example in Figure 2.1 shows UML icons, but also an

identification of the layers, not included in UML. The model combines three

modular styles, namely the decomposition style, uses style, and layered style.

Examples of modules of different types are visible in Figure 2.1. such as

“Interaction layer”, logical cluster “HiWeb”, component “HiManager”, façade

“HimInterface”, and external system “Hibernate”. The modules are easily

identifiable, but the rules are not. In this case, the basic principle is, “no module is

allowed to use another module”, except when a dependency relation indicates “is

allowed to use”. Furthermore, the rules related to the layered style are not visible,

but the default rules apply: Interaction Layer is not allowed to use Technology

Layer (skip call ban); Technology Layer is not allowed to use Service layer or

Interaction Layer (back call ban).

Figure 2.1: Example of a semantically rich modular architecture model

Architecture Compliance Checking of Semantically Rich Modular Architectures

29

2.2.5 Common Rule Types

SMRAs may contain rules of different types, where each rule type characterizes the

constraint. Constraints in a software architecture are categorized in literature (Perry

and Wolf 1992, Clements et al. 2010) as properties and relationships. Our

inventory of architectural rule types, in principle verifiable by static ACC, resulted

in two categories related to properties and relationships: Property rule types; and

Relation rule types.

Property rule types constrain the elements included in the module; their sub

modules, et cetera. Clements et al. (Clements et al. 2010) distinguish the following

properties per module: Name, Responsibility, Visibility, and Implementation

information. We identified rule types associated to these properties and named

them accordingly, except two types (Façade convention, Inheritance convention),

which represent the property Implementation information. The identified rule types

are shown in Table 2.1. The table contains per rule type: a description, an example,

and an exemplary reference to literature covering the topic. The example rules

constrain the modules of the modular architecture shown in Figure 2.1.

Naming conventions may be useful, since names are used by practitioners to

unify software architecture and its implementation (Woods and Rozanski 2010).

Responsibility conventions are useful to preserve the designed distribution of

responsibilities over modules. Visibility conventions and Façade conventions can

be used to enforce implementation hiding. Inheritance conventions may be used to

enforce a selected generalization style. Finally, exceptions to property rules may be

useful too. For instance, an exception to the Visibility convention example in

Table 2.1 is, “HiManager classes have package visibility or lower, except for

façade HimInterface.”

Relation rule types specify whether a module A is allowed to use a module B.

The basic types of rules are “is allowed to use” and “is not allowed to use”.

However, we encountered useful specializations of both basic types, which we

included in the classification shown in Table 2.1. When several rules of the same

type are defined on the same from-module, then they should be interpreted as

complementary rules; even if the word “only” is part of the name of the rule type.

Chapter 2

30

Table 2.1: Common rule types (Ref= primary literature reference)

Category\Type of Rule Description (D), Example (E) Ref

Property rule types

Naming convention D: The names of the elements of the module must adhere to the

 specified standard.

E: HiDao elements must have suffix DAO in their name.

1

Responsibility

convention

D: All elements of the module must adhere to the specified

 responsibility.

E: HiForms is responsible for presentation logic only.

2

Visibility convention D: All elements of the module have the specified or a more

 restricting visibility.

E: HiManager classes have package visibility or lower.

3

Facade convention D: No incoming usages of the module are allowed, except via

 the façade.

E: HiManager may be accessed only via HimInterface.

4

Inheritance convention D: All elements of the module are sub classess of the specified

 super class.

E: HiDao classes must extend

 CorporateWebCore.Dao.GenEntityDao.

1

Relation rule types

Is not allowed to use D: No element of the module is allowed to use the specified to-

 module.

E: HF-Kiosk is not allowed to use HP-Device.

5

 Back call ban

 (specific for layers)

D: No element of the layer is allowed to use a higher-level

 layer.

E: Service Layer is not allowed to use the Interaction Layer.

6

 Skip call ban

 (specific for layers)

D: No element of the layer is allowed to use a lower layer that

 is more than one level lower.

E: Interaction Layer is not allowed to use the Infrastructure

 Layer.

6

Is allowed to use D: All elements of the module are allowed to use the specified

 to-module.

E: HiWebApp is allowed to use HiForms (including its

 submodules).

3

 Is only allowed to

 use

D: No element of the module is allowed to use other than the

 specified to-module(s).

E: HF-Kiosk is only allowed to use HP-Kiosk.

1

 Is the only module

 allowed to use

D: No elements, outside the selected module(s) are allowed to

 use the specified to-module.

E: HiDao is the only module allowed to use CorporateWebcore.

1

 Must use D: At least one elements of the module must use the specified

 to-module.

E: HiDao must use CorporateWebcore.

5

1 (Passos et al. 2010), 2 (Larman 2005), 3 (Clements et al. 2010), 4 (Gamma et al. 1995),
5 (Knodel and Popescu 2007), 6 (Sarkar et al. 2006)

Architecture Compliance Checking of Semantically Rich Modular Architectures

31

Some rule types are complex, because they include dependency checks on other

modules than only the from-module and to-module. Exceptions to all relation rules

are complex, as well as the two following types: “Is only allowed to use”, and “Is

the only module allowed to use”. Complex rule types are very useful in practice,

for the following reasons:

 Complex rule types allow architects to define rules in a comparable way as

expressed in regular language. Complex rules of type “Is only allowed to

use” may constitute a significant part of the total rule set (Terra and Valente

2009).

 Complex rule types help to transform rules in a UML-like diagram to rules

in most ACC-tools. For instance, the dependency relationship from module

HF-Kiosk to module HP-Kiosk in Figure 2.1 expresses the rule “HF-Kiosk

is only allowed to use HP-Kiosk.” Transformation is often necessary. The

basic principle underlying UML-like diagrams is restricting (no other than

the defined dependencies are allowed), while in most tools, the basic

principle is non-restricting (all dependencies are allowed, unless there is a

not-allowed-to-use rule).

 Complex rule types may diminish the number of rules, since one complex

rule often replaces many “is not allowed to use” rules. For instance, when

the “is only allowed to use” rule type is not supported by a tool, than the

dependency relationship from module HF-Kiosk to module HP-Kiosk in

Figure 2.1 may have to be translated to many “not allowed to use” rules

from HF-Kiosk to all the other modules, except to HP-Kiosk.

2.2.6 Associations between Module and Rule Types

Optimal support of SRMAs includes the automatic provision of rule types inherent

to the type of module. For instance, layers are inherently associated to a “Back call

ban” rule and a “Skip call ban” rule. Furthermore, components are inherently

associated to a “Façade convention” rule (and possibly a “Visibility convention”

rule, if supported by the implementation language). Options to disable an inherent

rule, for instance in case of a relaxed layered model, or to define an exception, will

enhance the usability.

Chapter 2

32

2.3 Test Method and Tested Tools

2.3.1 Test Method

Based on the requirements and classification of module types and rule types

described in Section 2.2, a test was designed to assess the ACC-tools on their

SRMA support. For each rule type, at least two test cases were included: one

without, and one with violations to the rule. A special test software system was

developed in Java. This system included the various module types and separate

packages for each rule type, which contained classes with injected violations to a

rule and classes without. In addition, a test script was prepared to instruct the tester

and to document the test results. The test script and test system are available on

request.

After the test preparation, the eight ACC-tools were tested. During the first step

of the test of a tool, the intended architecture was entered. Thereafter, the modules

were mapped to source code units and the rules were entered into the tool. If a tool

did not support a rule type explicitly, then we looked for a workaround; such as a

combination of separate rules. The first step was concluded by test actions aimed at

the tool’s ability to prevent inconsistencies in the architecture definition. During

the second step, the outputs of the tool’s dependency analysis and conformance

check were studied and compared with the expected result. During the third step,

reports were prepared, after which the tools could be compared on their SRMA

support.

Two iterations of testing and reporting were conducted. The first iteration was

performed with 25 bachelor students in the course of a third year specialization

semester “Advanced Software Engineering”, where each team studied and tested a

tool. In a second iteration, the authors studied the tools, and verified and refined the

results of the students, by using the tools and repeating the tests. ConQAT was

added afterwards to our tool set and was tested only by the authors.

2.3.2 ACC-Tools Included in the Test

Many tools are available with some facilities to support ACC. Our research

focused on tools with explicit support of ACC. We selected eight publicly available

tools, which were mentioned in academic work (e.g., (Ducasse and Pollet 2009)

(Passos et al. 2010) (Adersberger and Philippsen 2011)), were able to analyze Java,

and provided evaluation or research licenses (two vendors rejected and one did not

respond). We excluded tools that focus mainly on architecture visualization,

metrics and/or architecture refactoring. The eight tools included in our study are

shown in Table 2.2, which also gives an overview of functionalities, code variants

and licensing.

Architecture Compliance Checking of Semantically Rich Modular Architectures

33

The tools provide their support of ACC in various ways. The eight tools can be

subdivided in the following four categories of tools.
1. Macker and Sonar Architecture Rule Engine (Sonar ARE) are text-based

tools, which support relation conformance rules. These tools provide HTML-

based violation reports.

2. dTangler and Lattix are based on the Dependency Structure Matrix (DSM)

technique, complemented with text-based editors to define rules. The DSM is

used to select modules and to show dependencies and violations. Lattix is also

able to visualize architectures graphically, and provides extensive reporting

facilities.

Table2.2: Characteristics of the tools in the test

Tools1

Characteristics

C
o

n
Q

A
T

 A
A

d
T

a
n

g
ler

L
a

ttix

M
a

ck
er

S
A

V
E

S
o

n
a

r A
R

E

S
o

n
a

rg
ra

p
h

A
rch

itect

S
tru

ctu
re

1
0

1

General functionalities

Dependency browsing

Dependency visualization

Architecture compliance checking

Architecture refactoring/simulation

Team support

Code variants

Java

Other languages

Source file analysis

Compiled file analysis

Licensing

Free: commercial and non-commercial use

Paid: commercial use

1 ConQat AA– version 2011.9 – www.conqat.org;

dTangler - GUI version 2.0 - web.sysart.fi/dtangler;

Lattix LDM - version 7.2 - lattix.com;

Macker - version 0.4.2 - sourceforge.net/projects/macker;

SAVE - version 1.7 - iese.fraunhofer.de;

Sonar ARE - version 3.2 - docs.codehaus.org/display/SONAR/Architecture+Rule+Engine;

Sonargraph Architect (fusion of Sotograph and SonarJ) - version 7.0 - hello2morrow.com;

Structure101 - version 3.5 - structure101.com.

Chapter 2

34

3. ConQAT Architecture Analysis (ConQAT AA) and SAVE are strictly based

on the Reflexion Model (RM) technique (Murphy et al. 1995), and both tools

provide a graphical editor to define the intended architecture and to show

violations after the evaluation. Textual reports are generated at request.

4. Sonargraph Architect and Structure101 are diagram-based too, but these tools

are not based on the RM-technique. To define modules and rules, these tools

provide diagrams in which the horizontal and vertical position of a module

implies rules. Violations are shown in these diagrams, but textual reports are

provided in addition.

2.4 Test Results

2.4.1 Support of Common Module Types

In Section 2.2 we identified six common types of modules, relevant for static ACC.

The results of our tests concerning the support of these module types are shown in

Table 2.3, and the most interesting findings are described below.

Clusters are supported by all tools. Five of the eight tools support physical

clusters. The advantages to use them are that they allow fast, ad hoc rule checking;

for instance, when there is no formal modular architecture. The disadvantage is the

diminished or lost traceability to the formal modular architecture, if there is one.

Sonar ARE is the only tool that supports only this type of modules. Logical

clusters are supported by seven tools. Although in very different ways, these tools

provide support to register logical clusters and to map the logical clusters to code

units. Furthermore, support is provided to define rules constraining logical clusters

and to check these rules at code level.

Layers are supported by only one tool, Structure101, on all indicators: modules

can be marked as layers; back call and skip call rules are reported; and layers are

visualized. Two other tools support the definition and visualization of layers, but

do not provide inherent support of the related rules.

Components and Facades are supported by SAVE and Sonargraph Architect, on

the following indicators: modules can be marked as component; facades can be

defined. SAVE visualizes components and facades, but does not actively support

any of their semantics. Sonargraph Architect visualizes facades and supports their

semantics; it reports facade-skip violations automatically when a facade is

associated to a module. ConQAT AA seems to support components at first glance,

since it depicts all modules as UML components. However, it does not provide any

other icons and does not support the semantics of a component; reason why we

classified ConQAT’s components as logical clusters.

Architecture Compliance Checking of Semantically Rich Modular Architectures

35

External systems are not designated as a special module type by all tools, except

Sonargraph Architect, but all enable conformance checks on modules mapped to

external libraries.

Five tools support visualization of modular architectures. However, only two

tools offer three or more different icons. A notable observation is that the tools that

support semantically rich modules all have their own terminology, icons, rules and

ways to visualize the architecture. SAVE provides an UML-like notation, while

Table 2.3: Tool support of common module types

(+ = explicit support; ± = partial support; - = no support)

C
o

n
Q

A
T

 A
A

d
T

a
n

g
ler

L
a

ttix

M
a

ck
er

S
A

V
E

S
o

n
a

r A
R

E

S
o

n
a

rg
ra

p
h

A
rch

itect

S
tru

ctu
re

1
0

1

Clusters

Physical cluster - + + + - + - +

Logical cluster + + + + + - + +

Layers

A module can be marked as layer - - - - + - + +

Back call violations are reported - - - - - - - +

Skip call violations are reported - - - - - - - +

Components and Facades

A module can be marked as component - - - - + - + -

Facade can be defined - - - - + - + -

Facade-skip violations are reported - - - - ± - + -

External systems

A module can be marked as external system - - - - - - + -

A module can be mapped to an external system + + + + + + + +

Rules constraining their use are checked + + + + + + + +

Visualization

Clusters are visualized + - + - + - + +

Layers are recognizable visualized - - - - + - + +

Components are recognizable visualized - - - - + - - -

Facades are recognizable visualized - - - - + - + -

External systems are recognizable visualized - - - - + - + -

Chapter 2

36

Sonargraph Architect and Structure101 position the modules horizontally and

vertically. SAVE discerns five module types, while Sonargraph Architect discerns

six types (which are only partly overlapping with those of SAVE), whereas

Structure101 does not show the logical meaning of a module, but uses an icon to

show the type of the related physical item.

2.4.2 Support of Common Rule Types

In Section 2.2 we identified twelve common types of rules, relevant for static ACC.

The results of our tests concerning the support of these rule types are shown in

Table 2.4. Explicit support of a rule type is depicted by a “+”, meaning that one

Table 2.4: Tool-support of common rule types

(+ = explicit support; ± = partial support; - = very weak or no support)

Support is provided for

C
o

n
Q

A
T

 A
A

d
T

a
n

g
ler

L
a

ttix

M
a

ck
er

S
A

V
E

S
o

n
a

r A
R

E

S
o

n
a

rg
ra

p
h

A
rch

itect

S
tru

ctu
re

1
0

1

Property rule types

Naming convention - - - - - - - -

Responsibility convention - - - - - - - -

Visibility convention - - - - - - ± ±

Facade convention - ± ± ± ± - + -

Superclass inheritance convention - - - - - - - -

Relation rule types

Is not allowed to use + + + + + + + ±

 Back call ban (inherent to layer) - - - - - - - +

 Skip call ban (inherent to layer) - - - - - - - +

Is allowed to use + + + + ± - + +

 Is only allowed to use ± ± ± ± ± - ± ±

 Is the only module allowed to use ± ± ± ± ± - ± ±

 Must use - - - - + - - -

Exception (to relation rules) ± ± ± ± - - ± ±

Visualization of rules and violations

Rules are visualized + - + - + - + +

Violations are visualized + + + - + - + +

Architecture Compliance Checking of Semantically Rich Modular Architectures

37

logical rule can be registered as one rule in the tool. Partial support, depicted by

“±”, means that it is possible to register a rule of this type, but only via a

workaround; often a combination of several rules. The most interesting findings

from the test are described below.

Property Rule Types

Property rule types are poorly supported. No tool provides facilities to specify and

check conventions regarding naming, responsibility, or inheritance. Although

names are used, in combination with regular expressions, to map modules to the

code, no facilities are provided to check all the packages and/or classes contained

by a module on conformance to a naming convention.

Only rule types to enforce implementation hiding are supported by some tools.

Visibility convention rules are partly supported by Sonargraph Architect and

Structure101. These tools provide a property to restrict the accessibility of a

module, but do not check at code level on accessibility settings; reason why they

did not score a “+”. However, when a module is marked as hidden or private,

violation messages are reported, when dependencies to the module are detected

from outside.

Façade convention rules are supported explicitly only by Sonargraph Architect.

Four other tools enable the definition of this type of rules by default means,

resulting in a combination of separate rules, so their support is scored with “±”.

Relation Rule Types

Relation rule types are supported by all the tools, but no more than three rule types

are explicitly supported per tool.

Complex rule types (Is only allowed to use, Is the only module allowed to use,

Exceptions to a relation rule) are not- explicitly supported, or not at all. Without

explicit support, workarounds are needed, for instance for the rule “HF-Kiosk is

only allowed to use HP-Kiosk”. In Lattix, dTangler and Macker, two combined

rules are needed such as: “HF-Kiosk Cannot-Use $Root” + “HF-Kiosk Can-Use

HP-Kiosk”. Since these rules are not related to each other, they form a threat to the

maintainability and traceability of the set of rules. Sonargraph Architect and

Structure101 may require the specification of more than two rules or property

settings for complex rules, and sometimes many rules are needed, depending on the

number and position of other modules. Sonar ARE provides no support at all to

check complex rules. ConQAT AA and SAVE work quite differently from the

other tools, since no transformation is required of rules in UML-like diagrams to

rules in the tool. SAVE supports only the “Must use” rule type explicitly, while

ConQat AA supports “Is allowed to use” and “Is not allowed to use” rule types.

Complex rules can be checked, but this requires interpretation of the architecture

model and the conformance check output.

Chapter 2

38

Visualization

Six tools are able to visualize rules and violations. Lattix and dTangler show colors

in a DSM. ConQAT AA, SAVE, Sonargraph Architect, and Structure101 use lines

in diagrams to define and show rules, and to show violations. However, not all

rules are visible in these diagrams.

2.4.3 Support of Inconsistency Prevention

In Section 2.2 we defined the requirement, “ACC-tools should prevent inconsistent

definitions of modules and rules.” The results of our tests concerning this

requirement are shown in Table 2.5. Most tools allow, without a warning,

incomplete or contradictory definitions of modules and/or rules. ConQAT AA

scored best and prevented six out of six types of inconsistency included in our test.

Lattix prevented five out of six types, while the other tools prevented or warned for

upmost three types. Six of the tools start the compliance check without a warning

when the defined modules and rules model is inconsistent. In such a case, the tool

does not check all the rules as intended by the user, and consequently the outcome

of the check may be unreliable.

2.5 Discussion

To our opinion, all tested tools are providing useful functionality to support ACC

or ad hoc rule checking. Apart from our laboratory experiments described in this

Table 2.5: Prevention of Inconsistencies

(+ = supported; - = not supported; n/a = not applicable)

C
o

n
Q

A
T

 A
A

d
T

a
n

g
ler

L
a

ttix

M
a

ck
er

S
A

V
E

S
o

n
a

r A
R

E

S
o

n
a

rg
ra

p
h

A
rch

itect

S
tru

ctu
re

1
0

1

Modules must have (unique) name or ID + + + + - n/a + -

A module may have only one parent. + - + - + n/a - -

Modules must be mapped to code file(s) + - - - - n/a - +

Mapped code files must exist + - + - - n/a - -

Rules must be completely specified + - + + + - + +

Rules cannot be contradictory + - + - + - + +

Tool checks model prior to conf. check + - + - - - - -

Architecture Compliance Checking of Semantically Rich Modular Architectures

39

chapter, we used all eight tools to analyze an open source system. Furthermore, we

performed ACCs on professional software systems with use of Lattix, Sonargraph

Architect, and Structure101. Based on these experiences we can conclude that

these tools are of great help for architecture reconstruction and ACC. However, our

tests show that all eight tools could improve their support regarding SRMAs,

though in varying degrees. Not one of the tested tools is able to support all the

module types and rule types included in our classification. However, we

encountered interesting examples of partial support. SAVE supports the graphical

definition of modules of nearly all the types in our classification; only physical

clusters are missing. However, SAVE’s rule language is very limited, and the

semantics of the modules are not supported. ConQAT provides the same types of

diagrams, but complements the rule setting capabilities considerably. Furthermore,

ConQAT checks the consistency of the defined architectural model accurately.

However, ConQAT provides one type of module only, and does not support any

semantics. Sonargraph Architect and Structure101 are the only tools that actively

support the semantics of two module types in our classification. Sonargraph

Architect supports the definition of Facades and relates the “Façade convention”

rule to a defined façade. Structure101 supports the definition of Layers and relates

a layer to the “Back call ban” and the “Skip call ban” rules. Combination of these

examples of partial support builds an image of the provision of full functional

SRMA support.

Another observation during our study is that the combination of visualization,

rule definition, and rule checking appears to be challenging. Lattix, dTangler, and

Macker provide no support to define the architecture via a graphical editor, but

enable the definition and checking of quite a diversity of rules, including complex

rules. ConQAT, SAVE, Sonargraph Architect and Structure101 provide graphical

support to define and check the architecture, but lack the freedom of rule

definition, as provided by the textual-rule based tools. Furthermore, sometimes we

experienced serious problems related to the graphical models. Defining sub-

subsystems, exceptions, and other complex rules in the graphical models, is hard in

some tools, and impossible in others. Furthermore, it may result in many lines,

which makes the diagrams unreadable. Structure101 and Sonargraph Architect

have introduced additional rule-setting techniques to reduce the number of required

rule-lines. In these tools, the module type, the horizontal and vertical position, and

the value of a visibility property per module may imply dependency rules. On top

of that, Sonargraph Architect provides a “transversal access” variable per module

as well. To our opinion, the combination of all the rule-setting techniques increases

the complexity considerably, and it reduces the transparency of the set of defined

rules.

Chapter 2

40

2.5.1 Limitations

Our study can be characterized as a quasi-experiment, according to Wohlin et al.

(Wohlin et al. 2012), since we did not work with a randomized selection of tools.

Consequently, our findings may not be generalized to other tools, even though we

tested eight tools in a small market.

Furthermore, we do not claim that our classification of common module types

and common rule types is complete, since common is not a qualified term. We

aimed to cover the most used types of modules and rules, reasoning from the

functional point of view; the architect’s view, not the tool builder’s view. Creating

the classification proved a valuable step in our study. The classification was used

as a basis for our tests and will be used as starting point for our future work.

2.5.2 Related Work

Requirements regarding the functional support of ACC can be derived from quite a

number of sources, like general literature on software architecture and design, and

studies on ACC. In Section 2.2 we described the most relevant sources used for our

requirements and classification. Several studies on ACC propose the inclusion of

support for some specific module and/or rule types, for instance (Adersberger and

Philippsen 2011) (Ali et al. 2012) (Knodel and Popescu 2007) (Passos et al. 2010).

However, to the best of our knowledge, none of these studies or other studies on

ACC have provided and substantiated a broad inventory and classification of

module and rule types. We intentionally did not include very specific or detailed

module or rule types, but kept the set of requirements broad and not too specific.

However, some interesting studies elaborate on particular types. For instance,

Adersberger and Philippsen (Adersberger and Philippsen 2011) describe the

constraints and checks regarding components in detail. Furthermore, Terra and

Valente (Terra and Valente 2009) identified different types of dependencies

(accessing methods and fields, declaring variables, creating objects, extending

classes, implementing interfaces, throwing exceptions, and using annotations), and

based fine grained rule types on these dependency types. Lattix, SAVE and

Structure101 provide support to define or configure rules at this level of detail.

Not much comparative research on ACC-tools has been performed, as described

in the Introduction section. Only Passos et al. (Passos et al. 2010) presented similar

work. They evaluated three tools, including Lattix and SAVE, on the basis of a

very small system. During our study no findings have arisen that contradict their

tool evaluations. Our study adds a substantiated set of requirements focused on

SRMA support, as well as test results of eight tools.

Architecture Compliance Checking of Semantically Rich Modular Architectures

41

2.6 Conclusion

Architecture compliance checking (ACC) relies on the support of tools to define

modules and rules, to analyze the code, to check the compliance, and to report

violations to the rules. In this study, we have investigated the support of

semantically rich modular architectures (SRMAs) provided by static ACC-tools.

We identified requirements to the support of SRMAs and classified module types

and rule types relevant for static ACC. Furthermore, we prepared a test, and we

tested eight tools on their support of SRMAs.

We started our study with the following research question: Do static ACC-tools

provide functional support for semantically rich modular architectures? We

focused our test on the support of: a) common types of modules and their

semantics; b) common types of rules; and c) inconsistency prevention within the

defined architecture.

Our tests regarding the support of common module types show that five tools

support non-semantic clusters only. The three other tools distinguish also one or

more semantically rich module types from our classification. SAVE supports the

graphical definition of five types of modules, but does not support their semantics.

Sonargraph Architect supports the semantics of a Façade actively, while

Structure101 supports the semantics of Layers actively. However, no tool provides

the combined support of layers, components, and facades.

Our tests regarding the support of common rule types show that per tool only a

few rule types are explicitly supported. Complex relation rules are by no tool

explicitly supported. Consequently, complex relation rules at logical level require

workarounds at tool-level, which often result in two or more unrelated rules; a

threat to the maintainability and traceability of the set of rules. Furthermore, only

two of the five property types are supported, and only partially, not explicitly.

Our tests regarding the support of inconsistency prevention show that only two

tools, ConQAT and Lattix, score high on the prevention of inconsistencies in the

module and rule model, while inconsistent models may result in an unreliable

outcome of the compliance check.

Based on our study and experiments, we present the following

recommendations to ACC-tool developers:

1. Widen the scope of the tools from dependency checking to software architecture

compliance checking, including SRMAs. Provide explicit support for

semantically rich module types with their related rule types. The requirements

and the classification of common module and rule types, presented in this

chapter, may be used as a starting point.

Chapter 2

42

2. Minimize the difference between logical rules, as perceived by the architect, and

the technical implementation in the tool. Offer rule types that match with logical

rule types, including exceptions, and support each type explicitly.

3. Provide one method to define and edit rules. Do not mix several rule setting

mechanisms. Keep it simple to the user.

4. Provide several, best adaptable, views on the modular structures, the rules, and

the violations against the rules: reports, browsers, and diagrams. Do not mix too

much types of information into one view.

5. Check on inconsistencies in the architecture definition, and inform the user

when it is incorrect or incomplete.

Not all issues identified in this study can be solved easily. The provision of

SRMA support calls for further research. Techniques need to be identified, and

support needs to be designed and tested on effectiveness by means of prototypes

and case studies. Specific topics deserve attention too. For instance, visualization,

rule definition, and rule checking appeared to be a challenging combination.

Furthermore, automatic recognition of responsibility at code level, needed to check

against the defined responsibility of a module, is an unresolved issue, though

responsibility is an important property of a module at design level.

In conclusion, the eight tested tools provide useful support for ACC, but all

could improve their support of SRMAs. Solutions need to be found to reduce the

gap between documented modular architectures in software architecture documents

on one side, and module and rule models in ACC-tools on the other side. More-

complete functional support of SRMAs might contribute to the adoption of ACC

and ACC-tools, and consequently could improve the effectiveness of software

architecture in the practice and education of software engineering.

43

Chapter 3

A Metamodel for the Support of Semantically
Rich Modular Architectures in the Context of

Architecture Compliance Checking

Architecture Compliance Checking (ACC) is an approach to verify the

conformance of implemented program code to high-level models of

architectural design. Static ACC is focused on the module views of

architecture and especially on rules constraining the modular

elements. This chapter proposes an approach for support of

semantically rich modular architectures (SRMAs) in the context of

static ACC. An SRMA contains modules of semantically different

types, like layers and components, constrained by rules of different

types. Our approach is grounded in a metamodel, which enables

support of rich sets of module and rule types and which enables

extensive support of the semantics of these types. To validate the

feasibility of the metamodel, an open source prototype implementation

was developed, tested and applied in practice.

3.1 Introduction

Software architecture is of major importance to achieve the business goals,

functional requirements and quality requirements of a system. However,

architectural models tend to be of a high-level of abstraction, and deviations of the

software architecture arise easily during the development and evolution of a system

(Murphy et al. 1995). Architecture Compliance Checking (ACC) is an approach to

bridge the gap between the high-level models of architectural design and the

implemented program code, and to prevent decreased maintainability, caused by

architectural erosion. Architectural erosion is “the phenomenon that occurs when

the implemented architecture of a software system diverges from its intended

architecture” (de Silva and Balasubramaniam 2012). The opposing term,

architecture compliance, is defined by Knodel and Popescu as “a measure to which

degree the implemented architecture in the source code conforms to the planned

software architecture” (Knodel and Popescu 2007).

Chapter 3

44

Many tools and techniques are available to analyze a software system and to

reconstruct, visualize, check, or restructure its architecture (Ducasse and Pollet

2009). In our research, we focus on tool support for static ACC, in which the

software is analyzed without executing the code. Tools of this type, which we label

as static ACC-tools, focus on the modular structure in the source code.

Although Shaw and Clements included ACC in 2006 in their list of promising

areas (Shaw and Clements 2006), the adoption of ACC-tools is still limited

(Gleirscher and Golubitskiy 2012, de Silva and Balasubramaniam 2012) and

research is necessary to advance and improve current methods and tools (Canfora

et al. 2011). Different studies have compared ACC-tools and techniques, and these

studies revealed large discrepancies in terminology, approach and performance

(Ducasse and Pollet 2009, Knodel and Popescu 2007, Passos et al. 2010, Pruijt et

al. 2013b, de Silva and Balasubramaniam 2012).

Our research builds on these studies, but we focus on ACC support of

semantically rich modular architectures (SRMAs). We use this term for expressive

modular architecture descriptions, composed of semantically different types of

modules, like layers, subsystems and components, which are constrained by rules

of different types. These may be explicitly defined rules, like “module A is only

allowed to use module B”, but may also be rules inherent to the semantics of a

module type, like “a layer is not allowed to use higher-level layers”. In contrast to

an SRMA, a semantically poor modular architecture description includes modules

of only one module type and rules of only a few rule types, like the two basic types

“is not allowed to use” and “is allowed to use”.

Adersberger and Philippsen (2011) consider the support of semantically rich

architecture models essential for the integration of ACC in model-driven

engineering. Furthermore, they make clear that support of semantically rich

constructs reduces the number of rules that need to be specified, compared to

semantically poorer boxes and lines models. Modules with specific semantics

enhance the expressiveness of a modular architecture and support architecture

reasoning. A rich set of module types provides a language to express characteristics

of the modules in an architectural model. A rich set of rule types provides a

language to express constraints on the modules in an architectural model. This

language allows architects to define logical rules in a comparable way as expressed

in regular language, without the need to translate a logical rule to one or more rules

at ACC-tool level.

In a previous study, we compared eight commercial and academic ACC-tools

on their support of SRMAs (Pruijt et al. 2013a). We concluded that the tested tools

were providing useful support for dependency checking, but only limited support

A Metamodel for the Support of SRMA in the Context of ACC

45

for SRMAs. Five tools supported no semantic differences between modules. The

other three tools provided some specific kind of support of layers, components or

facades, but none provided extensive support for more than one type. Furthermore,

all tools restricted rule support to dependency rules only, and to simple rule types,

like “is allowed to use”, “is not allowed to use”, or “must use”. More complex rules

were not supported explicitly and in many cases one logical rule required the

combination of several rules to be specified in the ACC-tool. Consequently, a gap

has to be bridged between architecture design of SRMAs and ACC tools, with as

potential disadvantages, loss of architectural rules, reduced traceability, reduced

overview, and reduced productivity.

In this study, we focus on the following research question: How can support be

provided for SRMAs in the context of static ACC? To answer this question, we

followed a process of design research (Peffers et al. 2008). Iteratively we identified

requirements, studied existing tools, designed a metamodel, developed and tested

an open-source ACC-tool as prototype, and we applied this tool during ACC’s on

professional systems. These iterations spanned three consecutive years in which

groups of students in computer science participated.

The contribution of this study is twofold. First, we present a metamodel for

extensive support of SRMAs in the context of static ACC. The metamodel adds to

the knowledge base and may be used to enhance existing tools, or to develop new

approaches. Second, we introduce an open-source implementation prototype of the

metamodel, which illustrates the feasibility of the metamodel.

The next section of this chapter describes and illustrates the concept

“semantically rich modular architecture”, and it introduces a classification of

common module types and common rule types. We use these types in our research

to concretize requirements to SRMA support. Section 3.3 introduces our

metamodel for SRMA support in the context of static ACC. Section 3.4 presents

the prototype implementation of our metamodel concisely. Section 3.5 compares

the outcome of our study to related work, and Section 3.6 concludes this study and

addresses future work.

Chapter 3

46

3.2 Semantically Rich Modular Architectures

According to Perry and Wolf, software architecture “provides the framework

within which to satisfy the system requirements and provides both the technical

and managerial basis for the design and implementation of the system” (Perry and

Wolf 1992). Static ACC does not cover the full width of software architecture, but

only the static structure of the software (planned and implemented); in other words,

the module views of architecture (Clements et al. 2010), or modular architecture.

A planned modular architecture should describe the modular elements, their

form (properties and relationships) and rationale (Perry and Wolf 1992). Modular

elements, properties and relationships, are in ACC’s center of attention, and should

be included in a complete compliance check. A modular element, or module, is an

implementation unit of software with a coherent set of responsibilities (Clements et

al. 2010). Properties and relationships express architectural rules that constrain a

modules’ implementation (Perry and Wolf 1992).

3.2.1 Example of an SRMA

A semantically rich modular architecture includes modules of semantically

different types, while a variety of types of rules may constrain the modules. As an

example of an SRMA, Figure 3.1 shows a small part of an architecture model of

one of the systems at an airport. This system is used to manage the state and

services of human interaction points where customers communicate with baggage

handling machines, self-service check-in units, et cetera. Examples in the rest of

this document refer to elements in Figure 3.1.

Figure 3.1 shows UML icons for three semantically different types of modules:

packages, components and interfaces. Layers are the fourth module type in the

model (indicated by lines, since layers are not supported by UML). Finally, Spring

and Hibernate represent the fifth type of module in the model: external system.

UML dependency relations in this example indicate is-only-allowed-to use

rules; for instance, module HiWebApp is only allowed to use the modules HiForms

and HimInterface, no others. Some other rules are not visible in the diagram. For

example, rules related to the layered style, like “Technology Layer is not allowed

to use Interaction Layer. Other examples of not visible rules are naming rules and

rules inherent to components with interfaces.

3.2.2 Common Module and Rule Types

To enable compliance checks of SRMAs, rich sets of module and rule types should

be supported. In a previous study (Pruijt et al. 2013a), we presented a classification

of common module types and common rule types. In this study, we use these

A Metamodel for the Support of SRMA in the Context of ACC

47

common types as functional requirements to SRMA support. The next sub-sections

describe these common module and rule types concisely to enhance practical

understanding before the metamodel is presented. For a more in-depth discussion

of the common module and rule types, we refer to our previous study.

Common Module Types

SRMAs may contain modules of different types, with very different semantics. We

identified five common types of modules relevant for static ACC:

Logical clusters represent units in the system design with clearly assigned

responsibilities, but with no additional semantics. Comparable terms are

subsystems, or packages.

Layers represent units in the system design with additional semantics. Layers

have a hierarchical level and constraints on the relations between the layers. We

cite Larman (Larman 2005), who summarizes the essence of a layered design as

Figure 3.1: Example of an SRMA model

Chapter 3

48

“the large-scale logical structure of a system, organized into discrete layers of

distinct, related responsibilities. Collaboration and coupling is from higher to lower

layers.”

Components within software architecture are designed as autonomous units

within a system. The term component is defined in different ways in the field of

software engineering. In our use, a component within a modular architecture covers

a specific knowledge area, provides its services via an interface and hides its

internals (in line with the system decomposition criteria of Parnas (1972)).

Consequently, a component differs from a logical cluster in the fact that it has a

Facade sub module and hides its internals. Since our definition of component is

intended for modular architectures, it does not include runtime behavior as in the

“component and connector view” of architecture (Clements et al. 2010).

Facades are related to a component and act as an interface as described under

components. We use the term facade, referring to the facade pattern (Gamma et al.

1995), to differentiate with the Java interface, which has not exactly the same

meaning as a design-level interface. A facade may be mapped to multiple elements

at implementation level, like Java interface classes, exception classes and data

transfer classes.

External systems represent platform and infrastructural libraries or components

used by the target system. Useful ACC support includes the identification of

external system usage and checks on constraints regarding their usage (Ali et al.

2012).

Common Rule Types

Modular architectures may contain rules of different types, where each rule type

characterizes another kind of constraint on a module. These constraints are

categorized in literature (Clements et al. 2010, Perry and Wolf 1992) as properties

and relationships. Our inventory of architectural rule types, in principle verifiable

by static ACC, resulted in two categories related to properties and relationships:

Property rule types and Relation rule types. The identified rule types are described

and exemplified in Table 3.1.

Property rule types constrain a certain characteristic of the elements included

in the module and their sub modules. Clements et al. (Clements et al. 2010)

distinguish the following properties per module: Name, Responsibility, Visibility,

and Implementation information. We identified rule types associated to these

properties and named them accordingly, except two types (Facade convention,

Inheritance convention), which represent the property Implementation information.

Relation rule types specify whether a module A is allowed to use a module B.

The basic types of rules are “is allowed to use” and “is not allowed to use”.

However, we encountered useful specializations of both basic types, which we

A Metamodel for the Support of SRMA in the Context of ACC

49

included in the classification. Table 3.1 shows the two included specializations of

Table 3.1: Common rule types (Ref= primary literature reference)

Category\Type of Rule Description (D), Example (E) Ref

Property rule types

Naming convention D: The names of the elements of the module must adhere to the

 specified standard.

E: HiDao elements must have suffix DAO in their name.

1

Responsibility convention D: All elements of the module must adhere to the specified

 responsibility.

E: HiForms is responsible for presentation logic only.

2

Visibility convention D: All elements of the module have the specified or a more

 restricting visibility.

E: HiManager classes have package visibility or lower.

3

Facade convention D: No incoming usages of the module are allowed, except via

 the façade.

E: HiManager may be accessed only via HimInterface.

4

Inheritance convention D: All elements of the module are sub classess of the specified

 super class.

E: HiDao classes must extend

 CorporateWebCore.Dao.GenEntityDao.

1

Relation rule types

Is not allowed to use D: No element of the module is allowed to use the specified to-

 module.

E: HiPanels is not allowed to use HiWS.

5

 Back call ban

 (specific for layers)

D: No element of the layer is allowed to use a higher-level layer.

E: Service Layer is not allowed to use the Interaction Layer.

6

 Skip call ban

 (specific for layers)

D: No element of the layer is allowed to use a lower layer that

 is more than one level lower.

E: Interaction Layer is not allowed to use the Infrastructure Layer.

6

Is allowed to use D: All elements of the module are allowed to use the specified

 to-module.

E: HiWebApp is allowed to use HiForms.

3

 Is only allowed to use D: No element of the module is allowed to use other than the

 specified to-module(s).

E: HiForms is only allowed to use HiPanels.

1

 Is the only module

 allowed to use

D: No elements, outside the selected module(s) are allowed to

 use the specified to-module.

E: HiDao is the only module allowed to use CorporateWebcore.

1

 Must use D: At least one elements of the module must use the specified

 to-module.

E: HiDao must use CorporateWebcore.

5

1 (Passos et al. 2010), 2 (Larman 2005), 3 (Clements et al. 2010), 4 (Gamma et al. 1995),
5 (Knodel and Popescu 2007), 6 (Sarkar et al. 2006)

Chapter 3

50

“Is not allowed to use” (both specific for layers), and the three specializations of

“is allowed to use”.

3.3 SRMACC Metamodel

In this section, we introduce a metamodel to provide support for SRMAs in the

context of static ACC. The metamodel, we labeled it “SRMACC metamodel”,

identifies, describes and relates the core concepts needed to address the following

objectives regarding SRMA support. The first is to provide basic SRMA support,

which includes the provision of sets of common module and rule types and the

functionality to check rules of these types. The second is to provide extensive

SRMA support, which adds support of the semantics of the common module and

rule types. The third is to enable configuration of the provided support.

To enable reuse and different implementations, the metamodel has a conceptual

character. For reasons of readability, the metamodel is presented in four UML class

diagrams, each focusing on a different aspect. Composition associations without a

name in these diagrams, should be read as “isComposedOf”.

3.3.1 Definition of the Modular Architecture

The metamodel in Figure 3.2 focuses on the definition of the planned modular

architecture. The model shows that an instance of a SoftwareArchitecture (within

the context of static ACC) is composed of a set of Modules, the architectural

elements, and a set of AppliedRules, constraints on the architectural elements

(properties and relationships, in terms of Perry and Wolf (1992)). AppliedRules are

characterized by their RuleTypes, which are grouped into Categories (e.g.,

Figure 3.2: Metamodel: Definition of the Planned Modular Architecture

A Metamodel for the Support of SRMA in the Context of ACC

51

“Property rule” and “Relationship rule” within our classification).

Module represents instances of architectural elements, which may be composed

of many sub-modules recursively. In line with the constraints of the decomposition

style (Clements et al. 2010), a module can have only one parent. Basic support of

SRMAs includes the provision of a set of ModuleTypes, like the types discussed in

Section 3.2, which define the semantic properties of the modules.

AppliedRule represents instances of rules, where each instance constrains a

Module; the from-module in the metamodel. An AppliedRule is of a certain

RuleType, which defines the kind of constraint applied to the from-module. For

example, the AppliedRule “HiManager may be accessed only via HimInterface” of

RuleType “Facade convention” constrains Module-from “HiManager”. Some types

of applied rules include also a Module-to in their constraint, in which case a

relationship is defined. For example, AppliedRule “HiDao must use

CorporateWebcore”, of RuleType “Must use”, constrains Module-from “HiDao” in

its use of Module-to “CorporateWebcore”. Finally, support of exceptions, is also

included within the metamodel. An exception rule is also an instantiation of

AppliedRule, however the exception rule is linked to the original rule via

association hasException, in order to make the exception traceable to the original

rule.

3.3.2 Support of the Semantics of the Types

Inclusion in the metamodel of ModuleType and RuleType, with their properties

and associations, enables support for the semantics of the provided types. First,

type-specific properties may be included and configured. For example, RuleType

with name “Visibility convention” defines not only the type of constraint of an

AppliedRule, but it also defines, inter alia, the Category, the values allowed to

include in a rule, and the severity of a violation against a rule of this type.

Second, more advanced support of the semantics of the types may be provided

when logical relationships between the types are included in the model; shown in

Figure 3.3: Metamodel: Support of the Semantics of the Types

Chapter 3

52

Figure 3.3 as three associations. The association hasDefault may be used to create

rules (inherent to the type of module) automatically when a module is created. For

instance, when a module of type “Layer” is created, a “Back call ban” rule and a

“Skip call ban” rule might be generated, based on included instantiations of

association hasDefault.

The association allows may be used to present to the tool-user a list of RuleTypes,

suitable to the ModuleType of the constrained module. For example, a “Back call

ban” is allowed only in case of ModuleType “Layer”, and a module of type

“External system” is not allowed to be constrained by any type of rule, since it is

not the subject of the ACC (conversely, usage of an external system may be

constrained).

Finally, the association allowsAsException specifies for a certain RuleType, which

RuleTypes are allowed as an exception to an instantiated AppliedRule. For

instance, as an exception to a rule of type “Naming convention”, only a rule of the

same type is allowed.

3.3.3 Module Mapping

A Module may represent one or more implementation units of a software

application. To enable ACC on various versions of the software, the metamodel in

Figure 3.4 includes the association, Module mapsTo DefinedSoftwareUnit. An

Figure 3.4: Metamodel: Module Mapping

A Metamodel for the Support of SRMA in the Context of ACC

53

instantiation of DefinedSoftwareUnit represents an implementation unit of a certain

type (package, class, …) and in case of a composite unit, all its underlying units.

To be able to find the unit when an ACC is performed, attribute uniqueName needs

to be set with a string in the form of a path-and-name-combination or in the form of

a regular expression. At this point, support to the tool-user is desirable, which may

be provided based on analysis data of the current version of the software.

The metamodel in Figure 3.4 includes also the basics for ACC support of

complex Applications, which are subdivided in technical Projects. Each project

may have its own class path and programming language and possibly its own

SoftwareArchitecture. Our metamodel also features that a SoftwareArchitecture

with the same sets of Modules and AppliedRules may be reused in different

projects. In that case, only the mapping will differ per project.

3.3.4 Compliance Checking

The metamodel in Figure 3.5 shows the concepts needed for the actual compliance

check between the planned modular architecture and the implemented architecture.

The planned architecture is composed of Modules and AppliedRules. The

implemented modular architecture, including all the code-types in the software,

relevant properties of these types and the dependencies between the types, is

represented by AnalyzedSoftwareUnit and Dependency. In dependency and

violation reports it is useful to include the type of the dependency (Pruijt et al.

Figure 3.5: Metamodel: Compliance Checking

Chapter 3

54

2013b). Reason why DependencyType is included, which stands for the set of

dependency types. It enables a standardized presentation of these types to the tool-

user, in forms and reports.

An instance of Violation represents an infringement of an AppliedRule by an

AnalyzedSoftwareUnit; for instance, caused by a forbidden Dependency. One

AnalyzedSoftwareUnit may include many code constructs that infringe the same or

different AppliedRules. Each infringement is registered as a separate Violation, to

enable detailed violation reporting.

At the beginning of a compliance check, the instantiations of

AnalyzedSoftwareUnit and Dependency with their mutual associations need to be

provided by a code-analysis process. Next, each AppliedRule can be checked,

based on the traced links between the Modules related to the AppliedRule in the

planned architecture and the AnalyzedSoftwareUnits in the implemented

architecture. The metamodel contains the data to check AppliedRules of all the

common RuleTypes in our classification. Since these RuleTypes focus on different

constraints, the required data and behavior to check an AppliedRule differ per

RuleType.

3.4 SRMACC Prototype

We have validated the feasibility of our approach to provide SRMA support in the

context of ACC through a prototype implementation, a test of this prototype, and

pilot applications of this prototype. Based on our notion of SRMA-support, we

have iteratively designed, developed and applied an open source ACC-tool, named

HUSACCT (HU Software Architecture Compliance Checking Tool). These

iterations spanned three consecutive years. The first year, we focused on layered

architectures, the second year on the provision of all the common module and rule

types in the classification, and the third year on extensive support of these types.

Each iteration, we used the metamodel to consider, discuss and improve our

approach.

Students in computer science participated in the project, of which the results,

including an introduction video, are attainable via

http://husacct.github.io/HUSACCT/. HUSACCT has been developed in Java and

analyzes Java and C# code. The tool provides support to define planned SRMAs, to

analyze implemented architectures, and to execute conformance checks. We are

using the tool to perform ACCs on professional systems, but we are using the tool

also in courses on software architecture to introduce the students in architecture

reconstruction, and compliance checking. We are continuing our work on the tool

to improve on issues like architecture visualization, accuracy, and scalability.

http://husacct.github.io/SARACCT/

A Metamodel for the Support of SRMA in the Context of ACC

55

Support of SRMAs conform the metamodel does not have to be implemented in

the same way as in HUSACCT. For example, the presentation to the user may

vary. HUSACCT supports the definition of the planned architecture via a GUI-

form, though support via an architecture diagram editor is possible too. As another

example, the outcome of a conformance check may be presented in terms of

violations, but also in terms of Murphy’s Reflection Model (Murphy et al. 1995)

(convergence, divergence and absence).

3.4.1 Metamodel Implementation

Definition of the Modular Architecture

Figure 3.6 shows the view “Define Architecture”, used for the creation and

maintenance of the planned modular architecture; in this case of the example

system depicted in Figure 3.1. The panel “Module Hierarchy” shows Modules of

different ModuleTypes: Layers (e.g., Interaction Layer), Logical clusters (e.g.,

HiWeb), Components with Facades (e.g., HiManager with HimInterface), and

External systems (e.g., Hibernate).

The panel “Rules” shows two generated AppliedRules attached to layer “Service

Layer”. These two rules are of the RuleTypes “Back call ban” and “Skip call ban”.

Existing rules can be edited and new rules can be specified in a separate panel that

pops up when the Edit or Add-button is activated. Exceptions to a rule are also

Figure 3.6: HUSACCT Define Architecture view

(with as case the example depicted in Figure 3.1)

Chapter 3

56

specified in this pop-up panel. To enable traceability, an exception rule is linked to

the main rule, as shown in the metamodel by association AppliedRule

hasException.

Support of the Semantics of the Types

Extensive support of the semantics of the module and rule types is provided in

several ways. First, when a rule is created, only rule types are selectable, which suit

the type of the constrained module, (association ModuleType allows RuleType in

the metamodel). Second, when an exception is created, only rule types are

selectable, which suit to the type of the main rule (association RuleType

allowsAsException in the metamodel). Third, when a module is created, applied

rules inherent to the module type will be created automatically (association

ModuleType hasDefault RuleType in the metamodel). Here, the support is made

configurable. For example, to configure that by default layers are allowed to skip

call, but not to back call. Fourth, when a module is created of type component, a

sub-module of type facade is created automatically, in line with our definition of

component.

Module Mapping

Mapping Modules to DefinedSoftwareUnits is supported in panel “Software Units

Assigned” within view “Define Architecture”. In the example in Figure 3.6,

package “service”, an AnalyzedSoftwareUnit within the analyzed code, is assigned

to Module “Service Layer”. Available software units in the analyzed code are

shown and selectable when the button “Add” is activated.

Compliance Checking

HUSACCT is able to check AppliedRules of eleven different RuleTypes. The result

of a conformance check are presented in a GUI-browser, in reports, and in

diagrams. Conceptually, conformance checks are executed in line with the

SRMACC metamodel, but technically, there are differences. An important one is

that the analyzed code in HUSACCT is stored conform the FAMIX model

(Tichelaar et al. 2000). When needed, the concepts AnalyzedSoftwareUnit and

Dependency in the metamodel are extracted from the data in the FAMIX model.

3.4.2 SRMA Test of HUSACCT

As part of a previous study (Pruijt et al. 2013a), we have designed and

implemented a test to assess ACC-tools on their SRMA support. The test includes

all common module and rule types from our classification. HUSACCT has been

tested with the same testware. The test results demonstrate that HUSACCT

provides explicit support for all the module types and for eleven of the twelve rule

types (the rule type “Responsibility convention” is not supported, since it requires

A Metamodel for the Support of SRMA in the Context of ACC

57

human interpretation). However, graphical support and support of “External

systems” is limited, currently.

3.4.3 Pilot Applications of HUSACCT

At the end of each of the three development iterations, we performed ACCs with

our tool on professional systems at governmental and commercial organizations. In

total, six different business information systems of four organizations were subject

of an ACC, which we performed with the students participating in the project. The

ACCs have yielded interesting results for the customer organizations and have

been important for our research. This way, we were able to test our concepts and

the tool’s performance in practice, which resulted in new insights and new

requirements for the next development iteration of our metamodel and tool.

Some general findings are of interest here. First, semantically rich module types

were present in all cases; a confirmation of the relevance of rich sets of

ModuleTypes in ACC. Layers dominated the modular architecture of all six case

systems, while internal components with access restricting facades were included

in two case systems. Second, we encountered and tested rules of nine different rule

types; a confirmation of the relevance of rich sets of RuleTypes in ACC. Third, the

customers appreciated the introduction of ACC in their organization, even though

in five of the six cases violations were detected (up to 1500).

3.5 Related work

Other studies on ACC have mentioned or proposed the inclusion of support for a

specific semantic module type; for instance for layers (Passos et al. 2010),

components (Adersberger and Philippsen 2011, Knodel and Popescu 2007), or

external systems (Ali et al. 2012). However, to the best of our knowledge, other

studies on ACC have provided neither a comprehensive set of requirements

regarding SRMA support, nor a foundational metamodel to address these

requirements. Moreover, no metamodel on ACC (with or without SRMA support)

has been published before, which is as comprehensive and detailed as our

metamodel, which enables support for four modular styles (Clements et al. 2010):

the decomposition style, uses style, layer style, and generalization style. Koschke

(Koschke 2010) has presented an interesting metamodel on ACC according to the

Reflection Model approach (Murphy et al. 1995). The concepts and associations in

this metamodel can be mapped to the concepts in our metamodel, but compared to

our SRMACC metamodel, Koschke’s model is very abstract, with a smaller set of

concepts and without attributes. Furthermore, it is restricted to dependency rules

only, and it does not enable differentiations of module and rule types. Other studies

Chapter 3

58

(e.g., (Koschke and Simon 2003, Rahimi and Khosravi 2010)) present metamodels

with even fewer concepts, since they focus on one specific aspects of ACC.

In a previous paper (Pruijt et al. 2013a) we reported on the results of an SRMA-

test on eight academic and commercial ACC-tools. We demonstrated that the

SRMA support of these tools was limited: up to explicit support of the semantics of

only one module type and up to explicit support of only a few rule types.

Consequently, we concluded that all eight tools could improve their support of

SRMAs. The same SRMA test has been used to test HUSACCT, as described in

the previous section. The test results show that extensive SRMA support is possible

on the base of the SRMACC metamodel.

Support of Common Module Types

Five of the eight tested tools in our previous study were not at all supporting

semantic differences between modules. Three other tools
1
 were providing some

kind of support for layers, components and facades. SAVE supported the graphical

definition of subsystems, layers, components and interfaces, but provided no

support of the semantics of these module types. Sonargraph Architect supported the

facade pattern and imposed a “Facade convention” rule on defined interfaces.

Structure101 supported the concept of layering by imposing “Back call ban” and

“Skip call ban” rules on vertically positioned modules. Compared to Sonargraph

Architect and Structure101, our approach adds combined support (basic and

extensive) for all common module types, and in a consistent way, which allows

extension of the set of types. Furthermore, it adds configuration options to tune the

semantic support.

Support of Common Rule Types

All eight tested tools in our previous study restricted rule support to dependency

rules only, and to simple rule types, like “is allowed to use”, “is not allowed to

use”, or “must use”. Compared to these tools, our approach adds explicit support

for complex dependency rules and for property rules, including traceable

exceptions. These additions are relevant. Rules of the added types are used in

practice, like “Naming convention” (Woods and Rozanski 2010), and may even

1 SAVE - version 1.7 - iese.fraunhofer.de;

Sonargraph Architect - version 7.0 - hello2morrow.com;

Structure101 - version 3.5 - structure101.com.

A Metamodel for the Support of SRMA in the Context of ACC

59

constitute a significant part of the total rule set, as in case of rule type “Is only

allowed to use” (Terra and Valente 2009).

3.6 Conclusion

Architecture compliance checking (ACC) relies on the support of tools to compare

the planned architecture with the implemented architecture. We focused our

research on support of semantically rich modular architectures (SRMAs) in the

context of static ACC. In a previous study, we studied eight ACC-tools and

concluded that the support of SRMAs was limited. In this chapter, we have

presented the SRMACC metamodel for extensive support of SRMAs in the context

of static ACC. The metamodel provides the fundamental concepts for: a) the

definition of the planned modular architecture, including common module and rule

types; b) extensive semantic support of these types; c) module mapping; and d)

conformance checking. Therefore, the metamodel may be helpful to enhance

existing tools or to develop new approaches. We have validated the feasibility of

our approach and metamodel through an open source prototype implementation, a

test of this tool (HUSACCT), and pilot applications of this tool.

Future work on SRMA support in the context of static ACC includes ongoing

improvement of our HUSACCT prototype, case study research, research on

visualization techniques of SRMAs in the context of ACC, research on

improvement advice on planned SRMAs, and research on the inclusion of support

of other module views and architectural patterns.

In conclusion, our study shows that extensive SRMA support is possible in the

context of static ACC. SRMA support widens the scope of ACC and enhances the

architectural process. Furthermore, we believe that SRMA support may contribute

to the adoption of ACC and consequently to the effectiveness of software

architecture in practice and education.

Chapter 3

60

61

Chapter 4

HUSACCT: Architecture Compliance Checking
with Rich Sets of Module and Rule Types

Architecture Compliance Checking (ACC) is an approach to verify the

conformance of implemented program code to high-level models of

architectural design. Static ACC focuses on the module views of

architecture and especially on rules constraining the modular

elements. This chapter presents HUSACCT, a static ACC tool that

adds extensive support for semantically rich modular architectures

(SRMAs) to the current practice of static ACC tools. An SRMA

contains modules of semantically different types, like layers and

components, which are constrained by rules of different types.

HUSACCT provides support for five commonly used types of modules

and eleven types of rules. We describe and illustrate how basic and

extensive support of these types is provided and how the support can

be configured. In addition, we discuss the internal architecture of the

tool.

4.1 Introduction

Architecture compliance, is “a measure to which degree the implemented

architecture in the source code conforms to the planned software architecture”

(Knodel and Popescu 2007). Architecture Compliance Checking (ACC) is an

approach to bridge the gap between the high-level models of architectural design

and the implemented program code. Static ACC does not cover the full width of

software architecture, but only the static structure of the software (intended and

implemented); in other words, the module views of architecture (Clements et al.

2010), or modular architecture. An intended modular architecture should describe

the modular elements, their form (properties and relationships) and rationale, where

properties and relationships express architectural rules that constrain a modules’

implementation (Perry and Wolf 1992). Modular elements, properties and

relationships, are in ACC’s center of attention.

Chapter 4

62

Although Shaw and Clements include ACC in 2006 in their list of promising

areas (Shaw and Clements 2006), the adoption of ACC-tools is still limited (de

Silva and Balasubramaniam 2012). With our research, we intend to contribute to

the advancement of current methods and tools. We have focused on ACC support

of semantically rich modular architectures (SRMAs). We use the term SRMA for

an expressive modular architecture description, composed of semantically different

types of modules (e.g., layers, subsystems, components), which are constrained by

different types of rules, such as basic dependency constraints, constraints related to

layers, naming constraints. In practice and literature, many architectures can be

labeled as SRMA, since they contain modules with different semantics.

In the last four years, we have iteratively identified requirements regarding

SRMA support, studied existing ACC tools, designed a metamodel, developed, and

tested HUSACCT, and we applied this tool during ACC’s on professional systems.

In a first publication (Pruijt et al. 2013a), we presented requirements to SRMA

support, and we compared eight commercial and academic ACC-tools on basis of

the requirements. We concluded that only limited support was available for

SRMAs. Furthermore, that solutions were needed to bridge the gap between

modular architectures in software architecture documents on one side, and module

and rule models in ACC-tools on the other side.

In a second publication (Pruijt and Brinkkemper 2014), we presented the

SRMACC metamodel, whereof the central part regarding SRMA-support is

included in Figure 4.1. It includes the concepts, their attributes, and associations,

relevant to this chapter. As shown in the figure, an SRMA contains Modules of

Figure 4.1: Part of SRMACC metamodel

HUSACCT: ACC with Rich Sets of Module and Rule Types

63

different ModuleTypes, where AppliedRules, each of a certain RuleType, may

constrain the Modules. For a detailed discussion of the complete metamodel, we

refer to (Pruijt and Brinkkemper 2014).

This chapter describes and illustrates how HUSACCT provides extensive and

configurable SRMA support. The remainder of this chapter is structured as follows.

Section 4.2 describes and illustrates the functionality of HUSACCT with the focus

on SRMA support. As running example, we use the internal architecture of the tool

itself, as it is a suitable example of an SRMA, and it helps to explain how we

addressed the most important design challenges. Section 4.3 describes related

work, and Section 4.4 concludes with the status and outlook of our tool.

4.2 HUSACCT

HUSACCT (HU Software Architecture Compliance Checking Tool) is a tool that

provides support to analyze implemented architectures, define intended

architectures, and execute conformance checks. Browsers, diagrams and reports are

available to study the decomposition style, uses style, generalization style and

layered style (Clements et al. 2010) of intended architectures and implemented

architectures. HUSACCT is free-to-use and open source. It has been developed in

Java and analyzes Java and C# source code. The executable and source code are

downloadable at http://husacct.github.io/HUSACCT/. An introduction video and

documentation are accessible at the same site.

In HUSACCT, an ACC starts with the definition of the modules and rules in the

intended architecture. Next, the intended modules are mapped to the implemented

software units. Finally, the conformance of the implemented architecture to the

intended architecture can be validated. The following subsections follow these

steps and explain how HUSACCT provides basic, extensive, and configurable

SRMA support. Thereafter, we describe how we addressed some design challenges

in the tool’s architecture.

4.2.1 Rich Sets of Module and Rule Types

Basic SRMA support includes the provision of rich sets of module and rule types

and the functionality to check rules of these types. In our first SRMA-publication

(Pruijt et al. 2013a), we identified common module and rule types and discussed

their grounding in literature. During the development of HUSACCT, we aimed at

support of these common types. Currently HUSACCT provides support for five

common ModuleTypes and eleven common RuleTypes.

The module and rule types are used in view “Define Intended Architecture”,

shown in Figure 4.2. This view supports the creation and maintenance of the

intended modular architecture. The panel “Module Hierarchy” shows the

http://husacct.github.io/HUSACCT/

Chapter 4

64

ModuleTypes currently supported: Component (e.g., Module Analyse), Interface

(e.g., Interface<Analyse>), Layer (e.g., Presentation), Subsystem (e.g., Common),

and External system (e.g., ExternalSystems).

As case, the main part of the architecture of HUSACCT itself is presented. At

top-level five components are visible, which all have a layered design internally.

As example, three layers are shown within component Analyse. This component is

responsible for the analysis of the implemented architecture. The domain layer is

responsible for the analyzed data and is designed as a component, with an interface

to hide its internals.

The panel “Software Units Assigned” shows that a package and a class are

assigned to module Analyse. Inherently, all software units assigned to its

submodules are assigned as well. How implemented software units must be

assigned to intended modules differs from system to system in practice.

Consequently, manual work is required. To enhance the efficiency and accuracy of

this work, analyzed software units are made selectable. Once the software units are

assigned, defined architecture diagrams can be created, like the ones in Figure 4.4

and 4.5, in which defined modules and dependencies (the black, dashed lines) are

included.

The panel “Rules” shows that four AppliedRules of three different RuleTypes

are constraining module Analyse. A new rule, together with its exceptions, can be

specified in a separate panel that pops up when the Add-button is activated. An

exception rule is part of a main rule, as visible in the metamodel. That way it is

easy to maintain an overview. For example, the first rule of component Analyse is

of type “Facade convention”, which bans usage of the component, other than via its

Figure 4.2: Define intended Architecture, with as case the SA of HUSACCT itself

HUSACCT: ACC with Rich Sets of Module and Rule Types

65

interface. Except for a module in component General GUI & Control, that acts as

broker.

4.2.2 Extensive Semantic Support

Extensive semantic support of the module types and rule types prevents

inconsistencies in the defined architecture, and it saves work and time. For

example, in case of HUSACCT’s intended architecture, most rules and all the

interfaces are added automatically. HUSACCT provides extensive SRMA support

in the following ways.

First, when a rule is created, only rule types are selectable which are allowed for

the type of the constrained module. For example, in case of module type Layer, all

rule types are allowed, except a rule type specific for Components, and rule type

“Is allowed to use”, which is reserved for exceptions. The list of allowed rule types

for module type Layer is shown in Figure 4.3.

Second, when an exception rule is created, only rule types are selectable which

suit to the type of the main rule. For instance, an exception to a rule of type

“Facade convention” may only be of type “Is allowed to use”.

Third, when a module is created of type Component, a sub-module of type

Interface is created automatically; in line with our definition of component.

Fourth, when a module is created, zero, one or more applied rules will be

created, based on the associated default rule types. For example, in case of module

type Component, an accompanying default rule of type “Facade convention” is

generated automatically.

4.2.3 Configurable Support

ACCs with other tools taught us that non-configurable tool support may result, in

Figure 4.3 HUSACCT: Configuration of default rule types

Chapter 4

66

certain situations, in invalid violation messages. Reason why we made all rules

accessible and incorporated the following configuration options: 1) generated

default rules may be disabled (just as user defined rules); 2) exceptions to

generated default rules may be specified (just as exceptions to user-defined rules);

3) tool-users may configure the default rule types per module type. Figure 4.3

serves as an example for the third option. It shows that two rule types are assigned

as default for module type “Layer”. These two rule types together enforce a strict

layered model. However, a tool-user is able to configure that in his software

architecture a relaxed layered model is standard. Consequently, only an “Is not

allowed to back call” rule will be generated when a module of type Layer is added.

4.2.4 Conformance Checking

Within HUSACCT, the component Validate is responsible for conformance

checking. The results of a conformance check are presented in a GUI-browser, in

reports, and in diagrams.

Figure 4.4 and 4.5 show Intended architecture diagrams with the results of a

conformance check on the rules of the intended architecture in Figure 4.2.

Violations are shown as red, dotted lines, where the number indicates the number

of violations between the two related modules. Details about these violations (like

rule type, involved classes, or dependency type) are shown when a line is selected.

For example, of the 194 dependencies in Figure 4.4 from Define to General GUI &

Control (the black, dashed line), 26 are violating (the red, dotted line). In this case,

all are violating a rule of type “Facade convention”. It concerns dependencies to

classes within component Analyse, which pass the interface.

Figure 4.4 Intended architecture: Top-level components

HUSACCT: ACC with Rich Sets of Module and Rule Types

67

Figure 4.5 shows the violations between the layers within the component

Analyse. Five back call violations are visible from layer Task to Presentation. The

other 17 violations, from Task to Domain, are violations against a “Facade

convention” rule. These violations from Task to Domain are shown in more depth

in Figure 4.6, an Implemented architecture diagram (zoomed-in on these two

layers; some classes and packages are hidden). It shows that two implemented

classes make use of the service implementation class and pass the interface class of

the FamixDomainComponent. Even worse are the violating dependencies from

package analyser directly to package famix.

4.2.5 Design Challenges

The development of HUSACCT started after a phase of requirement analysis, in

which two organizations were involved; the Dutch Tax Administration and

InfoSupport. Based on the requirements and the team structure, we had to address

design challenges, like: 1) the sets of module and rule types had to be extendible;

2) the tool should work in GUI mode, but also in batch (e.g., daily build process);

3) six development teams had to work concurrently (students in computer science

contributed to the development during the first two releases); 4) the set of

supported OO programming languages had to be extendible.

To address the first challenge, the SRMACC metamodel was developed, and

during the implementation of the concepts, hard-wired dependencies to individual

types were prevented as much as possible; for example, by usage of the strategy

pattern.

To address the second and third challenges, HUSACCT’s software is divided

into five components, where each component covers a knowledge area. The

Figure 4.5: Intended architecture: Analyse component

Chapter 4

68

components hide their internals, offer services to other components, and exchange

data only via data transfer objects. That way, services may be activated via a GUI

or in batch (challenge 2), and each component can be assigned to a separate

development team (challenge 3).

To address the fourth challenge, two design decisions were taken. First,

ANTLR (www.antlr.org) was selected to read and process the source code, because

grammars are available for many programming languages. Second, the FAMIX

model (Tichelaar et al. 2000) was selected to store analyzed code data internally, in

a language independent format. Since, after the analysis, all services acquire their

data from the FAMIX model, language dependencies are minimized.

4.3 Related Work

In a previous study (Pruijt et al. 2013a), we reported on the results of an SRMA-

test on eight academic and commercial ACC-tools. We concluded that the tested

Figure 4.6: Implemented architecture: Analyse package

http://www.antlr.org/

HUSACCT: ACC with Rich Sets of Module and Rule Types

69

tools were providing useful support for dependency checking, but only limited

support for SRMAs.

Five of the eight tested tools in our previous study were providing only one type

of module. Three other tools
1
 were providing more types of modules, but only with

limited support of their semantics. One tool, SAVE, supported the graphical

definition of four module types, but provided no support of their semantics. The

two other tools provided semantic support for one type of module: Sonargraph

Architect for Interface; and Structure101 for Layer. Compared to these tools,

HUSACCT adds semantic support for all its types of modules in a consistent way,

which allows extension of the set of module types. Furthermore, it adds

configuration options to tune the semantic support.

All eight tested tools in our previous study restricted rule support to dependency

rules only, and to simple rule types. Compared to these tools, HUSACCT adds

support for property rules (e.g., “Naming convention”, “Inheritance convention”),

complex dependency rules (e.g., “Is only allowed to use”, “Is the only module

allowed to use), and exceptions (exceptions are presented as parts of a main rule,

not as independent rules).

4.4 Status and Outlook

HUSACCT provides support to analyze implemented architectures, define intended

architectures, and execute conformance checks. HUSACCT distinguishes itself

from other ACC tools in its extensive and configurable support of rich sets of

module and rule types.

HUSACCT is a free-to-use open source tool, but it is not intended to compete

licensed tools. In contrast, we want to contribute to the adoption and quality of

ACC. HUSACCT is intended for: 1) introduction of ACC within software

development organizations; 2) practical support in courses on software

architecture. We use the tool to introduce our students in software architecture,

architecture reconstruction, and compliance checking. The tool helps them to relate

abstract models to code and to understand the different types of modules and rules.

1 SAVE - version 1.7 - iese.fraunhofer.de;

Sonargraph Architect - version 7.0 - hello2morrow.com;

Structure101 - version 3.5 - structure101.com.

Chapter 4

70

HUSACCT is in its fourth year of development and each year we performed

ACCs with our tool on open source systems and professional systems. The ACCs

yielded interesting results for customer organizations and helped us to test and

improve the tool. Furthermore, they confirmed the relevance of SRMA support,

since in many cases semantically rich module types were present.

Last year, we have worked on the improvement of the accuracy, performance,

and usability of the tool, and with considerable results. For instance, analysis and

processing time of the source code of HUSACCT version 1.0 (136K lines of code)

was reduced from hours in version 2.0 to less than 20 seconds in version 3.2.

Future work will focus at first on further improvements of existing functionality,

such as the architecture diagrams. Thereafter, we plan to extend the tool with more

options for ACC and architecture reconstruction.

In conclusion, HUSACCT shows that extensive and configurable SRMA

support is possible. SRMA support widens the scope of ACC and enhances the

architectural process. Furthermore, we believe that SRMA support will contribute

to the adoption of ACC and consequently to the effectiveness of software

architecture in the practice of software engineering.

71

Chapter 5

The Accuracy of Dependency Analysis in Static
Architecture Compliance Checking

Architecture Compliance Checking (ACC) is an approach to verify

conformance of implemented program code to high-level models of

architectural design. Static ACC focuses on the modular software

architecture and on the existence of rule violating dependencies

between modules. Accurate tool support is essential for effective and

efficient ACC. This chapter presents a study on the accuracy of ACC

tools regarding dependency analysis and violation reporting. Ten

tools were tested and compared by means of a custom-made

benchmark. The Java code of the benchmark testware contains 34

different types of dependencies, which are based on an inventory of

dependency types in object oriented program code. In a second test,

the code of open source system FreeMind was used to compare the ten

tools on the number of reported rule violating dependencies and the

exactness of the dependency and violation messages. On the average,

77 percent of the dependencies in our custom-made test software were

reported, while 72 percent of the dependencies within a module of

FreeMind were reported. The results show that all tools in the test

could improve the accuracy of the reported dependencies and

violations, though large differences between the ten tools were

observed. We have identified ten hard-to-detect types of dependencies

and four challenges in dependency detection. The relevance of our

findings is substantiated by means of a frequency analysis of the hard-

to-detect types of dependencies in five open source systems.

Chapter 5

72

5.1 Introduction

Software architecture is of major importance to achieve the business goals,

functional requirements, and quality requirements of a system. In practice, a variety

of architectural models is used to describe how systems are structured and how the

components interact. However, the models tend to be of a high-level of abstraction,

and deviations of the software architecture arise easily during the development and

evolution of a system (Murphy et al. 1995). Architecture Compliance Checking

(ACC) is an approach to bridge the gap between the high-level models of

architectural design and the implemented program code, and to prevent

architectural erosion (de Silva and Balasubramaniam 2012). Knodel and Popescu

(2007) defined architecture compliance as “a measure to which degree the

implemented architecture in the source code conforms to the planned software

architecture”. The terms architecture compliance and architecture conformance are

both used in literature.

Many tools and techniques are available to analyze a software system and to

reconstruct, visualize, check or restructure its architecture (Ducasse and Pollet

2009). In our study, we focus on tools supporting static ACC, which analyze

software without executing the code. These tools, which we label as static ACC-

tools, focus on the modular structure in the source code. The tools identify

structural elements, such as packages and classes, and use-relations between these

elements, such as an invocation of a method or access of an attribute. To support

ACC, the tools provide facilities to: a) define modular elements and rules

restricting these elements and their relationships; b) check the compliance to these

rules; and c) report violations to these rules. For example, a tool should report a

violation if a method-call in the code from class A to B corresponds with a

dependency from module X to module Y in the planned architecture, while a rule

exists that forbids such a dependency.

Although ACC-tools predominantly check for the same kind of inconsistencies

between the implemented and intended modular architecture, only a few studies

have compared these tools. Previous studies have identified large differences in

terminology and approach (Knodel and Popescu 2007, Passos et al. 2010, Van

Eyck et al. 2011). For instance, the study of Passos et al. (2010) identified and

evaluated three techniques of static architecture checking. Furthermore, they

explored the effectiveness and usability of three supporting tools by executing

tests, based on a simple system with a basic architecture. Our research follows

Passos et al. We aspire to contribute to the evolution of ACC, motivated by the

notion that the adoption of ACC-tools is still limited (de Silva and

Balasubramaniam 2012, Gleirscher et al. 2013). Further research is necessary to

advance and improve current methods and tools (Canfora et al. 2011). We focus on

The Accuracy of Dependency Analysis in Static ACC

73

the effectiveness of ACC, since it is of primary interest to practitioners and

researchers. The “Quality in use model” of ISO 25010 (ISO/IEC 2011) defines

effectiveness as “accuracy and completeness with which users achieve specified

goals”. In another study, we investigated the functional completeness of ACC

support; more specifically, the support of semantically rich modular architectures

in the context of ACC (Pruijt et al. 2013a).

In this study, we focus on the accuracy of ACC support, which we scoped to the

main question: How accurate do ACC-tools report dependencies and violations

against dependency rules? Accuracy is relevant, since emerging trends are to use

code analysis throughout the coding process (Binkley 2007), and to extract and

update architectural views continuously (Canfora et al. 2011). Although static

analysis is theoretically not difficult, the complexities of modern programming

languages significantly impede source code analysis (Binkley 2007). Nevertheless,

unlike performance, accuracy of ACC does not receive much attention. The

accuracy of dependency and violation reporting is omitted in many papers on ACC

approaches, e.g. (Murphy et al. 1995, Sangal et al. 2005, Bischofberger et al. 2004,

Huynh et al. 2008, Koschke et al. 2009, Deissenboeck et al. 2010, Adersberger and

Philippsen 2011, Haitzer and Zdun 2012), and when discussed, it is restricted to

false positives only. To operationalize our main question, we decomposed it into

the following research questions:

RQ1: Do ACC tools find all the dependencies between modules in the

software (no false negatives)?

RQ2: Do ACC tools report all the violating dependencies in the software (no

false negatives)?

RQ3: Do ACC tools report non-violating dependencies as violations (false

positives)?

RQ4: Do ACC tools report the exact type and location of violations and

dependencies?

RQ5: Are there types of dependencies, which proved hard-to-detect by

several tools?

To answer these questions, we inventoried types of dependencies that can be

established in object oriented program code. Next, we developed a custom-made

test application in Java that included these types of dependencies and an

accompanying test script (we will use the working title “benchmark test” to refer to

this test software and test script). After completion, we used the benchmark test to

assess ten ACC-tools. In addition, we selected the open source system FreeMind

and used its code to examine the same tools on their ability to report dependencies

and violations accurately.

Chapter 5

74

The contribution of this study is threefold.

 We present two Java-based tests, the benchmark test and the FreeMind test,

to assess the ability of a tool to detect dependencies of 34 different types.

The testware of these tests is available on request and can be used for other

types of static code analysis tools as well.

 We present the results of the tests on ten commercial and non-commercial

ACC-tools with respect to the accuracy of dependency detection and the

exactness of the dependency and violation messages.

 We identify ten types of dependencies that proved hard-to-detect by several

tools in the tests. Furthermore, we identify challenges in dependency

detection, and we substantiate the relevance of these challenges by means of

analysis data of five open source systems.

This paper extends earlier work (Pruijt et al. 2013b) in which we have reported

on the accuracy of dependency analysis and violation reporting of seven ACC-

tools. First, we add the test results of three ACC-tools, of which two were

presented at ICSE in recent years (Buckley et al. 2013, Deissenboeck et al. 2010).

Second, we describe and illustrate the dependency types in the tests in more detail

and provide an improved definition of indirect dependencies in the context of

ACC. Third, we present more test results and explain these results more

extensively. Fourth, we identify ten hard-to-detect types of dependency and four

challenges in dependency detection. Fifth, we present the frequencies of the hard-

to-detect dependency types in five open source systems. Sixth, we have improved

the testware of the benchmark test and FreeMind test, and made both sets of

testware utilizable for other researchers. Seventh, we extended the benchmark test

at the point of the detection of local variables, and we retested all tools at this point.

In the remainder of this chapter, the next section provides an introduction in

dependency analysis. Section 5.3 introduces the tested tools, Section 5.4 describes

the method and results of the benchmark test, and Section 5.5 does the same for the

FreeMind test. Section 5.6 describes method and results of a frequency analysis of

hard-to-detect dependency types. Section 5.7 discusses the key findings and

discusses the identified challenges in dependency detection. Section 5.8 discusses

the threats to validity, and Section 5.9 relates our findings to other work.

Section 5.10 concludes this chapter; it answers the research questions, summarizes

the results of this study, and casts a glance at future work.

5.2 Dependency Analysis

Software architecture (SA) compliance checking covers a broad field, since

software architecture “provides the framework within which to satisfy the system

requirements and provides both the technical and managerial basis for the design

The Accuracy of Dependency Analysis in Static ACC

75

and implementation of the system” (Perry and Wolf 1992). Static ACC does not

cover the full width of SA, but covers the modular architecture. According to Perry

and Wolf (1992), this architecture should describe the modular elements, their form

(properties and relationships) and rationale. In this study, we focus on the

relationships between modules. Relationships are used to constrain how the

different elements may interact or otherwise may be related. In static ACC’s center

of attention are uses relations: “Module A uses module B if A depends on the

presence of a correctly functioning B to satisfy its own requirements” (Clements et

al. 2010).

Dependency analysis is “the process of determining a program’s dependences”

(Podgurski and Clarke 1990). Various types of dependencies are distinguished in

literature. Callo Arias et al. (2011) consider that all types fit into three main

categories: structural dependencies, behavioral dependencies, and traceability

dependencies. The category of structural dependencies, dependencies among parts

of a system, is of interest to our study, since static analysis tools focus on

dependencies that can be found by inspecting the source code. For instance,

Lattix’s LDM tool “uses a standard notion of dependency, in which a module A

depends on a module B if there are explicit references in A to syntactic elements

of B” (Sangal et al. 2005).

Many references of different types can be established in object oriented

program code. To prepare our test, we inventoried references in Java code and

classified them into types of structural dependencies. We based our classification

of dependency types on professional literature on Java and on research papers

distinguishing different dependency types, like (Feilkas et al. 2009, Ko et al. 2006,

Terra and Valente 2009, Saraiva et al. 2010, Stafford and Wolf 2001).

5.2.1 Example of a Modular Architecture

A small modular architecture in UML notation, which will be used to illustrate the

different types of dependency included in our test, is shown in Figure 5.1. In this

diagram, two modules, ModuleA and ModuleB, are shown, each with two

submodules. The classes in the submodules are related via associations, showing

for instance that an instance of Class1 may know upmost one instance of Class2.

The dependency arrows (the dashed arrows) show that ModuleA1 is allowed to use

ModuleB1 and that ModuleA2 is allowed to use ModuleB. However, not all rules

are visible. The following list shows the full set of relationship rules, of which the

first three rules are explicitly visible in the diagram, while the last two are implicit:

 ModuleA1 is allowed to use ModuleB1;

 ModuleA2 is allowed to use ModuleB, so also both sub modules,

ModuleB1 and ModuleB2;

Chapter 5

76

 ModuleA1 is not allowed to use ModuleB2;

 The submodules of ModuleA are allowed to use each other.

 The submodules of ModuleB are allowed to use each other.

5.2.2 Structural Dependency Types in Object Oriented Code

Many references of different types can be established in object oriented code. To

prepare our test, we inventoried references in Java code and classified the structural

dependencies, based on professional literature on Java, and on research papers that

distinguish different dependency types, like (Feilkas et al. 2009, Ko et al. 2006,

Terra and Valente 2009, Saraiva et al. 2010, Stafford and Wolf 2001). We

identified six main types of dependency: Import, Declaration, Call, Access,

Inheritance, and Annotation. For each main type, sub types may be defined. For

instance, declarations of instance variables are distinguished from declarations of

class variables, local variables, parameters, return types and from type casts.

An example of code per main dependency type is provided below. Each

example contains a code construct that causes a rule violating dependency from

Class2 to Class3 or to SuperClass, all in Figure 5.1.

Figure 5.1: Explanatory model of a modular architecture in UML notation.

The Accuracy of Dependency Analysis in Static ACC

77

 Import: import ModuleB.ModuleB2.Class3;

 Declaration: private Class3 class3;

 Call: variable = class3.method();

 Access: variable = class3.variable;

 Inheritance: public class Class2 extends SuperClass;

 Annotation: @Class3

5.2.3 Direct and Indirect Dependencies

In our study we have included another distinction, namely between direct and

indirect dependency. In general, a dependency between two modules is direct, if

the dependency relation does not involve an intermediate module. However, we

use the term direct dependency more specifically, namely for a dependency of

which the to-class (the depended-upon class) can be determined, completely based

on the knowledge of the from-class (the class that contains the dependency). All six

code examples above cause direct dependencies. For example, the dependency

caused by the call statement in Class 2, may be traced to Class3, since variable

class3 in Class 2 is declared to be of type Class3.

In general, a dependency relation is indirect, when the dependency exists

transitively through an intermediate module. According to this definition, many

indirect dependencies are present in program code. For example, if Class1 in

Figure 5.1 contains a method that calls Class2.method(), that somewhere in a

scenario calls Class3.method(), then ModuleA1 depends indirectly on ModuleB2

via ModuleB1. In static ACC, this example of an indirect dependency will not be

reported as a dependency or violation, since it should result in an overload of

dependencies and violations. To prevent an excess of dependencies and violations,

we narrow the definition of an indirect dependency in case of static ACC as

follows. An indirect dependency is a dependency in the from-class of which the to-

class cannot be determined without the analysis of the code of another class. Such a

dependency should be reported, if a code construct in the from-class has as

immediate consequence that the to-class is used; for example in case of access of

an inherited attribute, or in case of a call of a method that causes a dependency on

the return type of the method.

In these cases, another class needs to be analyzed, or even several other classes,

including super classes. The following code examples from Class1 in Figure 5.1

include a rule violating indirect dependency to Class3 or to SuperClass.

 Call: variable = class2.class3.method();

 Access: variable = class2.variableSuper;

 Inheritance: public class Class1 extends Class2;

Chapter 5

78

5.3 ACC-Tools Included in the Test

Many tools are available with some of the facilities necessary to support ACC.

However, our research focused on tools with explicit support of ACC. We selected

publicly available tools, which were mentioned in academic work (e.g., (Ducasse

and Pollet 2009, Passos et al. 2010, Adersberger and Philippsen 2011, Buckley et

al. 2013)), were able to analyze Java, and provided evaluation or research licenses

(two vendors rejected and one did not respond). We excluded tools that focus

mainly on architecture visualization, metrics and/or architecture refactoring.

The ten tools included in our study are shown in Table 5.1, which also provides

an overview of functionalities, code variants, and licensing per tool. The versions

of the tools used in our tests together with an URL per tool
2
, are described below

Table 5.1, in the footnotes.

The tools provide their support of ACC in various ways:

 Dependometer, Macker and Sonar Architecture Rule Engine (Sonar ARE)

are text-based tools, which support relation conformance rules. These tools

provide HTML-based reports as output.

 dTangler and Lattix are based on the Dependency Structure Matrix (DSM)

technique, complemented with text-based editors to define rules. The DSM

is used to sort and select modules, to define rules, and to show dependencies

and violations. Lattix is also able to visualize architectures graphically, and

it provides extensive reporting facilities.

 ConQAT Architecture Analysis, JITTAC and SAVE are strictly based on

the Reflexion Model technique (Murphy et al. 1995). These tools provide a

graphical editor to define the intended architecture and to show violations

(in terms of divergence and absence) after the evaluation. In addition,

ConQAT and SAVE generate textual reports at request, supportive to

consistency checks subsequent to software development activities. JITTAC

aims at real-time feedback during software development, and for that reason

it is tightly integrated in the Eclipse IDE. JITTAC indicates divergences to

the architectural model in a diagram and in the source code editor; not only

afterwards, but also the moment an inconsistency is programmed.

 Sonargraph Architect and Structure101 are diagram-based too, but these

tools are not strictly based on the RM-technique. To define modules and

rules, these tools provide diagrams in which the horizontal and vertical

position of a module implies rules. Violations are shown in these diagrams,

but textual reports are provided in addition.

The Accuracy of Dependency Analysis in Static ACC

79

Table 5.1: Characteristics of the tools in the test (= supported)

Characteristic

C
o

n
Q

A
T

D
ep

en
d

o
m

eter

d
T

a
n

g
ler

J
IT

T
A

C

L
a

ttix

M
a

ck
er

S
A

V
E

S
o

n
a

r A
R

E

S
o

n
a

rg
ra

p
h

A
rch

itect

S
tru

ctu
re1

0
1

General functionalities

Dependency browsing

Dependency visualization

Architecture compliance

checking

Architecture

refactoring/simulation

Team support

Code variants

Java

Other languages

Source file analysis 1 1 1

Compiled file analysis

Licensing

Paid: commercial use

1 In addition to Compiled file analysis.

2 ConQAT Architecture Analysis - version 2011.9 - conqat.org;

Dependometer - version 1.2.5 - source.valtech.com/display/dpm/Dependometer;

dTangler - GUI version 2.0.0 - web.sysart.fi/dtangler;

JITTAC – version 0.2.0 - lero.ie/project/arc;

Lattix LDM - version 8.2.7 - lattix.com;

Macker - version 0.4.2 - sourceforge.net/projects/macker;

SAVE - version 1.7.1 - iese.fraunhofer.de;

Sonar ARE - version 3.2 - docs.codehaus.org/display/SONAR/Architecture+Rule+Engine;

Sonargraph Architect (fusion of Sotograph and SonarJ) - version 7.1.8 - hello2morrow.com;

Structure101 - version 3.5 - structure101.com.

Chapter 5

80

5.4 Benchmark Test

Two separate tests were performed with the ten tools: the benchmark test, and the

FreeMind test. This section describes the bench mark test and the next section the

FreeMind test. Both tests were developed and improved iteratively. The first

iteration of preparing, testing, and reporting was conducted with 25 students

Computer Science in the course of a specialization semester “Advanced Software

Engineering”. Afterwards, the authors have improved the tests and tested the tools

completely again in several iterations. The final test results are presented in this

chapter. Furthermore, the final versions of the testware of the two tests are

available on request.

5.4.1 Method

Based on the inventory of different types of dependencies, as described in

Section 5.2, we distinguished six main types of structural dependencies: Import,

Declaration, Call, Access, Inheritance, and Annotation. In addition, sub types were

defined for the main types Declaration, Call, Access, and Inheritance. For instance,

declarations of instance variables were distinguished from declarations of class

variables, local variables, parameters, return types, and from type casts. In

combination with the distinction between direct and indirect dependencies, we

have distinguished 25 direct dependency types and nine indirect dependency types.

A test software system was designed and subsequently implemented in Java

with Eclipse Indigo SR2. For each dependency type, at least one test case was

implemented. Furthermore, a test script was prepared with instructions per step in

the test process, and tables with test cases, with per test case information on the

existing dependencies and cells for result notes.

To measure the sensitivity (also called the true positive rate, or the recall) of the

ACC tools, 64 test cases in the test set were aimed at the detection of true positives

and false negatives regarding dependency detection and violation reporting. In this

chapter, we compute sensitivity in percent, as: (number-of-true-positives/(number-

of-true-positives + number-of-false-negatives)) * 100.

To measure the false positive rate of the ACC tools, 64 cases were aimed at the

detection of false positives. The test code of these test cases was identical to the

first 64 test cases, so dependencies to the same to-classes were contained.

However, the from-classes, containing the code, were located in another package at

the same hierarchical level. This way, violations of classes in the second package,

based on architectural constraints defined at the first package, should be qualified

as false positives. In this chapter, we compute the false positive rate in percent, as:

(number-of-false-positives/

 (number-of-false-positives + number-of-true-negatives)) * 100.

The Accuracy of Dependency Analysis in Static ACC

81

Several tools report violations and dependencies only at the level of from-class,

to-class, without further detail. To be able to obtain reliable test results, but also to

facilitate and simplify the test process, we implemented a separate from-class per

test case. Furthermore, we limited the number of the dependencies to the minimum

and where possible to only one dependency on the target class.

After the test preparation, the ten ACC-tools were tested. All the tools were

subjected to the same test, described in the test script. During the first step of the

test, the planned modular architecture was entered into the tool, including the

mapping of modules to source code units, and the tool’s output of the dependency

analysis (if provided) was assessed. During the second step, the rules restricting the

dependencies between modules were defined, and the output of the tool’s

conformance check was studied and compared with the expected result and with

the output of the tool’s dependency analysis. During the third step, the test results

of the tools were aggregated and compared.

5.4.2 Included Dependency Types

Twenty-five direct dependency types were included in the test and nine indirect

dependency types. For each direct and each indirect dependency type at least one

separate test case was incorporated. For a part of the dependency types, additional

test cases were created with variations of the type. This approach resulted in 34

direct and 30 indirect test cases.

Direct Dependency Types in the Test

The 25 direct structural dependency types in the test are shown in Table 5.2,

together with a code example. Each code example shows a code construct that, if

programmed within Class1 in Figure 5.1, would violate the intended architecture in

Figure 5.1. This is because the code construct includes a dependency to an element

of ModuleB2, while the intended architecture does not allow ModuleA1to use

ModuleB2. In these cases, we expect ACC-tools to report a violation with at least a

specification of the from-class and the to-class. Most of the examples refer to

elements in Figure 5.1, but to keep the figure clear, some specific elements are not

included, like an enumeration, exception, and interface.

Chapter 5

82

Table 5.2: Direct dependency types in the benchmark test

Dependency type Example code

Import

Class import import ModuleB.ModuleB2.Class3;

Declaration

Instance variable private Class3 class3;

Class variable private static Class3 class3;

Local variable public void method() {
 Class3 class3; }

Parameter public void method(Class3 class3) {}

Return type public Class3 method() {}

Exception public void method() throws Class4{

 throw new Class4 (“…”); }

Type cast Object o = (Class3) new Object();

Call

Instance method variable = class3.method();

Instance method-inherited variable = class3.methodSuper();

Class method variable = class3.classMethod();

Constructor new Class3();

Inner class method variable = class3.InnerClass.method();

Interface method interface1.interfaceMethod();

Library class method libraryClass1.libraryMethod();

Access

Instance variable variable = class3.variable;

Instance variable-inherited variable = class3.variableSuper;

Class variable variable = Class3.classVariable;

Constant variable variable = class3.constantVariable;

Enumeration System.out.println(Enumeration.VAL1);

Object reference method(class3);

Inheritance

Extends class public class Class1 extends Class3 { }

Extends abstract class Idem, but in this case Class3 should be abstract.

Implements interface public class Class1 implements Interface1 { }

Annotation

Class annotation @Class3

The Accuracy of Dependency Analysis in Static ACC

83

Indirect Dependency Types in the Test

We included nine indirect structural dependency types in our test, which are shown

in Table 5.3, together with a code example per type. Each code example shows a

code construct that, if programmed within Class1 in Figure 5.1, would violate the

intended architecture in Figure 5.1. Because the code construct includes a

dependency to an element of ModuleB2, while the intended architecture does not

allow ModuleA1 to use ModuleB2. In these cases, we expect ACC-tools to report a

violation with a specification of the from-class and the final to-class.

Table 5.3: Indirect dependency types in the benchmark test

Dependency type Example code

Call

Instance method variable = class2.class3.method();

Instance method-inherited variable = class2.methodSuper();

Class method variable = class2.class3.classMethod();

Access

Instance variable variable = class2.class3.variable;

Instance variable-inherited variable = class2.variableSuper();

Class variable variable = class2.class3.classVariable;

Object reference-Reference var. variable = class2.method(class2.class3.class4);

Object reference-Return value Object o = (Object) class2.getClass4();

Inheritance

Extends-implements variations public class Class1 extends Class2 { }

public class Class2 extends SuperClass { }

Chapter 5

84

5.4.3 Findings: Accuracy of Dependency Detection

The test results of our benchmark tests are shown in detail in Table 5.4 and 5.5,

while the most interesting findings are described below. Table 5.4 shows the results

with regard to direct dependencies, and Table 5.5 shows the results with regard to

indirect dependencies.

As a first observation, we noted that the false positive rate is null for all ten

tested tools; thus, no false positive dependencies were reported. For the

observations regarding the sensitivity of the tools, more text is needed. These

results are described in detail in the following sub sections.

Direct Dependencies

Direct dependencies, caused by type declaration (except local variables), method

call, variable access (except constants and object references), and inheritance, were

detected by all tested tools, except ConQAT (which missed five type declaration

dependency types) and SAVE (which missed two type declaration, one method

call, and all six variable access dependency types). The following direct

dependency types were often missing or were not reported accurately:

 Import dependencies were detected only by two tools: JITTAC, and SAVE;

the two tools that analyze source files only. Import statements are not

included in compiled files.

 A type declaration of an initialized local variable was detected only by the

following six tools: Dependometer, JITTAC, Lattix, SAVE, Sonargraph,

and Structure101. However, a type declaration of a not-initialized local

variable was detected only by JITTAC and SAVE; the two tools that

analyze the source files only. Not-initialized local variables are removed in

compiled files. Interesting, since the tools that analyze compiled files were

able to detect other declaration cases without initialization.

 A call of an instance method of an inner class was reported by all tools,

except SAVE. However, the tools differ considerably in the accuracy of the

reported to-class. JITTAC, Macker, Sonargraph and Sonar ARE were

specific and reported the outer and inner class. ConQAT, Dependometer,

dTangler, Lattix and Structure101 were less accurate and reported only the

outer class.

 Access of a constant variable was detected only by three tools:

Dependometer, JITTAC, and Sonargraph Architect. We included three test

cases: one with a constant instance variable, one with a constant class

variable, and one with an interface class variable. However, the results per

tool were the same over these three test cases. Tools that analyze compiled

code only, have problems with the recognition of constants, since their

values are in-lined by the Java compiler.

The Accuracy of Dependency Analysis in Static ACC

85

Table 5.4: Benchmark test, Detection of direct dependencies (0 = not detected; 1 = detected)

Dependency type

C
o

n
Q

A
T

D
ep

en
d

o
m

eter

d
T

a
n

g
ler

J
IT

T
A

C

L
a

ttix

M
a

ck
er

S
A

V
E

S
o

n
a

r A
R

E

S
o

n
a

rg
ra

p
h

S
tru

ctu
re1

0
1

Import

Class import 0 0 0 1 0 0 1 0 0 0 2

Declaration

Instance variable 0 1 1 1 1 1 1 1 1 1 9

Class variable 0 1 1 1 1 1 1 1 1 1 9

Local variable, initialized 0 1 0 1 1 0 1 0 1 1 6

Parameter 0 1 1 1 1 1 1 1 1 1 9

Return type 0 1 1 1 1 1 0 1 1 1 8

Exception 1 1 1 1 1 1 1 1 1 1 10

Type cast 1 1 1 1 1 1 0 1 1 1 9

Call

Instance method 1 1 1 1 1 1 1 1 1 1 10

Instance method, inherited 1 1 1 1 1 1 1 1 1 1 10

Class method 1 1 1 1 1 1 1 1 1 1 10

Constructor 1 1 1 1 1 1 1 1 1 1 10

Inner class method (instance) 1 1 1 1 1 1 0 1 1 1 9

Interface method 1 1 1 1 1 1 1 1 1 1 10

Library class method 1 1 1 1 1 1 1 1 1 1 10

Access

Instance variable (read, write) 1 1 1 1 1 1 0 1 1 1 9

Instance variable, inherited 1 1 1 1 1 1 0 1 1 1 9

Class variable 1 1 1 1 1 1 0 1 1 1 9

Constant variable 0 1 0 1 0 0 0 0 1 0 3

Enumeration 1 1 1 1 1 1 0 1 1 1 9

Object reference, param. value 0 1 0 0 0 0 0 0 1 1 3

Inheritance

Extends class 1 1 1 1 1 1 1 1 1 1 10

Extends abstract class 1 1 1 1 1 1 1 1 1 1 10

Implements interface 1 1 1 1 1 1 1 1 1 1 10

Annotation

Class annotation 0 1 0 1 1 0 0 0 1 1 5

Detected (out of 25) 16 24 20 24 22 20 15 20 24 23

Sensitivity (in %) (average = 83) 64 96 80 96 88 80 60 80 96 92

Chapter 5

86

Dependometer and Sonargraph were detecting an access of a constant

variable only with the option marked to include the source code in the

analysis. Although SAVE analyzes source code, it did not report a

dependency in one of the three test cases.

 Access of an object reference in the form of a parameter value (or

argument), was detected only by three tools: Dependometer, Sonargraph,

and Structure101. Another test case of this dependency type, with an object

reference included in an if-clause, was detected by two tools only:

Dependometer, and Sonargraph.

 Dependencies of type annotation, were detected only by five tools:

Dependometer, JITTAC, Lattix, Sonargraph, and Structure101.

Indirect Dependencies

Indirect dependencies caused by method call and variable access (except an object

reference as return value), were detected by all tested tools, except SAVE, which

did not report access dependencies. Even double indirect dependencies were

detected (for instance, from Class 1 in Figure 5.1, via Class 2 and Class 3 to

Class 4). However, the following indirect dependency types were often missing or

were not reported accurately:

 A call of an inherited instance method was reported accurately only by three

tools: JITTAC, SAVE, and Structure101. These tools reported an indirect

dependency to the super class where the method was actually implemented,

although this method was called via a subclass. The other tools reported a

dependency to the intermediate subclass, but not to the super class where

the method was implemented. Consequently, these tools did not report a

violation in the test cases where the subclass is part of an allowed-to-use

module, while its super class is part of a not-allowed-to-use module.

 Access of an inherited instance variable was reported accurately only by

two tools: JITTAC, and Structure101. These tools reported an indirect

dependency to the super class where the variable was actually implemented,

although this variable was accessed via a subclass. The other tools reported

a dependency to the subclass, but not to the super class where the variable

was implemented (except SAVE, which did report no dependency at all).

Consequently, these tools did not report a violation in the test cases where

the subclass was part of an allowed-to-use module, while its super class was

part of a not-allowed-to-use module.

The Accuracy of Dependency Analysis in Static ACC

87

 Access of an object reference, received as return value of a method call, was

reported by only two tools: Dependometer, and Structure101.

 An inherited dependency on a super-super class or interface of the from-

class, solely based on extends/implements constructs, was not reported by

any tool. We included three variations in our test (extends-extends, extends-

implements, implements-extends), but none was reported.

Table 5.5: Benchmark test - Detection of indirect dependencies
(0 = not detected; 1 = detected)

Dependency type

C
o

n
Q

A
T

D
ep

en
d

o
m

eter

d
T

a
n

g
ler

J
IT

T
A

C

L
a

ttix

M
a

ck
er

S
A

V
E

S
o

n
a

r A
R

E

S
o

n
a

rg
ra

p
h

S
tru

ctu
re1

0
1

Call

Instance method 1 1 1 1 1 1 1 1 1 1 10

Instance method, inherited 0 0 0 1 0 0 1 0 0 1 3

Class method 1 1 1 1 1 1 1 1 1 1 10

Access

Instance variable 1 1 1 1 1 1 0 1 1 1 9

Instance variable, inherited 0 0 0 1 0 0 0 0 0 1 2

Class variable 1 1 1 1 1 1 0 1 1 1 9

Object reference – Reference var. 1 1 1 1 1 1 0 1 1 1 9

Object reference – Return value 0 1 0 0 0 0 0 0 0 1 2

Inheritance

Extends – implements variations 0 0 0 0 0 0 0 0 0 0 0

Detected (out of 9) 5 6 5 7 5 5 3 5 5 8

Sensitivity (in %) (average = 60) 56 67 56 78 56 56 33 56 56 89

Chapter 5

88

5.5 FreeMind Test

In addition to the benchmark test we have conducted tests with an open source

system. These tests were aimed at quantitative and qualitative tool comparison.

Two types of test were conducted, one aimed at the accuracy of dependency

detection, and the other on the accuracy of violation and dependency reporting.

5.5.1 Method

FreeMind

We used the mind-mapping tool FreeMind. Three main packages in FreeMind, as

shown in Figure 5.2, were included in our tests: accessories, plugins and freemind.

Figure 5.2: The package structure of Freemind, with dependency relations, as

depicted by SAVE. Thick lines represent more dependency relations than thin lines.

The Accuracy of Dependency Analysis in Static ACC

89

The following packages were excluded from the test, since these packages were

available in the source code, but not in the compiled code: plugins.latex.*,

plugins.collaboration.*, and tests.*. We used version 0.9.0 for our tests; retrieved

on 23-08-2012 from http://freemind.sourceforge.net/wiki/index.php/Download.

We selected FreeMind, because it suited to the following criteria. First, the

system needed to be written in Java, just as the benchmark test. Furthermore,

source code files and compiled code files needed to be present, since some tools

use source code, others compiled code, while some use both. Second, the system

needed to have an uncomplicated implemented architecture, to enable a

straightforward, error-free registration of the intended architecture in the tested

tools. Third, the system needed to contain reasonable numbers of dependencies

between its modules. Ideally, these dependencies should cover a wide range of

possible dependency types. Fourth, the number of classes had to be lower than

1000, due to size constraints of some ACC-tool licenses.

Method: Accuracy of Dependency Detection

The objective of this test was to determine how well the ACC tools were able to

report dependencies of different types, just as in the benchmark test, but now in a

real system. For this purpose, we selected the large class ScriptingEngine within

sub package plugins.script, since it contained a considerable number of

dependencies of different types. Furthermore, the class touched a diversity of

object oriented specialties, including super class, inner class, and anonymous class.

Identification of dependency causing constructs

We identified all code constructs within class ScriptingEngine, which caused

dependencies to package “freemind”, by manual inspection of the code, aided by

the supporting facilities of the Java editor in the Eclipse IDE. To ensure the

accuracy of our work during this step, one author made an inventory of the

dependency-causing constructs, the depended-upon classes, and the related

dependency types, while another author checked the inventory afterwards. Based

on the inventory, 109 dependency-causing code constructs were included in a score

form.

Tool selection and testing

We tested all ten tools to determine which depended-upon classes were reported for

class ScriptingEngine, by following the steps below.
1. Registration of rule: plugins.script.ScriptingEngine is not allowed to use

package freemind.

2. Activation of the conformance check.

3. Study of the reported violations and dependencies.

http://freemind.sourceforge.net/wiki/index.php/Download

Chapter 5

90

Next, we selected the tools that were providing sufficient information to be able

to trace reported dependencies to code constructs. The tools differ considerably in

the exactness of dependency messages, as will be discussed in the result sub

section. Only the following five tools provided detailed enough information to be

included in this test: JITTAC, Lattix, SAVE, Sonargraph Architect, and

Structure101. With these five tools we also went through the following steps:

4. Tracing of the reported dependencies to the manually identified dependency

constructs.

5. Scoring of the detected dependency constructs in a scoring form per tool.

Scoring

We scored mildly, meaning that we marked a dependency as detected, if one of the

reported dependencies messages could be related to the dependency-causing code

construct. With a strict accuracy level in mind, the number of missed dependencies

would have been much higher.

 In case of inner class related dependencies, we scored a dependency also to

be detected if it was reported as a dependency to the outer class instead of to

the inner class.

 In case of inheritance related dependencies, we scored a dependency also to

be detected if it was reported as a dependency to a sub class instead of the

super class that actually implemented a depended-upon variable or method.

 In case of dependency messages with a non-optimal accuracy, we scored all

dependencies to be detected that could be related to the dependency

message. For instance, if a tool reported one dependency to class X of type

declaration or access at line Y, while in the source code a declaration

construct and a type cast construct were present, both were scored to be

detected. Similarly, if a tool reported one dependency to class X of type

access in method Z, while in the source code of the method five of these

access construct were present, all five were scored to be detected.

Method: Accuracy of Reported Violation and Dependency Messages

The objective of this test was to identify differences in quantity and exactness of

the reported violation and dependency messages. For each tool, we performed the

following steps:

 Registration of two rules: 1) package accessories is not allowed to use

package freemind; and 2) package plugins is not allowed to use package

freemind.

 Activation of the conformance check.

 Study of the reported violation and dependency messages.

 Scoring of the number and exactness of the messages.

The Accuracy of Dependency Analysis in Static ACC

91

5.5.2 Findings: Accuracy of Dependency Detection

The test results of the FreeMind tests concerning the accuracy of dependency

detection are presented below. All ten tools provided at least information in their

violation messages on the depended-upon to-classes per from class. Therefore, the

results of the reported depended-upon classes per tool are presented at first. Next,

the results of the test at the level of the 109 identified dependency constructs are

presented. Five tools are included in these results, since only these tools provided

detailed enough information in their violation messages or dependency messages.

Finally, examples are provided of code constructs that caused hard to detect

dependencies.

Detected Depended-Upon Classes

Class ScriptingEngine depends-upon seventeen classes, of which most are shown

in the freemind package in Figure 5.3. Two of these classes contain inner classes,

which are also used by ScriptingEngine, namely

OptionalDontShowMeAgainDialogue and Tools. In our test, we expected that

Figure 5.3: Class ScriptingEngine and its depended-upon classes in package

freemind.

Chapter 5

92

usage of the seventeen depended-upon classes would be reported as violations.

Please note that Figure 5.3 provides a simplified view. There are many more

classes in package freemind, and the shown classes are in reality included in

different subpackages of freemind. Furthermore, for reasons of readability, we

have drawn no dependency arrows in the diagram, only UML inheritance relations.

Several inheritance structures are shown in the figure. For example,

ScriptingEngine inherits from three superclasses in package freemind. In our test,

we expected that usage of these classes would be reported as violations; especially

in case of a call of method or in case of access of an attribute inherited from one of

these classes. In these cases, actual usage takes place of the super class that

implements the method or variable.

Table 5.6 shows for each of the tested tool, which depended-upon classes in

package freemind were reported in violation reports or other views. Furthermore, it

shows per class the number of related dependency-causing constructs. The bottom

row in the table shows that JITTAC was the only tool that reported usage of all

seventeen classes. Dependometer, SAVE, and Sonargraph reported usage of fifteen

classes, a sensitivity of 88 percent. Macker, Sonar ARE, and Structure101 reported

usage of fourteen classes, a sensitivity of 82 percent. Finally, Conquat, dTangler,

and Lattix reported usage of twelve classes, a sensitivity of 71 percent. On average,

82 percent of the classes was detected.

All not reported classes (by all tools) were of one of the following types:

 Super class (ControllerAdapter, Hookadapter), of which methods are used

via inheritance;

 Inner class (OptionalDontShowMeAgainDialogue.

StandardPropertyHandler, Tools.BooleanHolder), which may be used in

various ways: Import, Declaration, Access, Call;

 Normal class (FreeMind), of which only static constant variables are

accessed.

The Accuracy of Dependency Analysis in Static ACC

93

Table 5.6: Freemind test, Detected (1) and not detected (0) depended-upon classes

Reported Classes

N
r o

f d
ep

. co
n

stru
cts

C
o

n
Q

A
T

D
ep

en
d

o
m

eter

d
T

a
n

g
ler

J
IT

T
A

C

L
a

ttix

M
a

ck
er

S
A

V
E

S
o

n
a

r A
R

E

S
o

n
a

rg
ra

p
h

S
tru

ctu
re 1

0
1

Controller 1 1 1 1 1 1 1 1 1 1 1 10

ControllerAdapter 5 0 0 0 1 0 0 1 0 0 0 2

FreeMind 12 0 1 0 1 0 0 1 0 1 0 4

FreeMindMain 16 1 1 1 1 1 1 1 1 1 1 10

FreeMindSecurityManager 5 1 1 1 1 1 1 1 1 1 1 10

HookAdapter 6 0 0 0 1 0 0 1 0 0 0 2

MindMap 1 1 1 1 1 1 1 1 1 1 1 10

MindMapController 6 1 1 1 1 1 1 1 1 1 1 10

MindMapHookAdapter 5 1 1 1 1 1 1 1 1 1 1 10

MindMapNode 17 1 1 1 1 1 1 1 1 1 1 10

ModeController 2 1 1 1 1 1 1 1 1 1 1 10

NodeAttributeTableModel 6 1 1 1 1 1 1 1 1 1 1 10

OptionalDontShowMeAgainDialog 5 1 1 1 1 1 1 1 1 1 1 10

- StandardPropertyHandler (inner) 1 0 1 0 1 0 1 0 1 1 1 6

Resources 2 1 1 1 1 1 1 1 1 1 1 10

Tools 6 1 1 1 1 1 1 1 1 1 1 10

- BooleanHolder (inner) 13 0 1 0 1 0 1 0 1 1 1 6

Number of reported classes 12 15 12 17 12 14 15 14 15 14

Sensitivity (in%) (average = 82) 71 88 71 100 71 82 88 82 88 82

Chapter 5

94

Detected Dependencies

Table 5.7 shows for each of the five in the detailed test included tools, how many

dependencies per dependency type were reported to classes in package freemind.

All five tools detected all the dependencies of the following dependency types:

1) method call, class method; 2) method call, interface method; 3) inheritance,

extends class.

Dependencies of the other dependency types, which were not reported by one or

more tools, are per type discussed below.

 Import, class import: Lattix, Structure101, and Sonargraph missed all 10

dependencies. SAVE missed one, because of a not-recognized inner class.

 Declaration, local variable: SAVE missed all six dependencies (in contrast

to the benchmark test), probably because off complex initialization

statements at the same line.

 Declaration, parameter: SAVE missed three out of seven dependencies

(because of a not detected inner class), while Sonargraph missed one.

 Declaration, type cast: SAVE missed all two dependencies (as in the

benchmark test).

 Call, instance method: JITTAC missed two dependencies, probably because

these were located within an anonymous class.

 Call, instance, inherited: Lattix missed eight out of fourteen dependencies,

Sonargraph also missed eight, and Structure101 missed all fourteen (in

contrast to the benchmark test), all in inheritance trees up to four levels.

 Call, constructor: SAVE missed two dependencies out of three: two

constructor invocations of inner classes. It detected an invocation of the

constructor of a normal class (as in the benchmark test).

 Call, inner class method: SAVE missed all two instance method invocations

(as in the benchmark test).

 Access, constant: Lattix, Structure101 and SAVE missed all twelve

dependencies (as in the benchmark test).

 Access, object reference: JITTAC and Lattix missed all sixteen

dependencies (as in the benchmark test); 15 caused by variables passed as

parameter value (or argument) and one caused by a variable used within an

if statement. SAVE missed six, because of not detected inner classes.

Remind, we scored mildly, as explained in the method sub section of this test.

The Accuracy of Dependency Analysis in Static ACC

95

Table 5.7: Freemind test – Reported dependencies per dependency type

Dependency type

 (number of constructs)

J
IT

T
A

C

L
a

ttix

S
A

V
E

S
o

n
a

rg
ra

p
h

S
tru

ctu
re 1

0
1

Import

Class import (10) 10 0 9 0 0

Declaration

Local variable (6) 6 6 0 6 6

Parameter (7) 7 7 4 6 7

Type cast (2) 2 2 0 2 2

Call

Instance method (11) 9 11 11 11 11

Instance method-inherited (14) 14 6 14 6 0

Class method (6) 6 6 6 6 6

Constructor (3) 3 3 1 3 3

Inner class method (instance) (2) 2 2 0 2 2

Interface method (19) 19 19 19 19 19

Access

Constant variable (12) 12 0 0 12 0

Object reference (16) 0 0 10 16 16

Inheritance

Extends class (1) 1 1 1 1 1

Detected (109) 91 63 75 90 73

Sensitivity (in %) (average = 72) 83 58 69 83 67

Chapter 5

96

Examples of Code Constructs

Several examples of code constructs that caused dependencies that were hard-to-

detect in the FreeMind test, are provided in Table 5.8. The first column shows the

type of the dependency with, if needed, some added details. The second column

shows the example code. The text that causes a dependency is shown in italic.

Table 5.8: Examples of code constructs within ScriptingEngine

Dependency type Example code

Import

Class import (inner class) import freemind.main.Tools.BooleanHolder;

Declaration

Local variable MindMapNode node = getMindMapController().getMap().getRootNode();

Call

Instance method

(within an anonymous class)
final GroovyShell shell = new GroovyShell(binding) {

 public Object evaluate(…, …) throws … {

 try {

 securityManager.setFinalSecurityManager(…);

 }

 }

};

Inherited method

(of MindMapHookAdapter)
MindMapNode node = getMindMapController().getMap().getRootNode();

Inherited method

(of ControllerAdapter)
MindMapNode node = getMindMapController().getMap().getRootNode();

Constructor

(of inner class)
BooleanHolder bh = new BooleanHolder(false);

Inner class method bh.setValue(true);

Access

Constant class variable

(passed as parameter value)
String executeWithoutAsking =

frame.getProperty(FreeMind.RESOURCES_SIGNED_SCRIPT_ARE_TRUSTED)

Object reference

(passed as parameter value)
performScriptOperation(element, bh);

The Accuracy of Dependency Analysis in Static ACC

97

5.5.3 Results: Accuracy of Reported Violation and Dependency
Messages

Two functional types of messages could be distinguished: violation messages and

dependency messages. Violation messages report on inconsistencies between the

implemented architecture and the defined architecture, with a class at the lowest

level of granularity. The second type, dependency messages provide information

about the dependencies, like the dependency type and the location of the

dependency-causing code constructs in the program code. Findings regarding these

two types are presented in the following subsections.

To illustrate the difference between the two types of messages, we have

included practical examples from the FreeMind test with Structure101. Three

examples show messages at three different levels of abstraction. Figure 5.4a shows

a graphic with a violation message: a violating relation (dotted) from class

ScriptingEngine to package freemind. After selection of the relation, the tool shows

the message “ScriptingEngine uses freemind [55]”. Figure 5.4b shows violation

messages within the view that specifies the violating relation; it lists fourteen

depended-upon classes and interfaces within package freemind. Figure 5.4c shows

examples of dependency messages. Structure101 reported 55 instances of

dependencies from ScriptingEngine to freemind. These dependencies were

specified in a separate view, which listed for each dependency: the from-class

(ScriptingEngine), from-method (e.g., evaluate), dependency type (e.g., extends),

to-class (e.g., freemind.main.FreeMindSecurityManager), and to-method (e.g.,

setFinalSecurityManager).

Violation Messages

Violation messages indicate where the implemented architecture deviates from the

intended architecture. The tested tools differ considerably in the way violations are

reported, for instance by means of colors in a Dependency Structure Matrix

(DSM), additional symbols or line styles in diagrams, textual reports, or indicated

code lines in a code viewer. Most tools offer more than one way to report

violations, especially the commercial tools.

Chapter 5

98

Figure 5.4a: The package structure of Freemind plugins.script, as depicted by

Structure101, with one violating dependency relation (red) from class

ScriptingEngine to package freemind.

Figure 5.4b: Specification of the violating relation; 14 classes and interfaces are

used.

Figure 5.4c: Detailed specification of dependencies from ScriptingEngine to

freemind.

The Accuracy of Dependency Analysis in Static ACC

99

Observations regarding the accuracy of violation messages are described below.

 Reported violations versus reported dependencies

No cases were noticed, in which a tool reported a dependency to a class, but

failed to report a violation for this dependency. Since this is also true for the

benchmark test, Table 5.4 and 5.5 do not only show the true positive

violations, but also the false negative violations per tool and per

dependency type. However, one exception applies: SAVE reported correct

violations for classes containing violating direct dependencies, even when

the specific dependency of the test case was not detected. The tool was able

to do this, based on detected import statements. SAVE did not have this

advantage in case of indirect dependencies, since no import statement was

included in these cases, and in case of an inner class.

 Exactness of the violation messages

To show where a violation is present in the modular architecture, seven of

the ten tools (see Table 5.9) include violation messages in graphical

overviews. Table 5.9 shows also that all tools were able to report the from-

class and to-class, generally in text-based violation messages. However,

management information to indicate the severity of the violation of a rule,

Table 5.9: Exactness of violation and dependency messages
(= Included in Message).

 C
o

n
Q

A
T

D
ep

en
d

o
m

eter

d
T

a
n

g
ler

J
IT

T
A

C

L
a

ttix

M
a

ck
er

S
A

V
E

S
o

n
a

r A
R

E

S
o

n
a

rg
ra

p
h

S
tru

ctu
re1

0
1

Violation message

Graphical overview

Class from - Class to

Dependency message

Class from - Class to

Dependency type

Method from – Method to

Line 1 1

Position within the line 1 1

1An indication of the line (and position of the dependency construct within the line) is not provided in

a report, but in a code viewer or IDE plug-in.

Chapter 5

100

like the actual number and/or strength of the underlying dependencies, is

less frequently included in violation reports, while this is meaningful

information. As a positive example, Structure101 shows, in Figure 5.4a, the

number of corresponding dependency messages when a relation is selected.

Furthermore, it is available in JITTAC diagrams, where the number of

dependencies is shown per dependency arrow, and in SAVE diagrams,

though less accurate, where the thickness of a line indicates the number of

dependencies.

 Number of reported messages

Because of different capabilities of the tools and different choices made by

the developers, the tools report varying numbers of violation messages at

the level of from-class, to-class. This is illustrated in Table 5.10, which

holds the numbers of violation messages per tool during the FreeMind test

(except for JITTAC and SAVE; see table footnote). The reported violations

against the rule that the freemind package should not be used, are shown for

package accessories, for package plugins, and for class

plugins.script.ScriptingEngine. Several tools report more violations than

depended-upon classes in their violation report. In these cases, a separate

message is created for each combination of from-class, to-class, and

dependency type.

Dependency Messages

A dependency message enables developers to resolve a violation efficiently. To do

so, detailed information is needed to trace the dependencies in the code. Six tools

provide this information in separate reports or views: JITTAC, Lattix, SAVE,

Sonar ARE, Sonargraph Architect, Structure101. Our observations regarding the

exactness of the dependency messages are described below.

Exactness of the Reported Location of a Dependency

The tools differ in exactness of the reported location of a dependency, as shown in

Table 5.9. At the highest level of accuracy, a tool indicates a dependency-causing

construct within a line of code, even when several dependency-causing constructs

are included in the same line. Only two tools were able to do this: JITTAC, and

Lattix. Both tools highlight the violating code constructs in the source code within

an IDE’s code editor. Table 5.9 shows that these two tools provide the following

information in dependency messages: class-from, line, and position within line.

However, Lattix did not always appoint the line and code construct correctly.

Two other tools with code viewers, Sonar ARE and Sonargraph Architect,

indicated the line correctly, but not the position within the line. Sonar ARE’s

The Accuracy of Dependency Analysis in Static ACC

101

usability was restricted by the fact that per from-class, it indicated only the first

instance of a violating usage of a depended-upon class. Following usages of the to-

class were not indicated.

Several tools were providing reports as well. Sonargraph Architect was

providing the most detailed report with from-class, to-class, dependency type, and

a correct line number. Lattix was providing an information view with dependency

types and line numbers of the dependencies in the code, but here also, it did not

always specify the correct line number in the source code. SAVE and Structure101

were providing reports, which indicated the method including the violating

dependency in the from-class and, in case of method calls, also the method of the

to-class.

The practical implications of the different approaches became clear during the

FreeMind test, in which reported violations needed to be traced to 109 constructs in

the program code. At first, we tried to do this based on the dependency messages in

the reports or in the dependency browsers of the tools. Sonargraph Architect

provided a very useful report, which made it easy to trace the dependencies in the

code. It contained all the detected dependencies with type and line number. The

Table 5.10: Reported numbers of violation and dependency messages within the

Freemind test.

C
o

n
Q

A
T

D
ep

en
d

o
m

eter

d
T

a
n

g
ler

J
IT

T
A

C
1

L
a

ttix

M
a

ck
er

S
A

V
E

1

S
o

n
a

r A
R

E

S
o

n
a

rg
ra

p
h

S
tru

ctu
re1

0
1

accessories

 freemind

Violations 228 435 282 1739 288 386 1332 378 362 308

plugins

 freemind

Violations 54 100 63 348 65 87 229 79 75 71

ScriptingEngine

 freemind

Violations 12 18 12 97 25 16 54 15 15 14

Dependencies 97 25 54 121 55

1 JITTAC and SAVE provide no aggregated violation report with messages at the level of from-class,

to-class. Instead, the table shows the number of reported dependency messages.

Chapter 5

102

reports of SAVE and Structure101 required much more analysis and interpretation,

with risk of misinterpretation in complex situations. In part, because one

dependency message may abstract several dependency-causing code constructs. In

concrete terms: SAVE and Structure101 reported respectively 54 and 55 messages,

but these covered respectively 75 and 73 dependencies in the code.

Since Lattix’s reports proved to be too inaccurate for our use, and because JITTAC

did not provide a report or dependency browser, we used the messages provided in

code viewers of these tools. In case of Lattix, we combined different reports with

the code viewer to circumvent incorrect line numbers and positions. Finally, since

Sonar ARE’s support for this test was too restrictive, we did not include the tool in

this part of the FreeMind test.

Exactness of the Reported Dependency Type

Only four tools provide a dependency type (as shown in Table 5.9), which

differentiates between different types of usage, like declare, access, or call. The

tools differ in the exactness of the reported dependency type: the numbers of

dependency types vary per tool, and the names of these types vary as well.

Consequently, different tools label a dependency type in our classification in

several ways. For example, a dependency of type “Call constructor” in our

classification was reported by Lattix as “Construct with Arguments”, by SAVE as

"ACCESS", by Sonargraph as “Uses new”, and by Structure101 as “calls”. Some

types used by the tools are very specific, while others cover many forms of code

constructs. Even if two tools use the same type-name, like access, they may cover

different dependency types within our classification.

The Accuracy of Dependency Analysis in Static ACC

103

5.6 Frequency of Hard-To-Detect Dependency Types

The results of the benchmark test and FreeMind test have shown that certain types

of depended-upon classes and ten types of dependencies are not reported at all by

some tools, or are reported inaccurately. To address the relevance of these findings,

we have measured the number of dependencies per dependency type in five open

source systems. The method and the results of this experiment are described below.

5.6.1 Method

To measure the numbers of dependencies per dependency type distinguished in the

benchmark test, we needed a tool that was able to detect and report all the types of

dependencies in these tests. Since no tested tool was able to detect dependencies of

all these types, we improved and extended a tool, HUSACCT, which we had

developed in a line of research that focused on ACC support for rich sets of module

and rule types (Pruijt et al. 2014). We improved the dependency analysis process in

HUSACCT version 4.0 up to the point, and beyond, where all dependencies in the

benchmark test and FreeMind test were detected and reported, without false

positives. Since a considerable part of the not-reported dependencies in the

benchmark test and FreeMind test were related to inheritance and inner class

constructs, we extended the analysis process and data model to detect and store

these characteristics per dependency. Furthermore, we extended the dependency

report with a statistics sheet, which presents the numbers of dependencies in

different ways: total, direct, indirect, total per type, total of inheritance related

dependencies, total of inner class related dependencies, et cetera. To enable the

reproduction of the experiment by other researchers, the improvements and

extensions were included in version 4.1, which is downloadable via

http://husacct.github.io/HUSACCT/.

Next, we selected five open source subject systems and downloaded their source

code. We used the following selection guidelines. First, the systems had to be

written in Java, since our benchmark test and FreeMind test were also Java-based.

Second, FreeMind was included, since it is interesting to compare its analysis

results in the FreeMind test with those of other subject systems. Third, four other

systems were selected, because they were used in published scientific experiments

of other authors, but also because of their notoriety.

The five systems, their version, download address and size are shown in

Table 5.11. The source of all the systems was downloaded on February 10, 2015

(except FreeMind, which was downloaded already in 2012 from another web

address; the current location of the source is included in the table). An impression

of the size per system is provided in kilo lines of code (KLOC). The given numbers

http://husacct.github.io/HUSACCT/

Chapter 5

104

show the lines of code (including comments and blank lines) in all the files with

extension “.java”, as measured by HUSACCT.

Finally, for each system the source code was analyzed with HUSACCT and a

dependency report was generated. The numbers of dependencies per dependency

type per system were included in a spreadsheet and averages were calculated, per

system, and over the systems. These final results are presented in the next sub

section. The reported numbers of dependencies: a) include internal dependencies

and dependencies on external systems (library objects); b) exclude dependencies

from a class to itself; c) exclude most dependencies on primitive types.

5.6.2 Results

Table 5.12 shows the numbers of dependencies per dependency type and per

system. The ten dependency types that proved hard-to-detect in our tests are

included in the table; they are shown in italics. The results are presented in three

groups, visible in the first column, namely: 1) All dependencies; 2) Inheritance

related dependencies; and 3) Inner class related dependencies. Per group and per

dependency type, the numbers of reported dependencies are shown per subject

system, while the last column shows the average percentage of the dependency

type over the four subject systems. The average percentage of a dependency type is

calculated as the average for this type of the four subject system specific

percentages (not shown in the table).

The first group shows the numbers of all reported dependencies. The first row

within this group shows that the total number of dependencies increases with the

size of the subject system, as can be expected. Thereafter, two subdivisions are

shown; one for direct versus indirect dependencies, and another for the six main

types (Import, Declaration, Call, Access, Inheritance, Annotation). The numbers

show that on average 84 percent of the dependencies is direct, while 16 percent is

indirect in these subject systems. Furthermore, that Import statements cause ten

percent of the dependencies, while Declaration, Call, Access, Inheritance, and

Annotation statements caused respectively 20, 39, 26, 3, and 2 percent.

Table 5.11: Subject systems used in the experiment

System Download address Size (KLOC)

Ant 1.9.4 http://archive.apache.org/dist/ant/source/ 267

Findbugs 3.0.0 https://code.google.com/p/findbugs/source/browse/?name=3.0.0 327

Freemind 0.9.0 http://sourceforge.net/projects/freemind/files/freemind/0.9.0/ 87

Hibernate 4.2.4 https://github.com/hibernate/hibernate-orm/releases/tag/4.2.4.Final 713

Struts 2.3.20 http://struts.apache.org/download.cgi#struts2320 277

The Accuracy of Dependency Analysis in Static ACC

105

The second group shows the numbers of inheritance related dependencies,

which are caused by: 1) Access of an inherited variable; 2) Call of an inherited

method; and 3) Inheritance by means of an extends or implements statement. The

numbers show that on average twelve percent of the dependencies is inheritance

related, of which three percent of type access, six percent of type call, and three

percent of type inheritance.

The third group shows the numbers of inner class related dependencies. A

dependency was marked as such, if the from-class or to-class is an inner class (or if

both classes are). The numbers show that on average nine percent of the

dependencies is inner class related.

Frequency of Hard-To-Detect Types of Dependency

Ten dependency types, shown in italics in Table 5.12, were hard-to-detect by

several tools in our tests. The hard-to-detect types in the first group of Table 5.12

represent 39 percent of all dependencies in the four systems: Import (10 percent),

Table 5.12: Number of dependencies per dependency type

Dependencies Type Ant Findbugs Hibern. Struts %

All All 88,943 128,876 401,356 122,877 100

- Direct 76,350 115,070 319,530 102,332 84

- Indirect 12,593 13,806 81,826 20,545 16

Import 8,422 15,988 39,670 12,528 10

Declaration 18,282 28,621 69,372 22,764 20

- Local var. 5,076 10,167 22,976 8,316 7

Call 37,208 43,271 155,051 51,874 39

Access 20,388 35,276 115,224 29,804 26

- Constant variable 1,923 1,695 4,589 920 1

- Object ref. Direct 12,233 21,541 54,797 16,223 14

- Object ref. Indirect 3,047 5,675 28,218 5,244 5

Inheritance 2,368 3,066 8,610 4,665 3

Annotation 2,275 2,654 13,429 1,242 2

Inheritance

related

All 10,291 8,731 47,608 19,219 12

Access 1,961 1,956 19,200 5,043 3

- Inh. var. Indirect 1,008 1,252 10,941 3,294 2

Call 5,962 3,709 19,798 9,511 6

- Inh. meth. Indirect 4,657 2,861 17,186 5,431 4

Inheritance 2,368 3,066 8,610 4,665 3

- Indirect 1,205 1,641 3,839 2,779 2

Inner class rel. All 10,739 14,283 16,650 12,343 9

Chapter 5

106

Declaration, local variable (7 percent), Access, constant variable (1 percent),

Access, object reference, direct (14 percent), Access, object reference, indirect

(5 percent), and Annotation (2 percent).

The hard-to-detect types in the second group, inheritance related dependencies,

total to eight percent on average of the dependencies in the four systems: Access of

an inherited variable, indirect, (2 percent), Call of an inherited method, indirect (4

percent), and Inheritance, indirect (2 percent). The total of eight percent may be

added to the total of hard-to-detect dependencies in the first group, which makes

47% of potentially hard-to-detect dependencies, since there is no overlap between

the types of hard-to-detect dependencies in the first and second group.

The third group concerns inner class related dependencies, of which all

instances in our test were hard to detect by several tools. Nine percent of all

dependencies fall within this group. However, this number may not be added to the

sum of the hard-to-detect dependencies of the other groups, since there may be an

overlap.

5.6.3 Comparison Results of FreeMind Test

Finally, we compared the average analysis result of the four subject systems in

Table 5.12 with the results of the FreeMind system as a whole, and with the class

plugins.script.ScriptingEngine, on which the FreeMind test focused. Table 5.13

shows that the distribution of the 44,146 dependencies in the FreeMind system

over the dependency types differs only a little from the average distribution in the

reference systems, the other four subject systems. Main difference is that the

FreeMind system contains twelve percent inner class related dependencies, while

the reference systems on average contain nine percent inner class related

dependencies.

The dependencies shown for class plugins.script.ScriptingEngine are the

dependencies included in the FreeMind test, so limited to dependencies to classes

and interfaces in the package freemind. The numbers in Table 5.13 show that

ScriptingEngine contains relatively more indirect dependencies to package

freemind, more call dependencies, and more inheritance related dependencies;

especially more calls of inherited methods. On the other hand, the class contains

relatively less declaration dependencies, and no annotation dependencies nor

indirect dependencies of type access of an inherited variable. In total,

ScriptingEngine contains relatively more hard-to-detect dependencies: 41 percent

in group one, 15 percent in group two, and 11 percent in group 3, compared to

respectively 39, 8, and 9 percent.

 HUSACCT reported dependencies for all 109 dependency-causing constructs

in class ScriptingEngine to package freemind. However, HUSACCT reported 126

The Accuracy of Dependency Analysis in Static ACC

107

dependencies, 17 more, since one construct may cause more than one dependency.

The extra dependencies are of the following types: seven instances of Access,

object reference, return value (indirect), six instances of Call, instance method,

inherited (four direct, two indirect), and four instances of Inheritance, indirect. For

example, construct “extends MindMapHookAdapter” causes not only a direct

inheritance dependency to class MindMapHookAdapter, but also four extra indirect

inheritance dependencies to classes and interfaces higher up in the inheritance

hierarchy.

Table 5.13: Dependency types of ScriptingEngine compared to Freemind and other

systems

Dependencies Type Scripting

Engine

Scripting

Engine %

Freemind

%

Reference

Systems %

All All 126 100 100 100

- Direct 92 73 86 84

- Indirect 34 27 15 16

Import 10 8 11 10

Declaration 15 12 21 20

- Local var. 6 5 7 7

Call 61 48 40 39

Access 35 28 25 26

- Constant v. 12 9 1 1

- Object ref. Direct 16 13 15 14

- Object ref. Indirect 7 6 4 5

Inheritance 5 4 3 3

Annotation 0 0 0 2

Inheritance

related

All 27 21 10 12

Access 2 2 2 3

- Inh. var. Indirect 0 0 1 2

Call 20 16 5 6

- Inh. meth. Indirect 15 12 4 4

Inheritance 5 4 3 3

- Indirect 4 3 1 2

Inner class rel. All 14 11 12 9

Chapter 5

108

5.7 Discussion

In this section, we discuss the key findings, answer the research questions, and

discuss identified challenges and their implications.

5.7.1 Key Findings

In our opinion, all tested tools provide useful functionality to perform an

architecture compliance check. However, our tests show that all ten tools could

improve the accuracy regarding dependency and violation reporting, though in

varying degrees. A summarizing overview of the findings of our tests is provided

in Table 5.14, which shows a relative comparison of the tools with respect to the

tested characteristics. The subsections below elaborate on these findings and

answers the research questions.

Although this study includes a tool test regarding ACC support, we do not

advise on a “best” tool. To remain objective, we refrained from this. Accuracy is

only one of several qualities that should be considered in the course of a selection

process of an ACC-tool. Some tools offer only a limited set of functionality, while

others provide a rich set as shown in Table 5.1, especially the commercial tools.

Accuracy of Dependency Detection and Violation Reporting

Our study shows that all ten tools were able to detect dependencies established by

basic constructs, like method calls and type declaration. However, the test results

show also that significant numbers of dependencies were not reported, even by the

best scoring tool. Consequently, the answer to research question RQ1 (Do ACC

tools find all the dependencies between modules in the software?) is negative.

Numerous false negatives were identified, so all tools may improve on the

sensitivity regarding dependency detection. The answer to RQ2 is also negative,

since we found no differences in the sets of reported dependencies and reported

violations. If a tool was able to detect a dependency, then it was also able to report

the dependency if it violated an architectural rule. With regard to false positives,

the tested tools performed well; no tool reported false positives. Consequently, the

answer to research question RQ3 is negative.

The benchmark test showed that no tool in the test was able to detect all

included dependency types, although several tools performed well. On the average,

the ten tools detected 77 percent of the dependency types in the test-software: 83

percent of the 25 direct types and 60 percent of the 9 indirect types. The ten tools

differ considerably in their ability to detect all types of dependencies included in

our test. JITTAC and Structure101 detected the most direct and indirect

dependency types; both 31 out of 34 types (91 percent). On the other side,

ConQAT and SAVE detected a total of respectively 21 and 18 dependency types

The Accuracy of Dependency Analysis in Static ACC

109

(62 and 53 percent). Table 5.14 summarizes the results, based on the following

scales: Direct dependencies * = 0-79%, ** = 80-89%, *** = 90-100%; Indirect

dependencies: * = 0-59%, ** = 60-79%, *** = 80-100%.

The FreeMind test delivered results regarding the accuracy of dependency

detection at the level of depended-upon classes and at the more detailed level of

dependency constructs within the code. First, all tools were able to report violations

at the level of “from-class makes use of to-class”. However, only one of the ten

tools reported usage of all seventeen classes used by class ScriptingEngine, while

the least well-performing tools reported 12 classes only. On average, the ten tools

were able to report 82% of the 17 depended-upon classes. Table 5.14 summarizes

the results, based on the following scales: Detected classes * = 0-79%, ** = 80-

89%, *** = 90-100%.

Second, none of the tools was able to detect dependencies for all 109 constructs

within class ScriptingEngine to package “freemind”. On the average, 78 of 109

dependencies (72 percent) were reported. However, the five tools within this test

(the other five tools did not report detailed enough information at the level of

dependencies) differed considerably in their performance. JITTAC and Sonargraph

performed relatively well and reported respectively 91 dependencies (83.4 percent)

and 90 dependencies (82.6 percent), while SAVE reported 75 dependencies (69

percent), Structure101 73 (67 percent), and Lattix 63 (58 percent). These numbers

will not be higher for the other tools, as far as we were able to ascertain, based on

the reported depended-upon classes in the violation reports of these tools.

Table 5.14: Relative comparison of the tools on the tested characteristics

(the scales are explained in the related subsections)

C
o

n
Q

A
T

D
ep

en
d

o
m

eter

d
T

a
n

g
ler

J
IT

T
A

C

L
a

ttix

M
a

ck
er

S
A

V
E

S
o

n
a

r A
R

E

S
o

n
a

rg
ra

p
h

S
tru

ctu
re1

0
1

Accuracy dependency detection

Benchmark: Direct dependencies * *** ** *** ** ** * ** *** ***

Benchmark: Indirect dependencies * ** * ** * * * * * ***

Freemind: Detected classes * ** * *** * ** ** ** ** **

Freemind: Detected dependencies *** * ** *** **

Accuracy dependency messages

Graphical overview of violations ** ** ** ** ** ** **

Exactness of dependency messages * * * *** ** * ** ** *** **

Chapter 5

110

Table 5.14 summarizes the results, based on the following scales:

Detected dependencies: * = 0-59%, ** = 60-79%, *** = 80-100%.

Exactness of Violation and Dependency Messages

The FreeMind test revealed that the ten tools differ considerably in the way

violations and dependencies are reported, how many messages are reported, and

how much information is reported in the messages. Consequently, the answer to

research question RQ4 is diverse, a few ACC tools report the type and location of

violations and dependencies quite exactly, but most tools not.

All tools, except Dependometer, Macker and Sonar ARE, provide diagrams in

which violations are shown at the level of packages and classes. Some of these

tools even provide an indication of the quantity of underlying dependencies, by

means of a number or by the thickness of a line. In our opinion, such an indication

of the severity of a violation is relevant information for architects and management;

information that also should be included in violation reports. Table 5.14

summarizes the results. In case graphical support is provided, two asterisks are

shown.

We regard the exactness of a dependency message to be high, if the message

helps to locate the dependency causing code construct accurately in the source

code. Four tools (ConQAT, Dependometer, dTangler and Macker) only provide

information on the from-class and the used to-class. The other tools provide more

information: SAVE and Structure101 provide also the names of the invoking

method at the from-side and the invoked method at the to-side, while JITTAC,

Lattix, Sonar ARE and Sonargraph Architect indicate the line number, and JITTAC

and Latix even the position of the dependency-causing construct in the line.

Table 5.14 summarizes the results. One asterisk is shown, in case only from-class,

to-class information is provided. Two asterisks are shown, in case also method

from, method to information is provided. Three asterisks are shown, in case the line

number is provided, and/or the position of the dependency causing construct in a

line. For reason of usability issues, described in Section 5.5, we have valued Lattix

and Sonar ARE with two instead of three asterisks.

Hard-To-Detect Dependency Types and their Frequency

in Open Source Systems

The answer to research question RQ5 is positive: yes, there are hard-to-detect types

of dependencies. We identified ten dependency types of which several tools failed

to report instances of dependencies. Analysis of the number of dependencies per

type in open source systems has yielded interesting data. The average distribution

of dependencies in four reference systems over the six main types (import,

declaration, call, access, inheritance, annotation) is respectively 10, 20, 39, 26, 3,

The Accuracy of Dependency Analysis in Static ACC

111

and 2 percent. Below is a summary of the findings related to hard-to-detect types of

dependencies.

 The ten hard-to-detect types of dependencies in our test account for at least

47 percent of the dependencies in the reference systems. Inner class related

dependencies, also hard-to-detect, are not included in this percentage, since

there may be an overlap with the already included dependencies.

 A considerable fraction of the dependencies within the reference systems is

inheritance related, namely twelve percent on average, while 3% of the

dependencies is inheritance related and indirect.

 A considerable fraction of the dependencies within the reference systems is

inner class related, namely nine percent on average.

 A considerable fraction of the dependencies within the reference systems is

indirect, namely 16 percent on average. In the benchmark test, only 60

percent of the indirect dependencies were detected, on average.

5.7.2 Challenges in Dependency Detection

Based on the results of the benchmark test and FreeMind test, we have identified

challenges in dependency detection. Analysis of the most common shortcomings in

dependency detection revealed the challenges, which are discussed below.

C1: Report dependencies accurately in case of inheritance structures

The test results show that inheritance structures frequently hamper the accuracy of

dependency detection. This finding is relevant, since our analysis of four reference

systems showed that twelve percent of all reported dependencies were inheritance

related. Furthermore, three hard-to-detect types of dependency are inheritance

related. Together, these three types account for 8 percent of all the reported

dependencies.

The results of the benchmark test show that only three of the ten tools were

reporting a dependency on the super class in case of a call of an inherited method,

or in case of access of an inherited variable. These three tools reported a

dependency of these types as a dependency to the super class where the method is

actually implemented, while the other seven tools reported a dependency to the

addressed subclass, but not to the super class where the method was implemented.

Moreover, the results of the FreeMind test show that many method calls of

inherited instance methods were not detected at all (43 percent, on average);

neither as dependency on the addressed subclass, nor as dependency on the super

class where the method is actually implemented.

The relevance for ACC is considerable. In case of a compliance check, the

seven tools will fail to report a violation if the used subclass is part of an allowed-

Chapter 5

112

to-use module, while the super class that has implemented the called method or

accessed variable, is part of a not-allowed-to-use module. In such cases, a strong

dependency stays unnoticed.

Finally, no tool reported indirect inheritance dependencies. The relevance for

ACC is considerable, since no tool reported a violation in case the super class of

the from-class was part of an allowed-to-use module, while the super class of this

parent super class in the inheritance hierarchy was part of a not-allowed-to-use

module. This appears as inconsistent behavior of the tools, since all tools reported a

violation in case the first super class of the from-class was part of a not-allowed-to-

use module. In our opinion, a violating indirect inheritance relation should be

reported, since it marks a strong dependency, and changes may have substantial

consequences.

C2. Report dependencies accurately in case of inner classes

The test results show that inner classes also may hamper the accuracy of

dependency detection. This finding is relevant, since our analysis of four reference

systems showed that nine percent of all reported dependencies were inner class

related.

The results of the FreeMind test show that four tools reported no dependency at

all on inner classes, while fourteen violating dependencies on inner classes were

present in the code of class ScriptingEngine. In the majority of these cases, a

dependency to the outer class instead to the inner class is reported, with as

consequence a diminished traceability to the related code constructs in the source

code. Furthermore, dependencies between inner classes of the same outer class will

not be reported.

C3. Report relevant object references

The results of the benchmark test show that seven tools had problems with the

detection of dependencies of type “Variable access, object reference”.

Dependencies of this type are frequently included in the code as parameter values

(arguments), or reference variables within if clauses.

Our analysis of four reference systems showed that fourteen percent of all

reported dependencies were of this type.

The results of the FreeMind test show the practical implications: two of the five

tools in this test missed all sixteen dependencies of this type. These sixteen missed

object references represented 15 percent of the 109 dependency causing constructs

in class ScriptingEngine.

In our opinion, it is a good practice to filter out object and type references,

which precede method calls and variable access. Most tools do, HUSACCT too,

since a dependency message for such a reference doubles with the dependency on

The Accuracy of Dependency Analysis in Static ACC

113

the same type for the call or access. However, a reference needs to be reported in

case of standalone references, e.g. when an object is passed as a parameter value.

C4. Report information that is missing in compiled files

We encountered several situations where tools failed to report dependencies

accurately, just because information in source files is removed from the compiled

files. Tools that analyze compiled files only, were not able to report dependencies

of three dependency types: a) dependencies caused by import statements;

 b) dependencies caused by declaration statements of not initialized local variables;

and c) dependencies caused by access of constant variables (instance and class).

Import dependencies were reported by only two tools in the benchmark test. In

our opinion, import statements should be reported, since they cause coupling,

although weak. The analysis results of the number of dependencies per dependency

type in five open source systems show a high frequency of import dependencies;

nine percent of all reported dependencies were caused by import statements.

Moreover, reporting import dependencies enhances the accuracy of violation

reporting in these cases where a tool fails to report dependencies of specific types.

In a number of situations in the benchmark test, SAVE missed a dependency of a

specific type, but reported a correct violation message at class level, merely based

on the import statement.

Finally, the exactness of the messages with respect to the line number is

diminished if a tool does not make use of source code. For example, in the

FreeMind test, the line numbers of dependencies reported by Lattix (which makes

use of compiled files only) were by far not as accurate as the line numbers reported

by Sonargraph (which makes use of source files, in addition to compiled files).

5.8 Threats to Validity

To discuss the validity of the results of our laboratory experiments, we make use of

the four validity threats, as described and defined by Wohlin et al. (2012).

5.8.1 Construct Validity

Construct validity is concerned with the relation between theory and observation.

The experiment should be suitable to answer the research question, which in our

case means that the experiments should be suitable to answer the main question

“How accurate do ACC-tools report dependencies and violations against

dependency rules?” We have ensured the construct validity in several ways. First,

by starting with an inventory of dependency types in object oriented code, on

which we have based the test cases of the benchmark test. The set of dependency

types included in our benchmark test is no random set, but a carefully chosen set of

Chapter 5

114

34 types; large enough to assess the sensitivity of the tools. However, we do not

claim that our classification of dependency types is complete, since dependencies

may be established by many different types of code constructs in object oriented

programs.

Second, we have taken care that the code constructs in each test case of the

benchmark test are specific for the related dependency type. Furthermore, we have

taken care that false negatives could not be caused by code constructs that were not

specific to the related dependency type.

Third, to answer research questions RQ1 – RQ3, we have scored for each test

case not only the ability of a tool to report a dependency, but also the ability to

report a violation.

Fourth, we have complemented the benchmark test with the FreeMind test, and

we have cross- checked the results of both tests, as described under the results of

the FreeMind test.

5.8.2 Internal Validity

Internal validity is threatened, if certain influences have affected the results,

without the researcher’s knowledge. In the context of our experiments, the internal

validity may be threatened by the inclusion of problematic code constructs in the

benchmark test, or by the use of very uncommon source code in the FreeMind test.

In our opinion, the strict design of our custom-made benchmark test strengthens

the internal validity. In this test, each test case is specific for one dependency type,

and each test case has one separate from-class in the test code. This approach

proved to be valuable, especially to test tools that provide only messages with a

low level of exactness, thus with no more information than the from-class and to-

class. Another aspect in favor of the internal validity of the benchmark test is that

all test cases were detected by at least one tool, except in case of indirect

“Inheritance, extends-implements variations” (although two of the three cases

represented quite common situations).

The FreeMind test adds to the internal validity, since it contains several code

variations not included in the benchmark test. We used it to validate and extend the

benchmark test. The FreeMind test showed in several cases that a tool might fail to

detect a dependency in a complex real life application, while it is able to detect a

dependency of the same type in a simpler situation within the same application, or

in the relatively simple code of the benchmark test application.

5.8.3 Conclusion Validity

Conclusion validity reflects on the relationship between the treatment and the

outcome of the experiment. In favor of conclusion validity, no statistical operations

The Accuracy of Dependency Analysis in Static ACC

115

were needed to interpret the results of our experiments. The research questions

could straightforwardly be answered, based on the results of the benchmark test

and FreeMind test.

To secure the validity of the identified challenges in dependency detection, we

have substantiated each challenge by means of data and arguments.

5.8.4 External Validity

External validity reflects the extent to which the experiment results may be

generalized. Since we did not work with a randomized selection of tools, our study

can be characterized as a quasi-experiment, according to Wohlin et al. (2012).

Consequently, our findings may not be generalized to other tools, even though we

tested ten tools in a small market. Also, be aware that our findings may not be

generalized to newer versions of the tested tools; the performance of the tools may

improve. Furthermore, our findings are limited to Java code analysis and should

not be generalized to tools that analyse code of other programming languages.

5.8.5 Comparison of the Frequency of Dependencies per Type

In favor of the internal, external and conclusion validity, we have compared the

frequency of dependencies per type in the FreeMind system and its class

ScriptingEngine to the average of four reference systems. In our opinion, this

comparison confirms that the FreeMind system and its class ScriptingEngine are

suitable for research on the accuracy of dependency detection. The system as a

whole contains dependencies of many different types and in proportion to the

average percentages of the reference systems. The same applies for class

ScriptingEngine, although one should keep in mind that this class contains ten

percent more hard-to-detect dependencies than the reference systems on average.

Even so, the wide variety of dependency-causing constructs, including a set of

complex constructs, makes it an appropriate subject class for the test.

However, limitations apply to the validity of the analysis results of the four

reference systems and FreeMind. We cannot guarantee that all dependencies in

these systems are reported and that all dependencies of a type are reported. We

have ensured the validity of the analysis results by upgrading HUSACCT to the

level (and beyond) that all test cases in the benchmark test and all dependencies in

ScriptingEngine were reported. However, since many code variations are possible,

some variations may not be reported. Furthermore, deficiencies may be present in

HUSACCT itself or in the included open source (ANTLR based) lexer and parser

functionality. For instance, a small percentage of the classes is skipped by the

parser, because of unexpected (and often erroneous) code in these classes.

Chapter 5

116

5.9 Related Work

Callo Arias et al. (2011) state that dependency analysis approaches that identify

structural dependencies have a high degree of accuracy. Our research outcome

shows that it is appropriate to be aware of the limitations of the tools used.

Practitioners and academics rely on tools for their work. It is not hard to get

impressed by the output of these tools, but it is hard to get an impression of what is

missing in the output of a tool. Our study demonstrates that the tested tools will not

always provide a 100 percent accurate output. Other comparative tool studies also

show that static analysis tools and techniques are not always accurate. For instance,

Sutton and Maletic (2007)compared four tools that reverse engineer C++ source

code into UML models. The numbers of recovered classes and relationships

differed by about 20 percent and much more for attributes, operations, and

generalizations.

Rutar et al. (2004) compared five bug finding tools for Java, and they reported

false positives, false negatives, redundant warnings and only 15-33 percent overlap

between the tools. Compared to the set of bug finding tools, the ACC-tools in our

test perform better, with no false positives and no redundancy, but with differences

in output and quite a number of false negatives.

According to Binkley (2007), source code analysis is impeded by the

complexities of modern programming languages. Barowski and Cross (2002) pay

special attention to dependencies on virtual members and on synthetic methods in

their paper on the extraction and use of class dependency information for Java. Our

study confirms that their special attention is justified, since these types of

dependencies (on super classes and inner classes) are involved in many unreported

dependencies and violations.

Another topic in their paper is source file versus class file based dependency

extraction, and they describe some differences between both forms. For their own

tool, they choose for class file based extraction. We do not object to this choice, but

we advise, based on our study, to include source code too in the analysis of ACC-

tools. In order to optimize the accuracy of the tool with respect to import

statements, constant variables, local variables, and the exact position of a

dependency-causing construct in the source code.

The FreeMind system has been used in several other scientific studies. We

compared our analysis results with these studies, but we did not find overlap,

except for comparison on the number of packages and classes of FreeMind version

0.9.0. Emanuel and Surjawan (2012) analyzed all versions of FreeMind to illustrate

the use of their revised Modularity Index. Their counts of version 0.9.0 match our

counts quite closely. We counted 58 packages and 853 classes (including inner

classes, but excluding anonymous classes), which is around ten percent more than

The Accuracy of Dependency Analysis in Static ACC

117

their counts. The difference may be explained by the fact that Emanuel and

Surjawan analyzed compiled code, while we analyzed source code with inclusion

of test files. Zoller and Schmolitzky (2012) used Freemind 0.9.0 also in a study,

however they counted only 445 classes. On the other side, Arlt et al. counted 1,362

classes (2012), much more than reported in the other studies. Summarizing, we

noted large difference in class counts, while the counted numbers of NCLOC

differed not more than 25 percent between the three studies.

With respect to our analysis data of the four reference systems, we found some

interesting studies. Tempero et al. focused on the use of inheritance in Java systems

in two empirical studies (Tempero et al. 2008), (Tempero et al. 2013) of more than

90 open-source systems. They found high levels of use of inheritance, with about

three out of four types being defined using inheritance. Furthermore, they found

that the inheritance structures are used actively, also for what we typified as access

of an inherited variable or call of an inherited method. In line with their research,

our study has revealed a high percentage of inheritance related dependencies in the

four reference systems. On average, nine percent of the dependencies are caused by

access of inherited variables and calls of inherited methods.

Tempero conducted another large study (Tempero 2009) to investigate whether

the advice is followed to avoid non-private fields. It is good practice to prevent

usage of attributes of other classes, since it compromises encapsulation (Wirfs-

Brock and Wilkerson 1989). The results of his study indicate that it is not

uncommon (albeit not that terribly common) to declare non-private fields. In line

with his findings, our study shows that access of an attribute of another class

accounts for about five percent of the dependencies in the four reference systems.

Dyer et al. (2013) conducted a large-scale empirical study on the adoption of

Java language features. With respect to annotations, these results showed that

annotations were among the most used new features of the last three Java versions.

However, they noted a relative lack of custom annotations. In line with their work,

our study showed that annotations with a reference to another type (internal or

external) accounted for two percent of the dependencies in the four reference

systems.

Chapter 5

118

5.10 Conclusion

Architecture compliance checking (ACC) relies on the support of tools to define

modules and rules, analyze the code, check the compliance, and report violations to

the rules. In this study, we have investigated to which extent static ACC-tools

report dependencies and violations accurately. We classified dependency types,

prepared a benchmark test, and tested ten tools based on this benchmark test. In

addition, we have tested these tools based on the program code of open source

system FreeMind, which we used to test the ability of the tools to report all

depended-upon classes, all dependency-causing constructs, and all information

needed to locate dependency-causing constructs in the source code.

5.10.1 Answers to the Research Questions

We started our study with the following question in mind: How accurate do ACC-

tools report dependencies and violations against dependency rules? In the

Introduction, this main question was decomposed into four research questions,

which are answered as follows:

RQ1: Do ACC tools find all the dependencies between modules in the software

(no false negatives)?

No, the ten tools detected on average 77 percent of the dependency types in the

benchmark test; 83 percent of the 25 direct types, and 60 percent of the 9 indirect

types. Furthermore, the tools detected on average 72 percent of the 109 constructs

with dependencies in a class of FreeMind. All ten tools were able to detect

dependencies established by basic constructs, like method calls and type

declaration. However, our study showed also that relevant numbers of violating

dependency constructs were not reported. For example, in the FreeMind test, the

tool with the lowest scores missed 46 out of 109 constructs, while even the best

scoring tool missed 18 constructs. Consequently, all tools may improve the

accuracy of dependency detection.

 The tools differ considerably in their ability to detect all types of

dependencies. For instance, in the benchmark test, JITTAC and Structure101

detected 91 percent of all dependency types, while ConQAT and SAVE detected

respectively 62 and 53 percent. In the FreeMind test, JITTAC and Sonargraph

Architect reported dependency messages for respectively 83 percent of the 109

violating code constructs, while Structure101 and Lattix detected 67 and 58

percent.

The Accuracy of Dependency Analysis in Static ACC

119

RQ2: Do ACC tools report all the violating dependencies in the software (no

false negatives)?

No, since no cases were noticed during the tests, where a tool detected a

dependency, but failed to report it in case it violated an architectural rule.

Consequently, the answer to the previous research question is here valid too.

RQ3: Do ACC tools report non-violating dependencies as violations (false

positives)?

No, during the benchmark test no false positives were detected. No tool interpreted

allowed dependencies in the program code as violating dependencies. In addition,

nearly no errors in the violation messages were identified during the tests; only a

few messages contained incorrect information.

RQ4: Do ACC tools report the exact type and location of violations and

dependencies?

The answer to this research question is diverse. Only four tools provide a

dependency type that differentiates between types of usage, like declare, access, or

call. The number and names of dependency types vary per tool. Furthermore, only

a few tools report the location of dependencies exactly. All tools report violations

to dependency rules at the level of from-class, to-class, but at this level of

abstraction, one message may represent several dependencies. Six tools also

provide dependency details in reports or IDE plug-ins, but not always precisely

enough to localize dependencies discretely.

RQ5: Are there types of dependencies, which proved hard-to-detect by several

tools?

Yes, based on our tests, we identified ten hard-to-detect types of dependencies,

which were each missed by several tools. To substantiate the relevance of our

findings, we performed an analysis of the number of dependencies per dependency

type in five open source systems. The analysis results revealed that the hard-to-

detect types of dependencies account for at least 47 percent of the dependencies in

the reference systems.

5.10.2 Challenges

Since significant percentages of false negatives were revealed per tool during the

benchmark test and FreeMind test, we have analyzed the test results in detail. As

outcome, we have identified and described four challenges in dependency

detection. In summary, the test results revealed that the most common

shortcomings in dependency detection, encountered in our study, have to do with:

1) inheritance structures; 2) inner classes; 3) object references; 4) missing

information in compiled files.

Chapter 5

120

Our tests have shown that inheritance structures and inner classes hamper the

accuracy of violation reporting in many cases. A dependency caused by usage of

inherited methods or variables is often not reported, and if reported, than mostly as

dependency on the accessed subclass only and not on the super class that

implements the method or variable. Furthermore, usage of an inner class is

frequently not reported at all, and if reported, it is most often reported as a

dependency on the outer class instead of the inner class, which diminishes the

traceability in the source code.

5.10.3 Future Work

Benchmark test are relevant to advance the state of the arts of tools. We have

developed and applied initial tests to benchmark tools on the accuracy of

dependency detection and reporting. The testware of our benchmark test and

FreeMind test is available on request. Future work can be based on these tests and

be aimed at the development and application of comprehensive benchmark tests for

a wide variety of tools and a wide variety of programming languages.

Research on the performance and improvement of dependency analysis is

relevant for practitioners and academics, since dependency analysis supplies the

data not only for ACC, but also for architecture reconstruction, metrics, and

architecture restructuring advice.

121

Chapter 6

A Typology Based Approach to Assign
Responsibilities to Software Layers

In software architecture, the Layers pattern is commonly used. When

this pattern is applied, the responsibilities of a software system are

divided over a number of layers and the dependencies between the

layers are limited. This may result in benefits like improved

analyzability, reusability and portability of the system. However,

many layered architectures are poorly designed and documented. This

chapter proposes a typology and a related approach to assign

responsibilities to software layers. The Typology of Software Layer

Responsibility (TSLR) gives an overview of responsibility types in the

software of business information systems; it specifies and exemplifies

these responsibilities and provides unambiguous naming. A

complementary instrument, the Responsibility Trace Table (RTT),

provides an overview of the TSLR-responsibilities assigned to the

layers of a case-specific layered design. The instruments aid the

design, documentation and review of layered software architectures.

The application of the TSLR and RTT is demonstrated in three cases.

6.1 Introduction

The Layers pattern, or Layered style, is one of the most common patterns used in

software architecture (Clements et al. 2010, Harrison & Avgeriou, 2008). The

concept of layering can be traced back to the works by Dijkstra (1968) and Parnas

(1972). Buschmann et al. described the Layers pattern extensively (1996).

Avgeriou and Zdun (2005) have shown that layers are also described as patterns or

styles by many other authors. For a definition we cite Larman (2005) who

summarized the essential ideas of the Layers pattern as: “Organize the large-scale

logical structure of a system into discrete layers of distinct, related responsibilities,

with a clean, cohesive separation of concerns such that the 'lower' layers are low-

level and general services, and the higher layers are more application specific.

Collaboration and coupling is from higher to lower layers; lower-to-higher layer

Chapter 6

122

coupling is avoided”. An example of a layered design, shown in Figure 6.1,

represents a strict layered design in which the following usage rules are respected:

usage relationships are from top to bottom; neither back call nor skip call usage is

allowed.

Applying the Layers pattern will improve software qualities, like analyzability,

reusability and portability of the system, but may also impose liabilities like a

lower efficiency, or more rework when a change affects several layers. When a

layered view of architecture is drawn up, a number of design decisions must be

taken, preferably explicit and documented (Kruchten et al. 2006a). For example,

the following design questions should be answered:

 Which layers are distinguished?

 Which types of responsibility are assigned to each layer?

 Which usage relationships between the layers are allowed?

Unfortunately, the layered designs are often poorly defined and many violate

the principles for which layers are designed (Clements & Nord 2000, Clements et

al. 2010). In practice and in student projects, we encounter many layered designs

describing or showing only the layers and the names of the layers, without a

specification of the contents, the communication rules, and a justification. Such an

architectural product gives little guidance to the developers. For instance, another

layered model with three layers (Presentation, Domain, and Technology), could

represent the same-layered design, as the one shown in Figure 6.1, but it could be

substantially different as well. The names of the layers do not clarify the exact

responsibilities of the layers, e.g. where the control of the task is located, or where

the status is maintained. Therefore, a specification of the responsibilities of the

layers is needed.

We aimed our research on the analysis of the causes of these problems and on

the provision of instruments to design layered architectures of high quality. One

cause of the problems is described by Clements et al. (2010): "The layered view of

architecture, shown with a layer diagram, often is poorly defined, and so often

misunderstood". In addition, we hypothesize another cause, namely that the

terminology regarding layered designs is not clear and sometimes downright

Figure 6.1: Example of a strict layered design

User Interface

Application

Technology

Allowed to use

Not allowed to use

A Typology Based Approach to Assign Responsibilities to Software Layers

123

contradictory. A uniform classification is lacking; different authors use varying and

sometimes conflicting terms for layers, types of logic and types of responsibilities.

A good example is the popular concept "application logic" or "application layer".

Application logic is interpreted substantially diverse by different authors. Larman

(2005) describes it as: “handles presentation layer requests; workflow; session

state; window/page transition; …”, whereas Erl (2008) defines it as: “an automated

implementation of business logic …” Even, the concept of "domain layer" has

different meanings in different layered designs.

The starting point of our investigation was the observation that to answer the

design question “Which types of responsibility are assigned to each layer?”, a

uniform classification for the naming and characterization of types of

responsibilities in software layers could be useful. This perception resulted in the

following research questions, which were leading in our study: 1) What types of

responsibilities are distinguished in layered architectures; 2) How can these types

of responsibility be named and defined unambiguously; 3) How can a typology of

responsibilities be applied in practice?

To answer these research questions, we studied leading literature about software

layers to get an overview of common types of responsibilities and the names given

to them. Based on this literature, we constructed the Typology of Software Layer

Responsibility (TSLR). The TSLR gives an overview of the different types of

responsibility, gives them unambiguous names, specifies them and exemplifies

them. To enhance the application of the TSLR in practice, we designed the

Responsibility Trace Table (RTT). An RTT shows the assignment of TSLR-

responsibilities to the layers of a case-specific architecture, without the need for

extensive textual descriptions. The TSLR and RTT may be used to design and

document a particular layered design and to assess the quality of existing layered

designs. Finally, to evaluate and improve the typology and its related trace table,

the instruments were reviewed by experts in the field of software architecture,

applied in case studies, and used in training courses for bachelor students.

In this chapter, we propose our typology in Section 6.2, and an approach to

apply the TSLR for different practical purposes in Section 6.3. Next, Section 6.4

illustrates the application of the TSLR and RTT by means of three cases.

Thereafter, Section 6.5 discusses our research approach, the artifacts and the

limitations, and Section 6.6 presents the conclusions and an outlook to future work.

Chapter 6

124

6.2 Typology of Software Layer Responsibility

The Typology of Software Layer Responsibility (TSLR) provides an inventory of

distinct types of responsibility commonly found in the software of business

information systems. The TSLR identifies and orders responsibilities, gives them

unambiguous names and specifies them. The included responsibilities are distilled

from leading literature on layers in the field of software architecture.

The TSLR consists of a classification schema and a textual specification of the

responsibilities. The TSLR is not intended as a layered design itself, but is intended

to be used as a reference, when a system’s layered design is drawn up or reviewed.

For example, a software architect may specify the responsibilities of a system

specific layered design in terms of the TSLR responsibility types, which saves

work, and check his design on completeness, which may contribute to the quality

of the layered architecture. Furthermore, the TSLR is intended to help software

engineers to determine the responsibility type of a concrete fragment of

functionality within a system. An important competence, since functionalities have

to be mapped to design units with appropriate responsibilities, in conformance of

the software architecture, and consecutively to the software units that implement

these design units.

6.2.1 Responsibility

Responsibility in the context of software architecture is defined by Clements et al.

(2010) as “a general statement about an architecture element and what it is

expected to contribute to the architecture. This includes the actions that it performs,

the knowledge it maintains, the decisions it makes or the role it plays in achieving

the system’s overall quality attributes or functionality”. We adopt this definition

and the notion, from the same source, that a layer (as all software architecture

modules) is characterized by its set of responsibilities.

The TSLR provides an overview of logical responsibility types. Logical means

here "free of implementation choices", since the typology is not intended for a

specific platform, orientation or deployment strategy, like in tier models. The

layered style is a modular style (Clements et al. 2010) and does not focus on the

runtime behavior, or the allocation of software components. The TSLR is primarily

aimed to be useful in the context of business information systems, since most

literature used as basis for the typology is focused on this type of systems. The

typology may also be useful for embedded systems, control systems, games, et

cetera, but extensions may be necessary.

A Typology Based Approach to Assign Responsibilities to Software Layers

125

6.2.2 Classification Schema

The classification schema, shown in Figure 6.2, provides an overview of the

responsibility types distinguished within the TSLR. The responsibility types are

specified in the next sub-section. Three levels of abstraction are distinguished

within the classification schema:
6. Top level, where Software System responsibility represents all the logical

responsibilities of a software system.

7. Intermediate level, where compound responsibility types reside: the five main

types of responsibility: Consumer Interface responsibility, Task Specific

responsibility, Domain Generic responsibility, Infrastructure Abstraction

responsibility and Infrastructure responsibility. The main types of responsibility

are distinguished on the basis of potential reuse.

8. Bottom level, where sub-responsibilities represent singular types of

responsibility. The TSLR distinguishes thirteen sub-responsibilities within the

five main types of responsibility.

6.2.3 Specification of the Responsibility Types

The main types of responsibility are specified below, together with their sub-

responsibility types. For each main type of responsibility, design criteria are

specified to provide guidance, when the TSLR is used in practice, to identify the

responsibility type of a concrete fragment of functionality. The design criteria

focus on reusability, since the primary criterion to differentiate between the

different main types of responsibility is reuse.

Figure 6.2: TSLR classification schema

Software System

responsibility

Consumer

Interface

responsibility

Interface

Construction

Event

Capturing

Event

Processing

Task

Specific

responsibility

Task

Control

Task State

Maintenance

Task Specific

Operation

Domain

Generic

responsibility

Domain Generic

Service Control

Domain Generic

Data Transfer

Domain Generic

Operation

Infrastructure

Abstraction

responsibility

Platform

Abstraction

Application

Abstraction

Infrastructure

responsibility

Platform

Service

Application

Service

Chapter 6

126

Consumer Interface Responsibility

Description: Consumer Interface responsibility takes care of establishing and

maintaining communication with a consumer of a system service in a manner

appropriate to the task of the consumer. The consumer can be an end user

communicating via a user interface, but also an automated client system

communicating via a service interface. Consequently, interface and events may

have different forms.

Design criteria: Responsibility is...

 Included, when it is specific to the interface of a task.

 Excluded, when it is reusable across different interfaces, which support the

same task.

Table 6.1: Sub-responsibilities of Consumer Interface responsibility

Sub-responsibility Description Examples

Interface

Construction

Provide an interface to the

consumer with information

and/or control appropriate to

the task of the consumer.

 GUI building

 Report layout and presentation

 Speech interface

 Service interface

Event Capturing Capture events from the

consumer.
 Recognizing input from consumer:

data, control, speech

 Knowledge about when an event is

captured

Event Processing Process events from the

consumer as far as it concerns

Consumer Interface

responsibility.

 Deciding what to do with the input

(data, speech ...)

 Format check on input data

 Delegation

Task Specific Responsibility

Description: Task Specific responsibility takes care of the coordination of the task,

the maintenance of the task state and the execution of functionality specific to the

task. A task is a unit of work, to be performed as a whole, which provides the

consumer with a result of value. A task is generally, in terms of Cockburn (1997),

at the user-goal level. Task Specific responsibility is potentially reusable across

different interfaces (e.g. on different platforms) of the same task.

Design criteria: Responsibility is...

 Excluded, when it is specific to a task interface.

 Included, when it is specific to a task.

 Excluded when it is potentially broadly reusable.

A Typology Based Approach to Assign Responsibilities to Software Layers

127

Table 6.2: Sub-responsibilities of Task Specific responsibility

Sub-responsibility Description Examples

Task Control Coordinate the task.

Decide what needs to

happen when an event takes

place.

 Workflow, orchestration, page flow

 Control of task specific sub-

responsibilities

 Delegation

Task State

Maintenance

Track and maintain the task

state.
 Tracking which data is selected,

inserted, or changed

 Transaction state control

Task Specific

Operation

Perform actions and

transformations exclusive to

the task.

 Conversion of data

 Task specific constraints

 Task specific transformations and

computations, like calculating report

totals, joining data, sorting data

Domain Generic Responsibility

Description: Domain Generic responsibility is responsible for the coordination and

the execution of functionality dealing with concepts, information and rules of the

business. Domain Generic responsibility has to do purely with the problem domain

and is potentially reusable across different tasks.

Design criteria: Responsibility is...

 Excluded, when it is specific to a task.

 Included, when it is specific to the business.

 Excluded when it has knowledge of infrastructure that has to be abstracted.

 Excluded, when it is reusable across different business applications.

Table 6.3: Sub-responsibilities of Domain Generic responsibility

Sub-responsibility Description Examples

Domain Generic

Control

Coordinate the activities

needed to handle requests.
 Control of domain generic sub-

responsibilities

 Delegation

Domain Generic Data

Transfer

Retrieve and store data. Selecting and sorting data

 Storing new or changed data

Domain Generic

Operation

Execute domain generic

actions and transformations.
 Generic constraints

 Generic transformation rules

 Maintaining entity state

Chapter 6

128

Infrastructure Abstraction Responsibility

Description: Infrastructure Abstraction responsibility is responsible for the

translation of infrastructure independent requests into requests dependent on the

infrastructure. Infrastructure Abstraction responsibility is separated from other

responsibility types, when needed to meet quality requirements like portability,

analyzability, and reusability.

Design criteria: Responsibility is...

 Excluded, when it is specific to a domain or task.

 Included, when it has knowledge of infrastructure that has to be abstracted.

 Excluded, when it is part of an infrastructure platform or infrastructure

application.

Table 6.4: Sub-responsibilities of Infrastructure Abstraction responsibility

Sub-responsibility Description Examples

Platform Abstraction Encapsulate functionality

dependent on an application

platform element.

 Adapter to a specific database

 Functionality formatted to make use of

a specific object relational mapping

framework

 Adapter a specific security framework

Application

Abstraction

Encapsulate functionality

dependent on an

infrastructure application.

 Adapter to a specific electronic mail

client

 Adapter to a specific document editor

Infrastructure Responsibility

Description: Infrastructure responsibility is responsible for broadly reusable

functionality, non-specific to the business. It may be bought, but also self-built, e.g.

utilities. Since there are a huge number of infrastructural services, the TSLR

connects here with the TOGAF Technical Reference Model (TRM) (The Open

Group 2009). The TRM defines and exemplifies the concepts Infrastructure

Application and Application Platform. Furthermore, it provides a typology of the

services of the Application Platform.

Design criteria: Responsibility is...

 Excluded, when it is specific to a business application.

 Included, when it is reusable across different applications and/or businesses.

A Typology Based Approach to Assign Responsibilities to Software Layers

129

Table 6.5: Sub-responsibilities of Infrastructure responsibility

Sub-responsibility Description Examples

Platform Service Provide generic application

support (by the technology

components of hardware and

software).

 Data interchange service

 Data management service (DBMS,

OODBMS, ORB …)

 Network service

 Operation System Service

 Software engineering service

(Programming language …)

 Security service (Identification,

Authentication …)

Application Service Provide general-purpose

business functionality (by

Commercial Off-The-Shelf

software).

 Electronic mail client

 Document editing and presentation

 Spreadsheets

 Workflow management

6.2.4 Justification of the TSLR and Related Work

Founding Literature

The responsibility types in the TSLR are distilled from leading literature in the

field of software architecture and layers. We performed a literature study based on

the search strings "software", "layer", "architecture", "responsibility" and their

synonyms in various combinations. We found the most valuable sources to be

books, well-established in the software architecture community; an experience

matching with a systematic literature review conducted by Savolainen and

Myllärniemi (2009).

The first category of sources consulted in the course of this investigation

describes the basics of the Layers pattern and guidelines to design a layered

architecture (e.g., Bass et al. 2012, Buschmann et al. 1996, Clements et al. 2010,

Evans 2004, Fowler et al. 2003, Larman 2005, Shaw & D. Garlan 1996). Authors

often refer to these sources, when the subject of layers is addressed. Evans (2004),

Fowler et al. (2003) and Larman (2005) extensively describe layered designs

suitable for business systems. Evans distinguishes four layers, Fowler three layers,

while Larman specifies six common layers in an information system's logical

architecture. The second category of sources describe a specific layered design,

useful within the scope of this study (e.g., Allen & Frost 1997, Gorton 2006,

MSDN 2009, Snoeck et al. 2000, The Open Group 2009). The third category of

sources discusses layered designs for service oriented architectures (e.g., Erl 2008,

Krafzig et al. 2005, Lankhorst 2009, Winter & Fischer 2007). Service layers cannot

be compared straightforwardly with software layers, since they do not focus on the

Chapter 6

130

internal structuring of an application, but distinguish services at different levels of

abstraction.

Design Decisions with Regard to the Main Types of Responsibility

The names of the main types of responsibility within the TSLR are intended to be

as clear and unambiguous as possible. Terms used in the founding literature, like

application logic, business logic and even domain do not make clear what is meant

by them, and the terms are used for quite different responsibilities (Larman 2005).

An interesting example of different definitions of “domain” and “business logic”

by two authors in the same book makes clear that the responsibilities can differ

considerably. Fowler describes domain as "logic that is the real point of the

system”, “also referred to as business logic" (Fowler et al. 2003, p. 20). On the

other hand, Stafford divides "business logic into two kinds: domain logic, having to

do purely with the problem domain (such as strategies for calculating revenue

recognition on a contract), and application logic, having to do with application

responsibilities"(Fowler et al. 2003, p. 134).

To prevent confusion, new, semantic-rich names are chosen within the TSLR.

Consumer Interface responsibility is selected as name, because it is a semantically

rich name. Furthermore, it is not frequently used and burdened, like Presentation

and User Interface, which are often used as names for layers not only given

Consumer Interface responsibilities, but also given task specific responsibilities.

Task Specific responsibility is business logic, exclusive for a task and not

commonly reusable. It maps to the second kind of business logic in Stafford's

description. The term "Task Specific responsibility" is derived from the term task-

centric service as used by Erl (2008).

Domain Generic responsibility within the TSLR maps to the first kind of

business logic in Stafford's description. The term is chosen to make clear that this

type of business logic is broadly reusable within the software system, contrary to

Task Specific responsibility. The distinction between Task Specific responsibility

and Domain Generic responsibility is also described by Alan and Frost (Allen and

Frost 1997) as the distinction between user and business service, and by Larman

(2005) as the distinction between the application layer and domain layer.

The distinction between Infrastructure Abstraction responsibility and

Infrastructure responsibility also requires some explanation. Evans (2004)

distinguishes one Infrastructure layer only. On the other hand, Larman (2005)

distinguishes three layers containing broadly reusable logic (Business

Infrastructure, Technical Services, Foundation), but the criteria used, are a bit

vague. Within the TSLR, the Infrastructure Abstraction responsibility is specific to

A Typology Based Approach to Assign Responsibilities to Software Layers

131

the business application, while Infrastructure responsibility is not specific and

enables reuse across different business applications.

TSLR Meta-Model

The meta-model of the TSLR, as shown in Figure 6.3, matches the structure of the

proposed typology. The meta-model allows for possible future extensions in width

and depth and may be used to provide tool support. The composite pattern (Gamma

et al. 1995) is used to allow extensions in the hierarchical structure. Each

Responsibility in the typology has a name and description.

CompoundResponsibilities represent the main types of responsibility, each

composed of a set of SingularResponsibilities, and designCriteria help to

determine which responsibilities are included or excluded. SingularResponsibilities

represent specific responsibilities in our typology, and they are illustrated by

examples.

For reasons of comprehensibility, designCriteria and examples are modeled as

attributes, although they may contain multiple values.

6.3 Approach to apply the TSLR with the
Responsibility Trace Table

The TSLR is intended to aid the design, documentation and review of layered

software architectures. The Responsibility Trace Table (RTT) enhances the

application of the TSLR in practice. In this section, the RTT is introduced and

exemplified at first. Next, the application areas of the TSLR and RTT are

discussed.

Figure 6.3: TSLR meta-model

-designCriteria

CompoundResponsibility

-name

-description

Responsibility

1

*

-examples

SingularResponsibility

Chapter 6

132

6.3.1 Responsibility Trace Table

An RTT shows the assignment of the TSLR-responsibilities to the software layers

of a case-specific layered design. The main types of responsibility with their sub-

responsibilities are represented as columns and the software layers as rows. An X

within an intersecting cell of a TSLR responsibility and a layer shows the

assignment of the TSLR-responsibility to the layer. The advantage of the trace

table is that it provides an overview of the responsibilities of the software layers,

without the need for extensive textual descriptions, since the responsibilities are

defined within the TSLR. An example of an RTT is included as Table 6.6. It shows

the responsibilities of the three principal layers as described by Fowler et al. (2003)

and shown in Figure 6.4. The analysis of this layered design is discussed in the

next section.

Table 6.6: Responsibility Trace Table linking Fowler's three principal layers to the

responsibilities defined by the TSLR

Main Type of

Responsibility →

Consumer

Interface

Task

Specific

Domain

Generic

Infrastructure

Abstraction

Infrastructure

TSLR

Responsibility →

Software Layer ↓

In
terface

C
o
n

stru
ctio

n

E
v

en
t C

ap
tu

rin
g

E
v

en
t P

ro
cessin

g

T
ask

 C
o
n

tro
l

T
ask

 S
tate

M
ain

ten
an

ce

T
S

 O
p

eratio
n

D
G

 S
erv

ice C
o

n
tro

l

D
G

 D
ata T

ran
sfer

D
G

 O
p

eratio
n

P
latfo

rm

A
b

stractio
n

A
p

p
licatio

n

A
b

stractio
n

P
latfo

rm
 S

erv
ice

A
p

p
licatio

n
 S

erv
ice

Presentation X X X

Domain X X X

Data Source X X

Figure 6.4: Layered design based on the three principal layers(Fowler et al. 2003)

Presentation

Domain

Data Source

Allowed to use

A Typology Based Approach to Assign Responsibilities to Software Layers

133

6.3.2 Application areas

Design of Software Layers

During the design of layered software architectures, a number of design decisions,

described before in the Introduction section, have to be taken. The TSLR and RTT

aid the decision and documentation regarding the design question: Which types of

responsibility are assigned to each layer?

The TSLR gives a complete overview of the assigned responsibilities per layer

and can be used to consider alternatives and to decide on clear-cut separations of

concerns per layer. The RTT shows the assignment of the TSLR-responsibilities to

the application-specific layers, and this overview supports reasoning about the

architecture. Finally, the documentation of the responsibilities of the layers of a

system specific layered design may be prepared by the combined use of the TSLR

and RTT. An RTT makes it easy to an architect to complement the graphical

representation of the layered design with a definition of the responsibilities of the

layers, without much documentation.

Analysis of Layered Designs

Another application area is the analysis of existing or proposed layered designs.

TSLR and RTT are useful to gain a clear insight into the division of the

responsibilities over the software layers. The RTT is very useful here, since it

shows omissions and redundancies in the assignment of responsibilities to the

layers within a software architecture. This helps to evaluate the quality of the

layered design and the effectiveness in achieving the quality requirements.

Training

Finally, the TSLR and RTT may be helpful in the training of students, software

engineers and architects. We used the TSLR and RTT in software architecture

courses for third year bachelor students Computer Science. Drawing up or

implementing a layered design requires knowledge of the different types of

responsibilities. We use the TSLR and some assignments to let the students acquire

this knowledge. Furthermore, we discuss the suitability of several layered designs

to meet specified quality requirements, and we discuss proposals for layers in

student projects. The visual character of the TSLR’s classification schema, and the

overview provided by an RTT, support the explanation and discussion of different

design alternatives regarding the assignment of responsibilities to layers.

Chapter 6

134

6.4 Applications

Three cases are described below to illustrate the practical use of the TSLR and

RTT.

6.4.1 Fowler's Three Principal Layers

To demonstrate the applicability of the TSLR and RTT as supporting tools for the

analysis of an existing layered design, we use Fowler's "Three Principal Layers".

This layered design, discussed in the previous section and shown in Figure 6.4,

serves well for this purpose, since it is extensively described (Fowler et al. 2003,

pg. 19-22) and well known. The translation of the description of the three layers

into TSLR responsibilities was fairly easy. The resulting Responsibility Trace

Table, shown in Table 6.6, provides a good overview of the responsibilities per

layer. Two observations are interesting to discuss.

The first observation is that the Task Specific responsibility is not assigned to a

layer, which should be regarded as an omission in the definition of a layered

design. The description of the layers makes clear that the Presentation layer and

Domain layer include all responsibilities of respectively Consumer Interface

responsibility and Domain Generic responsibility from the TSLR. However, the

definitions of Presentation and Domain do not make clear where the Task Specific

responsibility is allocated. In later chapters, it appears that Task Specific

responsibility may be included in both layers, Presentation and Domain, depending

on the pattern chosen. The Application Controller Pattern assigns Task Specific

responsibility to the Presentation layer. In terms of the TSLR, an Application

Controller contains Task Specific responsibility, since its two main responsibilities

are defined as "deciding which domain logic to run”, and “deciding the view with

which display the response". The Service Layer Pattern is used to organize the

Domain and assigns Task Specific responsibility to the Domain layer. A service

layer “encapsulates the application’s business logic, controlling transactions and

coordinating responses in the implementation of its operations”. In terms of the

TSLR a services layer contains Task Specific responsibility, especially since it

"typically includes logic that's particular to a single use case".

The second observation is that the name of the third Principle Layer, the Data

Source layer, does represent only a part of its contents. A more general name

should enhance the interpretability of this layer, since it is not only responsible for

the communication with data sources in the infrastructure, but also for the

communication with the rest of the infrastructure, like transaction monitors, other

applications, and messaging systems.

A Typology Based Approach to Assign Responsibilities to Software Layers

135

6.4.2 Layered Design of HUSACCT

To demonstrate the applicability of the TSLR and RTT as supporting tools for the

design of a layered architecture, we use the case of the development of HUSACCT

(HU University Software Architecture Compliance Checking Tool). We have been

working on HUSACCT for several years during a specialization semester

“Advanced Software Engineering” for third year bachelor students. HUSACCT can

be used to: 1) Define the intended modular architecture: layers, subsystems,

components, external systems, and rules constraining their properties and relations

(Pruijt et al. 2013a); 2) Analyze the implemented architecture embedded in the

source code (Java, C#); and 3) Validate the compliance between intended and

implemented architecture.

Based on the requirements, the layers model was drawn up, shown in

Figure 6.5, and the responsibilities per layer were specified in a RTT, shown in

Table 6.7. The layered design of HUSACT, combined with a domain model and a

logical component model, served well to address the key requirement, divide the

work over six teams, and identify and specify the required communication between

the system’s components.

The Task layer includes two main types of responsibility from the TSLR:

Consumer Interface responsibility, and Task Specific responsibility. The

restrictions of two strictly separated layers for these responsibilities seemed to

impose more cons than pros. For reasons of analyzability, separate packages were

created for these types of responsibility within the Task Layer, but the

communication between these packages is not restricted by the default rules of a

layered design.

Figure 6.5: Layered design of HUSACCT

Task

Domain

Abstraction

Allowed to use

Infrastructure

Chapter 6

136

Table 6.7: Responsibility Trace Table of HUSACCT’s Layered design

Main Type of

Responsibility →

Consumer

Interface

Task

Specific

Domain

Generic

Infrastructure

Abstraction

Infrastructure

TSLR

Responsibility →

Software Layer ↓

In
terface

C
o
n

stru
ctio

n

E
v

en
t C

ap
tu

rin
g

E
v

en
t P

ro
cessin

g

T
ask

 C
o
n

tro
l

T
ask

 S
tate

M
ain

ten
an

ce

T
S

 O
p

eratio
n

D
G

 S
erv

ice C
o

n
tro

l

D
G

 D
ata T

ran
sfer

D
G

 O
p

eratio
n

P
latfo

rm

A
b

stractio
n

A
p

p
licatio

n

A
b

stractio
n

P
latfo

rm
 S

erv
ice

A
p

p
licatio

n
 S

erv
ice

Task X X X X X X

Domain X X X

Abstraction X

Infrastructure X

The abstraction layer was introduced to implement the analysis of source code

as programming language independent as possible; since an important requirement

was that the tool should be expandable with regard to the analysis of other

programming languages. Since certain processes within the Task layer need direct

access to abstracted infrastructural services, a skip call is allowed from the Task

layer to these services of the Abstraction Layer. The layered design of HUSACCT

illustrates that the number and names of system specific layers do not have to

match the TSLR’s types of responsibility.

6.4.3 Layered Architecture of a Large Software System

To demonstrate the applicability of the TSLR and RTT for large systems, we use a

case of a complex, governmental administration system, aimed at a user base of

approximately 6000 end users and distributed across 75 different physical

locations. The system's layering schema, part of the well-documented software

architecture, is shown in Figure 6.6. The layers and their constituting components

are described concisely below. The mapping of the layers and their components to

the TSLR responsibilities was done in retrospect, and the result is visible in the

Responsibility Trace Table, shown in Table 6.8.

The system's architecture was based primarily on the Microsoft .Net reference

architecture for .Net version 1.1. However, it deviated from Microsoft practices in

the following manner: a) the system made heavily use of object orientation

conform the domain model pattern (Fowler et al. 2003) to handle the large quantity

of business rules in a classic OO style; b) the system was split up in a Smart Client

application and a Business Domain Server application.

A Typology Based Approach to Assign Responsibilities to Software Layers

137

The Smart Client is the implementation of the User Interface layer, responsible

for capturing input and calling the Business Domain Server through web services.

It was designed to be user-friendly while having only a minimal amount of

business knowledge. The User Interface layer contains five types of components.

User Interface Components (1) are responsible for showing data to the users, for

collecting and syntactical validating data entered by the user and for interpreting

events. The UI Process Components (2) are responsible for coordination of the user

process and management of the process state. Client business entities (3) are the

“less intelligent” cousin classes of the Business Entities found in the domain

server. They typically have very little domain knowledge and are used to enforce

required fields, field formats, restrict list values etc. The business domain server

provides an xml structure, which states what fields are required and what list

selections are appropriate for the given state of the object being viewed. UI Service

Agents (4) have the responsibility of making available data to the system and can

be seen as a courier used to handle the conversation with the Domain Server. User

Interface Data Access Logic Components (5) are responsible for providing access

to the data cache in this layer. This cache is used to minimize bandwidth usage and

overall response time.

Figure 6.6: Layering schema of the case system

Business

Domain

Server

Elementary
Components

Smart

Client

Application

User
Interface

 Serv.Agents

Workflow Service Interface

Process
Components

Business Entities

Buss. Workflow

Business Components

DALC

7

8

6

 Serv. Agents 1110

9

4 DALC 5

Client Business Ent. 3

UI Process Comp. 2

UI Components 1

 O
p
e
ra

tio
n
a
l M

a
n
a
g
e
m

e
n
t

C
o
m

m
u
n
ic

a
tio

n

S
e
c
u
rity

Oracle

12DM

Cache

14 161513

Chapter 6

138

Table 6.8: Responsibility Trace Table of the case system's principal layers and

components

Main Type of

Responsibility →

Consumer

Interface

Task

Specific

Domain

Generic

Infrastructure

Abstraction

Infrastructure

TSLR

Responsibility →

Software Layer ↓

In
terface

C
o
n

stru
ctio

n

E
v

en
t C

ap
tu

rin
g

E
v

en
t P

ro
cessin

g

T
ask

 C
o
n

tro
l

T
ask

 S
tate

M
ain

ten
an

ce

T
S

 O
p

eratio
n

D
G

 S
erv

ice C
o

n
tro

l

D
G

 D
ata T

ran
sfer

D
G

 O
p

eratio
n

P
latfo

rm

A
b

stractio
n

A
p

p
licatio

n

A
b

stractio
n

P
latfo

rm
 S

erv
ice

A
p

p
licatio

n
 S

erv
ice

User Interface 1 X X X

 2 X X X

 3 X X

 4 X

 5 X

Workflow 6 X X X

 7 X

Process C 8 X X X X

Elementary C 9 X X

 10 X

 11 X

 12 X X

 13 X

Crosscutting 14 X

 15 X

 16 X

The Business Domain Server is responsible for processing the requests from the

client and other channels, while maintaining integrity and security. It is organized

in three layers and three cross cutting concerns. The Workflow layer is responsible

for coordinating workflow in a future release of the system. In the current release,

it only had the responsibility to provide a facade to access the underlying domain

functionality. Service Interface Components (6) provide the services that the

application offers in a simple, secure manner and hide the underlying system

implementation. The service interfaces are implemented with web services. The

Business Workflow component (7) is included to enable the integration of an

external workflow application in a future release of the system. The Process

A Typology Based Approach to Assign Responsibilities to Software Layers

139

Components layer is responsible for coordinating the processing of single business

events that happened during the workflow. This layer contains two types of

Business Components (8). Task Controllers are responsible for controlling the

underlying Process Controllers and persisting (or undoing at a failure) all activities

as one transaction. Process Controllers are reusable business activities and are

responsible for coordinating the data transformations.

The Elementary Components layer contains Business Entities (9), responsible

for maintaining the integrity of the information, and Data Access Logic

Components (10), EC Service Agents (11) and Data Mappers (12), responsible for

storage and retrieval of the information in the Oracle database (13) or in external

systems.

The Crosscutting Concerns (MSDN 2009) Communication (14), Operational

Management (15) and Security (16) were handled by services of the application

platform infrastructure. Only access to the security library was abstracted by means

of service interface classes.

6.5 Discussion

Since the research was intended to deliver an artifact relevant to the professional

practice, our study can be characterized as design-science research (Peffers et al.

2008). Based on a practical problem, we defined research questions, studied

leading literature about software layers, designed instruments in line with this

literature, and evaluated the instruments.

To evaluate the typology and its related trace table, the instruments were

reviewed by experts, applied in practical cases, and used in training courses for

bachelor students. Five experts in the field of software architecture reviewed our

proposals on completeness and accuracy. In their responses, they provided useful

feedback, which was used for improvements. Some names were discussed and

changed, descriptions were improved and examples added. A lot of discussion

focused on an unambiguous name for the first type of responsibility in the TSLR

and resulted in "Consumer Interface responsibility". In addition to the expert

review, the completeness and accuracy of the TSLR was evaluated by means of a

case study of the software architecture of a large software system. The outcome of

the evaluation was positive; no responsibilities were found missing in the TSLR,

and the arrangement and naming of the responsibilities appeared accurate. The

mapping of the system's responsibilities on these of the typology required several

iterations in which the architect's knowledge of the TSLR was deepened, as well as

the researcher's knowledge of the particular software architecture. In this process,

the trace table proved to be a valuable instrument. The visual overview supported

Chapter 6

140

architectural reasoning and helped to recognize omissions and redundancies in the

initial versions of the system's RTT.

There are some limitations to our research so far. One important limitation is

that our research focused on responsibilities of the software of business

information systems. Therefore, other types of systems, like embedded systems and

games, might contain responsibilities not included in the TSLR. Another limitation

has to do with the completeness of the typology. Despite our extensive literature

study and validation activities, we cannot ensure that all types of responsibilities,

common in business information systems, are represented in the TSLR. However,

future additions and evolution are taken into account; the meta-model of the

typology enables extensions in width and depth. Finally, the typology could be

viewed and used as a layered model. However, the typology is not intended to be a

template for layered designs, with layers exactly matching the main types of

responsibility of the typology. Layered designs in practice should be designed to

meet the specific requirements of the system. The number and names of the

required layers may vary, the responsibilities per layer may vary, and a layer may

contain sub-responsibilities from different main types of responsibility within the

TSLR.

6.6 Conclusions

In this chapter, we proposed two novel instruments to support software architects

in their task to design layered architectures of high quality: the Typology of

Software Layer Responsibility (TSLR) and the complementary Responsibility

Trace Table (RTT). These instruments, together with some illustrations of their

practical use, provide answers to the research questions, which formed the basis of

this study. We started with the observation that the terminology regarding layered

designs is not clear and sometimes contradictory. We finished with a proposed

typology and a trace table to aid the practical use of the typology.

The TSLR provides an overview of the distinct types of responsibility

commonly found in the software of business information systems. The TSLR may

be used when a layered design is drawn up and when an existing layered design is

analyzed or reviewed. Furthermore, it is useful in training courses to discuss and

exercise the different possibilities to divide responsibilities over the layers and their

impact on the quality characteristics of the software system. The TSLR

responsibilities are distilled from leading literature on layers in the field of software

architecture. The TSLR separates and groups the responsibilities, gives them

unambiguous names, specifies them and exemplifies them. At the level of

infrastructural responsibilities a connection is established to the TOGAF Technical

A Typology Based Approach to Assign Responsibilities to Software Layers

141

Reference Model (The Open Group 2009), which classifies a huge number of

infrastructural services.

The Responsibility Trace Table (RTT) shows the assignment of the TSLR

responsibilities to the different software layers. The RTT is an instrument to

complement a system's graphical representation of the layered design with a

specification of the responsibilities of the layers. In addition, the RTT may be used

to assess and enhance the quality of a layered design, since it shows omissions and

redundancies in the assignment of the responsibilities.

To illustrate the application of the instruments three cases were presented: a

design case, a review case, and a complex case of al large governmental software

system. These cases were also used to evaluate the completeness, accuracy, and

applicability of the instruments. Furthermore, experts in the field of software

architecture conducted a review, and the instruments were used in training courses

for bachelor students.

Further research may be aimed on the applicability and scope of the TSLR and

RTT. At first, it will be interesting to study the effectiveness of the TSLR and RTT

when practitioners and students apply these instruments. Next, to enlarge the field

of application of the TSLR, literature and case studies are needed on the

responsibilities of other types of software systems (other than business information

systems). Finally, it will be interesting to study the applicability of the instruments

in the context of other software architecture patterns.

Chapter 6

142

143

Chapter 7

The EARScorecard – An Instrument to Assess the
Effectiveness of the EA Realization Process

Enterprise Architecture (EA) is a well-accepted, but relatively young

discipline. To add value to the organization, an Enterprise

Architecture Management (EAM) function should be able to realize its

goals in line with the corporate strategy. In this chapter, we propose

the Enterprise Architecture Realization Scorecard (EARS) and an

accompanying method to discover the strengths and weaknesses in the

realization process of an EAM function. During an assessment,

representative EA goals are selected, and for each goal, the results,

delivered during the different stages of the realization process, are

identified, examined and scored. The outcome of an assessment is a

numerical EARScorecard, supplemented with a description of the

strengths and weaknesses of the EA realization process, and

recommendations. To evaluate and improve the assessment

instrument, the EARScorecard was used in various organizations. An

assessment case is discussed in depth to illustrate the use of the

instrument.

7.1 Introduction

Enterprise Architecture Management (EAM) forms a means to enhance the

alignment of business and IT and to support the managed evolution of the

enterprise (Buckl et al. 2009). Enterprise Architecture (EA) can be defined,

according to the ISO/IEC 42010 (ISO 2007), as "the fundamental organization of

[the enterprise] embodied in its components, their relationships to each other, and

to the environment, and the principles guiding its design and evolution". A number

of enterprise architecture frameworks have been proposed, including The Open

Group Architecture Framework (The Open Group 2009), DoDaf (Department of

Defense 2009), GERAM (FAC-IFIP Task Force 1999), the Zachman Framework

(Zachman 1987), and many more, as described by Chen, Doumeingts and Vernadat

(Chen et al. 2008).

Chapter 7

144

Over the last decades, EAM is introduced in many organizations, but the

introduction and elaboration often do not proceed without problems, and most

practices are still in the early stages of maturity (Bucher et al. 2006; Van

Steenbergen et al. 2010). Moreover, the performance of the EAM function

typically is not measured (Winter et al. 2010). Therefore, research on the

evaluation of EAM (e.g., Luftman 2000; Morganwalp and Sage 2004; Van der

Raadt et al. 2007; Van Steenbergen et al. 2007) and improvement of the

effectiveness (e.g., Foorthuis et al. 2010; Lankhorst 2009) is useful, since it may

contribute to the further development of the professional practice.

Our study builds on this line of research and aims to contribute to it by the

design of a product with practical relevance. The study was initiated as part of a

larger study on the value of EA, sponsored by the Dutch Government and three

profit organizations. We started from the notion, that to add value to the

organization, an EAM function should be able to realize its goals. Next, we focused

our work on the research question: How can we measure the EAM function's

ability to realize its goals?

Two core concepts call for some elaboration: 'EAM function' and 'effectiveness

of EA'. The EA (Management) function is extensively defined by van der Raadt

and van Vliet [20]: "The organizational functions, roles and bodies involved with

creating, maintaining, ratifying, enforcing, and observing Enterprise Architecture

decision-making – established in the enterprise architecture and EA policy –

interacting through formal (governance) and informal (collaboration) processes at

enterprise, domain, project, and operational levels."

The effectiveness of EAM can be viewed, defined and measured in many

different ways (Morganwalp and Sage 2004). The EARS approach focuses on the

EA realization process, and states that this process is effective, when the EAM

function is able to transform a given baseline situation into a target situation, as

specified by one or more goals set out to the EAM function; see Figure 7.1. These

EA goals, or in terms of TOGAF (The Open Group 2009) “requests for architecture

Figure 7.1: The EA realization process of an EAM in context

The EARScorecard

145

work”, should be aligned with the corporate strategy. There is a large variety in

type and scope of goals set to different EAM functions.

To answer the research question, we developed and evaluated an instrument to

assess the effectiveness of the EA realization process: the Enterprise Architecture

Realization Scorecard (EARS). Applying the instrument includes consecutively: a)

selecting some representative EA goals; b) identifying and examining the results

produced in the context of an EA goal; c) scoring the results on the basis of

indicators; and d) describing the strengths and weaknesses of the EA realization

process. An EARS assessment is primarily used for awareness and improvement

regarding the effectiveness of the EAM function, but may also be used for

governance with respect to the progress and quality regarding the realization of an

EA goal.

The EARS instrument is not designed for specific types of EA goals, but is

intended to be applicable for all types of EA goals. Some examples of EA goals are

as follows: "The organization should be able to implement a change in legislation

within three months", and “The application portfolio has to be rationalized to

reduce costs”.

The research approach applied to develop the EARS is that of design-science

research (Hevner et al. 2004, Peffers and Tuunanen 2008), since our research was

intended to deliver artifacts relevant to the professional practice. The applied

approach conformed to the seven guidelines of Hevner et al. For instance, the

design of the EARS was discussed and evaluated in two meetings with ten experts

from the professional field, and in four meeting with participants from four

different academic institutions. Furthermore, EARS assessments were conducted at

large organizations to evaluate the applicability.

7.1.1 Related Work

A number of instruments with similar objectives is developed and proposed, like

EA balanced scorecard (Schelp and Stutz 2007), EA maturity models (Luftman

2000, Ross 2003, Van Steenbergen et al. 2010), and EA analysis approaches

(Buckl et al. 2009, Johnson et al. 2007). The main difference between the balanced

scorecard approach and the EARS approach is that the balanced scorecard

approach is concerned only with the outcome (added value) of EAM, while the

EARS approach is also concerned with how the outcome is achieved.

The main difference with the maturity approach is that this approach measures

the effectiveness of the EA realization process indirectly (assuming that when a

certain maturity level is reached for each key area, the EAM function will operate

effectively), while the EARS approach aims to measure the effectiveness of each

step in the EA realization process directly, by assessing the results.

Chapter 7

146

The main difference with the EA analysis approaches is that, expressed in terms

of Buckl's classification schema (Buckl et al. 2009), most of them have a specific

Analysis Concern, often a specific quality attribute, and have a related specific

Body of Analysis, while in the EARS approach the Analysis Concern and the Body

of Analysis will vary per EA goal. Furthermore, the EARS approach does not only

focus on EA artifacts, but on all results of the EA realization process, including

acceptance of architectural decisions, outcomes of architecture conformance

checks, et cetera.

Another line of research, interesting to our study, attempts to relate benefits of

EAM to applied techniques/mechanisms (e.g., Foorthuis et al. 2010, Lange et al.

2012, Tamm et al. 2011, Van der Raadt et al. 2010). The focus of this line of

research is on general benefits of EAM, like reduced resource duplication, or

improved agility. In contrast, the EARS approach focuses on goals set to a specific

EAM function. Though, a general benefit can be included in the set of EA goals of

an EAM function, and then its realization can be measured within an EARS

assessment, especially when the EA goal is defined specific and measurable.

The next section of this chapter presents the EARS instrument, while the two

following sections successively describe the method to apply the instrument and

illustrate the application by means of a case study. The section thereafter discusses

the research so far and its limitations. The last section concludes the article and

provides an outlook to future work.

7.2 The EARS Instrument

The objective of the EARS approach is to measure the actual achievement of the

EAM function regarding the realization of one or more EA goals. During an

assessment, the focus is on the results of the EA realization process, because results

show the actual effect of the EAM’s work. In this section, we will discuss the

concept of the instrument, explain the instrument, and provide a formal description

of the instrument.

7.2.1 Concept of the EARS

The research question "How can we measure the EAM function's ability to realize

its goals?" can be answered in different ways. One option is to measure the final

result (changes in business operation) only and answer the question: To which

extent is the operational performance matching with the target values of the EA

goal?

The advantage of this approach is that it seems to be straightforward and

relative simple. However, there are a number of disadvantages. Only goals that are

The EARScorecard

147

realized completely will be eligible for a measurement. Additionally, it is not made

plausible that the final results may be attributed to EAM. Moreover, the resulting

score does not give any grips for the causes, and consequently also not for

improvements. Therefore the option 'measuring the final result only' was rejected

and the alternative option was chosen: measure at a more detailed level. To find the

best way to do this, the body of knowledge of (IT) governance was used, since

measuring the organizational and IT performance is a well-established practice

within this field. CobiT (IT Governance Institute 2007a) appeared to be especially

useful for this study. It is an open standard for IT Governance, well accepted both

in practice and in the academic world. The CobiT framework is based on the

following principles: business-focused, process-oriented, controls-based and

measurement-driven. These principles are extensively explained in the CobiT 4.1

Excerpt (IT Governance Institute 2007b). Transfer of these CobiT-principles to the

field of EA resulted in a metamodel, shown in Figure 7.2, and a set of principles.

Together, these form a concept, which enables measurement of the EAM function

in achieving its goals, at a detailed level.

 EA goals are derived from the business goals and enterprise strategy.

EA goals should best be specific, measurable, actionable, realistic, results-

oriented and timely.

 EA goals are realized through a (repeatable) EA realization process.

 The EA realization process is composed of a logical sequence of EA activities.

 Per EA activity an activity goal and related metrics are specified.

The metrics are primarily focused on the result of the EA activity.

7.2.2 EA Realization Process

In the EARS, the EA realization process is decomposed into five EA activities,

each with a distinctive, assessable result. Examination of these five results provides

sufficient insight into the realization process to discover its strengths and

weaknesses, and to identify case specific point for improvements. Figure 7.3 shows

the EA activities (depicted by rectangles) with their results, and Table 7.1 describes

their characteristics.

Figure 7.2: Metamodel of the EARS concept

EA Goal

EA Realization Process activityGoal

result

EA Activity

Metric

1 *

*

1

Measurement

1 *1 *

1

*

Chapter 7

148

The five EA activities were derived from the Architecture Development Method

(ADM) of TOGAF 9 (The Open Group 2009), because ADM offers an architecture

development cycle that covers all life cycle aspect as required by GERAM (Saha

2004). To ensure completeness of the set of EA activities and results, other sources

(e.g., Wagter et al. 2005, Winter and Fischer 2007) were also studied, and we used

expert meetings to validate our proposals. Although EARS is based on TOGAF, its

EA realization process differs from TOGAF's ADM. EARS distinguishes five EA

activities, while ADM recognizes nine phases, so the mapping (shown in

Table 7.1) is not one to one. The first two EA activities of EARS can be linked

plainly to four ADM phases.

Table 7.1: Characteristics of the five activities

Id EA Activity EA Activity Goal Result ADM

Phase

#1 Define Vision Determine the EA goals within scope of the

architecture iteration, develop a high level,

integrated and approved solution direction

towards matching these goals and create a

concise realization plan.

Architecture

Vision

A

#2 Develop Sub

Architectures

Develop the required subsets of architectures to

support the agreed architecture vision.

Architecture

Design

B, C,

D

#3 Plan Migration Search for opportunities to implement the

architecture and plan the migration.

Migration

Plan

E, F

#4 Supervise

Implementation

Projects

Ensure conformance to the architecture during

the development and implementation projects.

Project

Result

F, G

#5 Exploit the

Architecture in

Operation

Assess the performance of the architecture in

operation, ensure optimal use of the

architecture, and ensure continuous fit for

purpose.

Operational

Result

G, H

Figure 7.3: The five EA activities with their results

The EARScorecard

149

For the last three EA activities, coupling is more complex. For instance, within

ADM Phase G, Implementation Governance, the architecture is implemented

within the solution under development, but the solution also is implemented in the

operational environment within phase G. These two results are considered as very

different within the EARS and consequently they are measured separately.

7.2.3 Aspects

During an EARS assessment, the five results are identified, examined, and valued.

To enable a balanced way of measuring, for each result three aspects are scored

separately: product, acceptance, and scope. Separate scoring of these aspect is

practical, since an architect can design a top quality solution (product aspect), but if

it is not accepted (acceptance aspect), nothing is gained. On the other hand, if the

top quality solution is limited to one architectural domain, like technology, while

other domains are affected as well (scope aspect), the goal may never be realized.

The three aspects, with their focus, question and scale, are defined in Table 7.2.

Table 7.2: The aspects to be valued per result

Result Aspect Focus/Question Scale

Product Focus: The accuracy of the outputs and the completeness, in terms of

depth.

Question: To which extent will the EA-goal be realized with it?

1-10

Acceptance Focus: The acceptance and commitment of the stakeholders.

Question: To which extent do they know, understand and agree with the

product, and do they act committed?

1-10

Scope Focus: The completeness, in terms of width, of the outputs.

Question: Is the output width sufficient to realize the goal?

1-10

7.2.4 EARScorecard

For each EA activity result, the three aspects are scored separately, and these

scores are recorded at the EARScorecard, which summarizes the assessment

outcome. An example of a scorecard is shown in Table 7.3; the outcome of an

assessment at a large financial organization; further explained in Section 7.4.

Most scores in an EARScorecard are at a scale of 1-10, where 1 stands for a

minimal contribution of an aspect or result to the realization of the EA-goal (10

percent or less of what might be achieved), and 10 for an optimal contribution (100

percent). The intermediate values allow differentiation, where 5 (just insufficient)

and 6 (just sufficient) mark boundary values. Since the scores represent

substantiated opinions and not exactly measured data, the numbers are rounded off

Chapter 7

150

to integers. The well-known scales for the scores and totals enhance the easy

interpretation of the outcomes.

The aspect scores of product, acceptance and scope are specified by the

assessor(s), whereas the totals in the scorecard are calculated, based on the aspect

scores. The aspect total is calculated as the multiplication of the aspect score

(product or acceptance) with the scope score for a result of a goal, divided by 10.

The result total is calculated as the average of the two aspect totals for a result of a

goal. Finally, the sum of the aspect totals constitutes the goal total, expressed on a

scale from one to hundred. The general question during an EARI assessment is: To

which extent is an EA goal realized and can this be related to the effort of the EA

function? A satisfying answer to this question should lead to high scores for the

result totals and consequently for the goal total. The value of the goal total can be

used to mark progress regarding the EA goal, but it will not show the underlying

reasons for the score, which can be very diverse. Generally, more interesting are

the other totals and scores of an assessment, as they show the strengths and

weaknesses of the EAM function in achieving its goals.

Table 7.3: EARS scorecard of the EA goal “Implement a corporate data

warehouse”

Id Result Aspect Aspect

score

Scope

score

Aspect

total

Result

total

#1 Architecture Vision

Product 8
8

6 5

 Acceptance 5 4

#2 Architecture Design Product 3
6

2
2

Acceptance 2 1

#3 Migration Plan Product 5
2

1
1

Acceptance 5 1

#4 Project Result Product 7
1

1
1

Acceptance 6 1

#5 Operational Result Product 4
1

1
1

Acceptance 3 1

 Goal total 19

The EARScorecard

151

7.2.5 Indicators

To support the assessors and to standardize the rating, indicators were developed

for each combination of result and aspect. TOGAF's ADM (The Open Group 2009)

was used as main source, since it provides elaborate descriptions of objectives,

intent, approach, activities, artifacts, inputs and outputs for each phase (Saha 2004).

As additional source, (Wagter et al. 2005) was used. The sets of indicators for

result #1 - #5 are shown respectively in Table 7.4 – 7.8. They are also utilizable in

cases where TOGAF ADM is not used. The technique of scaled coverage

percentage (van Zeist et al. 1996) was used to classify the indicators and prioritize

them with relative weights (W). The relative weights total to 1.0 per aspect.

Table 7.4: Set of indicators of result #1, Architecture Vision

Aspect Id Indicator W

Product 1 The EA-goal is related to the business strategy and included in the

vision.

0.2

 2 The EA-goal is SMART and (if needed) decomposed into high level

stakeholder requirements.

0.2

 3 A high level solution direction is described and the solution direction to

the goal is accurate.

0.2

 4 The solution direction to the goal is integrated with the solution

directions of other goals.

0.3

 5 A comprehensive plan exists to realize the solution direction. 0.1

Acceptance 1 The architecture vision is well-known by the stakeholders. 0.2

 2 The stakeholders understand the vision, the solution direction to the

goal and its implication.

0.2

 3 The stakeholders agree with the solution direction to the goal and its

implications.

0.3

 4 The stakeholders feel committed to (this part of) the vision. 0.3

Scope 1 The architecture vision covers all aspects relevant to the goal: business,

data, application, and/or technology.

1.0

Chapter 7

152

Table 7.5: Set of indicators of result #2, Architecture Design

Aspect Id Indicator W

Product 1 The baseline architecture is described. 0.2

 2 The parts affected by the goal, are identified. 0.1

 3 The target architecture is described and the solution to the goal is

accurate.

0.2

 4 The solution to the goal is integrated with the solutions of other goals. 0.2

 5 The architectural artefacts are specific enough to substantiate

architectural decisions.

0.2

 6 A gap analysis (impact analysis) is included. 0.1

Acceptance 1 The architecture design is well-known by the stakeholder. 0.2

 2 The stakeholders understand the solution to the goal and its implication. 0.2

 3 The stakeholders agree with the solution to the goal and its

implications.

0.3

 4 The stakeholders feel committed to the architectural solution. 0.3

Scope 1 The architecture design covers all aspects relevant to the goal: business,

data, application, and/or technology.

1.0

Table 7.6: Set of indicators of result #3, Migration Plan

Aspect Id Indicator W

Product 1 An architecture roadmap to realize the goal is defined, and, if needed,
the transition architecture is described.

0.3

 2 The work packages needed to realize the goal are assigned to projects
in the project portfolio, and, if needed, specified in an implementation
and migration plan.

0.7

Acceptance 1 The decision makers agree with the architecture roadmap and related
plans.

0.3

 2 The decision makers include the required work packages into the
project portfolio.

0.7

Scope 1 All the work (work packages, projects) needed to realize the goal is

included in the migration plan.

If not, consider the ratio between: a) work included, and b) all the work

needed for the goal.

1.0

The EARScorecard

153

Table 7.7: Set of indicators of result #4, Project Result

Aspect Id Indicator W

Product 1 The architecture definition and architecture requirements relevant for
the goal are provided to the project(s), and are specific enough to
direct decisions of the project architects.

0.3

2 The architectures needed for the goal are realized in conformance to
the architecture definition and the architecture requirement.
Exceptions or changes are approved by the EA function.

0.7

Acceptance 1 The goal and architectural solution is well-known by the project
architects.

0.2

2 The project architects understand the architectural solution to the goal
and its implication.

0.2

3 The project architects agree with the architectural solution to the goal
and its implications.

0.3

 4
The project architects feel and act committed to implement the
architectural solution.

0.3

Scope 1 All the work (work packages, projects) needed to realize the goal is

completed by the projects.

If not, consider the ratio between: a) work completed, and b) all the

work needed for the goal.

1.0

Table 7.8: Set of indicators of result #5, Operational Result

Aspect Id Indicator W

Product 1 Improvements related to the goal are achieved in the operational

environment, in conformance to the target performance indicators.

0.8

2 The performance is still conform goal after x years of operation. Work

needed to reach this result is organized and executed.

0.2

Acceptance 1 The stakeholders are satisfied with the realized operational

environment.

1.0

Scope 1 All intended improvements related to the goal are achieved in the

operational environment.

If not, consider the ratio between: a) achieved improvements, and b) all

the improvements related to the goal.

1.0

Chapter 7

154

7.2.6 Arguments

Indicators aid the assessor, but have a high level of abstraction, since they have to

be useful for very different types of EA goals. Consequently, an indicator score

needs substantiation as well, which is included in the EARS approach by means of

arguments. Arguments represent case specific evidence, assembled during

interviews and examinations of architectural artifacts. Arguments are sorted per

indicator and recorded in tables. Per argument a contribution (positive, negative,

neutral) is documented, and preferably also a reference to its source (interviewee or

document). A set of arguments is shown in Table 7.11.

7.2.7 Formal Description of the EARS

The EARS instrument is composed of the instantiations of EA Realization Process,

EA Activity, Aspect, Metric, and Indicator in the final metamodel, shown in

Figure 7.4. There is only one EA Realization Process and its processGoal is, to

realize an EA goal, regardless of what the goal may be.

Instantiations of EA Goal, Measurement, and Argument are specific to an

assessment. The Goal Question Metric approach [2] was taken into account, but no

separate entity Question is included, because the questions at Aspect do satisfy in

combination with the activity goals and the EA goal. The terms metric and

measurement are often used in a quantitative approach, but in CobiT [12] they are

Figure 7.4: Final EARS metamodel

name

description

EA Goal

processGoal

description

EA Realization Process id

name

activityGoal

result

EA Activity

type

procedure

scale

Metric

1 5

*

1

date

score

Measurement

name

description

question

scale

Aspect

*

0..1

1 *0..1 3

id

description

weight

Indicator

*

1

description

contribution

Argument

1

*

0..1

*

1

*

Product

Acceptance

Scope

The EARScorecard

155

also used for qualitative usage, which is also the usage within the EARS approach.

Most metrics within the EARS describe how an aspect of a result of an EA

activity can be measured. The metrics, needed to calculate the totals of the EARS

scorecard, are described below.

First, the notations are introduced:

 Let G = {g1, g2, ..., gn} be the set of EA goals.

 Let R = {r1, r2, ..., r5} be the set of Results of the EA Activities of the EA

Realization Process.

 Let A = {product, acceptance, scope} be the set of Aspects.

 Let PA = {pa1, pa2} be the subset of A containing product (pa1) and

acceptance (pa2) only.

Subsequently, the scores and totals can be defined as follows:

 The aspect score expresses the score for the product or acceptance aspect

for a result of a goal:

aspect_score is a function from G x R x PA to {1, …, 10}

 The scope score expresses the score for the scope aspect for a result of a

goal:

scope_score is a function from G x R to {1, …, 10}

 The aspect total can be calculated as the multiplication of the aspect score

(product or acceptance) with the scope score for a result of a goal, divided

by 10:

aspect_total is a function from G x R x PA to [1, 10]

 aspect_total(g, r, pa) = (aspect_score(g, r, pa) x scope_score(g, r))/10

 The result total can be calculated as the average of the aspect totals for a

result of a goal:

result_total is a function from G x R to [1, 10]

 result_total(g, r) = (aspect _total(g, r, pa1) + aspect_total(g, r, pa2))/2

 The goal total can be calculated as the sum of all the aspect totals of a goal:

goal_total is a function from G → [1, 100]

 goal_total(g)=

The scales of the EARS are chosen as specified, because decimal scales are

often used and quite understandable. Therefore, they enhance correct valuing and

correct interpretation of the scores. Since the scores do represent substantiated

opinions and not exactly measured data, the numbers are rounded off to integers.

Chapter 7

156

7.3 Method

The process to execute an EARS assessment is summarized below. The main line

of this process corresponds with the “overall process of enterprise architecture

analysis” (Johnson et al. 2007).

1) Prepare the assessment with the responsible manager.

a) Determine the objective of the assessment.

b) Determine the position of the EAM function within the organization.

c) Select one or two EA goals of the EAM function.

Opt for representative goals, where the organization has been working on

in recent years.

d) Select the architect(s) and stakeholders, suitable to the selected goal(s).

Include at least one relevant stakeholder per EA activity. A typical set

interviewees consists of a business manager, information manager,

enterprise architect, portfolio manager, solution architect, software

engineer, business operations expert.

e) Plan the assessment; the interviews and progress meetings.

2) Collect evidence.

a) Assemble and study relevant documents (strategy, goals, architecture,

roadmaps, project portfolios ...).

b) Interview the stakeholders and architects.

c) Describe the findings as arguments per indicator.

3) Interpret the evidence and set up a report.

a) Process the arguments into indicator scores and scorecard scores.

b) Interpret the scores and describe the strengths and weaknesses of the EA

realization process.

c) Set up an assessment report with the scorecard and graphics, strengths and

weaknesses, and recommendations for improvement.

4) Present the outcomes of the assessment.

a) Discuss the report and the findings with the responsible manager.

b) Present the results to the architects and stakeholders.

7.3.1 Scoring

An EARS assessment is a retrospective examination of an EA goal’s realization

process, which may have spanned several years. To value the results and determine

the effectiveness of the EA realization process, information is gathered by means

of interviews and document study. The scores within the EARScorecard will often

represent substantiated opinions; opinions of the assessor about the observed

strengths and weaknesses of the EAM function, substantiated by arguments and

The EARScorecard

157

indicator scores. To score the results, the assessor should be able to determine and

value the artifacts (depth and width) required to realize a specific goal.

Questionnaires and indicators are available to support assessors, but since the

indicators have a high level of abstraction, other sources should be used as well.

The EARS-indicators are derived from the TOGAF ADM input and output

descriptions per phase (The Open Group 2009), so knowledge of ADM and the

"Enterprise Content Metamodel" is desirable. Furthermore, many other sources are

useful, like 'Essential layers, artifacts, and dependencies of EA' (Winter and

Fischer 2007) and 'An engineering approach to EA design' (Aier et al. 2008).

7.4 Case Studies

To evaluate and improve EARS, the instrument was used in four organizations,

located in the Netherlands; two full assessments and two brief assessments were

conducted. The full assessments will be discussed below. One assessment was

conducted at a governmental organization and another at a financial organization.

7.4.1 Case 1: A Large Governmental Organization

This governmental organization is practicing enterprise architecture for some years.

The study focused on the EAM function responsible for a large organizational

domain with more than 10,000 employees. The case study aimed to deliver the

organization an assessment focused on awareness and improvement of the EA

function.

Two goals were selected in dialog with the client, namely 'Provide clarity to

customers more quickly’, and 'Reduce the complexity of the processes'. These

goals were selected because they were representative for the complete set of EA

goals, and because the organization was well on its way achieving these goals.

Thereafter, the responsible architect was consulted, documents relevant to the goals

were collected and studied, and ten architects and stakeholders were interviewed.

Finally, a report was prepared, which was discussed with, and approved by the

responsible manager and some key stakeholders. The EARScorecard of the EA

goal 'Provide clarity to customers more quickly' is shown in Table 7.9, and a

graphical representation of the aspect totals and result totals is shown in Figure 7.5.

Chapter 7

158

Table 7.9: EARScorecard of the EA goal “Provide clarity to customers more

quickly”

Id Result Aspect Aspect

score

Scope

score

Aspect

total

Result

total

#1 Architecture Vision

Product 9
10

9
10

Acceptance 10 10

#2 Architecture Design Product 4
10

4
4

Acceptance 4 4

#3 Migration Plan Product 10
10

10
10

Acceptance 10 10

#4 Project Result Product 4
10

4
5

Acceptance 6 6

#5 Operational Result Product 1
5

1
1

Acceptance 1 1

 Goal total 59

The EARS scorecard shows large differences between the five results. The

scores for the Architectural Vision are very high, because there is an approved,

high-level description of what is necessary to realize the goal. Additionally, the

impact of the changes is known. The high acceptance score is due to the fact that

the architects work in close cooperation with the decision makers.

The score for the Architectural Design is relatively low. At the moment of the

assessment, the architecture was focused on the baseline architecture, which

sufficed to perform a proper impact analysis of the intended changes. An integrated

target architecture, needed to realize all EA goals for the coming years, was mostly

Figure 7.5: The result totals of the EA goal “Provide clarity to customers more

quickly”

The EARScorecard

159

missing, while considerable changes were expected. Consequently, the projects

related to the goal could not anticipate on the target architecture, which will result

in higher than necessary transition cost in the near future.

Migration Plan scores high, because a realistic roadmap was developed and

acceptance and commitment of the stakeholders was high and remained high. All

four projects, needed to realize the selected goal, were included in the project

portfolio, and were already under development or beyond.

The low score for Project Result is partly related to the missing target

architecture, as discussed under Architecture Design. Consequently, the projects

were not provided with architectural definitions and requirements. Positive was the

collaboration with the project architects in the early stages of the project. Negative

was the lack of checking of the conformance of the implementation to the

architecture.

Finally, the low score for Operational Result is because the most important

implementations were not yet operational. Positive returns were expected in the

next calendar year.

7.4.2 Case 2: A Large Financial Organization

The company in this case is in transition from a decentralized organization,

composed of more than ten companies and brands, to one centralized company,

striving for one way of working and for operational excellence. For this

assessment, the following EA goal was selected, "Implement a corporate data

warehouse". A plan which included the goal was approved about three years before

the assessment, and the organization had worked on its realization, since then. The

EA goal was ambitious, since sub goals included not only corporate wide business

intelligence (BI), including the replacement of many local BI-applications, but also

the provision of integrated production data to portal and output services.

Strengths, Weaknesses and Recommendations

The assessment’s evidence collection included a total of two days of document

study and ten interviews, which mostly lasted 30-60 minutes. The EARS scores in

Table 7.3, and Figure 7.6 and 7.7 provide an overview of the assessment’s

outcome, and show some strengths and weaknesses. In the assessment report,

twelve strengths and sixteen weaknesses were described, based on indicator scores

and arguments. Some of them will be explained below.

#1 Architecture Vision scores relatively high on the aspects product and scope,

since the goal was part of a proper and quite complete architecture master plan,

which provided an integrated solution to several goals, in line with the business

strategy. However, a weakness of the plan was the absence of SMART sub-goals.

Chapter 7

160

Acceptance scores moderate, because the vision was mainly developed on the ICT-

side and was not well communicated with the business side.

#2 Architecture Design scores low, because nearly no architecture design was

done before the implementation projects started. Only the baseline application

architecture was described, but little more. This is probably one of the reasons why

the first projects in the roadmap encountered huge problems. For instance,

complexity turned out much higher than anticipated.

#3 Migration Plan scores low. The initial projects were approved by business

management, but trust disappeared when these projects ran out of time and budget.

Consequently, follow-up projects were not approved; reason for the remarkable

decrease in scope score. At the time of the assessment, only a small part of the

roadmap was realized: a few sub-goals have survived; the others have vanished

with time.

#4 Project Result scores low, mainly because of the influence of the low scope

Figure 7.6: Result total per EA activity result

Figure 7.7: Product, Acceptance and Scope score per EA activity result

The EARScorecard

161

score. Product and acceptance score much higher, since the architects guided the

projects actively (product aspect) and their contribution was appreciated

(acceptance aspect). Because of the lack of Architecture Design, no architectural

definitions and requirements were provided by the EAM function at the initiation

stage of the projects, but principles and architectural artifacts were developed over

the years.

#5 Operational Result scores very low. Once more because of the low scope

score, but product and acceptance score low as well. A positive result is that one

minor application was successfully implemented enterprise-wide, and it is well

accepted by the business. However, the major BI-application was used by only a

small part of the company, and the business users were dissatisfied.

Some recommendations provided in this case are the following:

 Identify explicit goals to the EAM function in collaboration with the

stakeholders. Set realistic and SMART (sub) goals and work from these

goals.

 Develop architectural artifacts to substantiate and verify the accuracy,

impact and feasibility of the goals and solution directions. Do this for both

the baseline and target situation, and use these as a base for roadmaps.

 Do not combine major goals and complex projects with a bottom-up

strategy regarding the development of the EAM function and EA artifacts.

Indicator Scores

The product scores, acceptance scores and scope scores were each constituted by

the weighted average of the related indicator scores. As an illustration, Table 7.10

shows how the scores of result #1 Architecture Vision are composed of the

indicator scores. Per indicator, the indicator score (S), valued by the assessor on a

scale of 1-10, is multiplied with the indicator’s weight (W) to the indicator total

(T).

Chapter 7

162

Table 7.10: Aspect and indicator scores of result #1, Architecture Vision

Aspect Id Indicator W S T

Product 1 The EA-goal is related to the business strategy and included in

the vision.

0.2 10 2.0

 2 The EA-goal is SMART and, if needed, decomposed into high

level stakeholder requirements.

0.2 6 1.2

 3 A high level solution direction is described and the solution

direction to the goal is accurate.

0.2 7 1.4

 4 The solution direction to the goal is integrated with the solution

directions of the other goals.

0.3 8 2.4

 5 A comprehensive plan exists to realize the solution direction. 0.1 7 0.7

 Product score 7.7

Accep-

tance

1 The architecture vision is well-known by the stakeholder. 0.2 8 1.6

 2 The stakeholders understand the vision, the solution direction to

the goal and its implication.

0.2 4 0.8

 3 The stakeholders agree with the solution direction to the goal and

its implications.

0.3 5 1.5

 4 The stakeholders feel committed to (this part of) the vision. 0.3 4 1.2

 Acceptance score 5.1

Scope 1 The architecture vision covers all aspects relevant to the goal:

business, data, application, and/or technology.

1.0 8 8.0

 Scope score 8.0

Arguments

The indicator values were substantiated by means of arguments collected during

the assessment. For instance, with regard to result #1 Architecture Vision, twenty-

five arguments were gathered, varying from two to seven arguments per indicator.

Approximately 60% of these arguments originated from the study of architectural

artifacts, while the remaining 40% did arise during the interviews. Arguments are

described in case specific terms, so to ensure anonymity; Table 7.11 shows only a

few, condensed examples.

The EARScorecard

163

Table 7.11: Arguments regarding two indicators of the product aspect of result #1

Aspect Indicator Contribution Argument description

Product 1 +

+

The EA goal is based on the corporation’s strategy and

target operating model.

Conformance is confirmed by several interviewees.

 2 -

+

+

-

The goal is not formulated explicitly, it is not SMART

and no sub-goals were specified.

Sub-goals can be derived from the architecture master

plan.

Stakeholder requirements are described in the master plan

as business and ICT issues.

No objectives were set for the EAM function, when the

function was initiated.

7.5 Discussion

The EARS assessments, described above, proceeded without problems and

provided interesting outcomes and recommendations to the organizations involved.

The two full assessments show large differences in the EAM's goals and

approaches, and the assessments delivered very different outcomes. However,

some similarities were identified as well. Both EA functions scored low on

Architecture Design, especially the target architecture. This was partly

compensated, by a shared effort to draw up solution architectures within the

projects. Another similarity is that both EA functions failed to check on

conformance during the implementation. These findings match with research on

the maturity level of 56 EAM cases (van Steenbergen et al. 2010), where the focus

areas 'Development of architecture' and 'Monitoring' scored respectively low and

very low on the maturity scale.

The case studies were also focused on the evaluation of the EARS approach

itself. During the interviews and meetings of the case studies, additional

information was gathered to gain insight in the applicability, effectiveness, and

efficiency of the instrument. The EARS approach appeared to be effective, since

the scorecard, indicator values and assembled arguments proved to be an adequate

base to identify the strengths and weaknesses of the realization process and to

provide recommendations. Moreover, the responsible managers and key

stakeholders approved the outcome of the assessments, and interviewees who were

asked whether the main aspects of the architecture function were covered during

the interview, responded positively. As additional revenue, a responsible manager

observed that the assessment stimulated the internal discussion regarding the focus,

method and effectiveness of the architecture function.

Chapter 7

164

During the case studies, the EARS instrument proved to be an applicable

instrument. Some examples of findings during the case studies which substantiate

this statement are the following:

 The EA goals were well identifiable and selecting representative goals did

not cause problems.

 EA activities and the results were sufficiently distinctive and recognizable

and could be found in practice.

 The result aspects “product”, “acceptance” and “scope” were generally well

identifiable. However for some activities, two result aspects are closely

linked. Such as in # 3 Migration Plan, where “product” and “acceptance”

are not well distinguishable and thus are given the same value.

7.5.1 Limitations

The outcomes of the case studies give us reasons to believe that the EARS can be

applied conveniently and is effective as an assessment instrument for awareness

and improvement purposes.

However, there are some limitations to our research so far. Although several

assessments in different types of organizations were conducted in the Netherlands,

our research findings are not inevitably valid for other companies, sectors or

countries. Another limitation of our study is that we could not provide a valid

conclusion regarding the efficiency of the assessment method, since no comparison

with other were possible. A third limitation concerns the indicators and their

relative weights. Since there was no sound scientific base available, we used

professional literature and common sense. So the indicators and their relative

weights will likely evolve with advancements in research and practice.

7.6 Conclusions and Future Work

In this chapter, we presented a novel instrument to assess and rate how well an

EAM function is able to realize its goals: the Enterprise Architecture Realization

Scorecard (EARS). The instrument decomposes the EA realization process into

five EA activities, each with a distinct result. For each result, three aspects are

examined and scored separately: product, acceptance, and scope. During the

assessment of an organization specific EA goal, the results of the EA realization

process are identified and examined by means of interviews and document study.

The results are examined to assemble arguments, which are translated to numerical

scores, by means of indicators. The outcome of an assessment is a report, with an

EARScorecard, diagrams, strengths and weaknesses of the EA realization process,

and recommendations.

The EARScorecard

165

We used two case studies to illustrate how the EARS instrument is used in

practice. The application at a large governmental organization and a large financial

organization delivered interesting outcomes; strengths and weaknesses were

detected and substantiated, and recommendations were given. Since the selected

goal and EAM function itself were quite different in both cases, the outcomes of

the assessments and the recommendations differed significantly. The EARS

approach appeared to be effective in practice. The scorecard, indicator values and

assembled arguments proved to be an adequate base to identify the strengths and

weaknesses of the realization process and to provide recommendations.

Furthermore, the assessment stimulated the internal discussion regarding the focus,

method, and effectiveness of the architecture function.

Our study contributes to the professional practice, by adding an assessment

instrument that can be used to evaluate the effectiveness of an EAM function's

realization process. To strengthen the link to the professional practice, the

instrument is based on two well-accepted open standards: CobiT (IT Governance

Institute 2007a), and TOGAF (The Open Group 2009).

The EARS instrument contributes to the research on architecture effectiveness

by focusing on the EA realization process and its results. Distinctive characteristics

of the EARS assessment approach are:

 Focus on EA goals that are specific to the organization;

 Focus on the EA realization process, its activities and results;

 Numerical scores in the EARScorecard to support reasoning about the

strengths and weaknesses of the EA realization process;

 Aspects and indicators to aid the evaluations of results.

Future Work

Interesting topics for future work emerged during this study. Research is needed to

determine whether the assessment results of one or two representative goals can be

generalized to general statements about the EA function. Furthermore, comparative

research on EARS and other EA assessments approaches could be interesting. It

could contribute to the further development of the set of indicators. In addition, it

might reveal and explain correlations between focus areas of maturity models and

high scores in the EARScorecard.

Chapter 7

166

167

Chapter 8

Conclusions

In this final chapter, we provide an overview of the most relevant findings per

research question. Furthermore, we discuss the contributions, implications, and

limitations of our research, and we present an agenda of possible future research.

The sections of this chapter are all subdivided into subsection conform the three

lines of research: Architecture Compliance Checking Support (ACCS), Layered

Architecture Design Support (LADS), and Enterprise Architecture Realization

Assessment (EARA). An overview of the three lines of research, the related

research questions, and the artifacts per line of research is provided in Figure 8.1.

The ACCS line focused on research question RQ1 and resulted in three different

types of artifacts. First, tests: the benchmark test and FreeMind test to test the

accuracy of dependency detection; and the SRMA test to test the level of SRMA

support. Second, an approach to enable SRMA support, grounded in the SRMACC

metamodel, and third, ACC tool HUSACCT, which provides extensive SRMA

support, based on the metamodel.

The LADS line of research focused on research question RQ2 and yielded two

instruments to aid the design of layered software architectures: the Typology of

Figure 8.1: Lines of research and their artifacts

Chapter 8

168

Software Layer Responsibility (TSLR), and the Responsibility Trace Table (RTT).

The EARA line of research focused on research question RQ3 and resulted in

an instrument to assess and rate how well an EA management function is able to

realize its goals: the Enterprise Architecture Realization Scorecard (EARS).

8.1 Answers to the Research Questions

As described in the introduction of this dissertation, the main question and driver of

our research in this dissertation is:

How can IT architecture work be evaluated and improved?

To scope our research, we decomposed the main question into three major research

questions. Consequently, the answers to the research questions combine to the

answer to the main question. Below, the research questions are answered per

research line.

8.1.1 Architecture Compliance Checking Support

Tool support enables efficient Architecture Compliance Checking (ACC).

However, supporting tools are still inadequate (Clements and Shaw 2009) and the

adoption of ACC-tools in practice is still limited (de Silva and Balasubramaniam

2012), which raised the following research question.

RQ1: How can architecture compliance be evaluated and improved?

To answer this question, we have studied literature on SA and ACC, identified

requirements regarding ACC support, and we have studied existing static ACC

tools. We identified opportunities for improvements that were not issued in other

studies, and we focused our research on these opportunities, which resulted in the

three sub-questions below.

RQ1.1: Do static ACC-tools provide functional support for semantically rich

modular architectures?

We introduce the term semantically rich modular architecture (SRMA) for

expressive modular architectures, composed of different types of modules, which

are constrained by different types of rules; explicitly defined rules, but also rules

inherent to the module types.

To answer RQ1.1, we identified requirements to the support of SRMAs and

classified module types and rule types relevant for static ACC. Furthermore, we

prepared a test, and we tested eight tools on their support of SRMAs.

We focused our test on the support of: a) common types of modules and their

semantics; b) common types of rules; and c) inconsistency prevention within the

Conclusions

169

defined architecture. To determine the common module types, common rules types

and inconsistency checks relevant to our research, we studied academic and

professional literature, as well as software architecture documents from

professional practice and ACC-tool documentation. We classified the following

common module types: non-semantic clusters (logical and physical), layers,

components, facades, and external systems. Furthermore, we identified and

classified twelve types of common rules, five property rule types and seven relation

rule types. Three rule types are specific for certain types of modules: the facade

convention is specific for components with a facade, and the back call ban and skip

call ban are specific for layers.

Our tests regarding the support of common module types show that five of the

eight tools supported non-semantic clusters only. The three other tools

distinguished also one or more semantically rich module types from our

classification. SAVE supported the graphical definition of five types of modules,

but did not support their semantics. Sonargraph Architect supported the semantics

of a facade actively, while Structure101 supported the semantics of layers actively.

However, no tool provided combined support of layers, components, and facades.

Furthermore, no tool provided configuration options for the semantic support of a

module type or module.

Our tests regarding the support of common rule types show that per tool only a

few rule types were explicitly supported, mostly “is not allowed to use” and “is

allowed to use”. More complex relation rules were by no tool explicitly supported.

Consequently, complex relation rules at logical level required workarounds at tool-

level, which often resulted in two or more unrelated rules; a threat to the

maintainability and traceability of the set of rules. Furthermore, only two of the

five property types were supported, and only partially, not explicitly.

Our tests regarding the support of inconsistency prevention show that only two

tools, ConQAT and Lattix, scored high on the prevention of inconsistencies in the

module and rule model. A relevant observation, since inconsistent models may

result in an unreliable outcome of the compliance check.

Finally, as answer to RQ1.1, we concluded that only limited support was

available for semantically rich modular architectures (SRMA), and that the scope

of ACC tools should be widened from dependency checking to software

architecture compliance checking, including SRMAs. We also concluded that

solutions were needed to minimize the difference between logical rules, as

perceived by the architect, and the technical implementation in the tool.

RQ1.2: How can SRMA support be provided in the context of static ACC?

As answer to this research question, we have designed a metamodel for extensive

support of SRMAs in the context of static ACC. The metamodel, we labeled it

Chapter 8

170

“SRMACC metamodel”, identifies, describes and relates the core concepts needed

to address the following objectives regarding SRMA support. The first is to

provide basic SRMA support, which includes the provision of sets of common

module and rule types and the functionality to check rules of these types. The

second is to provide extensive SRMA support, which adds support of the semantics

of the common module and rule types. The third is to enable configuration of the

provided support. The metamodel provides the fundamental concepts for: a) the

definition of the planned modular architecture, including common module and rule

types; b) extensive semantic support of these types; c) module mapping; and d)

conformance checking.

Moreover, we have developed HUSACCT (Hogeschool Utrecht Software

Architecture Compliance Checking Tool), an ACC-tool that provides extensive and

configurable SRMA support for all common module types in our classification and

eleven (of the twelve) common rule types. HUSACCT aids the analysis of

implemented architectures, definition of intended architectures, and execution of

conformance checks. Browsers, diagrams, and reports are available to study the

decomposition style, uses style, generalization style, and layered style of intended

architectures and implemented architectures. HUSACCT is free-to-use and open

source. It is based on the SRMACC metamodel, has been developed in Java, and

analyzes Java and C# source code. The executable, user manual and introduction

video may be retrieved via http://husacct.github.io/HUSACCT/.

To validate our approach, we have performed ACCs with our tool on

professional systems and open source systems, and we have used the tool in

bachelor and master courses on software architecture. The application cases have

shown that SRMAs are used in practice, and that SRMA support can be provided

based on the SRMACC metamodel.

RQ1.3: How accurate do static ACC-tools report dependencies and violations

against dependency rules?

To answer this research question, we have investigated to which extent static ACC-

tools report violation messages and dependency messages accurately. We classified

dependency types, prepared a benchmark test, and tested ten tools based on this

benchmark test. In addition, we have tested these tools based on the program code

of open source system FreeMind, which we used to test the ability of the tools to

report all depended-upon classes, all dependency-causing constructs, and all

information needed to locate dependency-causing constructs in the source code.

Based on the test results we found the following answers to research question

RQ1.3. The test results show large differences between the tools, but the main

conclusion is that all tools could improve the accuracy of the reported

dependencies and violations. The ten tools detected on the average 77 percent of

http://husacct.github.io/HUSACCT/

Conclusions

171

the dependency types in the benchmark test and 72 percent of the 109 manually

identified dependencies in a class of FreeMind. However, we detected no false

positives in the benchmark test, and no inconsistencies between dependency

reports and violation reports.

All tools report violations to dependency rules at class level. However, at this

level of abstraction, one message may represent several actual dependencies. Six of

the ten tools also provide dependency details in reports or IDE plug-ins, but not

always precisely enough to localize dependencies discretely within a method, or

even better within a line of code.

Based on the test results, we identified ten hard-to-detect types of dependencies,

and four challenges regarding dependency detection. To substantiate the relevance

of our findings, we performed an analysis of the number of dependencies per

dependency type in five open source systems. The analysis results revealed that a

large fraction of the dependencies in these systems is potentially hard-to-detect,

while considerable fractions are inheritance related and inner class related.

Our tests have shown that inheritance structures and inner classes hamper the

accuracy of violation reporting in many cases. A dependency caused by usage of

inherited methods or variables is often not reported, and if reported, than mostly as

dependency on the accessed subclass only and not on the super class that

implements the method or variable. In addition, a dependency caused indirectly by

inheritance relations is not reported at all. Furthermore, usage of an inner class is

often not reported at all, and if reported, it is frequently reported as a dependency

on the outer class instead of the inner class, which diminishes the traceability in the

source code.

8.1.2 Layered Architecture Design Support

The Layers pattern is one of the most common patterns used in software

architecture (Harrison and Avgeriou 2008), but layered designs are often poorly

defined and many violate the principles for which layers are designed (Clements et

al. 2010). In this dissertation, we focused on the following research question.

RQ2: How can the quality of layered designs with respect to the assignment of

responsibilities be evaluated and improved?

The starting point of our investigation was the observation that to answer the

design question “Which types of responsibility are assigned to each layer?”, a

uniform classification for the naming and characterization of types of

responsibilities in software layers could be useful. This perception resulted in the

following sub-questions, which were leading in our study: 1) What types of

responsibilities are distinguished in layered architectures; 2) How can these types

Chapter 8

172

of responsibility be named and defined unambiguously; and 3) How can a typology

of responsibilities be applied in practice?

To answer these research questions, we studied leading literature about software

layers, to get an overview of common types of responsibilities and the names given

to them, and we designed two instruments. Based on this literature, we constructed

the Typology of Software Layer Responsibility (TSLR) and the complementary

Responsibility Trace Table (RTT). These instruments, together with some

illustrations of their practical use, provide answers to the research questions.

The TSLR provides an overview of the distinct types of responsibility

commonly found in the software of business information systems. The TSLR

responsibilities are distilled from leading literature on layers in the domain of

software architecture. The TSLR separates and groups the responsibilities, gives

them unambiguous names, specifies them and exemplifies them. At the level of

infrastructural responsibilities a connection is established to the TOGAF Technical

Reference Model (The Open Group, 2009), which classifies a huge number of

infrastructural services.

The Responsibility Trace Table (RTT) shows the assignment of the TSLR

responsibilities to the different software layers. The RTT is an instrument to

complement a system's graphical representation of the layered design with a

specification of the responsibilities of the layers. In addition, the RTT may be used

to assess and enhance the quality of a layered design, since it shows omissions and

redundancies in the assignment of the responsibilities.

To illustrate the application of the instruments three cases were presented: a

design case, a review case, and a complex case of al large governmental software

system. These cases were also used to evaluate the completeness, accuracy, and

applicability of the instruments. Furthermore, experts in the domain of software

architecture conducted a review, and the instruments were used in training courses

and projects for bachelor students. Based on the results of these application cases,

we can conclude that the TSLR and RTT help to assess, discuss, and improve the

quality of layered designs with respect to the assignment of responsibilities

8.1.3 Enterprise Architecture Realization Assessment

Over the last decades, Enterprise Architecture Management (EAM) is

introduced in many organizations, but the introduction and elaboration often do not

proceed without problems, and most practices are still in the early stages of

maturity (Bucher et al. 2006, van Steenbergen et al. 2010). Moreover, the

performance of the EA management function typically is not measured (Winter et

al. 2010). In the course of a larger study on the value of Enterprise Architecture

(EA), we focused on the research question below.

Conclusions

173

RQ3: How can the achievement of an EAM function be measured with respect

to the realization of its goals?

As answer to this research question, we have presented a novel instrument to assess

and rate how well an EA management function is able to realize its goals, the

Enterprise Architecture Realization Scorecard (EARS). During the assessment of

an EA goal of an EAM function, five types of results, delivered during the EA

realization process, are analyzed and discussed in interviews with relevant

stakeholders. Arguments are assembled and, by means of indicators, translated to

scores. For each result, three aspects are scored: product, acceptance and scope.

The scores are recorded at a scorecard and subsequently, totals at result level and

goal level can be calculated. Finally, an assessment report is prepared, with a

scorecard, strengths and weaknesses of the EA realization process (based on the

scores in the scorecard, indicator scores and arguments), and recommendations.

Furthermore, we have presented two case studies to illustrate how the EARS

instrument is used in practice. The application at a large governmental organization

and a large financial organization delivered interesting outcomes: strengths and

weaknesses were detected and substantiated and recommendations were given.

Since the selected goal and EA management function itself were quite different

from the first case, the outcome of the assessment and the recommendations

differed significantly. The EARS approach appeared to be effective in these cases.

The scorecard, indicator values and assembled arguments proved to be an adequate

base to identify the strengths and weaknesses of the realization process and to

provide recommendations.

Chapter 8

174

8.2 Contributions and Implications

For each of the three lines of research in this dissertation, the contributions and

implications for research, practice, and education are described below.

8.2.1 Architecture Compliance Checking Support

Contributions and Implications for Research

SRMA Support

We regard the recognition of the support of semantically rich modular

architectures (SRMA) as an issue in the context of ACC as a relevant contribution.

With the acceptance of our first paper on SRMA support on the International

Conference on Software Maintenance (ICSM) 2013, one of the reviewers

commented, “this is a topic that is very important”, while another commented that

the paper, “provides sufficient contribution for future research directions for

approaches and tooling on architecture compliance checking”. In line with the last

remark, a study with significant references to our first paper on SRMA support

(Caracciolo et al. 2015) has been published at the Working IEEE/IFIP Conference

on Software Architecture (WICSA) 2015; an interesting paper on a unified

approach on ACC.

As next contribution in the SRMA-line, we have developed an approach to

provide extensive support of SRMA, grounded in the SRMACC metamodel. The

metamodel describes and relates not only the core concepts needed for SRMA

support, but also those needed for a full cycle of ACC. The metamodel may be

helpful to enhance existing tools or to develop new approaches.

The last contribution in the SRMA-line is HUSACCT (HU Software

Architecture Compliance Checking Tool), a tool for extensive and flexible SRMA

support. In addition, as open source tool with high qualities regarding dependency

detection, SRMA support, and visualization, HUSACCT offers numerous

opportunities for ensuing research and new research in the field of Architecture

Reconstruction (AR) and ACC.

Accuracy of ACC

In time, the first contribution in the research line ACC support was the introduction

of accuracy of static analysis as an issue in the context of ACC research. Before

our research was accepted on the International Conference on Program

Comprehension (ICPC) 2013, accuracy was no item in research papers on ACC

methods and tools, as explained in chapter 4. Our work on ACC accuracy has

shown that tools with a low accuracy are not capable to report all depended-upon

classes and by far not all dependencies within a class’s program code.

Conclusions

175

The first effects are visible. A paper (Olsson et al. 2014) has been published at

the conference on Quality of Software Architectures (QoSA) in which a static ACC

method is introduced, but now with attention to accuracy, with measures of true

positives, false positives, precision and recall, and with a reference to our work.

Contributions and Implications for Practice

Our work was aimed at a practical goal: Contribute to the advancement of static

ACC support. As a consequence, the adoption of ACC in practice might increase in

the future. On short term, we perceive the results below as contributions.

First, we have developed test to measure SRMA support and accuracy of

dependency detection, and we have published test results, which show point for

improvement. We expect that this will have impact. Furthermore, the tests have

been requested by several tool builders, who can use the tests for improvements.

Second, we have developed HUSACCT (with instruction video and user

manual), which may be used, free of charge, by researchers, practitioners, and

students alike. Furthermore, it is our hope that novel functionality in our tool will

be taken over in other tools, or will inspire other tool builders to evolve their tools.

Third, we have performed software architecture compliance checking at

software development departments of number of large organizations. ACC was

new in these situations, and the contribution was, apart from the measurement

results, an increase of architectural awareness and a better understanding of the

relationship between architecture design and code.

Contributions and Implications for Education

Education in software architecture with subjects as modular architectures, module

styles, architecture reconstruction, and architecture compliance checking might

benefit from the usage of static analysis tools. HUSACCT is intended to be used

for education in the fields of modular software architectures. Course material in the

form of presentations, classical exercises, and individual or group assignments are

developed for second and third year computer science students. Currently,

HUSACCT and the additional course material is used in the education of software

architecture at the HU University of Applied Sciences and Utrecht University, both

in Utrecht, and HAN University of Applied Sciences in Arnhem, all in The

Netherlands. Furthermore, some other universities have shown interest as well.

Finally, students of the specialization “Advanced Software Engineering” at the

HU University of Applied Sciences have, from 2011-2013, contributed in various

ways to our research and the development of HUSACCT. Conversely, these

students are educated much more in-depth on the subject of software architecture,

as described in our paper on the educational pattern Multi-Level Assignment

(Köppe and Pruijt 2014).

Chapter 8

176

8.2.2 Layered Architecture Design Support

Contributions and Implications for Research

We have proposed a novel instrument to support software architects in their task to

design layered architectures of high quality: the Typology of Software Layer

Responsibility (TSLR). The TSLR is a first typology of software responsibilities in

modular architectures.

In addition, we have proposed an approach to apply the TSLR, including a

supporting instrument, the Responsibility Trace Table (RTT). The approach is

supportive during the design of new layered designs and the analysis of existing

layered designs.

Furthermore, we have presented three cases, which we have used to illustrate

and evaluate the practical use of the TSLR and RTT.

Contributions and Implications for Practice

Our research has provided a typology of responsibilities and an approach to apply

the typology, which are supportive in the design and documentation of high quality

layered designs. The TSLR and RTT may be used when a layered design is drawn

up and when an existing layered design is analyzed or reviewed. Furthermore, the

instruments are useful in training courses to discuss and exercise the different

possibilities to divide responsibilities over the layers and their impact on the quality

characteristics of the software system.

Currently, the practice of software architecture lacks a standard terminology

with respect to responsibility assignment to layers in layered designs or, more in

general, to modules in modular architectures. The TSLR may be a first step

towards such a standard terminology.

Contributions and Implications for Education

The use of the TSLR and RTT may be helpful in the training of students, software

engineers, and architects on the subject of layered software architectures. Drawing

up or implementing a layered design requires knowledge of the different types of

responsibilities.

At the HU University of Applied Sciences, we use the TSLR to let the students

acquire this knowledge. Furthermore, we discuss the suitability of several layered

designs to meet specified quality requirements, and we discuss proposals for layers

in student projects. The visual character of the TSLR’s classification schema, and

the overview provided by an RTT, support the explanation and discussion of

different design alternatives regarding the assignment of responsibilities to layers.

Conclusions

177

8.2.3 Enterprise Architecture Realization Assessment

Contributions and Implications for Research

Our work contributes to the research on architecture effectiveness by focusing on

the EA realization process and its results, which resulted in a novel instrument, the

Enterprise Architecture Realization Scorecard (EARS).

A number of instruments with similar objectives is developed and proposed,

like EA balanced scorecard (Schelp and Stutz 2007), EA maturity models (e.g.,

Luftman 2000, van Steenbergen et al. 2010), and EA analysis approaches (e.g.,

Johnson et al. 2007). The main difference between the balanced scorecard

approach and the EARS approach is that the balanced scorecard approach is

concerned only with the outcome (added value) of EA management, while the

EARS approach is also concerned with how the outcome is reached. The main

difference with the maturity approach is that this approach aims to measure the

effectiveness of the EA realization process indirectly, by assuming that when a

certain maturity level is reached for each key area, the EA function will operate

effectively. In contrast, the EARS approach aims to measure the effectiveness of

each step in the EA realization process directly, by assessing the results. The main

differences with the EA analysis approaches is that these are aimed at one concern,

while in the EARS approach the concern of the assessment will vary per EA goal.

Furthermore, the EARS approach is not only focused on EA artifacts, like the EA

analysis approaches, but on all activities and results of the EA realization process,

for example, including the acceptance of the architectural decisions, and the

outcome of architecture conformance checks.

We have presented the EARS instrument, its metamodel and metrics, as well as

the accompanying method. In summary, the characteristics of the EARS

assessment approach are the following:
1. Focus on EA goals which are specific to the organization;

2. Focus on the EA realization process, its activities and results;

3. Numerical scores in the EARScorecard to support reasoning about the

strengths and weaknesses of the EA realization process;

4. Aspects and indicators to aid the evaluations of results.

Finally, we have presented two assessment cases to illustrate the use of the

instrument, one assessment at a governmental organization and another at a

financial organization.

Contributions and Implications for Practice

Our study contributes to the professional practice, by adding an assessment

instrument that can be used to evaluate the effectiveness of an EAM function's

realization process. To strengthen the link to the professional practice, the

Chapter 8

178

instrument is based on two well-accepted open standards: CobiT (IT Governance

Institute 2007a) and TOGAF (The Open Group 2009).

In the case studies, the EARS approach appeared to be effective, since the

scorecard, indicator values and assembled arguments proved an adequate base to

identify the strengths and weaknesses of the realization process and to provide

recommendations. Moreover, the responsible managers and key stakeholders

approved the outcome of the assessments. As additional revenue, a responsible

manager observed that the assessment stimulated the internal discussion regarding

the focus, method and effectiveness of the architecture function.

8.3 Reflections, Limitations, and Future Work

In this section, we reflect for each of the three lines of research on the limitations

of the work done and possibilities for future research.

8.3.1 Architecture Compliance Checking Support

In our opinion, architecting tools with functionality for architecture analysis,

architecture reconstruction and architecture compliance checking are crucial to

improve the effectiveness of software architecture, and to extend the role of

software architecture in practice and education. With our presented work, we have

aimed to contribute to the advancement of the support of ACC. We have identified

requirements, tested existing tools on these requirements, and we have designed

artifacts to answer the requirements entirely. However, much more work is needed

to acquire a high adoption of ACC and ACC-tools in practice. Our work has

focused on the support of semantically rich modular architecture and on accurate

dependency detection, but we have encountered many other interesting initiatives

in the field of ACC. Although scientists learn from each other, these initiatives are

most often isolated from the others, just like our work. To contribute more to the

advancement of SA, cooperation is needed. A joint research effort could result in

an integrated solution, which integrates the features from the different studies and

their related prototypes. Such a solution could be valuable to both, practice and

research. Some examples of interesting studies, which focus on various aspects that

should be included in an integrated solution, are the following:

 Continuous quality assurance (Deissenboeck et al. 2005);

 Declarative, tool-agnostic rule language (Caracciolo et al. 2015);

 Dependency constraint language (Terra and Valente 2009);

 Flexible ACC support (Deissenboeck et al. 2010);

 Just in time ACC support (Ali et al. 2012);

 Rule-based architecture conformance checking (Herold et al. 2013);

 UML-based architecture to code tracing (Adersberger and Philippsen 2011);

Conclusions

179

 Visualization (Knodel et al. 2006).

Before we proceed to future work, we will consider the most relevant

limitations of our work (the limitations per study are discussed more extensively in

the chapters 2-5). First, we have conducted several tests on ACC-tools and reported

our findings. These tests were relevant, since they provided an impression of the

state-of the art. The test revealed several weaknesses, but we believe it is important

to realize that these findings may not be generalized to all other ACC-tools.

Moreover, the findings may not be generalized to newer versions of the tested

tools, since these tools may improve their performance on the tested characteristics.

Second, HUSACCT is an important artifact of our research, but its limitations

should be considered as well, just as with other ACC-tools. We have learned from

our studies that it is wise to test a tool’s performance for a required task, and not to

rely on it without doubt. This is also recommended in case of usage of HUSACCT.

As might be expected, we have taken measures for quality control. With respect to

the quality of SRMA support, we have automated the SRMA test in HUSACCT’s

development environment. Furthermore, the tool is used frequently for practical

cases. To ensure the accuracy of dependency detection, we have automated the

benchmark tests. Furthermore, we have extended the test set with many test cases,

for instance, to cover all variations of the dependency types in the Freemind test as

well. Even so, we cannot guarantee accuracy in all possible cases, and especially

not for extensions in new versions of programming languages. With special regard

to the latter: HUSACCT is not only delimited by internal design decisions, but also

by the capabilities of the depended upon open source frameworks.

For future work that builds on our work to this point, we perceive numerous

opportunities for interesting studies, of which the most relevant are described

below. First, we intend to perform case study research with HUSACCT, aimed on

in-depth analysis of the architectural rules and on violations to these rules in open

source and closed source systems. Second, we intend to perform research on the set

of module types, rule types, and patterns that require support according to software

architects in practice. Third, we intend to perform research on the visualization of

different types of architectural rules in intended architecture models, and

visualization of violations against rules of these types. Fourth, we intend to perform

research on the automatic recognition of module types and architectural patterns,

on visualization of related results, and on automatic architecture refactoring advice.

Finally, in the last years of this study we spent a lot of effort to raise the tool from

an academic prototype to a tool fit for practical use. Only recently, we have started

to promote the usage of HUSACCT in academic courses at other universities, and

the usage of HUSACCT by professional organizations, as a means to introduce

ACC in their software development process. We intend to continue this way.

Chapter 8

180

8.3.2 Layered Architecture Design Support

The design of a modular architecture focuses on the organization of a software

system into modules, where a module represents a responsibility assignment

(Parnas 1972). Although the Layers pattern is commonly used in software

architecture (Harrison and Avgeriou 2008) to modularize a system, very few

scientific papers actually discuss the notion and concepts of layers (Savolainen and

Myllarniemi 2009). Our research has focused on the vital step in the design of a

layered design, the assignment of responsibilities. To support the design, but also

to support the analysis of existing layered designs and the implementation of such a

design, we have developed two instruments, the Typology of Software Layer

Responsibility (TSLR) and its complementary Responsibility Trace Table (RTT).

Furthermore, we have demonstrated the applicability of the TSLR and RTT.

Limitations do apply to our work. The first limitation is that our research

focused on responsibilities of the software of business information systems.

Therefore, other types of systems, like embedded systems and games, might

contain responsibilities not included in the TSLR.

Another limitation has to do with the completeness of the typology. Despite our

extensive literature study and validation activities, we cannot ensure that all types

of responsibilities, common in business information systems, are represented in the

TSLR. However, future additions and evolution are taken into account; the meta-

model of the typology enables extensions in width and depth.

A third limitation is that the typology could be viewed and used as a layered

model. However, the typology is not intended to be a template for layered designs,

with layers exactly matching the main types of responsibility of the typology.

Layered designs in practice should be designed to meet the specific requirements of

the system. The number and names of the required layers may vary, the

responsibilities per layer may vary, and a layer may contain sub-responsibilities

from different main types of responsibility within the TSLR.

Future work is needed to address the limitations and enlarge the scope of the

typology. At first, future research may be aimed on the applicability and scope of

the TSLR and RTT. It will be interesting to study the effectiveness of the TSLR

and RTT when practitioners and students apply these instruments. Next, to enlarge

the field of application of the TSLR, literature and case studies are needed on the

responsibilities of other types of software systems (other than business information

systems). Finally, it will be interesting to study the applicability of the instruments

in the context of other software architecture patterns.

Conclusions

181

8.3.3 Enterprise Architecture Realization Assessment

“The discipline of enterprise architecture has already been subject to impressive

development, but there is still some way to go” (Simon et al. 2013). Our research in

the domain of enterprise architecture has focused on the effectiveness of the EA

realization process of EA Management (EAM) functions, and it has resulted in a

novel instrument, the Enterprise Architecture Realization Scorecard (EARS). The

instrument has been used in practice, and we have presented two assessment cases

to illustrate the use of the instrument. The outcomes of the case studies give us

reasons to believe that the EARS can be applied conveniently and is quite effective

as an assessment instrument with awareness and improvement purposes.

However, there are some limitations to our research so far. Although three

assessments in different types of organizations were conducted in the Netherlands,

our research findings are not inevitably valid for other companies, sectors, or

countries. Furthermore, our study could not provide a valid conclusion regarding

the efficiency of the assessment method, since it did not include a comparison with

other assessment approaches. The EARS approach appeared to be quite efficient to

the research team, because after five to six interviews, the image was sufficiently

sharp and the results could be rated. Subsequent interviews did add little new

knowledge to the assessment, but were useful to confirm findings.

Interesting topics for future work emerged during this study. More case study

research could provide more insight, in both the assessment instrument and the

performance of EAM functions. Furthermore, it is interesting to compare EARS

and other EA assessments approaches, for instance maturity model based

approaches, in theory and practice. It could contribute to the further development

of the set of indicators used in EA research. In addition, it might reveal and explain

correlations between high scores in the EARScorecard and high scores on focus

areas of maturity models, which may be used in both approaches to substantiate the

approach, as well as the advice provided in practice.

Chapter 8

182

183

References

Adersberger, J., and Philippsen, M. (2011). ReflexML: UML-based architecture-to-

code traceability and consistency checking. In 5th European Conference on

Software Architecture (pp. 344–359).

Aier, S., Kurpjuweit, S., Schmitz, O., Schulz, J., Thomas, A., and Winter, R.

(2008). An Engineering Approach to Enterprise Architecture Design and its

Application at a Financial Service Provider. In P. Looos, M. Nüttgens, K.

Turowski, & D. Werth (Eds.), Proceedings of Modellierung betrieblicher

Informationssysteme (pp. 115 – 130). Gesellschaft für Informatik.

Ali, N., Rosik, J., and Buckley, J. (2012). Characterizing real-time reflexion-based

architecture recovery: an in-vivo multi-case study. 8th International

Conference on Quality of Software Architectures, 23–32.

Allen, P., and Frost, S. (1997). Component Based Development for Enterprise

Systems: Applying the Select Approach. Cambridge University Press.

Arlt, S., Podelski, A., Bertolini, C., Schäf, M., Banerjee, I., and Memon, A. M.

(2012). Lightweight static analysis for GUI testing. In Software Reliability

Engineering, ISSRE (pp. 301–310). IEEE.

Avgeriou, P., and Zdun, U. (2005). Architectural Patterns Revisited — A Pattern

Language. In 10th European Conf. Pattern Languages of Programs

(EuroPLoP) (pp. 431–470).

Barowski, L., and Cross, J. (2002). Extraction and use of class dependency

information for Java. In Reverse Engineering, 2002. Ninth Working

Conference on (pp. 309–315). IEEE.

Bass, L., Clements, P., and Kazman, R. (2012). Software Architecture in Practice

(Third Edit). Addison-Wesley.

Binkley, D. (2007). Source Code Analysis: A Road Map. In Future of Software

Engineering (FOSE ’07) (pp. 104–119). IEEE.

Bischofberger, W. R., Kühl, J., and Löffler, S. (2004). Sotograph - A Pragmatic

Approach to Source Code Architecture Conformance Checking. In F.

Oquendo, B. Warboys, & R. Morrison (Eds.), European Workshop on

Software Architecture (Vol. 3047, pp. 1–9). Springer.

References

184

Bucher, T., Fischer, R., Kurpjuweit, S., and Winter, R. (2006). Enterprise

Architecture Analysis and Application – An Exploratory Study. In

Proceedings of Trends in Enterprise Architecture Research. Hong Kong.

Buckl, S., Matthes, F., and Schweda, C. M. (2009). Classifying Enterprise

Architecture Analysis Approaches. In Enterprise Interoperability (pp. 66–79).

Springer.

Buckley, J., Mooney, S., Rosik, J., and Ali, N. (2013). JITTAC: A Just-in-Time

tool for architectural consistency. In 2013 35th International Conference on

Software Engineering (ICSE) (pp. 1291–1294). Ieee.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M. (1996).

Pattern-Oriented Software Architecture: A System of Patterns, Volume 1.

John Wiley & Sons.

Callo Arias, T. B., Spek, P., and Avgeriou, P. (2011). A practice-driven systematic

review of dependency analysis solutions. Empirical Software Engineering,

16(5), 544–586.

Canfora, G., Di Penta, M., and Cerulo, L. (2011). Achievements and challenges in

software reverse engineering. Communications of the ACM, 54(4), 142–151.

Caracciolo, A., Lungu, M. F., and Nierstrasz, O. (2015). A Unified Approach to

Architecture Conformance Checking. In Proceedings of the 12th Working

IEEE/IFIP Conference on Software Architecture (WICSA) (p. To appear).

ACM Press.

Chen, D., Doumeingts, G., and Vernadat, F. (2008). Architectures for enterprise

integration and interoperability: Past, present and future. Computers in

Industry, 59(7), 647–659.

Clements, P., Bachmann, F., Bass, L., Garlan, D., Merson, P., Ivers, J., … Nord, R.

(2010). Documenting Software Architectures: Views and Beyond. Pearson

Education.

Clements, P., and Nord, R. (2000). Documenting a Layered Software Architecture.

In Fourth International Software Architecture Workshop Limerick (pp. 121–

124).

Clements, P., and Shaw, M. (2009). “The golden age of software architecture”

revisited. IEEE Software, 26(4), 70–72.

Cockburn, A. (1997). Structuring Use Cases with Goals. Journal of Object-

Oriented Programming, (Sep.-Oct. (part I) and Nov.-Dec. (part II)).

De Silva, L., and Balasubramaniam, D. (2012). Controlling software architecture

erosion: A survey. Journal of Systems and Software, 85(1), 132–151.

References

185

Deissenboeck, F., Heinemann, L., Hummel, B., and Juergens, E. (2010). Flexible

architecture conformance assessment with ConQAT. In 2010 ACMIEEE 32nd

International Conference on Software Engineering (Vol. 2, pp. 247–250).

IEEE.

Deissenboeck, F., Pizka, M., and Seifert, T. (2005). Tool Support for Continuous

Quality Assessment. 13th IEEE International Workshop on Software

Technology and Engineering Practice (STEP’05), 127–136.

Department of Defense. (2009). The Department of Defense Architecture

Framework (DoDAF), version 2.

Dijkstra, E. W. (1968). The structure of the “THE”-multiprogramming system.

Communications of the ACM, 11(5), 341–346.

Ducasse, S., and Pollet, D. (2009). Software Architecture Reconstruction: A

Process-Oriented Taxonomy. IEEE Transactions on Software Engineering,

35(4), 573–591.

Dyer, R., Rajan, H., Nguyen, H. A., and Nguyen, T. N. (2013). A large-scale

empirical study of Java language feature usage.

Emanuel, A. W. R., and Surjawan, D. J. (2012). Revised Modularity Index to

Measure Modularity of OSS Projects with Case Study of Freemind.

International Journal of Computer Applications, 59(12), 28.

Erl, T. (2008). SOA Design Patterns. Prentice Hall.

Evans, E. (2004). Domain-Driven Design: Tackling Complexity in the Heart of

Software. Addison-Wesley Professional.

FAC-IFIP Task Force. (1999). GERAM: Generalized Enterprise Reference

Architecture and Methodology.

Feilkas, M., Ratiu, D., and Jurgens, E. (2009). The loss of architectural knowledge

during system evolution: An industrial case study. In 2009 IEEE 17th

International Conference on Program Comprehension (pp. 188–197). IEEE.

Foorthuis, R., Steenbergen, M. Van, Mushkudiani, N., Bruls, W., Brinkkemper, S.,

and Bos, R. (2010). On course, but not there yet: Enterprise Architecture

conformance and benefits in systems development. In Proceedings of the

International Conference on Information Systems.

Fowler, M., Rice, D., Foemmel, M., Hieatt, E., Mee, M., and Stafford, R. (2003).

Patterns of enterprise application architecture. Addison-Wesley, Boston,

MA, USA.

Gamma, E., Helm, R., Johnson, R., and Vlissedes, J. (1995). Design Patterns:

Elements of Reusable Object-Oriented Software. Pearson Education.

References

186

Gleirscher, M., and Golubitskiy, D. (2012). On the Benefit of Automated Static

Analysis for Small and Medium-Sized Software Enterprises. Software

Quality. Process Automation In Software Development.

Gleirscher, M., Golubitskiy, D., Irlbeck, M., and Wagner, S. (2013). Introduction

of static quality analysis in small- and medium-sized software enterprises:

experiences from technology transfer. Software Quality Journal.

Gorton, I. (2006). Essential Software Architecture. Springer Berlin Heidelberg.

Haitzer, T., and Zdun, U. (2012). DSL-based Support for Semi-Automated

Architectural Component Model Abstraction Throughout the Software

Lifecycle Categories and Subject Descriptors. In Proceedings of the 8th

international ACM SIGSOFT conference on Quality of Software Architectures

(pp. 61–70).

Harrison, N. B., and Avgeriou, P. (2008). Analysis of Architecture Pattern Usage

in Legacy System Architecture Documentation. In 6th Working IEEE/IFIP

Conference on Software Architecture (pp. 147–156). IEEE Comput. Soc.

Herold, S., Mair, M., Rausch, A., and Schindler, I. (2013). Checking Conformance

with Reference Architectures: A Case Study. In Enterprise Distributed Object

Computing Conference (EDOC) (pp. 71–80).

Hevner, A., March, S., Park, J., and Ram, S. (2004). Design science in information

systems research. MIS Quarterly, 28(1), 75–105.

Huynh, S., Cai, Y., Song, Y., and Sullivan, K. (2008). Automatic modularity

conformance checking. In Proceedings of the 13th international conference

on Software engineering - ICSE ’08 (pp. 411–420). New York, New York,

USA: ACM Press.

ISO. (2007). Iso/iec 42010:2007 systems and software engineering {recommended

practice for architectural description of software-intensive systems}.

ISO/IEC. (2011). 25010 Systems and software engineering - System and software

product Quality Requirements and Evaluation (SQuaRE) - System and

software quality models.

IT Governance Institute. (2007a). CobiT 4.1.

IT Governance Institute. (2007b). CobiT 4.1 Excerpt, Executive Summary.

Johnson, P., Johansson, E., Sommestad, T., and Ullberg, J. (2007). A Tool for

Enterprise Architecture Analysis. Proceedings of the International Enterprise

Distributed Object Computing Conference, 142–142.

References

187

Kazman, R., Bass, L., and Klein, M. (2006). The essential components of software

architecture design and analysis. Journal of Systems and Software, 79(8),

1207–1216.

Knodel, J., Muthig, D., Naab, M., and Zeckzer, D. (2006). Towards empirically

validated software architecture visualization. In Proceedings of the 2006 ACM

symposium on Software visualization - SoftVis ’06 (p. 187). New York, New

York, USA: ACM Press.

Knodel, J., and Popescu, D. (2007). A Comparison of Static Architecture

Compliance Checking Approaches. In Working IEEE/IFIP Conference on

Software Architecture (pp. 12–21). IEEE.

Ko, A. J., Myers, B. A., Member, S., Coblenz, M. J., and Aung, H. H. (2006). An

Exploratory Study of How Developers Seek , Relate , and Collect Relevant

Information during Software Maintenance Tasks. IEEE Transactions on

Software Engineering, 32(12), 971–987.

Köppe, C., and Pruijt, L. (2014). Improving Students ’ Learning in Software

Engineering Education through Multi-Level Assignments. In Proceedings of

Fourth Computer Science Education Research Conference, CSERC’14.

Berlin, Germany.

Koschke, R. (2010). Incremental Reflexion Analysis. 14th European Conference

on Software Maintenance and Reengineering, 1–10.

Koschke, R., Frenzel, P., Breu, A. P. J., and Angstmann, K. (2009). Extending the

reflexion method for consolidating software variants into product lines.

Software Quality Journal, 17(4), 331–366.

Koschke, R., and Simon, D. (2003). Hierarchical reflexion models. In 10th

Working Conference on Reverse Engineering (pp. 36–45).

Krafzig, D., Banke, K., and Slama, D. (2005). Service-Oriented Architecture Best

Practices. Prentice-Hall.

Kruchten, P. B. (1995). The 4+1 View Model of architecture. IEEE Software,

12(6), 42–50.

Kruchten, P., Lago, P., and Vliet, H. Van. (2006a). Building up and reasoning

about architectural knowledge. Quality of Software Architectures, 43–58.

Kruchten, P., Obbink, H., and Stafford, J. A. (2006b). The Past, Present, and Future

of Software Architecture. IEEE Software, (March / April 2006).

Lange, M., Mendling, J., and Recker, J. C. (2012). Measuring the realization of

benefits from enterprise architecture management. Journal of Enterprise

Architecture, 8(2), 30–44.

References

188

Lankhorst, M. et al. (2009). Enterprise Architecture at Work: Modeling,

Communication, and Analysis. Springer, Berlin.

Larman, C. (2005). Applying UML And Patterns. Prentice Hall PTR.

Löhe, J., and Legner, C. (2014). Overcoming implementation challenges in

enterprise architecture management : a design theory. Information Systems

and E-Business Management, 12, 101–137.

Luftman, J. (2000). Assessing business-IT alignment maturity. Communications of

AIS, 4(Article 14).

Morganwalp, J., and Sage, A. (2004). Enterprise architecture measures of

effectiveness. International Journal of Technology, Policy and Management,

4(1), 81–94.

MSDN. (2009). Microsoft Application Architecture Guide, 2nd ed. Microsoft

Corporation.

Murphy, G. C., Notkin, D., and Sullivan, K. (1995). Software reflexion models.

ACM SIGSOFT Software Engineering Notes, 20(4), 18–28.

Obitz, T., and Babu, M. K. (2009). Enterprise Architecture Expands its Role in

Strategic Business Transformation, Infosys Enterprise Architecture Survey

2008-2009.

Olsson, T., Toll, D., and Ericsson, M. (2014). Evaluation of a Static Architectural

Conformance Checking Method in a Line of Computer Games. In QoSA ’14

Proceedings of the 10th international ACM Sigsoft conference on Quality of

software architectures (pp. 113–118). ACM Press.

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into

modules. Communications of the ACM, 15(12), 1053–1058.

Passos, L., Terra, R., Valente, M. T., Diniz, R., and Das Chagas Mendonca, N.

(2010). Static Architecture-Conformance Checking: An Illustrative Overview.

IEEE Software, 27(5), 82–89.

Peffers, K., Tuunanen, T., Rothenberger, M. A., and Chatterjee, S. (2008). A

design science research methodology for information systems research.

Journal of Management Information Systems, 24(3), 45–77.

Perry, D. E., and Wolf, A. L. (1992). Foundations for the Study of Software

Architecture. ACM SIGSOFT Software Engineering Notes, 17, 40 – 52.

Podgurski, A., and Clarke, L. A. (1990). A formal model of program dependences

and its implications for software testing, debugging, and maintenance. IEEE

Transactions on Software Engineering, 16(9), 965–979.

References

189

Pruijt, L., and Brinkkemper, S. (2014). A metamodel for the support of

semantically rich modular architectures in the context of static architecture

compliance checking. In WICSA 2014 Companion Volume (pp. 1–8). ACM

Press.

Pruijt, L., Köppe, C., and Brinkkemper, S. (2013a). Architecture Compliance

Checking of Semantically Rich Modular Architectures: A Comparison of

Tool Support. In 2013 IEEE International Conference on Software

Maintenance (pp. 220–229). IEEE Computer Society Press.

Pruijt, L., Köppe, C., and Brinkkemper, S. (2013b). On the Accuracy of

Architecture Compliance Checking: Accuracy of Dependency Analysis and

Violation Reporting. In H. Kagdi, D. Poshyvanyk, & M. Di Penta (Eds.), 21st

International Conference on Program Comprehension (pp. 172–181). San

Francisco, CA, USA: IEEE Computer Society Press.

Pruijt, L., Köppe, C., Brinkkemper, S., and van der Werf, J. M. (2015). The

Accuracy of Dependency Analysis in Static Architecture Compliance

Checking. Submitted.

Pruijt, L., Köppe, C., van der Werf, J. M., and Brinkkemper, S. (2014).

HUSACCT: Architecture Compliance Checking with Rich Sets of Module

and Rule Types. In Proceedings of the 29th ACM/IEEE international

conference on Automated software engineering - ASE ’14 (pp. 851–854).

ACM Press.

Pruijt, L., Slot, R., Plessius, H., Bos, R., and Brinkkemper, S. (2012). The

Enterprise Architecture Realization Scorecard: A Result Oriented Assessment

Instrument. In S. Aier, M. Ekstedt, F. Matthes, E. Proper, & J. L. Sanz (Eds.),

Trends in Enterprise Architecture Research (Vol. LNBIP 131, pp. 300–318).

Springer Berlin Heidelberg.

Pruijt, L., Slot, R., Plessius, H., and Brinkkemper, S. (2013c). The EARScorecard –

An Instrument to Assess the Effectiveness of the EA Realization Process.

Journal of Enterprise Architecture, 09-02(May), 20–31.

Pruijt, L., Wiersema, W., and Brinkkemper, S. (2013d). A Typology Based

Approach to Assign Responsibilities to Software Layers. In Proceedings of

the 20th Conference on Pattern Languages of Programs (PLoP ’13). ACM

Press.

Rahimi, R., and Khosravi, R. (2010). Architecture conformance checking of multi-

language applications. International Conference on Computer Systems and

Applications, 1–8.

References

190

Ross, J. (2003). Creating a strategic IT architecture competency: Learning in

stages. MIS Quarterly, 2(2).

Rozanski, N., and Woods, E. (2005). Software Systems Architecture. Addison-

Wesley.

Rutar, N., Almazan, C. B., and Foster, J. S. (2004). A Comparison of Bug Finding

Tools for Java. In 15th International Symposium on Software Reliability

Engineering (pp. 245–256). Ieee.

Saha, P. (2004). Analyzing the open group architecture framework from the geram

perspective. The Open Group, Tech. Rep.

Sangal, N., Jordan, E., Sinha, V., and Jackson, D. (2005). Using dependency

models to manage complex software architecture. In Conference on Object

oriented programming systems languages and applications (pp. 167–176).

Saraiva, J., Soares, S., and Castor, F. (2010). Assessing the impact of AOSD on

layered software architectures. In European Conference on Software

Architecture (pp. 344–351).

Sarkar, S., Rama, G., and Shubha, R. (2006). A method for detecting and

measuring architectural layering violations in source code. In APSEC.

Savolainen, J., and Myllarniemi, V. (2009). Layered architecture revisited—

Comparison of research and practice. In WICSA/ECSA (pp. 317–320).

Schelp, J., and Stutz, M. (2007). A balanced scorecard approach to measure the

value of enterprise architecture. Journal of Enterprise Architecture, 3(4), 8–

14.

Shaw, M., and Clements, P. (2006). The golden age of software architecture. IEEE

Software, 23(2), 31–39.

Shaw, M., and Garlan, D. (1996). Software Architecture: Perspectives on an

Emerging Discipline. Prentice Hall.

Simon, D., Fischbach, K., and Schoder, D. (2013). An Exploration of Enterprise

Architecture Research. Communications of AIS, 32(January 2013), 1–72.

Snoeck, M., Poelmans, S., and Dedene, G. (2000). A layered software specification

architecture. In Conceptual Modeling—ER 2000.

Stafford, J. A., and Wolf, A. L. (2001). Architecture-level dependence analysis for

software systems. International Jounal of Software Engineering and

Knowledge Engineering, 11(4), 431–451.

References

191

Sutton, A., Maletic, J. I., and Ohio, K. (2007). Mappings for Accurately Reverse

Engineering UML Class Models from C ++. Information and Software

Technology, 49(3), 212–229.

Tamm, T., Seddon, P., Shanks, G., and Reynolds, P. (2011). How Does Enterprise

Architecture Add Value to Organisations? Communications of the AIS, 28(1).

Tempero, E. (2009). How Fields are Used in Java: An Empirical Study. In

Australian Software Engineering Conference (ASWEC 2009) (pp. 91–100).

Tempero, E., Noble, J., and Melton, H. (2008). How do Java programs use

inheritance? An empirical study of inheritance in Java software. In European

Conference on Object- Oriented Programming (ECOOP) (pp. 667–691).

Springer, Berlin.

Tempero, E., Yang, H. Y., and Noble, J. (2013). What programmers do with

inheritance in java. In 27th European Conference on Object Oriented

Programming (pp. 577–601). Springer, Berlin.

Terra, R., and Valente, M. (2009). A dependency constraint language to manage

object oriented software architectures. Software: Practice and Experience,

39(12), 1073–1094.

The Open Group. (2009). The Open Group Architecture Framework: Version 9,

Enterprise Edition.

Tichelaar, S., Ducasse, S., and Demyer, S. (2000). Famix and xmi. Proceedings

Workshop on Exchange Formats, 296–299.

Van der Raadt, B., Bonnet, M., Schouten, S., and van Vliet, H. (2010). The relation

between EA effectiveness and stakeholder satisfaction. Journal of Systems

and Software, 83(10), 1954–1969.

Van der Raadt, B., Slot, R., and Vliet, H. (2007). Experience Report: Assessing a

Global Financial Services Company on its Enterprise Architecture

Effectiveness Using NAOMI. In 2007 40th Annual Hawaii International

Conference on System Sciences (HICSS’07) (p. 218b–218b). IEEE.

Van Eyck, J., Boucké, N., Helleboogh, A., and Holvoet, T. (2011). Using code

analysis tools for architectural conformance checking. In Proceeding of the

6th international workshop on SHAring and Reusing architectural Knowledge

- SHARK ’11 (pp. 53–54). New York, New York, USA: ACM Press.

Van Steenbergen, M., Schipper, J., Bos, R., and Brinkkemper, S. (2010). The

Dynamic Architecture Maturity Matrix: Instrument Analysis and Refinement.

In A. Dan, F. Gittler, & F. Toumani (Eds.), Proceedings of Trends in

References

192

Enterprise Architecture Research (Vol. 6275, pp. 48–61). Springer Berlin

Heidelberg.

Van Steenbergen, M., van den Berg, M., and Brinkkemper, S. (2007). A Balanced

Approach to Developing the Enterprise Architecture Practice. In J. Filipe, J.

Cordeiro, & J. Cardoso (Eds.), Proceedings of the International Conference

on Enterprise Information Systems (pp. 240–253). Springer.

Van Zeist, B., Hendriks, P., Paulussen, R., and Trienekens, J. (1996). Kwaliteit van

software producten. Kluwer, Deventer, Netherlands.

Wagter, R., Berg, M. van den, Luijpers, J., and Steenbergen, M. van. (2005).

Dynamic Enterprise Architecture: How to Make It Work. John Wiley & Sons,

New York.

Winter, K., Buckl, S., Matthes, F., and Schweda, C. M. (2010). Investigating the

state-of-the-art in enterprise architecture management method in literature and

practice. In Proceedings of the Mediterranean Conference on Information

Systems.

Winter, R., and Fischer, R. (2007). Essential layers, artifacts, and dependencies of

enterprise architecture. Journal of Enterprise Architecture, (May), 1–12.

Wirfs-Brock, R., and Wilkerson, B. (1989). Object-oriented design: a

responsibility-driven approach. In Object-oriented programming systems,

languages and applications (OOPSLA ’89) (pp. 71–75).

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and Wesslén, A.

(2012). Experimentation in Software Engineering. Springer.

Woods, E., and Rozanski, N. (2010). Unifying software architecture with its

implementation. In 4th European Conference on Software Architecture (pp.

55–58). New York, New York, USA: ACM Press.

Yin, R. K. (2014). Case Study Research : Design and Methods (Fifth edit). SAGA

Publications.

Zachman, J. a. (1987). A framework for information systems architecture. IBM

Systems Journal, 26(3), 276–292.

Zoller, C., and Schmolitzky, A. (2012). Measuring inappropriate generosity with

access modifiers in java systems. In Joint Conf. of Int. Workshop on Software

Measurement and Conf. on Software Process and Product Measurement (pp.

43–52). IEEE.

193

Publication List

Publications on which this dissertation is based

Pruijt, L., and Brinkkemper, S. (2014). A metamodel for the support of

semantically rich modular architectures in the context of static architecture

compliance checking. In WICSA 2014 Companion Volume/ First Workshop

on Software Architecture Erosion and Architectural Consistency (pp. 1–8).

ACM Press.

Pruijt, L., Köppe, C., and Brinkkemper, S. (2013a). Architecture Compliance

Checking of Semantically Rich Modular Architectures: A Comparison of

Tool Support. In 2013 IEEE International Conference on Software

Maintenance (pp. 220–229). IEEE Computer Society Press.

Pruijt, L., Köppe, C., and Brinkkemper, S. (2013b). On the Accuracy of

Architecture Compliance Checking: Accuracy of Dependency Analysis and

Violation Reporting. In H. Kagdi, D. Poshyvanyk, & M. Di Penta (Eds.), 21st

International Conference on Program Comprehension (pp. 172–181). San

Francisco, CA, USA: IEEE Computer Society Press.

Pruijt, L., Köppe, C., Brinkkemper, S., and van der Werf, J. M. (2015). The

Accuracy of Dependency Analysis in Architecture Compliance Checking.

Submitted for publication.

Pruijt, L., Köppe, C., van der Werf, J. M., and Brinkkemper, S. (2014).

HUSACCT: Architecture Compliance Checking with Rich Sets of Module

and Rule Types. In Proceedings of the 29th ACM/IEEE international

conference on Automated software engineering - ASE ’14 (pp. 851–854).

ACM Press.

Pruijt, L., Slot, R., Plessius, H., Bos, R., and Brinkkemper, S. (2012). The

Enterprise Architecture Realization Scorecard: A Result Oriented Assessment

Instrument. In S. Aier, M. Ekstedt, F. Matthes, E. Proper, & J. L. Sanz (Eds.),

Trends in Enterprise Architecture Research (Vol. LNBIP 131, pp. 300–318).

Springer Berlin Heidelberg.

Publication List

194

Pruijt, L., Slot, R., Plessius, H., and Brinkkemper, S. (2013c). The EARScorecard –

An Instrument to Assess the Effectiveness of the EA Realization Process.

Journal of Enterprise Architecture, 09-02(May), 20–31.

Pruijt, L., Wiersema, W., and Brinkkemper, S. (2013d). A Typology Based

Approach to Assign Responsibilities to Software Layers. In Proceedings of

the 20th Conference on Pattern Languages of Programs (PLoP ’13). ACM

Press.

Other publications

Pruijt, L., and van der Werf, J.M.E.M. (2015). Dependency Types and Subtypes in

the Context of Architecture Reconstruction and Compliance Checking. In

ECSAW ’15 Proceedings of the 2015 European Conference on Software

Architecture Workshop /Second Workshop on Software Architecture Erosion

and Architectural Consistency (Article No. 56). ACM Press.

Köppe, C., and Pruijt, L. (2015). Tackling Real World Complexity in a Software

Engineering Student Project - An Experience Report. Presented at

SPLASH-E'15, Pittsburgh, USA.

Köppe, C., and Pruijt, L. (2015). Tool Demo - Teaching Software Architecture

Concepts with HUSACCT. Presented at SPLASH-E'15, Pittsburgh, USA.

Wiersema, W., and Pruijt, L. (2015). Logical Layering Heuristic Pattern. In

Proceedings of the 22th Conference on Pattern Languages of Programs

(PLoP ’15). ACM Press.

Köppe, C., and Pruijt, L. (2014). Improving Students ’ Learning in Software

Engineering Education through Multi-Level Assignments. In Proceedings of

Fourth Computer Science Education Research Conference, CSERC’14.

Berlin, Germany.

Plessius, H., Slot, R., and Pruijt, L. (2012). On the Categorization and

Measurability of Enterprise Architecture Benefits with the Enterprise

Architecture Value Framework. In S. Aier, M. Ekstedt, F. Matthes, E. Proper,

& J. L. Sanz (Eds.), Trends in Enterprise Architecture Research, LNBIP 131

(pp. 79–92).

Pruijt, L., Slot, R., and Plessius, H. (2012). Enterprise Architecture Realization

Index. In Archivalue, Portfolio Management with Enterprise Architecture

(pp. 72–81). Enschede, The Netherlands: Novay.

Publication List

195

Pruijt, L., and Wiersema, W. (2011b). Meer inzicht in een gelaagde architectuur,

Deel 3: Ontwerpen van een Fysiek Lagenmodel. Release - Vakblad Voor

Software Architecten, Juni, 15–19.

Pruijt, L., and Wiersema, W. (2011a). Meer inzicht in een gelaagde architectuur,

Deel 2: Ontwerpen van een Logisch Lagenmodel. Release - Vakblad Voor

Software Architecten, Maart, 18–21.

Pruijt, L. (2010). Meer inzicht in een gelaagde architectuur, Deel 1: Uitleg,

terminologie en methoden. Release - Vakblad Voor Software Architecten,

December, 22–26.

Pruijt, L., and Lommers, J. (2003). Productgerichte architectuur. Software Release

Magazine, 1, 17–20.

Publication List

196

197

Appendix 1: Application Case HUSACCT

To illustrate the applicability of our ACC approach and our tool HUSACCT, as

described in Chapter 2-4, a case study is presented in this appendix. The

architecture compliance check has been conducted with HUSACCT_4.3.

1.1 Introduction to the Case System

The assessed system is an E-commerce system of a governmental organization

that is used by citizens and organizations, for example to register or view data, or

to apply for a license. The system is developed in C# and its architecture is based

on the .NET common application architecture (MSDN 2009). The system is

composed of: 1) multiple web-based client applications for a variety of products

and services; 2) one server-side ServiceComponent, the central component of the

application that handles and coordinates service request from web client

applications; and 3) multiple server-side plug-ins, which handle the specifics in

processing of the different products and services.

The architecture compliance check focuses on the central ServiceComponent,

which acts an application specific shell on top of Commerce Server, Microsoft’s E-

commerce system. The following keywords provide an impression of the

responsibilities of ServiceComponent: product catalog management, profile

management, basket and payment management, order management.

1.2 Intended Architecture

1.2.1 Intended Architecture as Documented

Prior to the actual compliance check, we have requested and received a description

of the intended modular software architecture, including the modules, the rules and

the mapping of modules to implemented software units. The intended architecture

of the ServiceComponent is based on the .NET common application architecture.

The architecture has proven to remain stable in the past three years, while the

number of products and services, provided to customers of the organization via the

E-commerce system, has grown from fifteen to sixty.

Appendix 1

198

The intended architecture of ServiceComponent can be labeled as a

Semantically Rich Modular Architecture (SRMA), since it contains modules of

five different types and rules of eight different types. An overview of the intended

architecture of the ServiceComponent is shown in Figure A.1 and Figure A.2. The

first figure provides a high-level overview. Three layers are distinguished, which

have the following responsibilities: 1) the Service layer provides the service

interface to the web applications; 2) the Logic layer contains the components

responsible for the business logic of the application; and 3) the Data layer is

responsible for access of the database and communication with infrastructural

services. Furthermore, two commonly used modules are visible: Infrastructure,

which contains utilities and other shared functionality, and Business Entities, which

contains data transfer objects. The rules of a strict layered style apply here: layers

are not allowed to make use of higher level layers, and layers are not allowed to

skip a layer in their usage relations. Consequently, the Service layer and Logic

Layer are not allowed to use infrastructural libraries that are abstracted by the Data

Layer.

More rules may be derived from Figure A.2, which provides an overview of the

modules and their intended usage relations in the form of an UML component

diagram. Identification of the rules based on the component model in the

Logic

Data

Service

Data Access Service Agents

Business Processes

Business
Components

Pipeline
Components

In
fr

as
tr

u
ct

u
re

B
u

si
n

es
s

En
ti

ti
es

Service Implementation

Service Contracts

Figure A.1: Overview modular architecture ServiceComponent

199

architecture document required interpretation, since an UML component model

contains uses dependencies, while constraints need to be derived from the model as

rules. The model presented here is an updated version of the originally received

model and a set of specified rules. Based on the first conformance checks it seemed

that some uses dependencies were missing in the original component model, which

was confirmed by the architect. Conversely, several rules were added, mainly

based on additional information obtained in an interview of the system’s architect.

Identification of the rules based on the UML component model in the architecture

document required interpretation. A UML component model contains uses

dependencies, while constraints need to be derived from the model. The most

relevant modules and rules are discussed below. A full specification of the

modules, the assigned software units and the checked rules is provided in the next

section.

The Service layer is composed of four submodules, of which only

ServiceImplementation is allowed to use the Logic layer, and more specifically,

Figure A.2: Component model ServiceComponent

Appendix 1

200

only BusinessProcesses. Furthermore, each submodule of Service is allowed to use

only one specified other module within Service.

The Logic layer is composed of three encapsulated modules, BusinessProcesses,

BusinessComponents, and Pipelines, which may be used only via their interfaces.

Furthermore, it is visible that only BusinessComponents and Pipelines are allowed

to use Microsoft’s CommerceServer.

The Data layer is composed of two modules, which may be used by a few

modules only: DataAccess only by BusinessComponents, and Serviceagent only by

BusinessProcesses and BusinessComponents. DataAccess is the only module

allowed to use library System.Data.

Finally, nearly all modules in the three layers are allowed to use Common, but

module Common.Infrastructure may only be used via its interface. For reasons of

clarity, the graphical model is simplified at this point: ServiceContracts,

ServiceHost, Pipeline, and DataAccess are exceptions; these modules are not

allowed to are not allowed to use module Common.

1.2.2 Intended Architecture in HUSACCT

In HUSACCT, the intended architecture starts with the definition of the modules in

the view Define intended architecture, visible in Figure A.3. This view shows the

modules in the module hierarchy of the intended architecture of

Figure A.3: Intended Architecture as defined in HUSACCT

201

ServiceComponent. When a module is added, a module type may be selected. As

visible in Figure A.3, all five supported module types are present in the intended

architecture: components, interfaces, layers, subsystems, and external systems.

Assignment of implemented software units to the intended modules is supported

in this view too. The figure shows that module BusinessProcesses has two assigned

software units in the implemented architecture. Software units (packages or

namespaces, and classes) can be assigned easily, subsequent to source code

analysis, by selection of units in an overview.

Rule definition is enabled from the same view as well. Figure A.3 shows that

two rules are defined for the selected module BusinessProcesses. One rule is of

type Facade convention, which forbids usage of the component other than via its

interface(s). This rule is automatically generated, when a module of type

Component is created. The other rule is of type “Is not allowed to use”, and it

restricts the usage of module Data.DataAccess.

1.2.3 All Modules with Assigned Software Units

A table with all modules, their type, and the assigned software units per module is

provided below. The table is generated as part of the intended architecture report.

Table A.1: All modules with assigned software units

Id Module Assigned Software Units

1 Service (layer)

2 ServiceContracts (subsystem) Ecom.ServComp.Service.Contracts (package)

3 Messages (subsystem) Ecom.ServComp.Service.Contracts.Messages (package)

4 ServiceImplementation (subsystem) Ecom.ServComp.Service.Implementation (package)

6 ServiceAgent (subsystem) Ecom.ServComp.Integration (package)

Ecom.ServComp.Service.Agent (package)

7 Logic (layer)

8 BusinessProcesses (component) Ecom.ServComp.Business.Processes (package)

Ecom.ServComp.Processes (package)

9 Interface<BusinessProcesses> (interface) Ecom.ServComp.Processes.Interfaces (package)

10 BusinessComponents (component) Ecom.ServComp.BusinessComponents (package)

11 Interface<BusinessComponents> (interface) Ecom.ServComp.BusinessComponents.Interfaces (package)

12 Pipeline (component) Ecom.ServComp.Pipeline (package)

13 Interface<Pipeline> (interface) Ecom.ServComp.Pipeline.Interfaces (package)

14 Data (layer)

15 DataAccess (subsystem) Ecom.ServComp.Data (package)

16 ExternalServiceAgent (subsystem) Ecom.ServComp.ServiceAgents (package)

Ecom.Xml (package)

17 Common (subsystem)

18 Infrastructure (component) Ecom.ServComp.Infrastructure (package)

19 Interface<Infrastructure> (interface) Ecom.ServComp.Infrastructure.Interfaces (package)

20 Business Entities (subsystem) Ecom.ServComp.Business.Entities (package)

21 XmlUtilities (subsystem) Ecom.ServComp.XmlUtilities (package)

22 External (external library) xLibraries (package)

23 CommerceServer (external library) xLibraries.Microsoft.CommerceServer (library)

24 System (external library) xLibraries.System (library)

25 SystemData (external library) xLibraries.System.Data (library)

Appendix 1

202

1.2.4 All Architectural Rules with Exceptions

A table with all rules, including their exceptions is provided below. The table

shows that 17 rules of eight different types of rules are included in the intended

architecture. The table is generated as part of the intended architecture report.

Table A.2: All rules and exceptions

Id
E

x
c
e
p
ti

o
n

F
r
o
m

 m
o
d
u

le
R

u
le

 t
y
p
e

T
o
 m

o
d
u

le
E

x
p
r
e
s
s
io

n

1
C

o
m

m
o

n
.I

n
fr

a
s
tr

u
c
tu

re
F

a
c
a
d

e
 c

o
n

v
e
n

ti
o

n

2
C

o
m

m
o

n
Is

 o
n

ly
 a

ll
o

w
e
d

 t
o

 u
s
e

E
xt

e
rn

a
l

3
D

a
ta

.D
a
ta

A
c
c
e
s
s

Is
 t

h
e
 o

n
ly

 m
o

d
u

le
 a

ll
o

w
e
d

 t
o

 u
s
e

E
xt

e
rn

a
l.
S

y
s
te

m
D

a
ta

4
D

a
ta

Is
 n

o
t

a
ll
o

w
e
d

 t
o

 b
a
c
k
 c

a
ll

5
L

o
g

ic
.B

u
s
in

e
s
s
C

o
m

p
o

n
e
n

ts
F

a
c
a
d

e
 c

o
n

v
e
n

ti
o

n

6
L

o
g

ic
.B

u
s
in

e
s
s
C

o
m

p
o

n
e
n

ts
Is

 n
o

t
a
ll
o

w
e
d

 t
o

 u
s
e

L
o

g
ic

.B
u

s
in

e
s
s
P

ro
c
e
s
s
e
s

7
L

o
g

ic
.B

u
s
in

e
s
s
P

ro
c
e
s
s
e
s

Is
 n

o
t

a
ll
o

w
e
d

 t
o

 u
s
e

D
a
ta

.D
a
ta

A
c
c
e
s
s

8
L

o
g

ic
.B

u
s
in

e
s
s
P

ro
c
e
s
s
e
s

F
a
c
a
d

e
 c

o
n

v
e
n

ti
o

n

9
L

o
g

ic
.P

ip
e
li
n

e
Is

 n
o

t
a
ll
o

w
e
d

 t
o

 u
s
e

D
a
ta

1
0

L
o

g
ic

.P
ip

e
li
n

e
Is

 t
h

e
 o

n
ly

 m
o

d
u

le
 a

ll
o

w
e
d

 t
o

 u
s
e

E
xt

e
rn

a
l.
C

o
m

m
e
rc

e
S

e
rv

e
r

E
xc

e
p

ti
o

n
L

o
g

ic
.B

u
s
in

e
s
s
C

o
m

p
o

n
e
n

ts
Is

 a
ll
o

w
e
d

 t
o

 u
s
e

E
xt

e
rn

a
l.
C

o
m

m
e
rc

e
S

e
rv

e
r

1
1

L
o

g
ic

.P
ip

e
li
n

e
F

a
c
a
d

e
 c

o
n

v
e
n

ti
o

n

1
2

L
o

g
ic

Is
 n

o
t

a
ll
o

w
e
d

 t
o

 b
a
c
k
 c

a
ll

1
3

S
e
rv

ic
e
.S

e
rv

ic
e
A

g
e
n

t
Is

 o
n

ly
 a

ll
o

w
e
d

 t
o

 u
s
e

S
e
rv

ic
e
.S

e
rv

ic
e
C

o
n

tr
a
c
ts

E
xc

e
p

ti
o

n
S

e
rv

ic
e
.S

e
rv

ic
e
A

g
e
n

t
Is

 a
ll
o

w
e
d

 t
o

 u
s
e

C
o

m
m

o
n

E
xc

e
p

ti
o

n
S

e
rv

ic
e
.S

e
rv

ic
e
A

g
e
n

t
Is

 a
ll
o

w
e
d

 t
o

 u
s
e

E
xt

e
rn

a
l.
S

y
s
te

m

1
4

S
e
rv

ic
e
.S

e
rv

ic
e
C

o
n

tr
a
c
ts

.M
e
s
s
a
g

e
s

N
a
m

in
g

 c
o

n
v

e
n

ti
o

n
*

R
e
s
p

o
n

s
e

E
xc

e
p

ti
o

n
S

e
rv

ic
e
.S

e
rv

ic
e
C

o
n

tr
a
c
ts

.M
e
s
s
a
g

e
s

N
a
m

in
g

 c
o

n
v

e
n

ti
o

n
 e

xc
e
p

ti
o

n
*

R
e
q

u
e
s
t

1
5

S
e
rv

ic
e
.S

e
rv

ic
e
C

o
n

tr
a
c
ts

Is
 o

n
ly

 a
ll
o

w
e
d

 t
o

 u
s
e

E
xt

e
rn

a
l

1
6

S
e
rv

ic
e
.S

e
rv

ic
e
Im

p
le

m
e
n

ta
ti

o
n

Is
 o

n
ly

 a
ll
o

w
e
d

 t
o

 u
s
e

S
e
rv

ic
e
.S

e
rv

ic
e
C

o
n

tr
a
c
ts

E
xc

e
p

ti
o

n
S

e
rv

ic
e
.S

e
rv

ic
e
Im

p
le

m
e
n

ta
ti

o
n

Is
 a

ll
o

w
e
d

 t
o

 u
s
e

C
o

m
m

o
n

E
xc

e
p

ti
o

n
S

e
rv

ic
e
.S

e
rv

ic
e
Im

p
le

m
e
n

ta
ti

o
n

Is
 a

ll
o

w
e
d

 t
o

 u
s
e

C
o

m
m

o
n

.B
u

s
in

e
s
s
 E

n
ti

ti
e
s

E
xc

e
p

ti
o

n
S

e
rv

ic
e
.S

e
rv

ic
e
Im

p
le

m
e
n

ta
ti

o
n

Is
 a

ll
o

w
e
d

 t
o

 u
s
e

L
o

g
ic

.B
u

s
in

e
s
s
P

ro
c
e
s
s
e
s

E
xc

e
p

ti
o

n
S

e
rv

ic
e
.S

e
rv

ic
e
Im

p
le

m
e
n

ta
ti

o
n

Is
 a

ll
o

w
e
d

 t
o

 u
s
e

E
xt

e
rn

a
l.
S

y
s
te

m

1
7

S
e
rv

ic
e

Is
 n

o
t

a
ll
o

w
e
d

 t
o

 s
k
ip

 c
a
ll

203

1.3 Implemented Architecture

To view the implemented architecture, the code needs to be analyzed first. When

the code analysis process is finished, an overview of the analysed architecture is

provided as visible in Figure A.4. The figure shows the Decomposition View of the

implemented architecture of ServiceComponent (ServComp in the

implementation). The software units (packages or namespaces, classes, inner

classes, and interfaces) within the application may be selected and opened.

Statistical data is provided for the whole application, while unit specific statistical

data is shown after selection of a package or class. In this case, the number of

classes and lines of code of the system are very high compared to the number of

dependencies. This may be explained by the fact that the packages ServiceAgents

and Xml contain many generated classes, which hold many lines of code, but only

a few lines of C#. The namespaces of interest to the ACC count 31 KLOC,

including commented lines and blank lines. The number of classes is including

inner classes, but excluding anonymous classes.

Figure A.4: Analysed application overview: Decomposition View

Appendix 1

204

Figure A.5 shows the Usage View tab of the Analysed application overview.

Within this view, usage relations between software units in the application can be

browsed, by selecting a From module and a To module. As a result, the number of

dependencies between the modules is calculated and shown, and the dependencies

between the modules are presented in the table at the bottom of the view.

The Decomposition View and Usage View form powerful means for manual

architecture reconstruction work. In addition, implemented architecture diagrams

may be used to study the implemented architecture. Figure A.6 shows the top-level

of the implemented architecture of the ServiceComponent.

Figure A.5: Analysed application overview: Usage View

Figure A.6: Implemented architecture diagram, top-level view

205

1.4 Architecture Compliance Check

Activation of the compliance check starts up a process that iterates through the

rules, and for each rule it checks if there is a class or dependency that violates the

rule, including its exceptions. Each type of rule has its own checking algorithm. An

overview of the results of the ACC of the ServiceComponent is presented in the

table below. The table is generated as part of a violation report in spreadsheet

format. The report also contains an overview of not violated rules, a sheet with all

the violations, and a sheet with statistics on the frequency of dependency types and

subtypes over all violating dependencies. The table below shows that ten of the

seventeen rules are violated, with a total of 654 violations.

 Figure A.7 shows the Validate conformance, Violations Per Rule view within

HUSACCT, with comparable information as in the table above, from the report. In

addition, this tab lists the violations for a selected rule. A double click on a

Figure A.7: Validate conformance view: Violations Per Rule

Table A.3: All violated rules with the numbers of reported violations

Id Logical module from Rule type Logical module to Violations

1 Common.Infrastructure Facade convention Common.Infrastructure 496

2 Data.DataAccess Is the only module allowed to use External.SystemData 7

3 Data Is not allowed to back call Data 12

4 Logic.BusinessComponents Facade convention Logic.BusinessComponents 5

5 Logic.BusinessProcesses Is not allowed to use Data.DataAccess 3

6 Logic.BusinessProcesses Facade convention Logic.BusinessProcesses 6

7 Logic.Pipeline Is the only module allowed to use External.CommerceServer 3

8 Logic.Pipeline Facade convention Logic.Pipeline 81

9 Service.ServiceAgent Is only allowed to use Service.ServiceContracts 2

10 Service.ServiceImplementation Is only allowed to use Service.ServiceContracts 39

Total: 654

Appendix 1

206

violation activates the code viewer, which shows the source code of the related

from class and highlights the line which hold the violating code construct. An

example is visible in Figure A.8.

In addition, the reported violations may be shown in intended architecture

diagrams, and in implemented architecture diagrams. The figures below show

Figure A.8: Code viewer highlighting a line that contains a violation

Figure A.9: Intended architecture diagram, top level

207

intended architecture diagrams. The diagram in Figure A.9 shows the intended top-

level modules with their types, and with the violating and non-violating

dependency relations in the implementation between the assigned software units. A

black, dashed arrow in the diagram represents dependencies only. The related

number indicates the number of dependencies. A red, dotted arrow represents

violations and dependencies. The first number indicated the number of violating

dependencies, while the second indicates the total number of dependencies.

Figure A.10 shows the modules at one decomposition level deeper in the

hierarchy. The diagram shows the intended modules within the Service layer, the

Logic layer, and the Data layer. For reasons of clarity, the intended modules

Common, and External are hidden. Figure A.9 and A.10 show that violations

against the architectural rules are not concentrated in one or two modules, but are

widespread throughout the code of ServiceComponent.

Figure A.10: Intended architecture diagram, decomposition level

Appendix 1

208

1.4.1 Interpretation of the Findings

Positive findings

In general, the module ServiceComponent seemed to be well-structured:

 Layers are distinguished.

 Modules within the layers represent different types of functionality, which

are in most cases quite well represented by the namespace names.

 The mapping of the intended architecture on the implemented architecture

(the implementation units in the source) is in most cases straightforward,

since the intended modules map to one or two complete namespaces only.

 In favor of the encapsulation of four modules, interfaces are provided.

 Data.DataAccess, and Data.ServiceAgent are implemented as adapters to

reduce dependencies on infrastructural libraries.

 The intended architecture has been stable through the years, although the

number of provided user services, which are processed by the system, has

grown the last three years from 15 to 60 different services.

Analysis of the Reported Violations

Ten out of 17 architectural rules were reported in the implementation. The total

number of violations is 654 on a total of 6115 dependencies (from classes within

namespace Ecom.ServCom), thus 10.7% of the dependencies violate rules.

In our opinion, the violations may be grouped as follows:

 Facade Convention violations form the largest group (violated rule 1, 4, 6,

and 8 in the overview of violated rules). This type of violations

compromises the encapsulation of components. In case of

ServiceComponent, the encapsulation of all four components is

compromised, but of component Infrastructure on a large scale. Many of

these violations seem to be harmless, but the large number of these

violations may hamper the maintainability of the component. In case of

PipeLine, seven classes in three different components violate this rule quite

frequently, by direct usage of five different classes in Pipeline. In case of

the other two components, only a few violations are reported.

 Violations of the layered model (violated rule 2, 3, and 7) undermine the

core of the architecture and might have serious consequences. However, the

number of violations is small. The twelve back calls from Data to Logic are

caused by one class in Data.ExternalServiceAgents.BizTalk, which is using

two different classes of module Logic.Pipeline and two different classes of

module Logic.BusinessComponents.

The other violated rules (2 and 7), in effect represent skip call rules, since

they represent usage of external services, while the modules assigned as

adapters to these external services are skipped. In these cases, only the

209

dependencies caused by using statements is reported, in fact dependencies

on namespaces. In this case, the actual usages of external classes are not

reported by HUSACCT, since the used classes are external and not included

in using statements (as often in C#).

 Violations to the assigned responsibility of a module (violated rule 5, 9, and

10) indicate that a module has more implemented responsibilities than

designed responsibilities, with the risk of duplications and reduced

maintainability.

 Especially module Service.ServiceImplementation requires attention,

since it exceeds its designed responsibilities substantially.

Appendix 1

210

211

Summary

In the last decades, architecture has emerged as a discipline in the domain of

Information Technology (IT). A well-accepted definition of architecture is from

ISO/IEC 42010: "The fundamental organization of a system, embodied in its

components, their relationships to each other and the environment, and the

principles governing its design and evolution." Currently, many levels and types of

architecture in the domain of IT have been defined. We have scoped our work to

two types of architecture: enterprise architecture and software architecture.

IT architecture work is demanding and challenging and includes, inter alia,

identifying architectural significant requirements (functional and non-functional),

designing and selecting solutions for these requirements, and ensuring that the

solutions are implemented according to the architectural design. To reflect on the

quality of architecture work, we have taken ISO/IEC 8402 as a starting point. It

defines quality as "the totality of characteristics of an entity that bear on its ability

to satisfy stated requirements". We consider architecture work to be of high

quality, when it is effective; when it answers stated requirements.

Although IT Architecture has been introduced in many organizations, the

elaboration does not always proceed without problems. In the domain of enterprise

architecture, most practices are still in the early stages of maturity with, for

example, low scores on the focus areas ‘Development of architecture’ and

‘Monitoring’ (of the implementation activities). In the domain of software

architecture, problems of the same kind are observed. For instance, architecture

designs are frequently poor and incomplete, while architecture compliance

checking is performed in practice on a limited scale only.

With our work, we intend to contribute to the advancement of architecture in the

domain of IT and the effectiveness of architecture work by means of the

development and improvement of supporting instruments and tools. In line with

this intention, the main research question of this thesis is:

How can the effectiveness of IT architecture work be evaluated and improved?

In the domain of software architecture, we have focused on modular

architectures, and in particular on the architect’s task to monitor the

implementation activities and to take care that the solutions are implemented

according to the architectural design. Here, Architecture Compliance Checking

Summary

212

(ACC) is a useful approach to bridge the gap between the high-level models of

architectural design and the implemented program code. In our view, ACC is not

only aimed at the improvement of the consistency of the implemented architecture

to the intended architecture, but also on the improvement of the intended

architecture, based on the insights gained at implementation level. Since the

adoption of ACC-tools is still limited in practice and education, we have conducted

a line of research with the focus on ACC support. We started this line of research

from a functional point of view, by identifying requirements regarding ACC

support, studying existing static ACC tools, and testing and comparing these tools

on the identified requirements. Thereafter, we focused our research on the solution

of identified problem areas.

An important requirement in our research concerns the support of semantically

rich modular architectures (SRMA). We use the term SRMA for an expressive

modular architecture description, composed of semantically different types of

modules (e.g., layers, subsystems, components), which are constrained by different

types of rules, such as basic dependency constraints, constraints related to layers,

and naming constraints. In practice and literature, many architectures can be

labeled as SRMA, since they contain modules with different semantics.

Based on our comparative tool research, we concluded that only limited support

was available for SRMAs. We also concluded that solutions were needed to bridge

the gap between modular architectures in software architecture documents on one

side, and module and rule models in ACC-tools on the other side. In line with these

conclusions, and based on an approach of design science research, we have

designed a metamodel for SRMA support. Moreover, we have developed

HUSACCT, an ACC-tool that provides extensive and configurable SRMA support.

To validate our approach, we have performed ACCs with our tool on professional

systems and open source systems, and we have used the tool in bachelor and

master courses on software architecture.

Static ACC focuses on the existence of rule violating dependencies between

modules. Because of the high number of dependencies at implementation level,

accurate tool support is essential for effective and efficient ACC. However, the

effectiveness is profoundly dependent on the tool’s ability to detect all the

dependencies between units in the implemented software and to report violating

dependencies. Based on this notion, we have tested tools with the following

research question in mind: How accurate do ACC-tools report dependencies and

violations against dependency rules? To answer the question, ten tools were tested

and compared by means of a custom-made test application. In addition, the code of

an open source system was used to compare these tools on the number and

precision of reported violation and dependency messages. The test results show

large differences between the tools, but the main conclusion is that all tools could

213

improve the accuracy of the reported dependencies and violations. Based on the

test results, ten hard-to-detect dependency types and four challenges in dependency

detection are identified. To substantiate the relevance of the findings, the results of

a frequency analysis of the hard-to-detect dependencies in five open source

systems are presented.

In the design of modular architectures, the assignment of responsibility to

modules is an essential step. Based on the allocated responsibilities, architectural

rules may be defined to restrict dependencies. Layers are commonly used in

modular architectures, but many layered architectures are poorly designed and

documented, especially with respect to the assignment of responsibilities. To

support software architects in their task to design layered architectures of high

quality, we propose and illustrate two novel instruments: the Typology of Software

Layer Responsibility (TSLR) and the complementary Responsibility Trace Table

(RTT).

Last, but not least, we present our research in the domain of enterprise

architecture (EA), aimed on the development of an assessment instrument to

measure and improve the EA management function's ability to realize its goals.

This research was performed in the context of the ArchiValue project, a

collaboration between Novay, APG, the Dutch Tax and Customs Administration,

BiZZdesign, University of Twente, and HU University of Applied Sciences

Utrecht. The result is the Enterprise Architecture Realization Scorecard (EARS)

and an accompanying method to discover the strengths and weaknesses in the

realization process of an EA management function. During an EARS-assessment,

representative EA goals are selected, and for each goal, the results, delivered

during the different stages of the realization process, are analyzed, discussed and

valued. The outcome of an assessment is a numerical EARScorecard, explicated

with indicator-values, strengths, weaknesses, and recommendations. The EARS

instrument, its metamodel and metrics are presented, as well as the accompanying

method. Furthermore, two assessment cases are discussed to illustrate the use of the

instrument.

Summary

214

215

Nederlandse Samenvatting

In de afgelopen decennia heeft architectuur zich ontwikkeld tot een discipline

binnen het vakgebied van de Informatie Technologie (IT). Een algemeen aanvaarde

definitie van architectuur is die van ISO/IEC 42010: "De fundamentele organisatie

van een systeem, gerepresenteerd in de componenten van het systeem, hun relaties

met elkaar en de omgeving, en de principes die leidend zijn voor het ontwerp en de

evolutie''. Inmiddels zijn vele niveaus en vormen van architectuur op het gebied

van IT gedefinieerd. We hebben ons in ons onderzoek beperkt tot twee types

architectuur: enterprise architectuur en software architectuur.

Het werk van IT-architecten is veeleisend en uitdagend. Het omvat onder meer:

het identificeren van voor de architectuur relevante eisen (functionele en niet-

functionele); het ontwerpen en het selecteren van oplossingen voor deze eisen; en

het controleren dat de oplossingen worden uitgevoerd in overeenstemming met de

ontworpen architectuur. Om de kwaliteit van een architectuur te kunnen

beschouwen, hebben we de ISO/IEC standaard 8402 als uitgangspunt genomen.

Deze standaard definieert kwaliteit als "het totaal aan eigenschappen van een

entiteit benodigd om aan gestelde eisen te voldoen". In het verlengde van deze

definitie stellen we dat een architectuur van hoge kwaliteit is, als die effectief is; de

gestelde eisen afdoende beantwoort.

Hoewel IT-architectuur in de afgelopen decennia al in veel organisaties is

geïntroduceerd, verloopt de toepassing in de praktijk niet altijd zonder problemen.

Op het gebied van enterprise architectuur is aangetoond dat de meeste

architectuurfuncties zich nog op de lagere niveaus van maturity (volwassenheid)

bevinden; bijvoorbeeld met lage scores op de aandachtsgebieden 'ontwikkeling van

de architectuur' en 'monitoring' (van de uitvoeringsactiviteiten). Op het gebied van

software architectuur worden soortgelijke problemen waargenomen. Bijvoorbeeld,

architectuur-ontwerpen blijken vaak mager en onvolledig, en controle op de

naleving van de architectuur gebeurt in de praktijk slechts op beperkte schaal.

Met ons onderzoek willen we een bijdrage leveren aan de vooruitgang van de

IT architectuur en door de effectiviteit van werkzaamheden te verhogen. En wel

door de ontwikkeling en verbetering van ondersteunende instrumenten en tools. In

lijn met deze intentie is de belangrijkste onderzoeksvraag van dit proefschrift:

Hoe kan de effectiviteit van IT-architectuur werk worden geëvalueerd en

verbeterd?

Nederlandse samenvatting

216

Op het gebied van software architectuur hebben we ons gericht op modulaire

architecturen, met bijzondere aandacht voor de taak van de architect om de

ontwikkelactiviteiten te controleren. Architecture Compliance Checking (ACC) is

een bruikbare benadering om te controleren of de implementatie van een

informatiesysteem overeenkomt met de ontworpen architectuur. Met ACC kan de

kloof worden overbrugd tussen de abstracte architectuurmodellen van een software

systeem enerzijds en de programmacode anderzijds. Naar onze mening is ACC ook

goed bruikbaar voor de verbetering van de beoogde architectuur op basis van

inzichten die worden verkregen door de link naar het implementatieniveau heel

concreet te leggen. Omdat ACC-instrumenten in de praktijk en in opleidingen nog

slechts beperkt worden ingezet, hebben we een lijn van onderzoek opgezet met de

focus op ACC ondersteuning. We zijn vanuit een functioneel perspectief begonnen,

met het identificeren van eisen met betrekking tot ACC ondersteuning. Daarna

hebben we bestaande statische ACC-tools bestudeerd, en we hebben die

instrumenten getest op basis van de eerder geïdentificeerde eisen. Vervolgens

hebben we ons onderzoek gericht op enkele geconstateerde problemen.

Een belangrijke eis in ons onderzoek betreft de ondersteuning van semantisch

rijke modulaire architecturen (SRMAs). Wij gebruiken de term SRMA voor een

expressieve modulaire architectuur beschrijving die is samengesteld uit semantisch

verschillende modules (bijvoorbeeld software lagen, subsystemen, componenten),

die beperkt worden door verschillende soorten regels. Enkele voorbeelden van

verschillende typen regels zijn elementaire afhankelijkheidsbeperkingen (module A

mag module B niet gebruiken), beperkingen met betrekking tot afhankelijkheden

tussen lagen, of beperkingen met betrekking tot de naamgeving van klassen en

packages. Veel van de in de praktijk en in de literatuur voorkomende modulaire

software architecturen kunnen worden bestempeld als SRMA, omdat ze modules

met een verschillende semantiek bevatten.

Op basis van ons vergelijkende ACC-tool onderzoek hebben we geconcludeerd

dat er slechts beperkte ondersteuning beschikbaar was voor SRMA’s. Daarnaast

hebben we geconcludeerd dat oplossingen nodig waren om de kloof te overbruggen

tussen enerzijds de modulaire architectuurmodellen zoals architecten die

vastleggen in software architectuur documenten, en anderzijds de beoogde

architectuurmodellen zoals die in ACC-tools worden vastgelegd. In lijn met deze

bevindingen, en op basis van een benadering van design science research, hebben

we een metamodel voor SRMA ondersteuning ontworpen. Bovendien hebben we

HUSACCT ontwikkeld: een ACC-tool die uitgebreide en configureerbare SRMA

ondersteuning biedt. Om onze aanpak te valideren, hebben we compliance checks

met HUSACCT uitgevoerd op professionele systemen en open source systemen.

217

Daarnaast hebben we HUSACCT gebruikt in bachelor- en mastercursussen op het

gebied software architectuur.

Een andere functionele eis die wij met betrekking tot ACC-tools als

uitgangspunt namen, is dat de analyse van de programmacode nauwkeurige

resultaten moet opleveren. Statische ACC richt zich op de controle van regels die

afhankelijkheden tussen modules beperken. Vanwege het grote aantal

afhankelijkheden op het niveau van programmacode is een nauwkeurig hulpmiddel

essentieel voor een effectieve en efficiënte ACC. De effectiviteit van ACC wordt

sterk beïnvloed door het vermogen van het ondersteunende ACC-tool om alle

afhankelijkheden tussen eenheden in de geïmplementeerde software te detecteren

en alle afhankelijkheden te rapporteren die regels overtreden. Op basis van deze

gedachte hebben wij gereedschappen getest en wel met de volgende

onderzoeksvraag in gedachten: Hoe nauwkeurig rapporteren ACC-tools

afhankelijkheden en overtredingen van de afhankelijkheidsregels? We hebben tien

ACC-tools getest en onderling vergeleken op basis van een op maat gemaakte test

applicatie. Bovendien, hebben we de code van een open-source systeem gebruikt

om de tools te vergelijken op aantal en precisie van de gerapporteerde

overtredingen en afhankelijkheden. De testresultaten tonen aan dat alle tools de

nauwkeurigheid van de gerapporteerde afhankelijkheden en overtredingen kunnen

verbeteren. Maar ook dat er grote verschillen in nauwkeurigheid bestaan tussen de

tools. Verder zijn op basis van de testresultaten tien moeilijk te detecteren

afhankelijkheidstypes geïdentificeerd en vier uitdagingen met betrekking tot

afhankelijkheidsdetectie. De relevantie van deze bevindingen hebben we

vervolgens aangetoond door middel van een frequentieanalyse van de moeilijk te

detecteren afhankelijkheidstypes in vijf open-source systemen.

Een tweede lijn van onderzoek op het gebied van software architectuur heeft

zich gericht op de toewijzing van verantwoordelijkheid aan modules; een essentiële

stap in het ontwerp van een modulaire software architectuur. Gebaseerd op de

toegewezen verantwoordelijkheden, kunnen architectuurregels worden

gedefinieerd om afhankelijkheden te beperken. Lagen worden vaak gebruikt in

modulaire architecturen, maar veel gelaagde architecturen blijken slecht te worden

ontworpen en gedocumenteerd; in het bijzonder met betrekking tot de toewijzing

van verantwoordelijkheden. Om software architecten te ondersteunen in hun taak

om een gelaagde architectuur van hoge kwaliteit te ontwerpen, presenteren en

illustreren we twee nieuwe instrumenten: de Typology of Software Layer

Responsibility (TSLR) en de complementaire Responsibility Trace Table (RTT).

Nederlandse samenvatting

218

Tenslotte presenteren wij ons onderzoek op het gebied van enterprise

architectuur (EA) dat we hebben gericht op de ontwikkeling van een evaluatie-

instrument voor het meten en verbeteren van de mogelijkheden van de EA

management functie om haar doelstellingen te realiseren. Dit onderzoek werd

uitgevoerd in het kader van het ArchiValue project, een samenwerking tussen

Novay, APG, de Nederlandse Belastingdienst, BiZZdesign, Universiteit Twente, en

Hogeschool Utrecht. Het resultaat is de Enterprise Architecture Realisation

Scorecard (EARS) en een bijbehorende methode om de sterke en zwakke punten in

het realisatieproces van een EA management functie te ontdekken. Tijdens een

EARS assessment worden representatieve EA doelen geselecteerd, en voor elk doel

worden de resultaten die tijdens de verschillende fases van het realisatieproces zijn

opgeleverd, geanalyseerd, besproken en gewaardeerd. De uitkomst van de

beoordeling is een numerieke EARScorecard, geëxpliciteerd met indicatorwaarden,

sterke en zwakke punten en aanbevelingen. Het EARS instrument wordt

gepresenteerd met metamodel en metrieken, evenals de bijbehorende methode.

Verder worden twee assessment cases gepresenteerd, waarmee de toepasbaarheid

van het instrument in de praktijk wordt geïllustreerd.

219

Curriculum Vitae

Leo Pruijt (1961) studied Biology at the VU University Amsterdam. After

graduation in 1985, he taught Biology and Science at secondary schools on a

temporary basis. He embarked on an IT retraining program in 1988, started

working in IT in 1989, and continued studying IT, which resulted in an AMBI

(Automatisering en Mechanisering van de Bestuurlijke Informatieverwerking)

degree in 1993. From 1989 up to 2000, he worked as software developer, pre-sales

engineer, information analyst, project leader, advisor methods and techniques,

teacher and consultant for the following commercial organizations: Business Case,

Westmount Technology, De Amersfoortse Verzekeringen, and ISES International.

Since his first job, he has worked with model-driven tools, and he specialized in

methods and techniques for the development of information systems, including

their architecture.

In September 2000, Leo started as lecturer at the HU University of Applied

Sciences Utrecht. Since that time, he has developed and taught courses in

requirements engineering, object oriented analysis and design, testing, software

architecture, and enterprise architecture. He contributed to the foundation of the

Information Systems Architecture Research Group (ADIS) in 2007, and he has

joined this group actively ever since. In 2013, Leo also became a member of the

EE-Network research and training network (www.ee-network.eu). In line with his

work in professional practice, his research focuses on methods, techniques, and

tools to enhance the quality and efficiency of the work of IT professionals, and of

students.

220

